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Summary

Today we finished our discussion of renormalization and just got a little start of the new
section on Dyson-Schwinger equations.

The remaining thing to discuss for renormalization was the map R, which is called the
renormalization scheme. In the formal integral world, R would be, like in the toy model,
the map where you evaluate at fixed values of the external parameters. If you are using
dimensional regularization (a regularization scheme where you view the integral as over a
space of dimension D−2ε and expand in ε) then you can renormalize by minimal subtraction
in which case R is the map R(

∑
i≥I fiε

i) =
∑

I≤i<0 fiε
i. The mathematical formulation of

renormalization only requires that R is a Rota-Baxter map:

Definition 1. For an algebra A over a field K of characteristic 0, a linear map R : A→ A
is a Rota-Baxter operator if

R(a)R(b) = R(R(a)b+ aR(b) + θab)

for some fixed θ ∈ K and all a, b ∈ A.

Minimal subtraction and evaluating formal integrals are both Rota-Baxter.
With all this then as for the toy we have

SFR(G) = −R(F (G))−
∑

16=γ(G
γproduct of
divergent 1PI

SFR(γ)R(F (G/γ))

Fren = SFR ? F

defining the renormalized Feynman rules Fren.
You can view this as an example of Birkhoff decomposition (see the original papers of

Connes and Kreimer). On this physics side this is an algebraic formulation of what is known
as BPHZ renormalization.

To finish the day we went back to combinatorial specifications and rewrote things with
B+, for example

B(x) = xB+(1) + xB+(B(x)2)

as an equation for the augmented generating function of binary rooted trees.
Now we want to do something similar for graphs. The first step is to define the insertion

of G1 into G2, G1 ◦ G2. This is defined to be the sum over all possible ways to insert G1

into G2, where a way to insert is as follows. If the external leg structure of G1 is an edge of
the theory then you can insert G1 into any internal edge of that type in G2 (one way for an
oriented edge type and two ways for an unoriented type) and if the external leg structure of
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G1 is a vertex of the theory then you can insert G1 into any vertex of that type in G2, once
for each type-preserving bijection of the external half edges of G1 with the half edges of the
vertex.

We ended with the statement that this ◦ is a pre Lie product. We’ll return to that fact
and to examples next time.

Next time

Next class we’ll continute thinking about graph insertion.
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