
COMBINATORICS OF FEYNMAN DIAGRAMS, WINTER 2018,
ASSIGNMENT 2

SOLUTIONS

PART A

(1) Ok, the 2π and iλ factors were all over the place, but I wasn’t very careful about
them either, so don’t worry about it. I’ll write it after processing the delta functions
because that’s usually nicer. Take a basis of the cycle space to be the outer square
running clockwise k1, the lower left triangle running clockwise k2 and the lower right
triangle running clockwise k3 and send all the external momenta along the sides and
the bottom. Then we get

λ4

(2π)8

∫
d4k1d

4k2d
4k3

1

(k21 −m3 + iε)((q1 + q2 − k1 − k2 − k3)2 −m2 + iε)(k22 −m2 + iε)

· 1

((q1 − k1 − k2)2 −m3 + iε)((q4 − k1 − k3)−m2 + iε)(k23 −m2 + iε)

with the constraint that q1 + q2 = q3 + q4.
(2) No one did this question at all. I think maybe I didn’t phrase it in a nice clean way

and so that was discouraging. Here’s one way to phrase an answer.
Let the graph be G. Let C1, C2, . . . , C` be a basis of the cycle space with the Ci

oriented cycles. Let ki be a variable for Ci. For each cycle write ki =
∑

e∈Ci
±pe

where the sign is + when the edge is oriented along the cycle and − when it is
oriented in the opposite direction. This is a system of equations which we can write
in matrix form k = Cp where C is the coefficient matrix and k and p are the vectors
of the ki and pi respectively. Now we also have another system of equations, the one
given by the vertex identities. Write this one as 0 = V p.

Now what is it that we want to show in terms of these matrices? We want that
the relations between the pi are compatible with the ki being free, that is we want
CV t = 0. This is true because every cycle comes in and out of every vertex exactly
once. Note that another way to interpret the equation CV t = 0 is that the row spaces
of C and V are orthogonal. What’s left to show is that the row spaces of C and V
together span R|E(G)|, so the ki are exactly the free variables, not less. Note that by
definition C has rank the dimension of the cycle space of the graph. Now consider V .
Notice that V is the signed incidence matrix of the graph. In particular it has rank
|V (G)| − 1. To see this note that V has |V (G)| rows and that the sum of the rows is
0, so the rank is at most |V (G)| − 1; now since G is connected take a spanning tree
of T ; the columns of V corresponding to this tree are independent (inductively from
the leaves) and so the rank of V is exactly |V (G)| − 1. Then by Euler’s formula the
ranks of V and C sum to |E(G)| and so together span R|E(G)|.
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(3) Let G be a graph in this theory with e internal edges, q external edges, and loop
number `. For the theory to be renormalizable we need D` − 2e to depend only on
the number of external edges. By Euler’s formula along with regularity we have

e(2− k) + k` = k − q
so for the theory to be renormalizable we need D = 2k/(k − 2). Note that D will
be an integer only for k = 3, 4, 6. Our usual φ4 theory is one of those values (and
specifically the one for D = 4).

PART B

(1) (a) The proof I had in mind was the inductive one (on edges). You have to take a
bit of care with bridges and people did it in different ways. Removing any edge,
bridge or not, leaves

∑
w(e) +

∑
w(v) unchanged, but then either you need

to justify why this does what we want in the brige case or you need to ignore
bridges for now and have a more complicated base case.
What ended up being more beautiful is what one person did and just computes
it directly something like this: Let G be a connected QCD graph with g internal
gluon edges, f internal fermion edges, h internal ghost edges, t 3-gluon vertices,
q 4-gluon vertices, and r fermion gluon vertices and s ghost gluon vertices. Then

sdd(G) = 4`− 2g − f − h+ t

Now using Euler’s formula to rewrite ` we have

sdd(G) = 4(g + f + h− t− q − r − s+ 1)− 2g − f − h+ t

= 2g + 3f + 3h− 3t− 4q − 4r − 4s+ 4

= (2g − 3t− 4q − r − s) + (3f − 3r) + (3h− 3s) + 4

The number of external gluon edges is the total number of gluon half edges minus
the number of half edges paired into internal edges. So let eg be the number of
external gluon edges and we have

eg = 4q + 3t+ r + s− 2g

Similarly if ef is the number of external fermion edges and eh the number of
external ghost edges then

ef = 2r − 2f eh = 2s− 2h

Thus

sdd(G) = −eg −
3

2
ef −

3

2
eh + 4

and so QCD is renormalizable in the combinatorial sense in D = 4.
(b) However you did part a you now know that adding external edges decreases the

superficial degree of divergence, so there will only be finitely many divergent ex-
ternal structures. With the approach to part a which is above, we can just find
the values of eg, eg and eh which work, observing that ef and eh must both be
even. The result is that the divergent external leg structures in QCD are: vac-
uum graphs (no external edges), one external gluon, two external gluons, three
external gluons, four external gluons, one incoming and one outgoing external
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fermion, one incoming and one outgoing external ghost (except actually you
never have external ghosts, but physics tells you that, not the combinatorics),
one gluon along with one incoming and one outgoing external fermion, and one
gluon along with one incoming and one outgoing external ghost.
Note that the divergent structures are the edges and vertices of the theory along
with the vacuum graphs and the single gluon.

(2) (a) You just need an example here. How about a 3-graviton vertex (superficial degree
of divergence 0) and a 5-graviton vertex with two of the half edges joined into
a graph theorist’s loop (superficial degree of divergence 4− 2 = 2). These have
the same external leg structure but different superficial degree of divergence.

(b) The vertices of each degree will do the job, or if you prefer, how about a graph-
theorists’ loop with any number of external edges hanging off the vertex. The
superficial degrees of divergence are 0 for the plain vertices and 2 for the vertices
with a loop. Divergent in either case.

(c) We can do the same sort of thing as the previous question. Let G be a pure
gravity graph with e internal edges and v vertices. Then

sdd(G) = 4`− 2e+ 2v = 2`+ 2(e− v + 1)− 2e+ 2v = 2`+ 2

by Euler’s formula, where ` is the dimension of the cycle space of G.
(d) There’s not actually much to say here because from the previous part all graphs

are divergent, so in particular all 2-edge-connected graphs are. Thus the only
way to have a 2-edge-connected graph with no divergent proper 2-edge-connected
subgraphs is if it is just a single cycle potentially with external edges.
The point of this question is that such graphs will be primitive in the renormal-
ization Hopf algebra.
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