
COMBINATORICS OF FEYNMAN DIAGRAMS, WINTER 2018,
ASSIGNMENT 4

SOLUTIONS

PART A

(1) Following the theorem from class you’d get

Q =

(
X+

(X−)4

)2/(4−2)

=
X+

(X−)4

for φ4 and

Q =

(
XY

(X−)3

)2/(3−2)

=
(X+)2

(X−)6

for φ3 where + and Y are representing the vertices based on their shape. Unfortu-
nately if you look closely at the proof or try an example in the way we did QED (or
just check for consistency with QED) you’ll see that the powers of the edges should
involve n(e)/2 in place of n(e) as we defined it. Thus the correct answers are

Q =

(
X+

(X−)4/2

)2/(4−2)

=
X+

(X−)2

for φ4 and

Q =

(
XY

(X−)3/2

)2/(3−2)

=
(X+)2

(X−)3

I accepted either answer.
(2) This is a calculation: let’s do it

[a, [b, c]] + [b, [c, a]] + [c, [a, b]]

= [a, b ◦ c− c ◦ b] + [b, c ◦ a− a ◦ c] + [c, a ◦ b− b ◦ a]

= a ◦ (b ◦ c)− a ◦ (c ◦ b)− (b ◦ c) ◦ a+ (c ◦ b) ◦ a
+ b ◦ (c ◦ a)− b ◦ (a ◦ c)− (c ◦ a) ◦ b+ (a ◦ c) ◦ b
+ c ◦ (a ◦ b)− c ◦ (b ◦ a)− (a ◦ b) ◦ c+ (b ◦ a) ◦ c

= a ◦ (b ◦ c)− (a ◦ b) ◦ c− a ◦ (c ◦ b) + (a ◦ c) ◦ b
+ b ◦ (c ◦ a)− (b ◦ c) ◦ a− b ◦ (a ◦ c) + (b ◦ a) ◦ c
+ c ◦ (a ◦ b)− (c ◦ a) ◦ b− c ◦ (b ◦ a) + (c ◦ b) ◦ a

= 0 + 0 + 0 = 0

by pre-Lie.
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(3) Let’s not label the external legs just to keep it simple. Then we can calculate

For those who do want to label the external legs these are evenly distributed among
the permuations of the external legs, so it remains to collect those which are isomor-
phic.

PART B

(1) LetH be the Connes-Kreimer Hopf algebra over Q. Define Z : H → Q by Z(f) = δ•,f
for any forest f and extended linarly, where δ is the Kronecker delta. Also extend Z
to H[[x]] by acting on coefficients. Prove the following things:
(a) Write a =

∑
ai,jfi,jx

i and b =
∑
bi,jfi,jx

i where {fi,j}j∈Ji runs over all forests
with i vertices and these are indexed by the set Ji. Note that there is only one
forest with one vertex, namely •, so f1,1 = • and J1 = {1}, and similarly there
is only one forest with no vertices, namely 1, so f0,1 = 1 and J0 = {1}. Then
calculate

Z(ab) = Z((a0,1b1,1 + a1,1b0,0) • x+ other terms) = (a0,1b1,1 + a1,1b0,0)x

It works whether you assume Z keeps the x or not. Since I wrote that it extends
to the power series by acting on coefficients, I’ll keep the x. Now for the other
side

Z(a)ε(b) + ε(a)Z(b) = a1,1xb0,1 + a0,1b1,1x

which is the same.
(b) Write T (x) =

∑
i≥0 tix

i. The DSE is Hopf so ∆(ti) ∈ A ⊗ A. Use the grading

to write ∆(ti) =
∑i

j=0 t
(1)
i,j ⊗ t

(2)
i,i−j where t

(k)
i,j has degree j and all the t

(k)
i,j ∈ A.

Then (Z ⊗ Id)(∆(ti)) = Z(t
(1)
i,1 ) ⊗ t

(2)
i,i−1. Next observe that Z(t

(1)
i,1 ) ∈ Q so

use the isomorphism Q ⊗ A ∼= A to obtain that (Z ⊗ Id)(∆(ti)) is a multiple

of t
(2)
i,i−1 and hence is in A. This holds for each coefficient of T (x) and hence

(Z ⊗ Id) ◦∆(T (x)) ∈ A[[x]] as required.
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(c) Write f(z) =
∑

i≥0 fiz
i.

Let’s calculate, using part a to keep it from being too ugly.

(Z ⊗ Id) ◦∆(T (x)) = (Z ⊗ Id)∆(xB+(f(T (x))))

= x
∑
n≥0

fi(Z ⊗ Id)∆B+(T (x)i)

= x
∑
n≥0

fiZ(B+(T (x)i)) + x
∑
n≥0

fi(Z ⊗B+)(∆(T (x)))i

= Z(T (x)) + xB+

(∑
n≥0

fi(Z ⊗ Id)((∆(T (x)))i)

)

= Z(T (x)) + xB+

(∑
n≥0

ifi(ε⊗ Id)((∆(T (x)))i−1)(Z ⊗ Id)∆(T (x))

)

= Z(T (x)) + xB+

(∑
n≥0

ifiT (x)i−1(Z ⊗ Id)∆(T (x))

)
= Z(T (x)) + xB+(f ′(T (x))(Z ⊗ Id)∆(T (x)))

= Z(T (x)) + L((Z ⊗ Id) ◦∆(T (x)))

where in the chain of equalities we used the 1-cocycle property and the fact that
Z maps to xQ as well as part a.

(d) Use the previous parts to make this one easy. By part c we have

(Z ⊗ Id)∆(T (x)) = Z(T (x)) + L((Z ⊗ Id) ◦∆(T (x))).

Rearranging this gives

(Id− L)((Z ⊗ Id)∆(T (x))) = Z(T (x)).

Next note that Id−L is invertible as a formal power series operation because it
begins with 1 and the rest is a multiple of x. So

(Z ⊗ Id)∆(T (x)) = Z(T (x))(Id− L)−1(1)

By part b we know the left hand side is in A and by the grading we know
that the left hand side is divisible by x. On the right hand side we have the
thing we want to know about multiplied by Z(T (x)). As we observed previously
Z(T (x)) ∈ xQ. Furthermore it is nonzero since f(0) = 1. Thus dividing both
sides by x and a nonzero rational number we obtain that (Id− L)−1(1) ∈ A.

(2) (a) The equation becomes

−
∑
i≥1

igi(x)Li−1 −
∑
i≥1

β(x)
∂gi(x)

∂x
Li − γ(x)(1−

∑
i≥1

gi(x)Li).

Taking the coefficient of L0 we obtain

−g1(x)− γ(x) = 0

(and from this you see that my example had a sign error in it coming from
different conventions that I was using at the time). More interestingly taking
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the coefficient of Li for i > 0 we obtain

−(i+ 1)gi+1(x)− β(x)
∂gi(x)

∂x
− γ(x)gi(x) = 0

which is the system of differential equations we are looking for.
(b) The base case of the recurrence is c1 = 1 as there is one chord diagram with one

chord, then the recurrence is valid for n ≥ 2. Summing

C(x) =
∑
n≥1

cnx
n = x+

∑
n≥2

n−1∑
i=1

(2k − 1)ckcn−kx
n

= x+ 2
∑
n≥2

n−1∑
i=1

kckx
kcn−kx

n−k −
∑
n≥2

n−1∑
i=1

ckx
kcn−kx

n−k

= x+ 2xC ′(x)C(x)− C(x)2

In the particular case that γ(x) = −g1(x) and β(x) = 2xg1(x) then the equation
from part 1 becomes

(i+ 1)gi+1(x) = 2xg′i(x)g1(x)− gi(x)g1(x)

which is similar to the equation for C(x) if we ignore the i’s and take all the
gi to be like C(x). This is in fact what happens. The gi can be viewed as a
family of refinements of C and they relate by this generalized form of the classic
recurrence. This is discussed in section 4.1 of arXiv:1210.5457.
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