# COMBINATORICS OF FEYNMAN DIAGRAMS LECTURE 32 SUMMARY 

WINTER 2018

## Summary

We started by finishing the transition from momentum space to parametric space. We had ended off last time with

$$
e^{c} \pi^{4 \ell} \int_{0}^{\infty} \cdots \int_{0}^{\infty} d a_{1} \cdots d a_{m} \frac{e^{B^{T} A^{-1} B}}{(\operatorname{det} A)^{2}}
$$

here $A$ is the dual graph Laplacian with variables. That is the $i, j$ th entry of $A$ for $i \neq j$ will contain $-a_{e}$ if the momenta through the $i$ th and $j$ th cycles in our basis of cycles both contribute to $e$, that is if $e$ is in both cycles. The diagonal entry $i, i$ is the sum of the $a_{e}$ for $e$ in the $i$ th cycle. This is like the Laplacian but with cycles in place of vertices (and with variables, but you can put variables in the Laplacian too).

Consequently, $\operatorname{det} A=\sum_{T} \prod_{e \notin T} a_{e}$ where the sum is over spanning trees of the graph. We will use the notation $\Psi=\operatorname{det} A$. For the $B^{T} A^{-1} B$ part see assignment 5 .

Now we would still expect that this would diverge and $\Psi$ is homogeneous which we haven't made use of yet. In particular $\Psi\left(\lambda a_{1}, \ldots, \lambda a_{m}\right)=\lambda^{\ell} \Psi\left(a_{1}, \ldots, a_{m}\right)$. Also we have $1=$ $\int_{0}^{\infty} d \lambda \delta\left(\lambda-\sum_{e \in E(G)} a_{e}\right)$. So we can rescale the whole integral by $a_{e} \mapsto \lambda a_{e}$ to get

$$
\begin{aligned}
& e^{c} \pi^{4 \ell} \int_{0}^{\infty} \cdots \int_{0}^{\infty} d\left(\lambda a_{1}\right) \cdots d\left(\lambda a_{m}\right) \int_{0}^{\infty} d \lambda \delta\left(\lambda-\sum \lambda a_{e}\right) \frac{e^{\lambda B^{T} A^{-1} B}}{\Psi^{2}\left(\lambda a_{1}, \ldots, \lambda a_{m}\right)} \\
& =e^{c} \pi^{4 \ell} \int_{0}^{\infty} \cdots \int_{0}^{\infty} d a_{1} \cdots d a_{m} \frac{\delta\left(1-\sum a_{e}\right)}{\Psi^{2}\left(a_{1}, \ldots, a_{m}\right)} \int_{0}^{\infty} d \lambda e^{\lambda B^{T} A^{-1} B} \lambda^{|E(G)|-2 \ell} \\
& =(-1)^{|E(G)|-2 \ell} e^{c} \pi^{4 \ell} \Gamma(2 \ell-|E(G)|) \int_{0}^{\infty} \cdots \int_{0}^{\infty} d a_{1} \cdots d a_{m} \frac{\delta\left(1-\sum a_{e}\right)}{\Psi^{2}\left(B^{T} A^{-1} B\right)^{|E(G)|-2 \ell}}
\end{aligned}
$$

Now for a $\phi^{4}$ graph with 4 external edges $|E(G)|=2 \ell$ so the $\Gamma$-function has a pole and the coefficient of this pole (ie residue) is

$$
P_{G}=\int_{a_{e} \geq 0} d a_{1} \cdots d a_{m} \frac{\delta\left(1-\sum a_{e}\right)}{\Psi^{2}}
$$

which we call the Feynman period of the graph. Note that we could have taken any linear function of the $a_{e}$ in place of $\sum a_{e}$ in the delta function, so in particular we could just set $a_{m}=1$ and only integrate the rest of them. That will be easiest on your assignment.

The next thing we did was define multiple zeta values (MZVs) and two ways to represent them. The definition we gave was

$$
\zeta\left(s_{1}, s_{2}, \ldots, s_{k}\right)=\sum_{\substack{n_{1}>n_{2}>\cdots>n_{k}>0 \\ 1}} \frac{1}{n_{1}^{s_{1}} \cdots n_{k}^{s_{k}}}
$$

where $s_{1}+s_{2}+\cdots+s_{k}$ is the weight of the MZV and $k$ is the depth. MZVs also have an iterated integral representation. Let the letter $x$ represent $d t / t$ and let the letter $y$ represent $d t /(1-t)$ and then iterate them as they appear in a word like in the following example

$$
x^{n-1} y \mapsto \int_{0}^{1} \frac{d t_{n}}{t_{n}} \int_{0}^{t_{n}} \frac{d t_{n-1}}{t_{n-1}} \cdots \int_{0}^{t_{3}} \frac{d t_{2}}{t_{2}} \int_{0}^{t_{2}} \frac{d t_{1}}{1-t_{1}}
$$

By expanding the geometric series and working up through the variables you can compute that this is $\zeta(n)$. In general the integration variables go from 0 to the previous variable, and a letter contributes its associated differential form in $t_{k}$ if it is in position $|w|-k$ in the word $w$. We will also call this map $\zeta$ and so

$$
\zeta\left(x^{s_{1}-1} y x^{s_{2}-1} y \cdots x^{s_{k}-1} y\right)=\zeta\left(s_{1}, s_{2}, \ldots, s_{k}\right)
$$

Next time
Next time I will say more about how multiple zeta values relate to words and define multiple polylogarithms.

## References

For the parametric Feynman integral calculations see Itzykson and Zuber "Quantum Field Theory" section 6-2-3 (the calculation is exactly there just with different letters).

For multiple zeta values, here are some lecture notes by Michael Hoffman people.math. sfu.ca/~summerschool/summer_school_2014/mzvcrs1.pdf

