MATH 249, WINTER 2017, ASSIGNMENT 3

This assignment is due Friday January 27 at 3pm. It should be submitted using crowdmark. The crowdmark instructions are the same as before.

Questions.

(1) (5 points) (Problems 1 and 2 from 5.3 of the MATH 239 course notes)
(a) Let r be a fixed vertex of a tree T. For each vertex v of T let $d(v)$ be the length of the path from v to r in T. Prove that

- for each edge $\{u, v\}$ of $T, d(u) \neq d(v)$, and
- For each vertex x of T other than r, there exists a unique vertex y such that y is adjacent to x and $d(y)<d(x)$.
(b) Let r be a fixed vertex in a graph G. Suppose that for each vertex v of G we have an integer $d(v)$ such that the two properties from the previous question hold. Prove that G is a tree.
(c) What does this question have to do with rooted trees?
(2) (5 points) Let G be a connected graph and suppose H is a spanning subgraph that has no cycles but any spanning subgraph of G that properly contains H does contain a cycle. Prove that H is a spanning tree.
(3) (10 points) Let G be a connected graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Consider the following algorithm to build a subgraph H of G :
- Add v_{1} to H.
- Repeat until $V(H)=V(G)$:
- Find the vertex v that was added to H earliest and for which there is an edge in G from v to a vertex not in H.
- Find the smallest j such that $\left\{v, v_{j}\right\}$ has one end in H and the other end not in H.
- Add $v_{j},\left\{v, v_{j}\right\}$ to H.

This algorithm builds a breadth first seach tree of G. It can be efficiently implemented using a queue.
(a) Prove the vertex v at the beginning of the loop will always exist provided $|V(H)|<|V(G)|$. What would happen if G were not connected?
(b) Prove that at the end of the algorithm H is a spanning tree of G.
(c) Say the root of a rooted tree is at level 0 , and every other vertex is at level one more than its parent. Consider v_{1} to be the root of H. Prove that when a vertex enters H in the algorithm, it never enters at a level lower than the highest level currently in H.
(d) Let H be the result after running the algorithm. Prove that every edge of G which is not in H joins two vertices that are at most one level apart in H. This is the fundamental property of breadth first search trees.
(e) Use the fundamental property of breadth first search trees to show that the length of a shortest path between two vertices u and v in a graph G is equal to the level of v in any breadth first search tree of G with u as the root.
(4) (5 points) Let G be a graph. Choose an orientation for each edge of G and build the oriented incidence matrix of G (with respect to this orientation) as for the usual incidence matrix except that the i, j th entry is 1 if edge j begins at vertex i and the entry is -1 if edge j ends at vertex i.
(a) Prove that the oriented incidence matrix for a connected graph has rank one less than the number of vertices.
(b) Prove that if E is the oriented incidence matrix then $E E^{T}=L$ where L is the graph Laplacian.
(5) (3 points BONUS) Give a different proof of the matrix tree theorem. Cite any sources you use. I wonder how many different proofs we can come up with between us all.

