MATH 249, WINTER 2017, ASSIGNMENT 2

This assignment is due Friday January 20 at 3pm. It should be submitted using crowdmark.

Crowdmark instructions.

- You will have recieved an email from crowdmark giving you a link where you can submit - don't use someone else's link as that will replace their assignment with yours and submit nothing for you. Send me an email if you need a new link.
- You will receive 0 if the image quality for your assignment is not adequate. Check after uploading to see if it is clear. If in doubt use a computer lab scanner. It is possible to get an adequate quality image from most cell phone cameras but it is not always easy - this is one of the biggest causes of problems.
- If you have any problems email me before the assignment is due. If you do not contact me before the deadline then you will get 0 for a late assignment. If you do contact me in advance your need for a late submission will be dealt with on a case-by-case basis.

Questions.

(1) (6 points) In class we defined a bridge as an edge cut of size 1 . In the MATH 239 notes (which you can download from LEARN) they define a bridge as an edge e of a graph G for which $G \backslash e$ has more components than G. Prove that these two definitions are equivalent. Note that $G \backslash e$ means that graph with vertex set $V(G)$ and edge set $E(G) \backslash\{e\}$.
(2) (5 points) Let G be a graph with no bridges. Consider the following relation \sim defined on the set $E(G)$: for $e, f \in E(G), e \sim f$ means that every cycle in G that contains e also contains f.
(a) Show that \sim is transitive.
(b) Show that \sim is symmetric.
(c) Show that \sim is an equivalence relation. The equivalence classes for this relation are called the series classes of $E(G)$.
(3) (4 points) Prove that every tree is bipartite.
(4) (5 points) Let G be a graph in which every vertex has degree at least $d \geq 2$. Show that G contains a cycle with at least $d+1$ edges.
(5) (a) (5 points) Prove that every automorphism of a tree either fixes a vertex or swaps a pair of adjacent vertices.
(b) (3 points BONUS) What is the largest number of automorphisms (as a function of n) that a tree with n vertices can have?

