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Summary

Today we discussed denominator reduction.
This is an algorithm due to Francis Brown. In fact it is two related algorithms, one

involving only polynomial manipulations and one an integration technique.
We can start integrating the Feynman period one integral at a time. The first two are

calculus exercises. ∫ ∞
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∫ ∞
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To keep from going too crazy use the notation ΨI = ΨG\I and ΨI = ΨG/I . Then∫ ∞
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Now all of these Ψ can be viewed as determinants. In particular consider the matrix

M =

[
Λ ET

−E 0

]
,

where Λ is the diagonal matrix of the ai and E is a signed incidence matrix of the graph with
one row removed. Then by the matrix tree theorem detM = Ψ. Now let’s use the notation
ΨI,J

K = detM(I, J)|ae=0,e∈K where M(I, J) is the matrix M with rows indexed by I removed
and columns indexed by J removed. Note that this is compatible with the notation defined
earlier this lecture with the observation that ΨI = ΨI,I .

With this notation the classical Dodgson identity is detM detM(12, 12) = detM(1, 1) detM(2, 2)−
detM(1, 2) detM(2, 1). Applying this to our M and setting a1 = 0, a2 = 0 we get that the
denominator in the last expression above is equal to (Ψ1,2)2.
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We can keep going with exact statements if we know some special functions, but let’s just
sketch it. So far we had ∫

1

Ψ2
=

∫
1

Ψ1Ψ1

=

∫
logs

(Ψ1,2)2
.

Continuing, we get

=

∫
more logs

Ψ13,23Ψ1,2
3

=

∫
dilogs

Ψ12,34Ψ13,24
+

dilogs

Ψ12,34Ψ14,23
+

dilogs

Ψ13,24Ψ14,23

=

∫
trilogs and other weight 3 stuff

Ψ12,34
5 Ψ135,245 −Ψ13,24

5 Ψ125,345

The denominator at this last step we’ll call D5. Each time the denominator is not a square
then the denominator at the next step is the discriminant of the denominator at the previous
step and the weight of the stuff in the numerator goes up by 1. D5 does not always factor,
but when it does this pattern continues, and so on.

Weight here is weight in the sense of the multiple zeta values and multiple polylogarithms
we discussed last class. Intuitively weight is the minimum nested integral depth needed to
obtain the quantity in question.

To proceed let’s split into two algorithms. Just for the denominators there is a purely
polynomial game to play. This is called denominator reduction.

Start with D5. If Dn = (Aai + B)(Cai + D), distinct factors, then Dn+1 = AD − BC. If
the factors are the same then Dn+1 = 0. If Dn doesn’t factor the algorithm ends.

This mirrors what happens to the denominators in the following integration algorithm
(Brown’s integration algorithm)

Start with the explicit expression involving trilogs and D5. Then use the following iden-
tities for Lw(z):∫

Lw(z)dz

(z − σi)(z − σj)
=

1

σi − σj
(Lxiw(z)− Lxjw(z))∫

Lxr
i xjw(z)dz

(z − σi)2
=

1

σi − σj
(Lxiw(z)− Lxjw(z)) +

1

1− σi

r∑
k=1

(−1)k+1Lxr−k
i xjw

(z)

for i 6= j.
Note how the first identity corresponds to the distinct factor case for the denominators

and how the weight of the multiple polylogarithms goes up by 1 (after having done one
integration, so this fits the intuition). In the second identity the weight does not go up even
though we used an integration. Denominator reduction is only keeping track of the maximal
weight piece and so that’s why we get Dn+1 = 0 in the corresponding situation.

On your assignment you’ll see this in action on K4.

Next time

Next time I will discuss weight drop and double triangles.
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