COMBINATORICS OF FEYNMAN DIAGRAMS, WINTER 2018, ASSIGNMENT 4

DUE FRIDAY MARCH 16 IN CLASS

PART A

Do any two out of the following three problems for part A.

- (1) Give the combinatorial invariant charge (Q) for ϕ^4 theory and ϕ^3 theory (where ϕ^k theory is the scalar field theory with a k-valent vertex).
- (2) Suppose that \circ is a pre-Lie product. Define $[a, b] = a \circ b b \circ a$. Prove that [,] satisfies the Jacobi identity, that is

$$[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0$$

(3) Let \circ be graph insertion as discussed in class. Calculate

$$\rightarrowtail \circ (\rightarrowtail \circ \sim)$$

PART B

Do all questions from part B.

- (1) Let \mathcal{H} be the Connes-Kreimer Hopf algebra over \mathbb{Q} . Define $Z : \mathcal{H} \to \mathbb{Q}$ by $Z(f) = \delta_{\bullet,f}$ for any forest f and extended linarly, where δ is the Kronecker delta. Also extend Z to $\mathcal{H}[[x]]$ by acting on coefficients. Prove the following things:
 - (a) $Z(ab) = Z(a)\epsilon(b) + \epsilon(a)Z(b)$ for all $a, b \in \mathcal{H}[x]$.
 - (b) Suppose $T(x) = xB_+(f(T(x)))$ is Hopf where is f(z) a formal power series with f(0) = 1. Let $A = \mathbb{Q}[t_1, t_2, \ldots]$. Then

$$(Z \otimes \mathrm{Id}) \circ \Delta(T(x)) \in A[[x]].$$

(c) With hypotheses as in the previous part let $L : \mathcal{H}[[x]] \to \mathcal{H}[[x]]$ be defined by $L(a) = xB_+(f'(T(x))a)$. Then

$$(Z \otimes \mathrm{Id}) \circ \Delta(T(x)) = Z(T(x)) + L((Z \otimes \mathrm{Id}) \circ \Delta(T(x)))$$

- (d) If $T(x) = xB_+(f(T(x)))$ is Hopf, with notation as in the previous parts, then $(\mathrm{Id} L)^{-1}(1) \in A[[x]].$
- (2) The renormalization group equation explains how change in x and change in L relate for a Green function:

$$\left(\frac{\partial}{\partial L} + \beta(x)\frac{\partial}{\partial x} - \gamma(x)\right)G(x,L) = 0$$

For the particular G(x, L) of the original chord diagram expansion, $\gamma = g_1$ and $\beta = 2xg_1$.

(a) Expanding $G(x, L) = 1 - \sum_{i \ge 1} g_i(x)L^i$, rewrite the renormalization group equation as a system of differential equations for the $g_i(x)$.

(b) Let c_n be the number of rooted connected chord diagrams. A classic recurrence for c_n is

$$c_n = \sum_{i=1}^{n-1} (2k-1)c_k c_{n-k}$$

Rewrite this as a differential equation for the generating function $C(x) = \sum c_n x^n$ and compare this differential equation to the differential equations of the previous part.