
COMBINATORICS OF FEYNMAN DIAGRAMS, WINTER 2018,
ASSIGNMENT 1

SOLUTIONS

PART A
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(2) We have zero, one, or two 3-valent vertices and zero, one, or two 4-valent vertices.
First let’s just draw all the unlabelled graphs and then think about the coefficients in
each case. I’m too lazy to type draw these properly, so here are some hand drawings.

Now let’s think about the coefficients and actually write out the expansion.
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Ok that was a bit annoying, but hopefully you learned something.
(3) Seq(Z) means all labelled sequences of atoms. A sequence is an ordered k-tuples for

some k ≥ 0 of atoms. Each k-tuple contains k atoms and a labelling is a bijection
between these atoms and {1, 2, . . . , k}. So what we really have is all orderings of
{1, 2, . . . , k} for all k ≥ 0. This is exactly permutations in one line notation. From
the constructions we discussed in class we know that the exponential generating
function is 1

1−Z(x)
= 1

1−x .

Set(Cyc(Z)) means all labelled sets of cycles of atoms. A labelled cycle of atoms is
a cyclic order on k atoms for some k ≥ 0 along with a bijection between these atoms
and {1, 2, . . . , k}. When we form a set of these with the labelled set construction we
must relabel each cycle so as to be compatible with the original cyclic order but so
that the labels on all the cycles of the set are distinct and consecutive. What this
means is that an element of Set(Cyc(Z)) of size n is a set partition of {1, 2, . . . , n}
where each part has a cyclic structure. This is exactly permutations encoded by their
cycle structure. Thus both describe permutations. Finally, from the constructions
we discussed in class we know that in this second case the exponential generating
function is exp(log( 1

1−x)) = 1
1−x so they agree as they should.

(4) • Write A = (aij) and B = (bij). Then

d(AB) = (d
∑
j

aijbjk) = (
∑
j

((daij)bjk+aij(dbjk))) = (
∑
j
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∑
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aij(dbjk)) = (dA)B+A(dB)

• 0 = d(AA−1) = (dA)A−1 + A(dA−1) so d(A−1) = −(A−1)(dA)A−1.

PART B

(1) (a) Let A,B ∈ SN . For any real numbers a and b, (aA+bB)t = aAt+bBt = aA+bB
and so aA+ bB is also symmetric. For A = (aij) we have aij = aji and no other
conditions, so we can take as free variables the aij with i ≤ j giving a dimension
of (N2 + N)/2. More formally you could explicitly define a basis of Ei for
1 ≤ i ≤ N and Fi,j for 1 ≤ i < j ≤ N with Ei being the N × N matrix which
is all zero except for a 1 in position i, i and Fi,j is the N × N matrix which is
all zero except for a 1 position in i, j and a 1 in position j, i. These are clearly
linearly independent since their nonzero entries are disjoint and they span since
we can write A = (aij) ∈ SN as A =

∑N
i=1 aiiEi +

∑
1≤i<j≤N aijFi,j.
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(b) First for S ∈ SN , tr(SSt) = tr(S2) so this is the usual trace inner product. Now
write it out explicitly. Let S = (sij) ∈ SN , then

tr(S2) =
N∑
i=1

N∑
j=1
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N∑
i=1

s2ii + 2
∑

1≤i<j≤N

s2ij

This is manifestly a quadratic form as it contains only quadratic terms in the
variables. It is nondegenerate because it consists of a nonzero number of squares
of real numbers.

(c) We can just read the matrix off of the expression for the quadratic form in the
previous question. The part that can trip you up the first time is that now this
new matrix is (N2 + N)/2× (N2 + N)/2 and is indexed by the sij. So put the
sii first and then the sij for i < j and obtain the matrix

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 0 · · · 0
0 0 · · · 0 2 · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 0 · · · 2


Thus the covariance matrix is

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
0 0 · · · 1 0 · · · 0
0 0 · · · 0 1

2
· · · 0

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · 1
2


and so 〈sii〉 = 1 for 1 ≤ i ≤ N and 〈sij〉 = 1

2
for 1 ≤ i < j ≤ N .

(d) Given 〈sijskl〉 by swapping the indices of both if necessary we can assume that
i ≤ j. If k ≤ l then 〈sijskl〉 is directly given by the entry of the covariance matrix
indexed by (ij, kl) which is zero unless i = k and j = l since the covariance matrix
has no off-diagonal entries. If k > l then 〈sijskl〉 = 〈sijslk〉 which is the entry of
the covariance matrix indexed by (ij, lk). Similarly this is zero unless i = l and
j = k.

(e) We know the normalizing constant for a (N2 + N)/2-dimensional Gaussian in-
tegral is √
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(f) Here we go∫
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The next one is more trouble to get all the 2s right, as you noticed.∫
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(g)

(h) The gluings are all the chord diagrams where for each chord we can glue one of
two ways, so there are 2n(2n− 1)!! of them.

(i) This proof is essentially the same as the one we did in class for the Hermit-
ian/orientable case.∫

SN

tr(S2n)dµ(S) =

∫
SN

∑
1≤i1...i2n≤N

si1i2 · · · si2n−1i2nsi2ni1dµ(S)

=
∑

1≤i1...i2n≤N

〈si1i2 · · · si2n−1i2nsi2ni1〉

Now use Wick’s theorem to rewrite the expression above as a sum over pairings.
For each pair in a given pairing there are two ways it can be nonzero, specifically
if the pair is 〈sijij+1

sikik+1
〉 then either ij = ik and ij+1 = ik+1 or ij = ik+1 and

ij+1 = ik. Note that if ij = ij+1 then these two cases are the same (and so
getting twice the coefficient from the covariance matrix makes sense and we
can divide the equality cases up into the two parts and so not have to worry
about separately counting nonequal cases from the equalities that they include).
Similarly consider a 2n-gon and label the corners by i1, i2, . . . , i2n. Take a
gluing of the 2n-gon where each pairing can be glued in either of the two ways.
The equations between the ij are the same in either view of the situation and
the number of free variables is the number of vertices of the embedded graph or
equivalently the power of N , likewise to what we did in class. This gives the sum
over 2n-gon gluings both orientable and nonorientable that we want. We can go
to stars by dualizing (but see the next question for how to keep the orientation
information.
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(2) The situtation is the same as for the combinatorial maps except that we need to
encode the two possibilities for the orientation of each pair in the gluing. We can do
this with ribbon or fat graphs where each half edge now has two sides and two half
edges can be glued together with sides matching in either of the two possible ways.
This ends up giving graphs which are fattened and edges may or may not have one
half twist in them. The one-face maps specifically would still have one face (you can
determine the faces directly from the graph just by tracing the sides of the edges
until you return to where you began). Or dually, you could take one-vertex ribbon
graphs.
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