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Summary

Today we derived Feynman rules in φ4. So our Lagrangian is

L =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4

and we had

Z[J ] =

∫
Dφ exp(i

∫
d4xL+ Jφ)

Now what we want to do is try to follow the plan we had in graph counting. Since the path
integral isn’t well defined we can’t do this by rigorous derivations, but rather we will take
things by analogy to the finite dimensional case, and view derivations with the path integral
as a kind of heuristic.

The first thing is to think about the basic Gaussian integral. Before we had
∫
dν(A)e−

1
2
xtAx

so what is the analogue of A? To see it we need to actually write out
∫
d4x(∂φ)2:∫

d4x(∂φ)2 =

∫
d4

4∑
µ=1

∂xµφ(x)∂xµφ(x)

=
4∑

µ=1

∫ ∫
d4xd4y∂yµφ(y)∂xµφ(x)δ(x− y)

where δ(x − y) is the Dirac delta. Now integrate by parts with f = φ(y) and g =∫
d4x∂xµφ(x)δ(x− y) as a function of y. Get

= −
4∑

µ=1

∫ ∫
d4xd4yφ(y)∂yµ∂xµδ(x− y)φ(x) + another term

where we can discount the second term by assuming the fields decay fast enough. Now
we’re happy because things are written in the form φ(operator)φ in analogy with xtAx. In
particular ∫

d4x
1

2
(∂φ)2 − 1

2
m2φ2 = −1

2

∫ ∫
d4xd4yφ(y)A(x, y)φ(x)

where A(x, y) = (
∑4

µ=1 ∂xµ∂yµ +m2)δ(x−y). This is typically written in the more condensed
form ∫

d4x
1

2
(∂φ)2 − 1

2
m2φ2 = −1

2

∫
d4xφ(∂2 +m2)φ
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In the finite dimensional case the Gaussian integral throws down∫
RN
dx1 · · · dxnei(

1
2
xtAx+Jx) =

√
2πi

N

√
detA

e−iJA
−1J2

so we still need the analogue of A−1. This will be called the propagator and written D(x−y).
It depends only on x − y, not x and y separately because of translation invariance. Again
proceed by analogy with the finite dimensional case. Write A = (aij), A

−1 = (dij), Then
AA−1 = I is ∑

j

aijdjk = δj,k

where this delta is the Kronecker delta. Now take the continuous analogue to get

−(∂2 +m2)D(x− y) = δ(x− y)

This is an honest differential equation and can be solved. Get

D(x− y) =

∫
d4k

(2π)4
eik(x−y)

k2 −m2

where a helpful fact to know is (2π)4δ(x) =
∫
d4keikx where x is a 4-vector and as is usual

in this world dot product of vectors is just written as product. Now actually this D(x− y)
has a problem at k2 = m2 and we need to know what to do at the pole. For this reason
physicists usually write

D(x− y) =

∫
d4k

(2π)4
eik(x−y)

k2 −m2 + iε

meaning take the limit of that expression as ε→ 0.
Now can proceed as for graph counting and each edge will give a factor of D(x− y). The

last thing we need to consider is the vertex. In the graph counting, a vertex coming from a
factor of λq4/4! just contributed a factor of λ. Now the vertex if it is at position v comes
from a factor of i

∫
d4vλφ4/4!. Suppose the four edges coming in are at positions w, x, y,

z and the momentum variables (the k variables from the expression for D) are k1, k2, k3, k3
respectively. Then the vertex and these edges together contribute

−iλ
∫
d4vD(w − v)D(x− v)D(y − v)D(z − v) =

−iλ
∫
d4vei(k1+k2+k3+k4)v

(k21 −m2)(k22 −m2)(k23 −m2)(k24 −m2)

=
iλ(2π)4δ(k1 + k2 + k3 + k4)

(k21 −m2)(k22 −m2)(k23 −m2)(k24 −m2)

So now we have our Feynman rules. Here is how to write down the Feynman integral for
a scalar field theory graph.

Arbitrarly orient the edges of the graph. Each edge ei gets a variable ki (the momemtum
running through the edge). Each vertex gets a δ(

∑
±ki) where the sum adds the momenta

for the edges running in to the vertex and subtracts the ones running out. We integrate∫
d4ki
(2π)4

for each edge. Equivalently (see assignment) we can pick an edge variable for each

element of a basis of the cycle space of the graph, integrate only over those variables, not
have any delta functions, and the momentum of an edge is the signed sum of the cycles
variables running through it.
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Finally what is the integrand? For an edge with momentum p get a factor of 1
p2−m2 ; for a

vertex get a factor iλ and take the product of the factors for the edges and the vertices.
Other QFTs are similar but get more complicated (as the factors have tensor indices and

are only “factors” in notation because of Einstein summation).

Next time

Next time we’ll talk about divergences and power counting.
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