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Summary

Today we talked about weight and weight drop.
From the shape of the initial integrations discussed last time we see that twice the weight

of the numerator doesn’t increase. Also one of the edges gets set to 1, so for a φ4 graph
with 4 external edges and loop number ` there remain 2` − 3 integrations and so that is
the maximal weight. This maximal weight is achieved for many graphs including the zigzag
family. A graph whose period is not maximal weight we’ll say has weight drop. In Brown’s
algorithm weight drop comes from when the denominator is a square at some stage. We
can use this as an alternate definition of weight drop when restricted to graphs for which
the algorithm works. For general graphs you need to be more sophisticated to define weight
anyway.

Now if our graph has a 2-separation with 2 external edges on each side then the period is
the product of the periods of the two minors obtained from each side with an edge joining
the separation vertices. You can prove this by a change of variables. As a corollary, let G
be the big graph, G1 and G2 the minors for the two sides with the extra edge and let `, `1,
and `2 be the loop numbers respectively. Then using wt for the weight we have

wt(G1) ≤ 2`1 − 3 and wt(G2) ≤ 2`2 − 3,

but ` = `1 + `2 − 1 because you remove one from the dimension of the cycle space for each
of G1 and G2 when you remove the extra edges joining the separation vertices and then you
add one to the dimension when you join them into G. So

wt(G) = wt(G1) + wt(G2) ≤ 2(`1 + `2) − 6 = 2`+ 2 − 6 = 2`− 4 < 2`− 3,

so G has weight drop.
Another tool for weight drop is double triangle reduction. Suppose you have two graphs.

One has two triangles joined by an edge. If you contract that edge, add a new edge joining
the other ends of the two double edges you created and then remove the duplicates in the
two double edges, you get a graph with one triangle where the original graph had two. Now,
we calculated that the denominators of these two graphs agree after 7 and 5 integrations
respectively. This means that the one will have weight drop iff the other does. The calculation
is all about spanning forest polynomials and is combinatorial.

Next time

Next time some of you will give presentations as part of your projects and I’ll bring
something to eat.

Thanks for coming everyone! Please come to the presentations.
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