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Chapter 1
Introduction

Quantum field theory is not the first place a combinatorialist is likely to look for
interesting problems or to look to apply their techniques. On the other hand, from the
physics side, toooften combinatorics is viewedas akindof uninterestingmessydetail.
However, there is actually a lot of beautiful and useful combinatorics in quantum
field theory, and the discrete structures illuminate the physical structure. Neither side
is necessarily well positioned to penetrate the literature of the other.

This brief explores combinatorial constructions and discrete-flavoured problems
from quantum field theory in a way which is intended to be natural and appealing
to a mathematician with a combinatorics background as well as being accessible
to mathematical physicists and other mathematicians. It is not comprehensive, but
rather takes a tour, shaped by the author’s biases, through some of the important ways
that a combinatorial perspective can be brought to bear on quantum field theory. In
order to retain a strong sense of the overall story and not get lost in the details, the
main focus is on giving the objects, constructions, and results in a uniform language,
and giving an intuition of why these things are important. Proofs are given when
insightful, but others are left to the literature.

This brief has three parts. In the first part the preliminary material will be set out.
The second part will discuss Dyson-Schwinger equations. The third part will discuss
Feynman graph periods. The second and third parts are largely independent of each
other and can be read in either order.

The first stop on this tour will be a rough overview of what quantum field theory is
all about. Then wewill proceed to set up an enumerative framework in Chap. 3 which
will be used to understand Dyson-Schwinger equations. Chapter 4 will introduce the
combinatorial Hopf algebras that give an algebraic underpinning to renormalization
in quantum field theory and underlie much of the graph-level work in later chapters.
The preliminary part of the brief ends with Chap. 5 setting up Feynman graphs from
a combinatorial and graph theoretic perspective.

Dyson-Schwinger equations are the quantum analogues of equations of motion
and so are physically important. Combinatorially they act as a kind of specification
and so have a natural enumerative flavour. The Dyson-Schwinger part of the brief
begins by setting up Dyson-Schwinger equations in Chap. 6. Then it proceeds to step

© The Author(s) 2017
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4 1 Introduction

slowly from the purely combinatorial to the more physical. Chapter 7 reviews results
of Foissy giving a classification of when subalgebras coming from combinatorial
Dyson-Schwinger equations are Hopf. Chapter 8 brings in Feynman rules in their
simplest formwith the tree factorial. Chapter 9 surveys results on expressing solutions
to a class of more physical Dyson-Schwinger equations in terms of expansions over
chord diagrams. The Dyson-Schwinger part concludes with Chap. 10 describing
recent results on viewing log expansions with combinatorial tools.

The final part turns to individual Feynman graphs and Feynman integrals with
a focus on a particular renormalization scheme independent residue known as the
Feynman period. Chapter 11 gives the combinatorial and analytic definitions that
will be needed. Next we look at graph symmetries that preserve the Feynman period
in Chap. 12. Chapter 13 then looks at a graph invariant known to have these same
symmetries, but forwhich it is not knownhow it relates to the period itself. Chapter 14
introduces Brown’s denominator reduction algorithm and discusses its relation to the
weight of the period. The weight of the period leads to an arithmetic graph invariant
known as the c2 invariant. What we know about the c2 invariant is reviewed in
Chap. 15. The focus and language remain largely combinatorial. For this invariant
the connection with the period is more clear but the some of the symmetries are
conjectural. Finally, the brief concludes in Chap. 16 with a brief review of some of
the more combinatorial aspects of the Feynman integration algorithms which have
been built around these ideas.
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Chapter 2
Quantum Field Theory Set Up

Some standard introductions to quantum field theory are [1–3], for a particularly
diagrammatic approach see [4]. For the reader who is not familiar with these ideas
we will briefly go over the intuition of what quantum field theory is along with
some of the key vocabulary. Many readers would be safe skipping this chapter either
because they are familiar with this material or because they are more interested in
the problems which appear later than in their motivation.

Quantum field theory is a framework in which we can understand arbitrary num-
bers of interacting particles quantum mechanically. It is the standard way to unify
quantummechanics and special relativity. The particles in question can be subatomic
particles in high energy physics in which case quantum field theory, through the stan-
dard model, describes all known particles extremely well. The particles can also be
quasiparticles in condensedmatter physics and so quantumfield theory is a useful tool
for understanding condensed matter systems and the mathematician or mathematical
physicist gets new theories to play with.

In either case, the fundamental thing a quantum field theory describes is how
particles interact and scatter, so one imagines an idealized experiment where some
known particles are sent in, collide and interact in someway, and thenwhat comes out
is detected. Since we don’t know what happened in the collision we, in the spirit of
quantummechanics, take aweighted sumover all possibilities.Anyparticular story of
what the particles did traces out a graph in spacetime with the interactions as vertices
and the edges as particles propagating. Combining together those possibilities which
after forgetting the spacetime embedding give the same graph, we obtain Feynman
graphs,1 see Fig. 2.1. See Chap. 5 for precise definitions.

The weight of the graph in the sum is its Feynman integral. The weighted sum
itself is a perturbative expansion for the scattering amplitude in question.We’ll also
see this kind of sum, over appropriate graphs, as Green functions when we come to
Dyson-Schwinger equations.

Feynman integrals are, in general, very difficult to compute and there is a whole
part of high energy physics devoted to the technique and practice of computing

1Feynman graphs drawn with tikz-feynman [5].

© The Author(s) 2017
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6 2 Quantum Field Theory Set Up

Fig. 2.1 Example Feynman
graphs

,

them, with the practical aim of computing backgrounds for accelerator experiments
and making predictions, see for example the proceedings [6]. For the purposes of
this brief there are four things which will be important about Feynman integrals.
First, one contribution to the Feynman integral is the strength of each interaction
which is captured in one or more coupling constants. The coupling constants can
be reinterpreted as counting variables. Second, the Feynman integrand expression
can be read off the graph with each edge and vertex contributing a factor. The rules
to do this are called Feynman rules. Third, in interesting cases these integrals are
divergent and so to extract physically meaningful quantities from them they must
be renormalized, see Sect. 4.3 for more on renormalization. Finally, the sums of
Feynman integrals contributing to a given process are expected to be divergent for
all interesting cases.

From a discrete math perspective, taking a Feynman-graphs-first approach to
quantum field theory is quite appealing, as we have graphs playing a central role.
Furthermore we have series indexed by graphs which are divergent and hence as
a first step are reasonably thought of as formal. There are other less apparent rea-
sons why this is a nice perspective for those with discrete tastes: the structure of the
renormalization process is captured with a combinatorial Hopf algebra and impor-
tant integral and differential equations come from decompositions of combinatorial
objects, all of which we will investigate over the course of this brief.

There is a downside to a Feynman-graphs-first approach. The series in question are
expected to be divergent in the cases that matter and so they can only be asymptotic
series for the presumed functions which describe the physical processes in question.
That is, a Feynman-graph-first approach is a perturbative approach. By itself a pertur-
bative approach does not have access to any phenomenonwhich is asymptotically flat
at the point around which we are expanding, that is it cannot see the instantons in the
theory or any other nonperturbative phenomenon. Fortunately, we can access these
things by the back door: a Feynman-graphs-first approach doesn’t mean a Feynman-
graphs-only approach. The way to do this is as follows. The recursive structure of the
Feynman graphs and the perturbative expansion give us functional equations for the
perturbative expansions. Since these underlying structures are not mere combinator-
ial happenstance but reflect the physics, they also hold non-perturbatively and so the
functional equations can be upgraded to non-perturbative equations where they, po-
tentially at least, can see nonperturbative effects. The functional equations of this type
we understand best are Dyson-Schwinger equations. That is why Dyson-Schwinger
equations are very important in this approach. To date this is a mere sketch and a lot
of work remains before these ideas could be used foundationally for quantum field
theory.

karen_yeats@sfu.ca
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2 Quantum Field Theory Set Up 7

More traditionally, quantum field theorists escape the limitations of perturbation
theory by beginning with non-perturbative definitions and from there deriving Feyn-
man graphs and the perturbative expansion. One popular and important way to do
this is via the path integral, see [3] for an introduction. The initial intuition is very
much the same—sum over all possibilities—but here we think of the possibilities as
arbitrary paths and so the space of possibilities is continuous and infinite dimensional
making the “sum” an integral and, because of the infinite dimensionality, not one
which is well defined in general. None-the-less it is an approach which captures the
physical intuition well and works in practice, so it’s important and interesting even
without a complete mathematical foundation.

If spacetime is zero dimensional then the path integral is well defined and we get
the zero dimensional field theory approach to counting graphs which is used both by
physicists and mathematicians, see for example [7, 8].

In higher dimensions the path integral is still a good candidate for viewing com-
binatorially simply by temporarily forgetting the analytic difficulties and treating it
formally. Jackson, Morales and Kempf have been looking at the enumerative combi-
natorics of quantum field theory from this perspective. So far this collaboration has
resulted in [9, 10] with a comprehensive treatment in the works.

In any case, even purely perturbative quantum field theory is extremely useful
and full of interesting mathematics, a small part of which we will investigate in what
follows.
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Chapter 3
Combinatorial Classes and Rooted Trees

Throughout this brief, we will use K for the base field and assume that the character-
istic is 0. In fact the characteristic restriction is not always necessary and furthermore
much of the work could take place over any integral domain or even any commutative
ring. This is actually quite typical of combinatorial Hopf algebras, as Grinberg and
Reiner [1] have commented, and in particular K = Z is often useful. However, we
will stick to the field case so as to avoid algebraic digressions.

3.1 Combinatorial Classes and Augmented Generating
Functions

This section gives an overview of combinatorial classes and their generating func-
tions. A good reference for combinatorial classes in a similar language to the one
used here is [2].

Definition 1 A combinatorial class C is a set (by abuse of notation also called C )
and a size function ‖ · ‖ :C → Z≥0 with the property that the sets Cn = {c ∈ C :
|c| = n} are all finite.

Themost important combinatorial classes for uswill be rooted tree classes. Rooted
trees can be defined in many equivalent ways.

One way to define a rooted tree is as a finite graph which is connected, has no
cycles, and has a distinguished vertex called the root. Given a non-root vertex v , there
is a unique vertex adjacent to v and closer to the root than v . This vertex is called
v’s parent. Those vertices (if any) with v as their parent are v’s children. Mixing
metaphors, as is standard, vertices with no children are known as leaves. Given a
vertex v of a rooted tree. The subtree consisting of v and all its children, all their
children, and so on is called the subtree rooted at v and will be denoted tv . We will
draw rooted trees with the root at the top.

© The Author(s) 2017
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10 3 Combinatorial Classes and Rooted Trees

Another equivalent way to define a rooted tree is as a finite partially ordered set
(poset) with the root as the unique largest element andwhere every element other than
the root has exactly one element covering (i.e. immediately above) it. An antichain is
a subset of the elements of a poset with the property that no element of the antichain
is larger than any other element of the antichain; they are all incomparable.

Whichever way one thinks about it, rooted trees form a combinatorial class where
the size is the number of vertices. It is sometimes useful to allow an object of size 0
in combinatorial classes of rooted trees. This we call the empty tree, denoted I.

We can form other interesting combinatorial classes by either restricting the trees,
say by restricting the number of children vertices can have, or by putting on additional
structure. The most important example of additional structure is when we give an
ordering to the children at each vertex, resulting inwhat are called plane rooted trees.
We can also form combinatorial classes by describing how to build the elements, such
as by giving a combinatorial specification, see Sect. 3.2. This is closely connected
to Dyson-Schwinger equations.

Other combinatorial classes which will be very important for us are classes of
Feynman graphs, see Chap. 5.

It will be convenient for Part II to take a slightly nonstandard approach to generat-
ing functions. First note that any combinatorial class C can be made into an algebra
simply by taking the polynomial algebra K [C ] with generators the elements of C .
Addition is purely formal—a sum of trees is just a sum of trees, it is not identified
with some other tree or other object. If C is a class of connected objects, then it will
usually make sense to identify multiplication in the polynomial algebra with disjoint
union, so that a monomial of elements of C is the disconnected object given by the
disjoint union of the elements. The empty object I will typically be identified with
1 ∈ K .

For example, let T be the class of rooted trees with no order information at the
vertices. Then

and we can think of

as a forest of size 5 with two trees.
Now we can define generating functions which keep the objects in the sums.

Definition 2 Given a combinatorial class C , the augmented generating function
of C is the formal power series

C(x) =
∑

c∈C
cx |c| ∈ (K [C ])[[x]].

karen_yeats@sfu.ca
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3.1 Combinatorial Classes and Augmented Generating Functions 11

For example ifwe again letT be the class of rooted treeswith no order information
at the vertices and saywe also include the empty tree in this class, then the augmented
generating function of the class begins.

T (x) = I+•x+ x2+
(

+
)
x3+

(
+ + +

)
x4+O(x5)

The next thing we need is an evaluation map φ : K [C ] → A where A is some
algebraic structure over K . Rational functions over K are often a useful choice for A
as are formal Laurent series, though, simply to illustrate the underlyingmathematical
structure, polynomials often suffice.

The simplest evaluation map is defined by or(c) = 1 for all c ∈ C and extended
as an algebra homomorphism to K [C ]. Using this evaluation map on the augmented
generating function gives the ordinary generating function

∑

c∈C
x |c| = or(C(x)).

For example, continuing with T (x) as in the previous example, we have or(T (x)) =
1 + x + x2 + 2x3 + 4x4 + O(x5).

Since K has characteristic 0 we have factorials in its field of fractions, so we can
define the evaluation map ex(c) = 1/|c|! for c ∈ C and extended as an algebra
homomorphism to K [C ]. This gives the exponential generating function

∑

c∈C

x |c|

|c|! = ex(C(x)).

For example, again with the same T (x), we have ex(T (x)) = 1+ x + 1
2 x

2 + 1
3 x

3 +
1
6 x

4 + O(x5).
Many examples of multivariate generating functions also fit into this framework.

Take one of the variables as the primary variable then the evaluation map will take c
to the monomial given by the other variables as they count the parameters of c. For
example, suppose we want to make a multivariate generating function for a class of
trees where x counts the number of vertices and y counts the number of leaves, then
we can use the evaluation map t �→ ynumber of leaves of t.

The example which matters in quantum field theory also fits into this framework.
Here the evaluation map is the Feynman rules (see Sect. 5.6). This evaluation map
will take a Feynman graph, viewed as a combinatorial object (see Chap. 5), and
return its Feynman integral. Typically, thinking of a regularized Feynman integral,
we could view this map as taking values in the algebra of Laurent expansions in
the regularization parameter with the coefficients being functions in the masses of
the particles and the kinematical parameters. Alternately, we could view the original
Feynman integral as a formal integral expression, and so the Feynman rules take
values in some space of formal integral expressions. The latter is the approach taken
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12 3 Combinatorial Classes and Rooted Trees

in subsection 2.3.2 of [3] (or [4]), which additionally discusses treating the renormal-
ized integral formally. The result of evaluating an augmented generating function by
Feynman rules will be called a Green function.

We often use rooted trees in place of Feynman diagrams. These trees represent the
divergence structure of Feynman diagrams. As we’ll see in more detail in Sect. 4.3
and Chap. 5, many Feynman integrals are divergent integrals.Wewill call a Feynman
graph divergent if it has a divergent Feynman integral. A Feynman graph may also
contain proper subgraphs which are divergent. A divergent graph with no divergent
subgraphs is called primitive. For renormalization it is very important to under-
stand how divergent subgraphs lie within a Feynman graph—this is the divergence
structure of the graph. We often represent this with rooted trees called insertion
trees. For example

has insertion tree

where the divergent subgraphs are the two copies of

,

the

,

and the whole graph. Which subgraphs are divergent and hence which we take in
constructing the tree depends on the physical theory, see Chap. 5 for details. Note
however that not all the primitive divergent subgraphs need to be the same, as they
were in the case above, and some may be of higher loop order.1 If we consider the
size of a Feynman graph to be its loop order then primitive divergent graphs exist at
all loop orders in interesting theories and so to read the size off the tree we should
weight the vertices by the loop order of the inserted graphs.

1The loop order, rephrased in graph theory language, is the dimension of the cycle space of the
graph, see Sect. 5.5. In topological language this is the first Betti number.Loop in Feynman diagram
language means cycle in graph theory language; the graph theorist’s loops are called tadpoles or
self-loops.

karen_yeats@sfu.ca

http://dx.doi.org/10.1007/978-3-319-47551-6_4
http://dx.doi.org/10.1007/978-3-319-47551-6_5
http://dx.doi.org/10.1007/978-3-319-47551-6_5
http://dx.doi.org/10.1007/978-3-319-47551-6_5


3.1 Combinatorial Classes and Augmented Generating Functions 13

Note in particular, these trees are not Feynman diagrams themselves; they do not
represent tree-level processes, rather there are at least as many loops as vertices,
possibly more due to higher loop order primitives.

Also important is that not all Feynman graphs have a tree-like structure to their
subdivergences. This phenomenon is known as overlapping subdivergences. Fortu-
nately trees still make a good model because we can simply take a sum of trees each
representing differentways to resolve the overlaps, see [5]. Thisworks in practice and
also has good theoretical justification because of the universality of rooted trees, see
Sect. 4.4. An alternate approach is to look at the lattice structure of subdivergences,
see Sect. 13 of [6] as well as [7].

The lattice approach is mathematically very pleasing for a few reasons. First of all
it honestly captures the structure of subdivergences without any algebraic fudging
via universality. Second, it puts renormalization Hopf algebras of Feynman graphs,
which will be defined in Chap. 5, into the framework of incidence Hopf algebras
[8] which are an important, quite general, and well studied family of combinatorial
Hopf algebras. Third the lattice approach can see something about why certain types
of graphs are special in quantum field theory, see [7].

None-the-less, rooted trees are an excellent first model for the combinatorics of
quantum field theory and we will work with them extensively in the second part of
this brief.

We can make toy Feynman rules directly for trees. The simplest cases are just
weightings with appropriate algebraic and combinatorial properties. Define the tree
factorial to be

t ! =
∏

v∈t
|tv |.

For example,

!= 4 ·2 · · ·1 ·1= 8.

Then the tree factorial Feynman rules are

t �→ z|t |

t ! (3.1)

This weighting for trees is important as pure combinatorics since a classical result is
that it counts increasing trees. Specifically it is an exercise in Knuth [9] that |t |!/t !
counts the number of ways to label the vertices of a plane tree t with {1, 2, . . . , |t |}
so that the labels increase from parent to child. On the physics side this example
is important because it has the same leading behaviour as realistic Feynman rules,
see [10].

We’ll see more about tree Feynman rules in Chaps. 4 and 8 and in Chaps. 5 and
11 we’ll learn more about physical Feynman rules on Feynman graphs.
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14 3 Combinatorial Classes and Rooted Trees

3.2 Combinatorial Specifications and Combinatorial
Dyson-Schwinger Equations

To give useful specifications of combinatorial classes, we need a collection of com-
binatorial operations. The operations then translate into operations on the generating
functions and so the specifications translate into functional equations satisfied by the
generating functions. There are a few competing schools of thought on notation and
setup for these operations; this notation is inspired by [2].

The two most basic operations are + and ×.

Definition 3 Let C and D be two combinatorial classes.
The combinatorial class C +D is the disjoint union of C and D with the size of

an element of C + D being its size in C or D .
The combinatorial class C ×D is the Cartesian product of C andD with the size

of an element of C × D being the sum of the sizes of its C and D parts.

We will continue to use I to denote the empty object, which can be viewed as
a combinatorial class containing a single element of size 0. For rooted trees, the
combinatorial class containing a single vertex • which is an object of size 1 is also
very useful.

For example, letB be a class of trees. Then •×B×B is the combinatorial class
of ordered triples consisting of a single vertex and two trees from B. Viewing the
first • as a new root and the two trees fromB as children of the root, we can interpret
• × B × B as the combinatorial class of nonempty rooted trees where the root has
two children, each a tree from B, either of which may be empty if I ∈ B. For the
purposes of an ordinary or exponential generating function, or any other evaluation
of the augmented generating function where the evaluation depends only on the size
of the objects, there is no difference between the ordered triple of a vertex and two
trees on the one hand and the tree with root and those trees as children on the other
hand. Consequently we can view

B = I + • × B × B

as a specification for binary rooted trees. These trees are binary in the sense that each
vertex has at most two children. More specifically, since the empty tree is allowed,
empty children are allowed because the I in the specification means I ∈ B and so
empty is possible in either or both of theB in the second term. Also all children are
designated as left or right even when there is only one child, because B × B gives
ordered pairs so having the first empty and the second nonempty is different from
having the first nonempty and the second empty. That is

Another important operation is the sequence operation.

karen_yeats@sfu.ca



3.2 Combinatorial Specifications and Combinatorial Dyson-Schwinger Equations 15

Definition 4 For a combinatorial class C , Seq(C ) is the combinatorial class whose
elements are ordered lists (possibly empty) of objects from C with size the product
of the component objects. Equivalently

Seq(C ) = I + C + C × C + C × C × C + · · · .

For example, the class of plane rooted trees, that is rooted trees where the children
of each vertex are ordered, has the specification

T = • × Seq(T ).

There are many other operations which will not be as useful for us, such as the
operation of taking a cycle of objects from a given class, see Theorem I.1 of [2].

Combinatorial operations are useful because they translate into functional equa-
tions for the generating function. As given above, specifications don’t really keep all
the information we want. For example in saying that binary trees are specified by

B = I + • × B × B

it is left implicit that the • represents the root and the two B are the left and right
subtrees. To write the same specification at the level of the augmented generating
function we need notation which is more explicit in this regard.

Definition 5 Let t1, . . . , tn be rooted trees. Then B+(t1 · · · tn) is the rooted treewhich
consists of a new root with each of t1, . . . , tn as its children.

For example

B+( ) =

If we view t1 · · · tn simply as a disjoint union of trees then B+ returns a tree with
no order information on the children of its root. If instead we view t1 · · · tn as the
ordered list (t1, . . . , tn) then B+ returns a tree with ordered children having the same
order as in the list.

Then we can rewrite the above specifications as functional equations for the aug-
mented generating function.

B = I + • × B × B � B(x) = I + x B+(B(x)2)

and
T = • × Seq(T ) � T (x) = x B+(Seq(T (x)))

Notice that the sequence operator gives a geometric series in the original class.
So we could use the notation

1

1 − T
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16 3 Combinatorial Classes and Rooted Trees

in place of Seq(T ). This is quite common for Dyson-Schwinger equations and so we
usually see

T = • × Seq(T ) � T (x) = x B+
(

1

1 − T (x)

)

Note that we can interpret an equation like

T (x) = I + x B+(T (x)2)

in two ways. If we view the argument to B+ as being an ordered pair of series,
and hence any term in its expansion is an ordered pair of trees, then the result
is the augmented generating function for binary trees with left and right children
distinguished as discussed above.

On the other hand we could also view the argument to B+ as being unordered.

Then, for instance, the term appears twice. The result is a series with coefficients
which are linear combinations of rooted trees where the trees themselves have with
no additional structure. In this set up each tree appears with the multiplicity corre-
sponding to the number of binary trees from B with that underlying shape.

From this viewpoint, starting with

T (x) = I + x B+(T (x)2)

we would get the augmented generating function

T (x) = I+•x+2 x2+ +4
)
x3+O(x4)

We will predominantly take this latter viewpoint and so, unless otherwise speci-
fied, augmented generating functions of trees will be viewed as having coefficients in
linear combinations of rooted trees where the rooted trees have no order information
at the vertices nor other additional structure.

With this convention inmind, given a formal power series A(x)with nonzero con-
stant term we can write the following functional equation of augmented generating
functions

T (x) = x B+(A(T (x))

where A(T (x)) is simply the composition of formal power series. Tree classes which
can be built in this way are known as simple tree classes. We can extend this by
allowing a family of B+ operators indexed by a label which is associated to the
new root vertex. Furthermore the labelled roots may not all have size 1. Given a
combinatorial class L of labels, and a formal power series Aa(x) for each a ∈ L ,
this would give functional equations of the following form
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3.2 Combinatorial Specifications and Combinatorial Dyson-Schwinger Equations 17

T (x) =
∑

a∈L
x |a|Ba

+(Aa(T (x))). (3.2)

We need to take a moment now to consider conventions with regards to I. The
definition of simple tree classes given above does not allow T (x) to begin with a
constant term. Instead A(x) must have a nonzero constant term in order to get the
recurrence going. There is no loss of generality here because if we wanted some
series T̃ (x) = cI+O(x) then we simply use T (x) = T̃ (x)−cI instead. Having said
that, it isn’t convenient to always be adjusting the constant term and keeping it in
lets us stay closer to the Dyson-Schwinger equations of physics where the constant
term corresponds to the tree-level contribution. Therefore, wewill allow the labelling
class in (3.2) to include an element 0 ∈ L of size 0 and take the convention that
B0+(A0(T (x))) is simply a constant a0I.

For example we could write the specification

B(x) = I + x B+(B(x)2)

withL = {0, 1} as
B(x) =

∑

a∈L
xa Ba

+(B(x)2)

and we could modify the specification

T (x) = x B+
(

1

1 − T (x)

)

to U (x) = I − T (x) giving

U (x) = I − x B+
(

1

U (x)

)

where 1/U (x) should be interpreted as shorthand for a geometric series expansion
(which makes sense sinceU (x) = I+ O(x)). Then, again withL = {0, 1}, this fits
into the present framework.

We can also form systems of equations in a similar way

T1(x) =
∑

a∈L
x |a|Ba,1

+ (Aa,1(T (x)))

T2(x) =
∑

a∈L
x |a|Ba,2

+ (Aa,2(T (x)))

...

Tn(x) =
∑

a∈L
x |a|Ba,n

+ (Aa,n(T (x)))

(3.3)
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18 3 Combinatorial Classes and Rooted Trees

From a physics perspective, equations of these form capture the combinatorial
form of a Dyson-Schwinger equation. For example if we insert

into itself recursively in all possible ways, we get a rooted tree structure as in the
example in Sect. 3.1. We will see more physically relevant Feynman graph examples
in Chap. 5. Inspired by this structure, any equation of the form (3.3), either a single
equation or a system, with solutions given by augmented generating functions in
any renormalization Hopf algebra (such as rooted trees or Feynman graphs, see
Chaps. 4 and 5 formore details)will be knownas a combinatorialDyson-Schwinger
equation.
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Chapter 4
The Connes-Kreimer Hopf Algebra

4.1 Combinatorial Hopf Algebras

If we have some product on combinatorial objects then we would expect this product
to take two of the objects and give back an object which in some reasonable sense
is the result of combining the original two objects. A very simple example which
we have already discussed is disjoint union. Another example is the concatenation
of words. Let Ω be an alphabet and let w1, w2 be words over the alphabet (that is
ordered lists of elements of Ω). Then the concatenation of w1 and w2, written w1w2,
is simply the word made of w1 immediately followed by w2.

Other reasonable combinatorial products don’t give back a single object but rather
a multiset of them. One important example of this is the shuffle product of words.
Let Ω again be an alphabet and let w1 and w2 be words over Ω . Then, a shuffle of
w1 and w2 is a word whose letters can be partitioned into two parts so that one part
consists of the letters of w1 in order and the other part consists of the letters of w2 in
order. For example

axbcy

is a shuffle of abc and xy. Suppose we are interested in all shuffles of two words.
Algebraically represent the multiset of these shuffles as a formal sum. Work now in a
vector space or module of linear combinations of words and the shuffle gives a prod-
uct, called the shuffle product which we notate with and can define recursively by

aw1 bw2 = a(w1 bw2) + b(aw1 w2)

and
I w = w I = w

where a, b ∈ Ω , w1, w2 and w are words over Ω , and I is the empty word.
Dually, we may want to break up combinatorial objects into pieces. A coproduct

accomplishes this. It takes an object and returns a sum of ways to break the object
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20 4 The Connes-Kreimer Hopf Algebra

into two pieces. We get a combinatorial Hopf algebra if the product and coproduct
are compatible in a specific way.

One can jump right in and play with combinatorial Hopf algebras just by working
concretely with these two operations and not worrying much about the algebraic
underpinnings. With this in mind, some readers may want to skip to Sect. 4.2. Ulti-
mately, however, a solid abstract foundation is extremely powerful (which is one of
the central messages of mathematics as a whole), and so next we will briefly go over
the basic definitions for Hopf algebras. A good references on combinatorial Hopf
algebras is [1].

To make the duality between coproducts and products most clear the definitions
for Hopf algebras are best presented using commutative diagrams.

Definition 6 An algebra A over K is a vector space over K with two linear maps
m : A ⊗ A → A, called the product or multiplication, and u : K → A, called the
unit, such that the following two diagrams

A ⊗ A ⊗ A
id ⊗m−−−−→ A ⊗ A

⏐⏐�m ⊗ id

⏐⏐�m

A ⊗ A
m−−−−→ A

and
K ⊗ A

a �→1 ⊗ a←−−−− A
a �→a ⊗ 1−−−−→ A ⊗ K

⏐⏐�u ⊗ id

⏐⏐�id

⏐⏐�id ⊗ u

A ⊗ A
m−−−−→ A

m←−−−− A ⊗ A

commute.

For those not fluent in commutative diagrams lets check that this corresponds to
what we usually think of as a K -algebra. Elementarily one thinks of the product
in an algebra as a bilinear map from A × A to A. Converting bilinear maps to
linear maps is exactly what the tensor product does, so this is equivalent to thinking
of the product as a linear map from A ⊗ A to A. The remaining property of a
product is associativity. To see associativity, read off the first commutative diagram:
take an elementary tensor a ⊗ b ⊗ c ∈ A ⊗ A ⊗ A, then the diagram tells
us that m(m(a ⊗ b) ⊗ c) = m(a ⊗ m(b ⊗ c)), or in more mundane language
(a · b) · c = a · (b · c).

Usually we think of the unit as distinguished element of Awhich is a multiplicative
identity. But once we know where 1 is in A, then we also know where 1 + 1 is and
1/(1 + 1) and so on, so the unit is telling us how to see K inside A, just as the map
u does. The unit in the usual sense is given by u(1) ∈ A. The second commutative
diagram says u(1) · a = a · u(1) = a.
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4.1 Combinatorial Hopf Algebras 21

A product tells us how to combine two elements together. A coproduct does the
opposite, it tells us how to take an element apart. Precisely, we simply reverse all the
arrows in the definition of an algebra to get the following definition.

Definition 7 A coalgebra C over K is a vector space over K with two linear maps
Δ :C → C ⊗ C , called the coproduct, and ε :C → K , called the counit, such that
the following two diagrams

C ⊗ C ⊗ C
id ⊗ Δ←−−−− C ⊗ C

�⏐⏐Δ ⊗ id

�⏐⏐Δ

C ⊗ C
Δ←−−−− C

and
K ⊗ C

k ⊗ c �→kc−−−−−→ C
c⊗ k �→kc←−−−−− C ⊗ K

�⏐⏐ε ⊗ id

�⏐⏐id

�⏐⏐id ⊗ ε

C ⊗ C
Δ←−−−− C

Δ−−−−→ C ⊗ C

commute.

We will be interested in situations where we have both a product and a coproduct
so we need to understand when a product and coproduct are compatible. The answer
is that the coproduct and counit need to be algebra homomorphisms or equivalently
the product and unit need to be coalgebra homomorphisms. To make this precise we
need the definition of an algebra homomorphism phrased in this language:

Definition 8 Let A and B be algebras over K . Then f : A → B is an algebra
homomorphism if the following diagrams commute

A
f−−−−→ B

mA

�⏐⏐ mB

�⏐⏐
A⊗A

f⊗ f−−−−→ B⊗B

K

A B

uA

uB

f

A coalgebra homomorphism is the equivalent definition with arrows reversed.
It is a good exercise for the reader to check that given a vector space which is
simultaneously an algebra and a coalgebra over K , saying that the product and unit
are coalgebra homomorphisms is equivalent to saying that the coproduct and counit
are algebra homomorphisms (the relevant commutative diagrams end up just being
the same). This is the compatibility we want.
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22 4 The Connes-Kreimer Hopf Algebra

Definition 9 Suppose B is both an algebra and a coalgebra over K and that the
coproduct and counit are algebra homomorphisms. Then, B is a bialgebra over K .

The most important bialgebras for us will be the Connes-Kreimer Hopf algebra
which will be defined in Sect. 4.2 and renormalization Hopf algebras of Feynman
graphs which will be defined in Chap. 5. Two simpler, but still useful, examples can
be made from words as follows.

Let W be the set of all words over an alphabet Ω . Let W = spanK (W ) be the
vector space of formal linear combinations of words. We can make W into a bialgebra
in two ways. In both cases the unit map will be 1 �→ I, with I being the empty word,
and the counit will be ε(I) = 1, ε(w) = 0 for a nonempty word, both extended as
homomorphisms.

To make W into the shuffle-deconcatenation bialgebra, let the product be the
shuffle, , and let the coproduct be given by

Δ(a1a2 · · · an) =
n∑

i=0

a1 · · · ai ⊗ ai+1 · · · an

for a nonempty word a1a2 · · · an and extended as an algebra homomorphism.
To make W into the concatenation-deshuffle bialgebra, let the product be con-

catenation and let the coproduct be given by

Δ(a1a2 · · · an) =
∑

I⊆{1,...,n}
aI ⊗ a{1,...,n}�I

where aI denotes the subword of a1a2 · · · an consisting of the letters indexed by I .
Here are some useful definitions and results; for more details see [1, Sect. 1.3].
An algebra A is commutative if the multiplication is commutative, that is m(a ⊗

b) = m(b ⊗ a). If we let τ : a ⊗ b �→ b ⊗ a be the transposition operation then
we can write commutativity as the following commutative diagram

A⊗A A⊗A

A

τ

m
m

A coalgebra is cocommutative if the reverse diagram holds. Concretely, this means
that one can flip all the tensors in the coproduct and get the same result. The
shuffle-deconcatentation bialgebra is commutative but not cocommutative while the
concatenation-deshuffle bialgebra is cocommutative but not commutative.

A vector space V over K is graded (or Z≥0-graded to be more precise) if it has a
direct sum decomposition V = ⊕∞

n=0 Vn . The vector space Vn is called the graded
piece of degree n and the elements ofVn are called homogeneous of degree n. A linear
map f : V → W between graded vector spaces is itself graded if f (Vn) ⊆ Wn for
all n. Note that if V is a graded vector space, then V ⊗ V is also graded. Specifically,
the graded piece of degree n in V ⊗ V is

⊕n
j=0 Vj ⊗ Vn− j . An algebra, coalgebra,
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or bialgebra is graded if the underlying vector space and all the defining maps are
graded.

For example, both word bialgebras we have defined are graded. If we have
any combinatorial class C then we can form a graded vector space span(C ) =
⊕ ∞

n=0span(Cn). Then if we have a compatible “putting together” map for multipli-
cation and “taking apart” map for comultiplication we get a combinatorial bialgebra
(and we’ll soon see it is in fact a combinatorial Hopf algebra). The combinatorial
bialgebras we’ll be working with are slightly more special because we’ll be using
disjoint union as our multiplication, so if C is a combinatorial class of connected
objects, then K [C ] is a graded vector space where the homogeneous elements of
degree n are the homogeneous polynomials of degree n (with each element c ∈ C
being of degree equal to its size). To form a combinatorial bialgebra in this more
restricted context we only need to find a compatible coproduct.

A graded vector space V over K is connected if V0
∼= K . The two word bialgebras

are both connected. In fact, in our combinatorial context the connected condition is
very natural because often for a combinatorial class C we have C0 = {I}, that is
we have a single element of size 0 which we call the empty object. In this case the
degree 0 graded piece is span(C0) = K I ∼= K .

Here are a few simple facts about graded connected bialgebras. The proofs are
straightforward and good exercises.

Proposition 1 Let A be a graded connected bialgebra over K .

1. u : K → A0 is an isomorphism.
2. ε|A0 : A0 → K is the inverse isomorphism to u.
3. ker ε = ⊕∞

n=0 An.
4. For x ∈ ker ε, Δ(x) = I ⊗ x + x ⊗ I + Δ̃(x) where Δ̃(x) ∈ ker ε ⊗ ker ε.

For a bialgebra A and a ∈ A, if Δ(a) = a ⊗ a then we say a is group-like.
Group-like elements will not be very important for us since in a graded connected
bialgebra the only one is I, however series of elements in our Hopf algebras can be
group-like. For a bialgebra A and a ∈ A, if Δ(a) = I ⊗ a + a ⊗ I then we say a is
primitive. If Δ(a) = I ⊗ a+a ⊗ I+ Δ̃(a), then the I ⊗ a+a ⊗ I is the primitive
part.

For us the most important thing about graded connected bialgebras is that we
get for free that they are not just bialgebras but actually Hopf algebras. This means
that we have one more map, called the antipode. To understand it we first need to
understand the convolution product.

Definition 10 Let C be a coalgebra and A an algebra. Let f, g :C → A be linear
maps. The convolution product of f and g is

f � g = m ◦ ( f ⊗ g) ◦ Δ.

Definition 11 A bialgebra A is a Hopf algebra if there exists a linear map S : A →
A, called the antipode, satisfying the following commutative diagram
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A⊗A A⊗A

A K A

A⊗A A⊗A

S⊗id

mΔ

ε

Δ

u

id⊗S

m

.

Equivalently, interpreting this as a formula, the defining property of the antipode is
S � id = id � S = uε.

Here are a few important properties of the antipode (see Sect. 1.4 of [1] for more
details). The last of these is the one which is key for us; it says that the antipode
comes for free in our context.

Proposition 2 1. Let A be a Hopf algebra. The antipode S is an algebra anti-
automorphism. That is, S(I) = I and S(ab) = S(b)S(a)

2. Let A be a Hopf algebra. If A is commutative or cocommutative then S ◦ S = id.
3. Let A be a graded connected bialgebra. A has a unique antipode S which is

determined recursively. Furthermore, S is a graded map, so A is a graded Hopf
algebra.

For the first two items, see [1, Sect. 1.4] for proofs. The last point is particularly
important for us, so let’s go through the calculation

Proof (Proof of 3.) Begin with S � id = uε and turn this into a recurrence. We have

A =
∞⊕

n=0

An

and A0 = K . By the first point of the proposition S(I) = I so S|A0 = id. For x
of homogeneous degree n > 0 by the previous proposition we can write Δ(x) =
I ⊗ x + x ⊗ I + Δ̃(x) with Δ̃(x) ∈ ker ε ⊗ ker ε. Write

Δ̃(x) =
∑

i

xi,1 ⊗ xi,2

then each xi, j has degree strictly less than n. Then

0 = uε(x) = (S � id)(x) = x + S(x) +
∑

i

S(xi,1)xi,2
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so
S(x) = −x −

∑

i

S(xi,1)xi,2

which determines S recursively.

Following through this definition for the concatenation-deshuffle Hopf algebra
we get S(a1a2 . . . an) = (−1)nan . . . a2a1. The word is reversed and there is a sign.

There are a few things to note here. First, the antipode is the direct analogue to the
Möbius function in this context. This explains why the recursive formula is strongly
reminiscent of Möbius inversion. See [2] for more about the connection between the
antipode and Möbius inversion. Second, since the combinatorial Hopf algebras of
interest to us are commutative and hence S ◦ S = id, these Hopf algebras are not the
kind of interest in the quantum groups world.

Note also that augmented generating functions fit very nicely into this algebraic
context because the coefficients are simply elements of the relevant combinatorial
Hopf algebra H . Algebraic operations can be extended from H to H [[x]] and can
also be used to speak about the generating function.

4.2 The Connes-Kreimer Hopf Algebra of Rooted Trees

The most important combinatorial Hopf algebra for us is the Connes-Kreimer Hopf
algebra of rooted trees. It is what we need to capture the structure of renormalization
(see Sect. 4.3) and is algebraically important (see Sect. 4.4).

Let T be the combinatorial class of rooted trees with no plane structure and
without including the empty tree. Let H = K [T ]. As in Sect. 3.1 think of H
as a space of forests. The empty forest I reappears as the empty monomial. The
algebra structure of H is the algebra structure we want for the Connes-Kreimer
Hopf algebra. Recall, given t ∈ T and v ∈ V (T ), tv is the subtree of t rooted at v
(see Sect. 3.1). The coproduct, Δ, is defined as follows: for t ∈ T

Δ(t) =
∑

C⊆V (t)
C antichain

(
∏

v∈C
tv

)
⊗

(
t −

∏

v∈C
tv

)

and Δ is extended to H as an algebra homomorphism.
For example

∆
)
= ⊗ I+ I⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ .
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For a forest example, using multiplicativity we have

∆
)
=

(
⊗ I+ ⊗ + I⊗

)
⊗ I+ I⊗ )

= ⊗ I+ ⊗ + ⊗ + ⊗ + ⊗ + I⊗ .

Another way to think of Δ is in terms of sets of edges to cut at rather than sets
of vertices to root at. For any antichain C ⊆ V (T ) which does not contain the root
(and hence is not the singleton of the root alone), take the edges immediately above
the elements of C . This set of edges has the property that no two are on the same
path from a leaf to the root and every set of edges with this property comes from an
antichain of vertices. If we think of cutting these edges, then the resulting subtrees
which do not contain the original root are precisely

∏
v∈C tv , while the unique subtree

containing the original root is t −∏
v∈C tv . The antichain consisting of the root alone

is a special case, giving the summand t ⊗ I. In edge-cut language we think of this as
a virtual cut called the empty cut which we can visualize as cutting above the root
in order to detach the entire tree.

The counit of the Connes-Kreimer Hopf algebra is fairly uninteresting. It is the
algebra homomorphism ε :H → K which takes any (nonempty) t ∈ T to 0 and
takes I to 1.

Δ and ε make H into a bialgebra. The required properties are mostly very easy to
check. The only nontrivial one is coassociativity. Even still the idea is not difficult—
taking an antichain of vertices of a tree and then taking another antichain which lies
beneath it in the poset in all possible ways is the same as taking an antichain of
vertices and then taking another which lies above it in all possible ways. In either
case you are simply taking two antichains, one above the other, in all possible ways.

H is graded by the number of vertices of a forest. The degree zero piece is K I

so H is graded and connected. Thus by the results of the previous section H has
an antipode and so is a Hopf algebra. Concretely, this means the antipode is given
by the following formula

S(t) = −t −
∑

∅�C�V (t)
C antichain

S

(
∏

v∈C
tv

)(
t −

∏

v∈C
tv

)

for t ∈ T .
For example

S(•) = −•
S(••) = −••−2S(•)• = ••
S( ) = − −2S(•) −S(••)• = − +2• −•••
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The antipode will be useful because it captures the recursive structure of renor-
malization as we will see in the next section.

4.3 Physical Properties

The Connes-Kreimer Hopf algebra of rooted trees was introduced in order to give an
algebraic underpinning to the BPHZ renormalization prescription (see below). Let’s
step back a moment and see where renormalization comes from. In perturbative
quantum field theory we have series expansions indexed by Feynman diagrams.
Each Feynman diagram contributes an integral but these integrals, in key cases, are
divergent. One way to think of this intuitively is that the quantities in question don’t
make sense absolutely but do make sense relatively. This is meant in the sense that
the integrals diverge, but if we take the difference, formally, between the integral at
some fixed reference scale and the integral at some other scale of interest then we get
a finite integral. Thinking this way leads, after all the substantial details are worked
out, to renormalization by subtracting at a reference scale such as in MOM scheme.
See below for some toy tree Feynman rules which can be renormalized in this way.
There are many other ways to think about the divergences in quantum field theory
and many other renormalization schemes with different strengths and weaknesses.

One of these substantial details is of key combinatorial importance. Specifically
it is not necessarily just the overall integral which is divergent, but often partial inte-
grations are already divergent. This corresponds to subgraphs of the Feynman graph
being divergent. Fortunately this problem can be dealt with using a recursive sub-
traction scheme. This approach was worked out over the course of roughly a decade.
Bogoliubov and Parasiuk took one of the key steps with a tool that came to be known
as Bogoliubov’s R-map [3]. Overlapping subdivergences are particularly tricky and
Zimmerman, thinking in terms of trees of subdivergences within graphs, gave what
is known as the Zimmerman forest formula [4] to understand their renormalization.
In the end the recursive renormalization technique which was developed is known
as BPHZ renormalization after Bogoliubov, Parasiuk, Hepp, and Zimmermann, see
[5] for an overview.

Much more recently Kreimer [6, 7] realized the underlying structure of BPHZ
renormalization is captured by a combinatorial Hopf algebra. This gave a new and
insightful underpinning to renormalization and opened the door to interactions with
a variety of different parts of mathematics. These parts of mathematics had new
contributions to make to quantum field theory and new things to learn from quantum
field theory, for example [8–29]. I count myself as such a mathematician on the
combinatorial side.
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In this Hopf algebraic framework, the antipode is capturing the structure of recur-
sive renormalization, and after twisting the antipode with the Feynman rules in an
appropriate way we can simply write down the renormalized map in this algebraic
language. In Chap. 5 we’ll develop Feynman graphs and Feynman rules as well as
renormalization Hopf algebras directly at the level of graphs. For now, however, we
will stick to rooted trees. Because of Theorem 1 (see Sect. 4.4) we lose very little by
working at the level of trees, though working directly with the Feynman graph Hopf
algebras can sometimes be more appealing.

In order to be more concrete let’s make some toy Feynman rules for trees which
are more realistic than the tree factorial Feynman rules and in particular require
renormalization. Then we’ll use this to illustrate how renormalization works. This
toy example can be found in [19] and a nice exposition of it is in [30]—more details
on it can be found there.

Recursively define a map φs on the Connes-Kreimer Hopf algebra of rooted trees,
H , as follows. Require φs to be an algebra homomorphism, then for any nonempty
forest f

φs(B+( f )) =
∫ ∞

0

φz( f )

s + z
dz

where s is a parameter with s > 0. This φs is the Feynman rules for this toy example.
The recursive appearance of φ inside the definition has a different argument because
the integrals themselves are nested as they are for real quantum field theories.

Let’s see what happens in a few simple examples.

φs(•) =
∫ ∞

0

1

s + z
dz

This integral is already divergent since the antiderivative of 1
s+z is log(s + z) which

diverges as z → ∞. This means that we should think of the target space of φs as
being a space of formal integral expressions. However, we are interested in doing
something to these formal integral expressions in order to get expressions which are
integrable.

In this case we can renormalize by subtraction. Take the difference of the inte-
grands of φs(•) and φ1(•) giving

1

s + z
− 1

1 + z
= 1 − s

(s + z)(1 + z)

The s parameter is acting like a kinematical parameter and taking this difference
means looking at our quantity relatively not absolutely. This difference is integrable
for 0 ≤ z ≤ ∞: ∫ ∞

0

1 − s

(s + z)(1 + z)
= − log(s)
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and so, being sloppy in the conventional way, we write

φs(•) − φ1(•) = − log(s)

and we have renormalized φs(•).
Now consider

φs( ) =
∫ ∞

0

φz1(•)
s+ z1

dz1 =
∫ ∞

0

∫ ∞

0

1
(z1 + z2)(s+ z1)

dz2dz1.

This is again divergent but so is φs( )−φ1( ) . The problem is the inner dz2

integration—first we need to subtract to take care of it. The way to do this systemati-
cally is to use the antipode. Let R be the map which takes a formal integral expression
in the parameter s and evaluates it at s = 1. Then define

Sφs
R (I) = 1

Sφs
R (t) = −R(φs(t)) −

∑

∅�C�V (t)
C antichain

Sφs
R

(
∏

v∈C
tv

)
R

(
φs

(
t −

∏

v∈C
tv

))

for tree t and extend as an algebra homomorphism toH . We think of Sφs
R as a twisted

antipode—the defining recurrence says Sφs
R � Rφs = uε (recall the convolution

product of Sect. 4.1). Then the renormalized Feynman rules are

φrenormalized = Sφs
R � φs .

Let’s calculate for to see that it works.

Sφs
R ( ) = −R(φs( ))−Sφs

R (•)R(•)

= −
∫ ∞

0

∫ ∞

0

1
(z1 + z2)(1+ z1)

dz2dz1 +
∫ ∞

0

1
1+ z2

dz2

∫ ∞

0

1
1+ z1

dz1

= −
∫ ∞

0

∫ ∞

0

1− z1

(z1 + z2)(1+ z1)(1+ z2)
dz2dz1.

This is the counterterm. Then
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φrenormalized( ) = φs( )+Sφs
R (•)φs(•)+Sφs

R ( )

=
∫ ∞

0

∫ ∞

0

1
(z1 + z2)(s+ z1)

dz2dz1 −
∫ ∞

0

1
1+ z2

dz2

∫ ∞

0

1
s+ z1

dz1

−
∫ ∞

0

∫ ∞

0

1− z1

(z1 + z2)(1+ z1)(1+ z2)
dz2dz1

=
∫ ∞

0

∫ ∞

0

1− s
(z1 + z2)(1+ z2)(s+ z1)

− 1− z1

(z1 + z2)(1+ z1)(1+ z2)
dz2dz1

=
∫ ∞

0

∫ ∞

0

(1− z1)(1− s)
(z1 + z2)(1+ z2)(s+ z1)(1+ z1)

=
1
2

log2(c)

which is finite.
This whole story works provided R is a Rota-Baxter map, see [5, 31], and

furthermore it can be encased in the more general geometric framework of Birk-
hoff decomposition, see [32, 33] and explained in detail on this particular example
in [30].

4.4 Abstract Properties

As well as being physically important, the Connes-Kreimer Hopf algebra, H , is
important algebraically because of a universality property discussed below. We can
also now characterize what we want algebraically from Feynman rules.

The first step is to capture the nature of B+ algebraically. Specifically how does
B+ interact with Δ? To answer this question we just check directly from the definition
that

Δ(B+(t)) = (id ⊗ B+)Δ(t) + B+(t) ⊗ I

because a cut either cuts off the whole tree or consists of cuts in the subtrees which
are the children of the root. It turns out that this identity is telling us that B+ is a
Hochschild 1-cocycle. For readers who do not work with cohomology regularly here
is a 3 point summary of how cohomology works:

1. You need a family of maps bn from objects of size n to objects of size n + 1 with
b2 = 0 (where b2 means bn+1bn).

2. Take quotients ker(b)/im(b).
3. Use these quotients to understand your original objects.

For us we want the objects of size n to be maps from B to B ⊗ n for some bialgebra
B (most important is the case B = H ) Then b is the following map. For any
L : B → B ⊗ n ,
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bL = (id ⊗ L)Δ +
n∑

i=1

(−1)iΔi L + (−1)n+1L ⊗ I

where Δi = id ⊗ · · · ⊗ id ⊗ Δ
i th slot

⊗ id ⊗ · · · ⊗ id. This gives the Hochschild

cohomology of bialgebras.
The first thing you would want to know, following the 3 point summary of coho-

mology, would be ker(b1)

0 = b1(L) = (id ⊗ L)Δ − ΔL + L ⊗ I

so ΔL = L ⊗ I + (id ⊗ L)Δ. This is the property B+ has; it is the property of
being 1-cocycle, see [19] or [11] for details.

The pair of H and B+ is universal for commutative bialgebras with a 1-cocycle
in the following sense.

Theorem 1 Let A be a commutative algebra and L : A → A a map. Then there
exists a unique algebra homomorphism ρL :H → A such that ρL ◦ B+ = L ◦ρL . If
further A is a bialgebra and L is a 1-cocycle then ρL is a bialgebra homomorphism
and if A is even further a Hopf algebra then ρL is a Hopf algebra homomorphism.

This result is due to Connes and Kreimer [19]. For a nice exposition see Theorem
2.6.4 of [30].

There are two main ways that this theorem tends to be useful. First, take A to be
another commutative Hopf algebra with a 1-cocycle. Then by universality we can
always map H with B+ to A and often we can use this to do the work we need to
do in H instead of A.

Second we can think of A as the target algebra for our Feynman rules. Then any
endomorphism of A (playing the role of L in the theorem) induces a ρ which can
serve as Feynman rules (see [30, Sect. 3.1]). This now gets to the question of what
properties we want Feynman rules to have. There are layers of increasingly restrictive
properties we might want to impose.

To begin with, thinking of Feynman rules on graphs rather than rooted trees
(see Chap. 5) Feynman rules should be multiplicative on disjoint unions and also
have a product property for bridge edges.1 This multiplicativity over bridges is what
lets us move from all Feynman diagrams to one particle irreducible (1PI) diagrams
(see Chap. 5). This is done by a Legendre transform, a comprehensive combinatorial
treatment of which should appear in upcoming work of Jackson, Kempf, and Morales,
see also [34, 35]. Aluffi and Marcolli take these properties as their definition of
algebro-geometric Feynman rules in [36]—their goals include finding other examples
of such maps which are natural in the context of algebraic geometry.

Treating rooted trees as insertion trees for Feynman graphs, we don’t see the
reduction to 1PI; we generally consider it to already be done. We still do want maps

1A bridge is an edge which upon removal increases the number of connected components of a
graph.
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which are multiplicative. In fact they should preserve the algebra structure and so we
are led to define Feynman rules as characters, that is algebra homomorphisms from
H to some commutative algebra A. This is the definition from [32].

We have still only touched the surface of the structure of the actual Feynman rules
of quantum field theory, so depending on the context we may want to assume more
in order to progress. One important additional condition is that the Feynman rules
play nicely with B+. This is necessary to make Dyson-Schwinger equations work.
A good algebraic way to impose such a condition is to require that Feynman rules
come from an automorphism of a commutative algebra A via Theorem 1. This is
what is done in [30, Sect. 3.1].

Alternately one might look to see how the Feynman rules should interact with the
coproduct. Restrict to the case where the Feynman rules take values in some ring of
polynomials in a variable L . This L will be the L which comes up in the second part
of this brief, namely the log of an energy scale. Then the property one would want
of Feynman rules is as follows. Let φ :H → R[L] be the Feynman rules. Write
φ(L1 + L2) for the map φ followed by substituting L1 + L2 for L . Then the property
we want of the Feynman rules is2

φ(L1 + L2) = φ(L1) � φ(L2).

These last two properties are closely related as both are essentially telling us that
the Feynman rules come from the exponential map on the associated Lie algebra.3
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Chapter 5
Feynman Graphs

5.1 Half Edge Graphs

For the purposes of a combinatorial perspective on Feynman graphs, the most appro-
priate way to set up the graphs will not have the edges or the vertices as the funda-
mental bits, but rather will be based on half edges. This set up is based on [1], see
also [2].

Definition 12 A graph G is a set of half edges along with

• a set V (G) of disjoint subsets of half edges known as vertices which partition the
set of half edges, and

• a set E(G) of disjoint pairs of half edges known as internal edges.

Those half edges which are not in any internal edge are known as external edges.

A half edge labelling of a graph with half edge set H is a bijection H →
{1, 2, . . . , |H |}. A graph with a half edge labelling is called a half edge labelled
graph. See Fig. 5.1 for an example.

Graphs and labelled graphs are considered up to isomorphism. Multiple edges
and loops in the sense of graph theory (self loops) are allowed.

Graphs in this sense, whether labelled or not, form a combinatorial class with the
size being the number of half edges. Later, in the context of combinatorial physical
theories, we will put types on the half edges and restrict which types can come
together at a vertex. If the degree is bounded then the number of vertices is also a
notion of size under which these graphs form a combinatorial class. We will also
typically consider graphs with a fixed set of external edges. Once the external edges
are fixed the dimension of the cycle space of the graph (known as the loop number or
the first Betti number; see Sect. 5.5 for more details) is another notion of size under
which these graphs still form a combinatorial class. The loop number will be the
most important notion of size for us.

Let’s think about the interplay between labelled and unlabelled.

© The Author(s) 2017
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36 5 Feynman Graphs

Fig. 5.1 A half edge
labelled graph. The external
edges are 1, 4, 5, and 8. The
internal edges are the pairs
{2, 3}, {6, 7}, and {9, 10}

1 2 3 4

5 6 7 8

9 10

Lemma 1 Let G be a connected graph with n half edges. Let m be the number of
half edge labelled graphs giving G upon forgetting the labelling, and let Aut(G) be
the automorphism group of G. Then

m

n! = 1

|Aut(G)|
Proof Aut(G) acts freely on the n! half edge labellings of G. The orbits are the m
isomorphism classes of half edge labellings. The result follows by elementary group
theory.

The primary consequence of Lemma 1 is the following. Suppose we start with
the augmented generating function of half edge labelled graphs, say H(x), and the
augmented generating function of the half edge graphs without labels, say U (x).
Next let φ be any evaluation map which forgets the labelling (so we can see it as
defined either on the labelled or the unlabelled graphs with the same result), and
finally let φ̃ be the map which takes a half edge labelled graph G with n half edges
to φ(G)/n! and φ̂ be the map which takes a graph G to φ(G)/|Aut(G)|. Then

φ̃(H(x)) = φ̂(U (x)).

In particular, the exponential generating function for half edge labelled graphs is
identical to the ordinary generating function for half edge graphs weighted with
1/|Aut(G)|. This factor 1/|Aut(G)| is called the symmetry factor of the graph.

This observation is important because it is a standard combinatorial fact that if
D(x) is the exponential generating function for some labelled objects and C(x) is
the exponential generating function for the connected objects only then

exp(C(x)) = D(x)

while the situation is more complicated for unlabelled objects. In the perturbative
expansion, Feynman graphs appear weighted by their symmetry factors. The sym-
metry factor is showing that Feynman graphs are in fact counted in a hidden labelled
way. Furthermore, this remains true for the more complicated evaluations of the
augmented generating function which explains why we get an exponential relation
between amplitudes from sums over connected Feynman graphs and sums over all
Feynman graphs.
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5.1 Half Edge Graphs 37

Conventionally, we think of the internal structure of a Feynman graph as being
unlabelled, but we weight with the symmetry factor and so get the exponential rela-
tion. The external edges, on the other hand, are usually viewed as labelled. In a
drawing this is often implicitly shown by their location on the page. So for example

and

are viewed as different. This convention is very natural given that in a stereotypi-
cal high energy physics application the external edges are the particles from your
accelerator beam and those measured by your detectors, so they are all distinguished.

Most of the time the half edges don’t really matter in which case we’ll think of
graphs in terms of edges and vertices as usual. However, when things get unclear,
the way to sort it out is to think of the half edges. For example, for some graphs it is
clear how many automorphisms they have, but for others it may not be clear unless
one thinks explicitly about half edges, for example

has a nontrivial automorphism involving swapping the two half edges of the self loop.
As a second example it may not be clear what should count as a subgraph unless one
thinks explicitly about half edges, for example

has

as a subgraph in three different ways by keeping any two of the internal edges and
breaking the third into its two half edges which are then external. See Sect. 5.3 for
more details on the kinds of subgraphs which matter for us.

5.2 Combinatorial Physical Theories

To make the combinatorics of renormalization Hopf algebras work, we only need a
small amount of physics information, which we capture in the notion of a combina-
torial physical theory.

Definition 13 A combinatorial physical theory is a set of half edge types along
with

1. a set of pairs of not necessarily distinct half edge types defining the permissible
edge types,

2. a set of multisets of half edge types defining the permissible vertex types,
3. an integer associated to each edge type and each vertex type, known as a power

counting weight, and
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38 5 Feynman Graphs

4. a nonnegative integer representing the dimension of spacetime.

A graph in a given combinatorial physical theory is a graph G as defined above
with a half edge type for each half edge of G such that the pair of half edges forming
any internal edge of G have types which form a permissible edge type in the theory
and the multiset of half edges forming any vertex of G have types which form a
permissible vertex type in the theory.

Although it is a little bit heavy, this framework is well suited to Feynman graphs.
For example, oriented and unoriented edge types exist on an equal footing: unoriented
edge types come from edge types made of two copies of the same half edge type
while oriented edge types come from two different half edge types (a front and back
half of the edge type).

Here are some standard quantum field theories in this framework.

• Quantum electrodynamics (QED) has 3 half edge types, a half photon, a front half
fermion, and a back half fermion. There are two edges type, the pair of two half
photons, giving a photon edge, drawn , which has power counting weight 2,
and the pair of a front half fermion and a back half fermion, giving a fermion edge,
drawn , which is oriented and has power counting weight 1. There is one
vertex consisting of one of each half edge type and with weight 0. The dimension
of spacetime is 4. The Feynman graphs in Chap. 2 are both QED graphs.

• Yukawa theory also has 3 half edge types, a half meson edge, a front half
fermion edge, and a back half fermion edge. Two half mesons give a meson edge,
drawn , with weight 2 and a pair of each half fermion gives a fermion edge,
drawn , with weight 1. There is a vertex with one of each half edge and
the dimension of spacetime is 4. Combinatorially, this is identical to QED. The
substantial physical differences between these two theories are captured in the
Feynman rules of the theories.

• Quantum chromodynamics (QCD) is the theory of the interactions of quarks and
gluons. As a combinatorial physical theory it has 5 half edge types, a half gluon,
a front half fermion, a back half fermion, a front half ghost, and a back half ghost.
There are 3 edge types and 4 vertex types with weights as described in Table5.1.
The dimension of spacetime is again 4.

• There are two scalar field theories we want to consider. In both cases there is just
one half edge type and just one edge type consisting of a pair of the half edges.
This edge type has weight 2. The difference is the vertex.

φ4 is the scalar theory with a 4-valent vertex, that is the vertex consists of amultiset
of 4 copies of the half edge. It hasweight 0.We’ll take the dimensionof spacetime to
be 4 since that is where φ4 is renormalizable. Seemore below on renormalizability.

φ3 is the scalar theory with a 3-valent vertex, that is the vertex consists of amultiset
of 3 copies of the half edge. It also has weight 0. The dimension of spacetime is 6
in order to achieve renormalizability.
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Table 5.1 Edge and vertex types in QCD with power counting weights

name graph weight
gluon 2

fermion 1
ghost 1

0

-1

The examples of the previous section were in φ4 theory.

The idea here is that the Feynman rules associate a formal integral expression
to a graph by associating a factor in the integrand to each internal edge and vertex
according to their type. Additionally directed cycles contribute a factor of −1 each.
The information we are extracting in the weights is simply the net degree of the
integration variables appearing in the factor of the integrand for that type. Along
with the number of total integrations, which depends on the dimension and the loop
number, we can use power counting to see how the integral behaves as all integration
variables get large, that is we can understand the overall ultraviolet divergence of the
integral. Specifically we can make the following definitions.

Definition 14 For a Feynman graph G in a combinatorial physical theory T , let
w(a) be the power counting weight of a where a is an internal edge or a vertex of G
and let D be the dimension of spacetime. Then the superficial degree of divergence
is

D� −
∑

e

w(e) −
∑

v

w(v)

where � is the loop number of the graph.
If the superficial degree of divergence of a graph is nonnegative we say the graph

is divergent. If it is 0 we say the graph is logarithmically divergent.

This corresponds to whether or not the integral diverges for large internal momenta
and so ignoring infrared divergences it matches our earlier notion of divergence in
Feynman graphs.

Given a graph in a theory, the multiset of half edge types of the external edges is
the external leg structure of the graph. We’ll be interested in the set of external leg
structures which give divergent graphs.

We’ll say a combinatorial physical theory T (in a given dimension) is renormaliz-
able if the superficial degree of divergence of the graph depends only on the multiset
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40 5 Feynman Graphs

of its external edges. All the example theories above are renormalizable in this sense.
More typically in quantum field theory we would say a theory is renormalizable if all
graphs at all loop orders can be renormalized without introducing more than finitely
many new parameters. The way this happens in the theories which are important in
particle physics is that there are finitelymany families of divergent graphs, indexed by
certain external leg structures, giving the connection with our definition. In contrast,
in unrenormalizable theories there would be infinitely many families with divergent
graphs and so to renormalize the whole theory would require infinitely many new
parameters. Superrenormalizable theories are ones where convergence gets better as
the loop order gets larger. These are not renormalizable in our sense as they are not at
their critical dimension, but they are easy to deal with physically since convergence
improves.

As an example, consider a scalar field theory with a k valent vertex of weight
0 and edges of weight 2. Let G be a graph in this theory with e internal edges, q
external edges, and loop number �. For the theory to be renormalizable we need
D� − 2e to depend only on the number of external edges. By Euler’s formula along
with regularity we have

e(2 − k) + k� = k − q

so for the theory to be renormalizable we need D = 2k/(k − 2). If k = 4 then the
theory is renormalizable in D = 4 while if k = 3 then the theory is renormalizable
in D = 6. No other values of k > 2 give a theory with an integer dimension of
spacetime since the only possible common factors of k and k − 2 are 2 and 1.

5.3 Renormalization Hopf Algebras

To build renormalization Hopf algebras we first start with all the divergent graphs
in a fixed renormalizable theory. As observed in Sect. 5.1 we can restrict our atten-
tion to connected graphs since we can go from connected graphs to all graphs by
exponentiating.

We say a Feynman graph is one-particle irreducible or 1PI if it is connected and
after removing any one internal edge it remains connected. Graph theorists call this 2-
edge-connected. Sometimeswe are a little sloppy and talk about a disconnected graph
being 1PI if all of its connected components are 1PI. This is what a graph theorist
would call bridgeless. At the level of the generating function or perturbation series
we can go from connected graphs to 1PI graphs by using the Legendre transform, so
we can restrict to 1PI graphs.

Let G be the set of connected 1PI graphs in a fixed theory. As with the Connes-
Kreimer Hopf algebra, renormalization Hopf algebras will be polynomial algebras
first. Specifically as an algebra our Hopf algebra H is K [G ]. We will think of this
multiplication as disjoint union and so view a monomial as a possibly disconnected
graph. The counit will be the same as in the Connes-Kreimer Hopf algebra and H
is graded by the loop order so the antipode will come for free. This means that the
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5.3 Renormalization Hopf Algebras 41

only thing we need to define is the coproduct. To do so we need to write down a few
definitions about subgraphs.

For us subgraphs are full in the sense that all half edges adjacent to a vertex in
a subgraph must themselves be in the subgraph. However, if both half edges of an
internal edge are in the subgraph this does not imply that the internal edge must be
in the subgraph. For example, as noted before, we can find

in ,

by separating the two half edges in any one of the internal edges. That is, our sub-
graphs are full relative to the vertices but not relative to the internal edges.

Also we will be interested in subgraphs with all their connected components 1PI.
Again note the internal edges can be cut, so for example the disconnected bridgeless
graph

is a subgraph of

.

Finally we are interested in subgraphs for which each connected component is
divergent. Let R be the set of divergent external leg structures of the theory. If an
external leg structure has size 3 or more then it defines a vertex type which may or
may not be in the theory already. Similarly an external leg structure of size 2 defines
an internal edge type. There is a small subtlety in that the edge type should be defined
not by the two half edges themselves but by their other halves in the theory—provided
we are working only with undirected edge types made of two identical half edges
and directed edge types made of front and back halves then this amounts to the same
thing.

Augment the vertex and edge types of the theory, if necessary, so that every
divergent external leg structure is in the theory. This has already been done in all
our example theories. Physically, adding a new vertex in this way is saying that
the structure of renormalization necessitates considering some new interaction that
wasn’t in the original theory. Note also that we could allow 2-valent vertex types,
but it would require some extra bookkeeping to keep track of the distinction between
2-valent vertices and internal edges. Mass renormalization requires similar extra
bookkeeping.

Now we can define contraction.

Definition 15 Let G be a Feynman graph in a theory T . Let γ be a subgraph with
each connected component 1PI and divergent. Then the contraction of γ , denoted
G/γ is the Feynman graph in T constructed as follows.
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42 5 Feynman Graphs

• Begin with G,
• for each component of γ with external leg structure of a vertex type, contract the
component to a new vertex of that type, and

• for each component of γ with external leg structure of an edge type, delete the
component and pair the two newly unpaired half edges into a new internal edge
of this type.

Subgraphs with each connected component 1PI and divergent are known as sub-
divergences. Two subdivergences which have at least one vertex in common but for
which neither is a subset of the other are called overlapping. For example the two
copies of

inside

are overlapping as divergent φ3 subgraphs.
Finally we are ready to define the Hopf algebra itself.

Definition 16 Fix a renormalizable theory T . The renormalization Hopf algebra,
H , associated to T is the polynomial algebra generated by the divergent 1PI graphs
of T with the counit ε(G) = 0 for G nonempty and ε(I) = 1 where I is the empty
graph, and with coproduct

Δ(G) =
∑

γ⊆G
γ product of divergent

1PI subgraphs

γ ⊗ G/γ

on connected Feynman graphs G and extended as an algebra homomorphism toH .
The Hopf algebra H is graded by the loop order.

For example in φ3 theory

Δ
( )

= ⊗ I+ I⊗ +2 ⊗ .

The antipode can be used to renormalize exactly as described in Sect. 4.3.

5.4 Insertion and the Invariant Charge

The reverse operation of contraction is insertion. If γ is a Feynman graph in a given
theory with external leg structure corresponding to an edge type of the theory and G
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is a Feynman graph with an internal edge e of that type, then e is called an insertion
place for γ in G and any graph resulting from breaking edge e into its two half edges
and forming new internal edges by pairing those half edges with the external edges
of γ , compatibly with the theory, is an insertion of γ into G. If the edge type is
unoriented there will be two ways to insert into a given insertion place (which may
or may not be isomorphic depending on the symmetries of γ ) while if the edge type
is unoriented there will be only one. For example, inserting

into itself can be done in one way and gives

.

Similarly if γ has external leg structure corresponding to a vertex type of the
theory and G is a Feynman graph with a vertex v of that type then v is called an
insertion place for γ in G and any graph resulting from replacing the half edges of
v with the external edges of γ compatibly with the theory is an insertion of γ into
G. For example, inserting

into itself in the leftmost vertex gives

Insertion gives a pre-Lie product. Specifically let G1 ◦ G2 be the sum over all
insertions of G1 into G2; each insertion place and each possible bijection of external
edges with the half edges of the insertion place should be counted. For example there
are two insertion places for

into itself. If we fix the right hand insertion place then there are 4! ways to choose
the bijection between the half edges of the vertex and the external half edges of the
inserted graph. Of these 8 of them give

and 16 of them give
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Note that some sources set insertion up in the opposite direction so the reader
needs to pay attention. With our conventions, it turns out that

G1 ◦ (G2 ◦ G3) − (G1 ◦ G2) ◦ G3 = G2 ◦ (G1 ◦ G3) − (G2 ◦ G1) ◦ G3.

This is the defining property of a pre-Lie product (for more on pre-Lie products in
general see [3]). As a key consequence it implies that

[G1,G2] = G1 ◦ G2 − G2 ◦ G1

is a Lie bracket. Whether one prefers to think on the Hopf side with contraction or
on the Lie side with insertion is substantially a matter of taste, though the flexibility
to use both is always valuable.

In analogy to the tree case we also use another notation for insertion. We would
like Bγ

+ to be the operator of inserting into the graph γ . As in the tree case we want
to be able to use this operator to write specification equations (which will be our
combinatorial Dyson-Schwinger equations) for graphs. Furthermore we would like
Bγ

+ to be a 1-cocycle. In simple cases it works out immediately
For example in Yukawa theory we might make the combinatorial Dyson-

Schwinger equation

X(x) = I− xB+

(
1

X(x)

)

which is the same as the specification for plane rooted trees discussed in Sect. 3.2.
This example is a key running example in [1, 2].

Unfortunately, in general things are more complicated. First, if γ is not primitive
then we cannot get a 1-cocycle since

Δ
(
Bγ

+(I)
) = Δ(γ )

but (
id ⊗ Bγ

+
)
Δ(I) + Bγ

+(I) ⊗ I = I ⊗ γ + γ ⊗ I.

So we restrict to γ primitive for the purposes of B+. Overlapping divergences are
still a problem. Consider

G=
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which can be made by inserting

κ = into γ =

in two different ways. Naively then we might think that Bγ
+(κ) should be 2G, but

then the 1-cocycle property doesn’t hold. Instead we need Bγ
+(κ) = G. This also

means that when we use Bγ
+ in building specifications we don’t double count G. As

discussed in the first and second sections of [4] this works out more generally and
results in the following.

Definition 17 For a connected 1PI Feynman graph γ define

Bγ
+(X) =

∑

G connected 1PI
Feynman graph

bij(γ, X,G)

|X |v
1

maxf(G)

1

(γ |G)
G

where

• maxf(G) is the number of insertion trees corresponding to G,
• |X | is the number of distinct graphs obtainable by permuting the external edges
of X ,

• bij(γ, X,G) is the number of bijections of the external edges of X with an insertion
place of γ such that the resulting insertion gives G, and

• (γ |X) is the number of insertion places for X in γ .

Note that this coefficient is not a pure generating function operation since it depends
on the graphs themselves not just their sizes and counts. So it makes sense at the
level of augmented generating functions but not after evaluations like the ones to
give ordinary or exponential generating functions.

The point is that if we sum all B+ for primitive 1PI connected graphs with a given
external leg structure, inserting into all insertion places of each, then each 1PI graph
with that external leg structure occurs weighted by its symmetry factor. This property
is Theorem 4 of [4] in this case.

Some of this mess can be improved by keeping everything half edge labelled for
the augmented generating function—taking labelled counting seriously is useful and
important. However, we still need to keep track of the number of insertion trees to
deal with the overcounting so the problem of not being a pure generating function
operation remains.

In gauge theories something even worse can happen: there may be overlapping
subdivergences with different external leg structures. For example in QCD the graph

can be made by inserting
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into

or inserting

into .

This makes it impossible to use a multiplicative factor to make every Bγ
+ with

γ primitive into a Hochschild 1-cocycle since there will be graphs which appear in
the coproduct which simply don’t appear on the other side of the 1-cocycle property
equation. The solution is two-fold. First of all we shouldn’t work with individual
primitive Feynman graphs but rather take the sum over all primitives of a given loop
order. Somemismatch still remains, but for the gauge theories in high energy physics
this mismatch corresponds to known quantum field theory identities between graphs:
theWard identities in QED and some of the Slavnov-Taylor identities in QCD. Hence
we get our 1-cocycles after all. Thinking about it another way, we could say that we
assume the 1-cocycle property and then ask what identities this requires of the graphs
and find in this way a kind of combinatorial derivation of these quantum field theory
identities. This phenomenon is discussed in [4] and the result is proved for QED and
QCD by van Suijlekom [5]. Furthermore, the ideal of these identities is a Hopf ideal
and so, whichever way we want to think about it, in the end we can mod out by this
ideal and work in the resulting quotient Hopf algebra.

Another important question for us is how the number of insertion places grows
with the loop number when the external leg structure is fixed. Fix a theory with only
one vertex type v and with all edge types either directed edges made with distinct
front and back halves or undirected edges made with two identical halves. Let d be
the degree of vertex v and for each edge type e in the theory, let n(e) be the total
number of half edges of e (of either type in the directed case) among the half edges
making up v, and let n(v) = 1.

Proposition 3 Take notation as above. Let G be a 1PI connected graph in this theory
with external leg structure r and loop order �. Then G has 2�n(s)/(d − 2) insertion
places of every type s �= r and

• if r = v then G has 2�n(r)/(d − 2) + 1 insertion places of type r while
• if r �= v then G has 2�n(r)/(d − 2) − 1 insertion places of type r .

Proof This is Proposition 3.9 of [1] (see also [2]). The proof is as follows.
Let h be the number of half edges of G and let n be the number of vertices. Then

dn = h.
Suppose first that r is an edge type. Then by Euler’s formula (h−2)/2−n+1 = �.

Substituting dn = h and solving for n we get n = 2�/(d − 2). This gives the
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correct formula for s = v. For s �= r, v the number of edges of type s in G is
n · n(s) = 2�n(s)/(d − 2) as required, while for r there is one fewer since the
external edges use up one edge-worth of half edges.

Now suppose r = v. By Euler’s formula (h − d)/2 − n + 1 = �. Substituting
dn = h and solving for n we get n = 2�/(d−2)+1. This gives the result for r while
for s �= r the number of edges of type s in G is (n − 1)n(s) since one vertex-worth
of half edges is external. (n − 1)n(s) = 2�n(s)/(d − 2) as desired.

This kind of counting is nice because itmeans theDyson-Schwinger equations can
be put into a special form. For example in QED the system to generate all divergent
1PI graphs is

Xvertex = I +
∑

γ primitive with
vertex external
leg structure

x |γ |Bγ
+

(
(Xvertex)1+2|γ |

(Xphoton)|γ |(X fermion)2|γ |

)
,

Xphoton = I− xB+

(
(Xvertex)2

(X fermion)2

)
,

X fermion = I− xB+

(
(Xvertex)2

XphotonX fermion

)
,

where |γ | is the loop number of γ . Now let

Q = (Xvertex)2

(Xphoton)|γ |(X fermion)2
.

Then we can rewrite the system as

Xvertex = I +
∑

γ primitive with
vertex external
leg structure

x |γ |Bγ
+(XvertexQ|γ |),

Xphoton = I− xB+ (XphotonQ),

X fermion = I− xB+ (X fermionQ).

In all three equations the argument to B+ is one extra copy of the X we are currently
workingwith and a power of Q depending on the loop number. Q is the combinatorial
avatar of the invariant charge.

For QCD, which has more than one vertex, the Slavnov-Taylor identities again
put us back into the situation with a combinatorial invariant charge.

In the single equation case, the analogous situation is when the Dyson-Schwinger
equation has the form
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T (x) = I −
∑

k≥1

xk Bk
+(T (x)Q(x)k)

But now Q(x) can only be some power of T (x). So writing Q(x) = T (x)−s we get
the important special case

T (x) = I −
∑

k≥1

xk Bk
+(T (x)1−sk)

The parameter s is telling us how the number of insertion places grows as the loop
order grows and will be a key parameter in the second part.

5.5 Graph Theory Tools

For the final part of this brief we will look inside primitive Feynman graphs to try to
understand parts of their Feynman integrals. To do this we need some notions from
graph theory. Assume G is a connected graph. A spanning tree of a graph G is a
subset of internal edges of G which is connected, has no cycles, and is incident to
every vertex of G. Using this we can define the following polynomial.

Definition 18 To each edge of G associate a variable ae. The (dual) Kirchhoff
polynomial or first Symanzik polynomial of a graph G is

ΨG =
∑

T

∏

e/∈T
ae

where the sum runs over all spanning trees of G.

The Kirchhoff polynomial can also be defined from a determinant. Given a graph
G choose an arbitrary orientation for the edges of G and choose an order for the
edges and vertices of G. Then define the signed incidence matrix of G to be the
V (G) × E(G) matrix with i, j th entry 1 if edge j begins at vertex i , −1 if edge
j ends at vertex i , and 0 otherwise. For example the cycle of length 3 has signed
incidence matrix ⎡

⎣
1 0 −1

−1 1 0
0 −1 1

⎤

⎦ .

Note that the sum of the entries of each column of the signed incidence matrix is
0. For a connected graph this is the only dependence; the rank is one less than the
number of rows. Let E be any matrix obtained from a signed incidence matrix by
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removing one row. Thismatrix has the same dependence information as the original.1

Let Λ be the diagonal matrix of the edge variables. Then

det

[
Λ ET

−E 0

]
= ΨG (5.1)

This fact is essentially the matrix-tree theorem. Consider any product of variables. In
the determinant this monomial will occur with coefficient the square of the determi-
nant of the columns of E not associated to these variables. The matrix-tree theorem
says that a square submatrix of E has determinant±1 precisely if the columns are the
edges of a spanning tree and 0 otherwise. See Proposition 21 of [6] or the introduction
of [7] for more details.

We will call the matrix of (5.1) the exploded Laplacian of the graph. The usual
Laplacian of the graph is the matrix EET and we can augment it with variables by
using EΛET . Expanding det(EΛET ) by the Cauchy-Binet formula we again see
the matrix-tree theorem, but this time the polynomial takes the variables in the tree
not those not in the tree

det(EΛET ) =
∑

T

∏

e∈T
ae

This is the polynomial usually known as the Kirchhoff polynomial, but for us the
dual version defined previously is more useful.

A thirdway to think about theKirchhoff polynomial is as a variant of themultivari-
ate Tutte polynomial [8]. Anything coming from the multivariate Tutte polynomial
must be definable by a contraction deletion relation. The contraction deletion relation
in this case is

ΨG = aeΨG\e + ΨG/e

for any non-loop non-bridge edge e, which can be justified directly from the original
spanning tree definition. Here G\e is G with edge e deleted and G/e is G with edge
e contracted.

Another important graph theory idea is the notion of the cycle space of a graph.
Consider any two cycles in a graph in terms of the edges making them up. If we take
the symmetric difference of these edges we get a set of edges which is itself one
or more cycles in the graph. This means that the cycles of the graph span a vector
space over the field with two elements; this vector space is called the cycle space of
the graph. The dimension of the cycle space is the loop number of the graph. There
are many ways to think about the loop number—it is the number of edges not in a
spanning tree or equivalently the minimum number of edges of the graph that can be
cut to give a graph with no cycles.

1To make this precise we’d need to move into matroids. Much of what we do with Feynman graphs
works very naturally with regular matroids and even some more general matroids, but that’s another
story.
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Fig. 5.2 The solid edges
give a planar embedding of a
graph G; the dotted edges
give the dual graph G∗

Finally, we need the notion of planar duality. A graph is planar if it can be
drawn on the plane with each vertex a distinct point and each edge a curve where
the edges only intersect at their ends. Such a drawing of a planar graph is a planar
embedding. Cutting on the edges divides the plane into regions which are the faces of
the embedding, including the one external or infinite face. Given a planar embedding
of a graph we can define the planar dual as the graph with a vertex for each face
of the embedding (including the external face) and where each edge of the original
graph contributes an edge of the dual joining the vertices corresponding to the faces
on either side of the original edge. Thus bridges in the original graph become loops
in the dual.Wewill use the notationG∗ for the dual ofG. See Fig. 5.2 for an example.
To obtain an analogous dual for nonplanar graphs one must move outside the world
of graphs and into matroids, but only into a very tame class of matroids, regular
matroids.

5.6 Feynman Rules

Finally we need to get from graphs to physics.
In a typical quantum field theory presentation a physical theory might be defined

by its Lagrangian L . For example, for φ4

L = 1

2
∂μφ∂μφ − 1

2
m2φ2 − λ

4!φ
4.

There is one term for each vertex and edge of the theory and an additional term for
each massive particle. In this case 1

2∂
μφ∂μφ is the term for the edge of φ4, − 1

2m
2φ2

is the mass term, and − λ
4!φ

4 is the term for the vertex. One can read a lot of physics
directly off of the Lagrangian.

The Feynman rules can be derived from the Lagrangian in a variety of ways
to suit different tastes, for instance directly [9, p. 16]; or by expanding the path
integral in the coupling constant, see for example [10]. The idea of expanding the
path integral is as follows. If we integrate the Lagrangian over spacetime we get the
action, schematically S = ∫

dD yL where D is the dimension of spacetime. This is
in direct analogy to the situation in classical mechanics and in quantum mechanics.
What about the fields? In our example there is just the one field φ. The (Euclidean)
path integral is the integral of e−S over all possibilities for the fields, schematically∫
dφe−S . To get things going we also want to include a source term which is linear

in φ, say Jφ, so we get

karen_yeats@sfu.ca



5.6 Feynman Rules 51

Z =
∫

dφe− ∫
dD yL+Jφ

Now being good physicists or good combinatorialists (but not good analysts since
this isn’t well defined as an integral) we expand in the coupling constant (λ in this
case) and in J and see what happens. If we first expand in the coupling constant we
will get, in our example, terms of the form

λn
∫

dφe−Jφ-terms quadratic in φφ4n

which can be rewritten formally as J derivatives of Gaussian integrals

λn d4n

d J 4n

∫
dφe−Jφ-terms quadratic in φ

Next expand in J . The derivatives came from the extraneous powers of φ which
came from four times the power of the coupling constant in a given term in the
coupling constant expansion. Each derivative needs a power of J to consume in
order to get a nonzero answer. This means that each power of the coupling constant
needs to be matched up with four J s, or said another way each vertex needs to be
matched up with four half edges. The quadratic terms in φ similarly match pairs of
half edges into internal edges. This matching up is called Wick contraction and what
it is doing is building Feynman graphs out of half edges. Any extra powers of J are
the unmatched half edges, that is external edges. The remaining bit of integral carried
along with any particular graph is the Feynman integral associated to this graph. See
for instance [10]. If spacetime is zero dimensional this idea is rigorous and is used
by both combinatorialists and physicists for counting graphs, see for example [11,
12].

Gauge theories are a bit more complicated. Geometrically rather than being
defined directly on spacetime they are defined on a fibre bundle over spacetime.
The structure group of the fibre bundle is called the gauge group. A gauge field (for
example the photon in QED or the gluon in QCD) is a connection. A gauge is a local
section. See for example [13, Chap.15]. If we don’t want to work geometrically then
we need to choose a gauge.

There are many ways to choose a gauge each with different advantages and disad-
vantages. For the present purpose we’re interested in a 1-parameter family of Lorentz
covariant gauges called the Rξ gauges. The parameter for the family is denoted ξ

and is the ξ . The Rξ gauges can be put into the Lagrangian in the sense that in these
gauges we can write a Lagrangian for the theory which depends on ξ . For example,
for QED in the Rξ gauges we have (see for example [14, p. 504])

L = −1

4
(∂μAν − ∂ν Aμ)2 − 1

2ξ
(∂μA

μ)2 + ψ̄(iγ μ(∂μ − ieAμ) − m)ψ
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where the γ μ are the Dirac gamma matrices (see [13, Sect. 3.2]). Once the gauge is
in the Lagrangian we can follow the same Feynman diagram or path integral story
as above.

Whether we want to take the Feynman rules as basic input information or as
derived, the next step is to think about what Feynman rules do combinatorially and
physically.

I will choose not to include the coupling constant with the Feynman rules. This is
because in our augmented generating functions we already have a counting variable
x which counts the loop number of the graph and ultimately is the coupling constant.
In theories with more than one coupling constant we could either keep a preferred
one in the augmented generating functions or use multivariate augmented generating
functions.

Feynman rules associate to each Feynman graph (in a physical theory) a formal
integral, that is, an integrand and a space to integrate over but with no assurances that
the resulting integral is convergent. We’ll work explicitly with Euclidean momentum
space integrals in this part and the second part of this brief. In the final part we will
workmore with parametric integrals. See Chap.11 for more on the interplay between
different representations.

Momentum space Feynman rules are structured as follows. They are rules which
tell us how each edge and vertex gives a piece of the integrand of the formal integral.
The basic shape of these formal integrals is

∫

R
D|vγ |

Intγ
∏

k∈vγ

dDk

where D is the dimension of spacetime and vγ is a finite index set corresponding to
the set of integration variables appearing in Intγ .

To build Intγ , associate to each half edge of γ a tensor index, associate to each
internal and external edge of γ a variable (the momentum, with values in R

D) and
an orientation of the edge with the restriction that for each vertex v the sum of the
momenta of edges entering v equals the sum of the momenta of edges exiting v.
If we view the variables associated to the external edges as fixed then the R-vector
space of the remaining free edge variables has dimension the loop number of the
graph. Let vγ be a basis of this vector space. Let Intγ be the product of the Feynman
rules applied to the type of each external edge, internal edge, and vertex of γ , along
with the assigned tensor indices, the edge variables as the momenta, and a factor of
−1 for each fermion cycle. Intγ depends on the momenta q1, . . . , qn for the external
edges; these variables are not “integrated out” in the formal integral.

Thepiece associated to an edgeor vertexof a graphwewill call a tensor expression
meaning an expression for a tensorwritten in terms of the standard basis forRD where
D is the dimension of spacetime. Such expressions will be intended to be multiplied
and then interpreted with Einstein summation. An example of a tensor expression in
indices μ and ν is

karen_yeats@sfu.ca

http://dx.doi.org/10.1007/978-3-319-47551-6_11


5.6 Feynman Rules 53

gμ,ν − ξ
kμkν

k2

k2

where g is the Euclidean metric, k ∈ R
4, k2 is the standard dot product of k with

itself, and ξ is the gauge. Such a tensor expression is meant to be a factor of a larger
expression like

γμ

1
/k + /p − m

γν

(
gμ,ν − ξ

kμkν

k2

k2

)
(5.2)

where the γμ are the Dirac gammamatrices, /k is the Feynman slash notation, namely
/k = γ μkμ, and m is a variable for the mass. In this Example (5.2) is the integrand
for the Feynman integral for the QED graph

p

k

k+ p p

The simplest case is when there are no tensor indices. This is the case of scalar
field theories. For example consider φ4 with Euclidean Feynman rules, see [15, p.
268]. The Feynman rules in this case say that an edge labelled with momentum k is
associated to the factor 1/(k2+m2), where the square of a vector means the usual dot
product with itself and m is the mass of the particle. The Feynman rules say that the
vertex is associated to −1 (if the coupling constant λ was included in the Feynman
rules the vertex would be associated with −λ). Consider

oriented from left to right with the momenta associated to the two right hand external
edges summing to p and hence the momenta associated to the two left hand external
edges also summing to p. Then the integral associated to this graph is

∫
d4k

1

(k2 + m2)((p + k)2 + m2)

where d4k = dk0dk1dk2dk3 with k = (k0, k1, k2, k3) and squares stand for the
standard dot product.

More on Feynman rules and building Feynman integrals can be found in any
quantum field theory textbook, for example [10, 13, 15].
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Chapter 6
Introduction to Dyson-Schwinger Equations

From our graphs-first approach, Dyson-Schwinger equations begin as functional
equations for the augmented generating functions of Feynman graphs. At this
level these equations are purely combinatorial objects, the combinatorial Dyson-
Schwinger equations of the previous sections. More strictly, and to match a more
standard physics treatment, combinatorial Dyson-Schwinger equations should be
functional equations for the augmented generating functions of families of 1PI Feyn-
man graphs with a fixed external leg structure, or their equivalents at the level of
insertion trees.

Applying Feynman rules to the combinatorial Dyson-Schwinger equations we
get functional equations for the augmented generating functions evaluated with the
Feynman rules. That is, we get functional equations for the Green functions. If we
used arbitrary combinatorial constructions in our original generating function func-
tional equations, then there would be no guarantee that the equations after applying
Feynman rules would have any reasonable analytic expression. Fortunately, keeping
to the stricter setting of physically reasonable combinatorial Dyson-Schwinger equa-
tion, we can build the combinatorial Dyson-Schwinger equations using B+ operators
and composition with other formal power series (mostly polynomials and Seq—so
polynomials and geometric series). These operations play well with Feynman rules.
Composition with a formal power series remains unchanged since the Feynman rules
are algebra homomorphisms (see Sect. 4.4). What the Feynman rules do with a B+
is, by the universal property of Sect. 4.4, replace it by another operator, typically a
formal integral operator. The toy Feynman rules of Chap. 4 modelled this.

The consequence is that applying Feynman rules to the combinatorial Dyson-
Schwinger equations gives what we will call analytic Dyson-Schwinger equations,
for now still viewed as formal objects rather than honestly analytic objects. These
are formal objects with an analytic flavour as they are integral equations for the
Green functions. Next we want to ask what we can learn about the Green functions
from the analytic Dyson-Schwinger equations. Staying combinatorial, this typically
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58 6 Introduction to Dyson-Schwinger Equations

means asking about series solutions to these integral equations which have nice
interpretations themselves as sums over discrete objects.

The final step from this viewpoint is to see to what extent the formalness of the
objects can be dropped.Wewon’t discuss this much in this brief as it departs from the
combinatorial side of things. One powerful but difficult way to approach this is still
to start with series solutions (whether indexed by nice discrete objects or not) and
then look at resummation techniques, for example see [1] and the references therein.
We can also look for special cases where the Dyson-Schwinger equations may be
amenable to analysis as differential equations, for example see [2, 3]. Notably in [2]
this viewpoint shows a potential way to avoid a Landau pole in QED.

A nice example of how this all goes together comes from all ways of inserting

into itself in masseless Yukawa theory. This was studied by Broadhust and Kreimer
in [4] and is a running example in [5, 6].

Combinatorially this corresponds to the equation

X(x) = I− xB+

(
1

X(x)

)
.

Applying the Feynman rules of Yukawa theory, see [7], this becomes

G(x, L) = 1− x

q2

∫
d4k

k · q
k2G(x, log k2)(k + q)2

− · · ·
∣∣∣∣
q2=µ2

where the · · · |q2=µ2 means take the same integrand but evaluate it at q2 = µ2, that
is we are renormalizing by subtraction. This is more or less a recognizable Dyson-
Schwinger equation, having only nonstandard notation and normalization. Here x
is playing the role of the coupling constant, q is the momentum going through,
renormalization is taking place by subtraction at a fixed reference µ, G(x, L) is
the fermion Green function, and the tree level term has been normalized to 1. The
Feynman rules took the augmented generating function X (x) to the Green function
G(x, L) and they took the B+ to the integral operator 1

q2

∫
d4k k·q

k2(k+q)2 which is the
loop integral for the outermost copy of

.

Note that the recursive appearance of X (x) on the right became the G(x, log k2) on
the right.

Broadhust and Kreimer solve this equation, after substantial work, by recognizing
the series expansion as being built from the asymptotic expansion of the comple-
mentary error function.

One outstanding question in the reader’s mind may be how this connects to the
usual presentation of Dyson-Schwinger equations in quantum field theory. The clas-
sical Euler-Lagrange equations for the field can be upgraded to equations which
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6 Introduction to Dyson-Schwinger Equations 59

hold for all the Green functions of the field, see [7, Sect. 9.6]. These are the Dyson-
Schwinger equations and this explainswhy they are the quantumequations ofmotion,
namely because they are analogous to the classical Euler-Lagrange equations.

Obtained this way, the equations hold nonperturbatively and so in principle
their solutions give the Green functions nonperturbatively. Alternately they can be
expanded to give theDyson-Schwinger equations at the level of Feynmandiagrams—
these are the analytic Dyson-Schwinger equations we have beenworkingwith above.

We will take a layered approach to studying Dyson-Schwinger equations. First
we will think about them purely combinatorially. Then we will add in simple Feyn-
man rules like the tree factorial Feynman rules. Next we will pass to more realistic
Feynman rules but still think of the solutions to Dyson-Schwinger equations strictly
in terms of their series expansions. Finally we will look at some new approaches to
the log expansions using different underlying combinatorial objects.
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Chapter 7
Sub-Hopf Algebras from Dyson-Schwinger
Equations

7.1 Simple Tree Classes Which Are Sub-Hopf

The defining equation for any simple tree class is a combinatorial Dyson-Schwinger
equation, see Sect. 3.2, so all of the combinatorics of simple trees could be viewed
as part of the combinatorics of Dyson-Schwinger equations. We would like to be a
bit more focused and consider what sort of questions regarding simple tree classes
come naturally from the physics and what sort of mathematical insights about simple
tree classes give physically interesting results.

One important family of results which speaks to both points has been proved by
Loïc Foissy in [1–3], see also the lecture notes [4]. This chapter is a summary of some
of Foissy’s results. Thinking specifically about Dyson-Schwinger equations, take the
solution to a combinatorial Dyson-Schwinger equation, which is some augmented
generating function, and then we can ask when the polynomial algebra generated by
the coefficients of this augmented generating function is in fact aHopf algebra. Foissy
investigated this question in different cases. Once we are equipped with an answer
to this question we can ask what the physical meaning of these special Hopf Dyson-
Schwinger equations is. The simplest case which illustrates many of the general
methods is the case of single Dyson-Schwinger equations with a single B+ in the
Connes-Kreimer Hopf algebra H , that is the case of simple tree classes. Foissy
characterized the sub Hopf algebras in this case in [1] and the answer is interesting
and quite pretty.

The setup is as follows, see [1] or [4] for more details. Suppose we have a com-
binatorial Dyson-Schwinger equation of the form

T (x) = x B+( f (T (x))) (7.1)

where f (z) ∈ K [[z]] with f (0) = 1. First observe that there is a unique solution

T (x) =
∑

n≥1

tnx
n
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62 7 Sub-Hopf Algebras from Dyson-Schwinger Equations

with tn ∈ H to this combinatorial Dyson-Schwinger equation. Uniqueness is simply
a restatement of how tree specifications work—larger trees are recursively built up
out of the smaller ones and tn is the sum of all of them of size n. Note that the tn will
have trees with multiplicities. This corresponds to the fact that if we are thinking
of this as a simple tree class then f is determining some combinatorial structure on
the children, but when we forget that structure then we can end up with multiple
copies of the tree in H . Writing down what this recursive construction is directly,
if f (z) = 1 + ∑

n≥1 anz
n then we get (see Proposition 18 of [4])

t0 = 0

t1 = •

tn+1 =
n∑

k=1

∑

i1+···+ik=n

ak B+(ti1 . . . tik )

Now consider the polynomial algebra K [t1, t2, t3, . . .]. This is certainly a subal-
gebra of H . The question is when K [t1, t2, t3, . . .] is sub-Hopf. As is typical, the
counit works trivially, so the question really is whether or not

Δ(K [t1, t2, t3, . . .]) ⊆ K [t1, t2, t3, . . .] ⊗ K [t1, t2, t3, . . .]

If this is true we say f or the combinatorial Dyson-Schwinger equation (7.1) is Hopf.
This is not just some esoteric algebraist’s question. The series T (x) is standing

in (via insertion trees) for the sum over all Feynman diagrams contributing to some
process of interest. If K [t1, t2, t3, . . .] is closed under the coproduct then that tells
us that it makes sense mathematically to apply all the renormalization Hopf algebra
machinery directly on K [t1, t2, t3, . . .] and so we can renormalize at the level of the
Green function rather than Feynman diagrambyFeynman diagram.Now this isn’t yet
quite right physically since usually some finite number of terms need renormalizing,
not just one. This corresponds to the fact that to generate all the divergent diagrams
you would need not just one Dyson-Schwinger equation but a system of them. These
more physical situations are the topic of the next section.

As it turns out there is precisely a 2-parameter family of Hopf combinatorial
Dyson-Schwinger equations.

Theorem 2 (Theorem 24 of [4]) Let f (z) = 1 + ∑
n≥1 anz

n. The following are
equivalent:

1. The combinatorial Dyson-Schwinger equation (7.1) is Hopf.
2. f (z) is one of the following

⎧
⎪⎨

⎪⎩

f (z) = 1

f (z) = eαz α �= 0

f (z) = (1 − αβz)−
1
β αβ �= 0

.
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In fact slightly more than this holds. The analogous statement can be made for
plane rooted trees and noncommutative polynomial algebras but this extra generality
only gives the same possible solutions (see [1]). Foissy gives two proofs of this result.
The first, given in [1], plays recursively with the trees in order to obtain a differential
equation for f which is then solved to obtain the possible forms of f . The other,
given in [4], is more algebraic and uses the pre-Lie insertion structure defined in
Sect. 5.4. In both cases the structure coefficients n(t, t ′) are a key tool. Let t and t ′
be trees then

n(t, t ′) = number of leaves of t which give t ′ when removed.

Consider the physical implications of Theorem 2. With β > 0 we are getting
some power of Seq. This is the shape of Dyson-Schwinger equation wewould expect
when there are propagator insertions since we can insert any sequence of propagator
corrections into a propagator. The power is telling us howmany insertion places there
are.With β < 0we are essentially getting powers of 1+T (x). This is what we expect
when there are vertex insertions since we can insert either nothing (1) or any single
vertex correction (T (x)) into a vertex. What about f (z) = eαz? Combinatorially this
is telling us to take a labelled set of trees of T (x) to form the children of a new tree.
At the level of Feynman graphs this would say to insert any labelled set of graphs
into a primitive graph. As we saw in Sect. 5.1 we can ignore the labelling in favour of
weighting by symmetry factors as is standard in quantum field theory. So this again
seems very natural physically.

7.2 More Physical Situations

There are two main ways in which the simple tree case is simpler than what we
see in quantum field theory. First of all, simple tree classes are defined by a single
equation rather than a system of equations. Second, simple tree classes have a single
B+ which adds one to the size of the tree whereas in quantum field theory we may
insert into primitives at higher loop orders as well. At the level of insertion trees this
corresponds to rooted trees where the vertices are weighted (corresponding to the
loop number of the graph being inserted into) with positive integer weights and for
each j > 0 there is a B+ which adds a new root of size j . We could also ask for
more than one coupling constant, see [5].

Systems of combinatorial Dyson-Schwinger equations where all the B+ have
weight 1 were studied by Foissy in [2], see also [4]. The set up is as follows. Consider
rooted trees which are decorated by {1, 2, . . . , n} in the sense that a tree comes with
a map from its vertices to {1, 2, . . . , n} but where the size of a tree is just the number
of vertices, so each of these decorations is of size 1. We have the same Hopf algebra
structure for decorated rooted trees by simply keeping track of the decorations in
the constructions we used before. The systems of combinatorial Dyson-Schwinger
equations studied in [2] are those of the form
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64 7 Sub-Hopf Algebras from Dyson-Schwinger Equations

Ti (x) = x Bi
+( fi (T1(x), T2(x), . . . , Tn(x)))

where each fi ∈ K [[z1, z2, . . . , zn]] is nonconstant. Once again the system has a
unique solution determined recursively. Write Ti (x) = ∑

j≥1 ti, j x
j . Then the ques-

tion is, as before, whether the polynomial algebra K [ti, j , 1 ≤ i ≤ n, 1 ≤ j] is a sub
Hopf algebra of the Hopf algebra of decorated rooted trees.

The solution to this problem is much more intricate than in the single equation
case. The first tool we need is a restricted dependency digraph of the system. To build
this write

fi (z1, z2, . . . , zn) =
∑

a(i)
j1, j2,..., jn

z j11 · · · z jnn

and let a(i)
j be shorthand for a(i)

0,...,0,1,0,...,0 with the 1 in the subscript in the j th
position. Now build the directed graph with a vertex for each equation of the system
and a directed edge from vertex i to vertex j if a(i)

j �= 0. In this case we’ll write
i → j . This digraph is like the usual dependency digraph for a system where there
is a directed edge between i and j if equation i depends on equation j , but the
dependence must be linear. Because of the restrictions of being a sub Hopf algebra
many relations between the coefficients are forced and so it works well to use this
restricted dependency digraph instead of the usual dependency digraph.

Foissy gets his characterization of sub Hopf systems by finding two special kinds
of systems to use as building blocks and then using four operations to glue them
together, see [4] for examples and the precise statement. The operations are

• scaling the functions fi or their arguments (called change of variables in the
nonzero case, and restriction when setting some to 0),

• concatenating independent systems,
• extending a system with a new f0 with the form f0 = 1 + ∑n

i=1 a
(0)
i zi , and

• a kind of linear refinement called dilatation.

Dilatation is defined as follows. Begin with a system associated to the list of formal
series ( fi )i∈I . Then a dilatation of this system is a system associate to a list of formal
series (g j ) j∈J where J can be partitioned as J = ⋃

i∈I Ji and for all i ∈ I and j ∈ Ji
we have

g j = fi

⎛

⎝
∑

s∈J1

zs,
∑

s∈J2

zs, . . . ,
∑

s∈Jn

zs

⎞

⎠

The first of Foissy’s building blocks is fairly simple. Start with a system with
dependency digraph an oriented cycle then up to change of variables either fi =
1+ z j :i→ j or fi = 1/(1− z j :i→ j ). Any system built from an oriented cycle with the
fi = 1 + z j :i→ j by applying the operations of dilatation and change of variables is
called quasi cyclic. This is the first type of building block.

The second building block is more complicated. It is a systemwhere the equations
each depend on the others by a product of factors where each factor is a function of
only one zi and the function is one of the functions which was allowed in the simple
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tree case. There are some additional restrictions on the shape of the dependency
digraph. See [4] Definition 51 for details.

We see that the situation for systems is considerably more complicated than in
simple trees, but the parts relate via the same physically reasonable forms (powers
of 1 + T (x), geometric series, and exp).

Now what if we allow B+ with different degrees? Foissy studied this case in [3].
For a single equation this means we are looking at Dyson-Schwinger equations of
the form

T (x) =
∑

j∈J

x j B j
+( f j (T (x)))

for some finite set of positive integers J where now B j
+ adds a new root of size j

and each f j (0) = 1.
The answer ends up being that the Dyson-Schwinger equation is Hopf in two

cases. The first is the obvious generalization of the simple tree case; there exist
constants λ and μ such that

f j (z) = (1 − μz)Q(z) j

where

Q(z) =
{

(1 − μz)−λ/μ ifμ �= 0

eλz ifμ = 0
.

Note that Q is playing the role of the invariant charge as in Sect. 5.4.
The second case is based on a divisibility condition; there exists a nonnegative

integer m and a nonzero constant α such that

f j (z) =
{
1 + αz ifm| j
1 otherwise

.

This case doesn’t show up in quantum field theory so far as I am aware.
Systems with B+ of different degrees end up being a mutual extension with a

similar flavour. For details see [3].
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Chapter 8
Tree Factorial and Leading Log Toys

To move closer to the physical situation we need to apply Feynman rules to our com-
binatorial Dyson-Schwinger equations. For a first step in this direction let’s consider
the tree factorial Feynman rules, defined in Sect. 3.1, and similar toy Feynman rules.
Specifically, we will look at tree classes and at Feynman rules which can be written
in the form

φ(t) =
∏

v∈V (t)

B|tv |

where tv is the subtree rooted at v, the size of a tree is its number of vertices, and
B = (B1, B2, B3, . . .) is a sequence called the hook weight sequence. As usual
φ is extended as an algebra homomorphism to the Connes-Kreimer Hopf algebra.
Feynman rules built in this form will be called hook weight Feynman rules and φ(t)
will be called the hook weight of t .

To put it into the shape of the universal property form of Feynman rules (see
Sect. 4.4), we can write hook weight Feynman rules as

φ(B+( f )) = B| f |+1φ( f )

for any forest f .
If Bi = 1

i then we have φ(t) = 1
t ! . These are the tree factorial Feynman rules,

except that we have left out the variable z from (3.1) since z there counts the size
of the tree and the x in the combinatorial Dyson-Schwinger equation does the same,
so having both is unnecessary. Another way to think about this is that hook weight
Feynman rules only capture the case when the power of the coupling constant is
equal to the power of the scale variable coming from the Feynman rules, that is they
are giving the leading log part of the full Dyson-Schwinger equations. For more on
log expansions see Chap. 10.

Note that in the universal property result, Theorem 1 of Sect. 4.4, there were
stronger conclusions if the map on the level of the target algebra was itself a 1-
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cocycle. In this case the target algebra is K [x] and given a hook weight series B the
corresponding map on K [x], called LB , is defined by

LB(xn) = Bn+1x
n+1.

The natural coalgebra structure on K [x] is given by taking Δ(x) = x ⊗ 1 + 1 ⊗ x
and extending as an algebra homomorphism. Then we get the following proposition

Proposition 4 [1, Proposition 5.4] Let B be a hook weight sequence. If

L BΔ = (id ⊗ LB)Δ + LB ⊗ 1

then Bn = c
n for some c ∈ K and hence gives a multiple of the tree factorial Feynman

rules.

Proof Simply calculate and compare coefficients

Bn+1

n+1∑

i=0

(
n + 1

i

)
xi ⊗ xn+1−i = LBΔ(xn) = (id ⊗ LB)Δ + LB ⊗ 1

=
n∑

i=0

(
n

i

)
Bn−i+1x

i ⊗ xn−i+1 + Bn+1x
n+1 ⊗ 1

So

Bn+1

(
n + 1

i

)
= Bn−i

(
n

i

)

for all 0 ≤ i ≤ n, and so in particular with i = n, Bn+1(n + 1) = B1 giving the
result.

This is another aspect of the specialness of the tree factorial.
None-the-less allowing ourselves to work with all hook weight Feynman rules

we do get some nice results. Perhaps the most interesting thing is that these objects
were independently studied in pure combinatorics, see for example [2–4], and from
a B-series perspective [5].

An early example on the pure combinatorics side of the kind of result one has is
the identity due to Postnikov [2]

∑

t binary tree|t |=n

n!
∏

v∈V (t)

(
1 + 1

|tv|
)

= 2n(n + 1)n−1,

where the binary trees are those generated by the combinatorial Dyson-Schwinger
equation T (x) = I + x B+(T (x)2). Each tree in the sum is weighted by its hook
weight using the hook weight sequence Bn = 1 + 1/n. The left hand side counts
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8 Tree Factorial and Leading Log Toys 69

bicoloured labelled forests. If we multiplied by xn and summed each side for n ≥ 0
then on the left we would have a generating function for binary rooted trees weighted
by these hook weights and on the right we would have the generating function for
bicoloured labelled forests.

This illustrates the kind of result people are interested in.We have a class of rooted
trees (in this case binary trees) and a hook weight sequence and we want to know
when the generating function for the class of trees weighted by the hook weights is
itself a nice sequence where nice can either mean that it is also a generating function
for some reasonable combinatorial objects or can mean that it has a closed form. In
quantum field theory language this says we have a combinatorial Dyson-Schwinger
equation in the Connes-Kreimer Hopf algebra and some hook weight Feynman rules
and we want to know when the Green function is nice either in the sense of having
a direct combinatorial interpretation or having a closed form.

Algebraically, this is a question about the interplay between three formal power
series. First we might as well say our class of rooted trees is simple and so is defined
by a formal power series. Second we have the hook weight sequence which we can
view as the coefficient sequence of a formal power series. Finally we have the series
expansion of the Green function resulting from combining these. Any two of these
series determines the third and so the main theorem of this area, independently found
in pure combinatorics [4], in B-series [5], and in quantum field theory [6] gives this
relationship explicitly in the favoured language of each community (via coefficient
extraction, via a differential equation, or via the universal property). Making explicit
the connections between these viewpoints is themain subject of Jones’work in [1, 7].

To state the main theorem we need a little more notation. Given a hook weight
sequence B we already defined LB via LB(xn) = Bn+1xn+1. Also define a shifted
version L∗

B via L∗
B(xn) = (n + 1)Bn+1xn and define θ to be the operator that takes

f (z) to θ( f )(z) = z d
dz f (z). Combinatorially θ is the pointing operator. Then we

get the following theorem.

Theorem 3 (Theorem 3.1 of [1]) Let B be a hook weight sequence with associated
hook weight Feynman rules φ. Let T be a simple tree class defined by T (x) =
x B+( f (T (x))). Let G(x) = ∑

t∈T
φ(t)x |t |. Then

1. G satisfies the recurrence

[xn]G(x) = Bn[xn−1] f (G(x)), ∀k ≥ 1.

2. G is a solution to the differential equation:

G ′(x) = L∗
B(1 + θ)( f (G(x))).

3. G satisfies
G(x) = LB( f (G(x))).
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What is nice about recognizing that different communities have been studying
Dyson-Schwinger equations with this special class of Feynman rules is that we can
then try to use the insights of one community to get something new for another com-
munity. The pure combinatorics community had built up a large family of examples,
some rather exotic, which can be imported to give leading log toy models for differ-
ent combinatorial Dyson-Schwinger equations, with various hook weight Feynman
rules, all of which have nice Green functions. See [7] for a table with a large collec-
tion of these examples. In the other direction, the differential equation form of the
main theorem was known in the pure combinatorics community in special cases but
its full power was not appreciated, so we can take this idea to obtain new techniques
for finding new examples, see [1, Table1].

To conclude this chapter here is an example of a nice Green function coming from
this framework. This example was known1 but to my knowledge did not appear in
print before [1] so it is fair to call it underappreciated. The combinatorial Dyson-
Schwinger equation in this case is

T (x) = I − x B+
(

1

T (x)2

)
.

and we use the tree factorial Feynman rules. Then Theorem 3 tells us that the Green
function is

G(z) = (1 − 3z)
1
3 ,

which is a nice closed form.
Dozens more examples of varying levels of complexity and physicality can be

read off the tables of [7].
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Chapter 9
Chord Diagram Expansions

9.1 Converting the Dyson-Schwinger Equation
to Differential Form

The next step on our path following Dyson-Schwinger equations from combinatorics
to physics is to allow richer Feynman rules, rich enough to capture physically relevant
situations. We will, however, be sticking to the single scale case as one sees in
propagator insertions. We still want to have combinatorial control over the answer
and so the first step is to rewrite the analytic Dyson-Schwinger equation so as to
unwind the analytic side from the combinatorial side as much as possible.

Let’s see how this rewriting works in an example. This is Example 3.7 from [1,
2]. Recall the Yukawa example of [3] as discussed in Chap.6. We had the analytic
Dyson-Schwinger equation

G(x, L) = 1 − x

q2

∫
d4k

k · q
k2G(x, log(k2/μ2))(k + q)2

− · · ·
∣∣∣∣
q2=μ2

where L = log(q2/μ2).
Now we will make the following transformations: expand G in its second argu-

ment, convert logarithms to powers using dk yρ

dρk |ρ=0 = logk(y), swap the order of the
operators and recombine the expansion of G. Specifically, substitute the Ansatz

G(x, L) = 1 −
∑

k≥1

γk(x)L
k

into the analytic Dyson-Schwinger equation to get

© The Author(s) 2017
K. Yeats, A Combinatorial Perspective on Quantum Field Theory,
SpringerBriefs in Mathematical Physics 15, DOI 10.1007/978-3-319-47551-6_9

71

karen_yeats@sfu.ca

http://dx.doi.org/10.1007/978-3-319-47551-6_6


72 9 Chord Diagram Expansions

∑

k≥1

γk(x)L
k

= x

q2

∫
d4k

∑

�1+···+�s=�

(k · q)γ�1 (x) · · · γ�s (x) log
�(k2/μ2)

k2(k + q)2
− · · ·

∣∣∣∣
q2=μ2

= x

q2
∑

�1+···+�s=�

γ�1 (x) · · · γ�s (x)
∫

d4k
(k · q) log�(k2/μ2)

k2(k + q)2
− · · ·

∣∣∣∣
q2=μ2

= x

q2
∑

�1+···+�s=�

γ�1 (x) · · · γ�s (x)
∫

d4k
(k · q)(−1)�(d/dρ)�(k2/μ2)−ρ |ρ=0

k2(k + q)2
− · · ·

∣∣∣∣
q2=μ2

= x

q2
∑

�1+···+�s=�

γ�1 (x) · · · γ�s (x)(−1)�

· (d/dρ)�(μ2)ρ
∫

d4k
k · q

(k2)1+ρ(k + q)2
− · · ·

∣∣∣∣
q2=μ2

∣∣∣∣
ρ=0

= x

⎛

⎝1 −
∑

k≥1

γk(x)

(
d

d(−ρ)

)k
⎞

⎠
−1

(μ2)ρ

q2

∫
d4k

k · q
(k2)1+ρ(k + q)2

− · · ·
∣∣∣∣
q2=μ2

∣∣∣∣
ρ=0

= x

⎛

⎝1 −
∑

k≥1

γk(x)

(
d

d(−ρ)

)k
⎞

⎠
−1

(μ2)ρ

(q2)ρ

∫
d4k0

k0 · q0
(k20)

1+ρ(k0 + q0)2
− · · ·

∣∣∣∣
q2=μ2

∣∣∣∣
ρ=0

where q = rq0 with r ∈ R, r2 = q2, q20 = 1 and k = rk0

= x

⎛

⎝1 −
∑

k≥1

γk(x)

(
d

d(−ρ)

)k
⎞

⎠
−1

(e−Lρ − 1)F(ρ)

∣∣∣∣
ρ=0

where

F(ρ) = 1

q2

∫
d4k

k · q
(k2)1+ρ(k + q)2

∣∣∣∣
q2=1

.

Then recombine to get

G(x, L) = 1 − xG

(
x,

d

d(−ρ)

)−1

(e−Lρ − 1)F(ρ)

∣∣∣∣
ρ=0

.

F(ρ) is the Feynman integral of the primitive evaluated at q2 = 1with the propagator
we are inserting into regularized. Call F(ρ) the Mellin transform of the primitive.
One nice thing about working with Dyson-Schwinger equations renormalized using
subtraction is that this transformationmakes the regularization appear naturally rather
than having regularization be an artificial step added in by hand.

Now we would like to be able to do this kind of transformation for any Dyson-
Schwinger equation. In particular, given the single equation combinatorial Dyson-
Schwinger equation

T (x) = I −
∑

k≥1

xk Bk
+(T (x)Q(x)k)
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9.1 Converting the Dyson-Schwinger Equation to Differential Form 73

where Q(x) = T (x)−s (compare Sect. 5.4), we want to work with

G(x, L) = 1 −
∑

k≥1

xkG

(
x,

d

d(−ρ)

)1−sk

(e−Lρ − 1)Fk(ρ)

∣∣∣∣
ρ=0

(9.1)

where s is a positive integer and the Fk(ρ) are theMellin transforms of the primitives.

As written this doesn’t necessarily make analytic sense at all since G
(
x, d

d(−ρ)

)
is a

priori only a pseudodifferential operator. Thinking formally this is no problem—it is a
valid series operator. Having things work out analytically involves both guaranteeing
the series in d/dρ makes sense and that operators can be commuted as needed
in the argument, which requires some analytic hypotheses. The necessary analytic
conditions are given in [4].Wewill just assume that our Feynman rules are sufficiently
well behaved and so work with (9.1).

This transformation is the first step towards the more substantial reductions of [1,
2] which have been used in [5] and [6] to consider QED and QCD showing a possible
way to avoid the Landau pole and used by Marc Bellon and collaborators [7–9] to
investigate the Wess-Zumino model.

The goal of the rest of this chapter is to give a series solution to (9.1) which is
indexed by rooted connected chord diagrams.

9.2 Rooted Connected Chord Diagrams

A rooted chord diagram of size n is simply a matching of {1, 2, . . . , 2n}, that is,
a decomposition of {1, 2, . . . , 2n} into disjoint pairs called chords. We can draw a
rooted chord diagram on a circle, hence the name chord diagram. See Fig. 9.1 for two
examples of size 4. The marked vertex, also known as the root vertex, corresponds
to 1 and the other vertices are numbered in counterclockwise order, so the first chord
diagram of Fig. 9.1 corresponds to the matching (1, 4), (2, 7), (3, 5), (6, 8).

Given a chord diagram we say two chords, c1 and c2, cross if c1 = {v1 < v2},
c2 = {w1 < w2} gives v1 < w1 < v2 < w2 or w1 < v1 < w2 < v2. This
corresponds to the intuitive notion of crossing in the circle drawing of the chord
diagram.

Given a chord diagram we can form the oriented intersection graph of the chord
diagram as follows. The vertices of this graph are the chords of chord diagram. There
is an edge from c1 = {v1 < v2} to c2 = {w1 < w2} if v1 < w1 < v2 < w2, that is

Fig. 9.1 Two rooted chord
diagrams
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Fig. 9.2 The terminal
chords and intersection order
of a chord diagram

1

2

3

4

if c1 and c2 cross and c1 has a smaller first endpoint. A chord diagram is connected
if its intersection graph is connected. For example the first chord diagram in Fig. 9.1
is connected but the second one is not because the chords can be separated into
two subsets with no crossings between the subsets. A connected component of a
chord diagram is a subset of chords corresponding to a connected component of the
intersection graph or equivalently a subset of chords which is itself connected but
with no crossings with other chords of the diagram.

Rooted chord diagrams and rooted connected chord diagramshave been studied by
the combinatorics community, see [10, 11]. The particular parameters we need, while
rich and useful for quantum field theory, are unexpected from a pure combinatorics
perspective and so do not have a long history of prior study.

The first of these more unusual aspects of chord diagrams is the notion of a
terminal chord. We say a chord is terminal if its vertex in the oriented intersection
graph of the chord diagram has no outgoing edges. Terminal chords do not cross any
later chords. For example in Fig. 9.2 the terminal chords are indicated with the fat
edges.

We also need to specify an indexing for the chords. Chords do inherit an indexing
from the counterclockwise order (say by their first appearing endpoint). This is not
the indexing we want.

Definition 19 Let C be a rooted connected chord diagram. The intersection order
of the chords of C is defined as follows.

• The root chord of C is the first chord in the intersection order.
• Remove the root chord of C and let C1,C2, . . . ,Cn be the connected components
of the result ordered by their first vertex in counterclockwise order.

• Inductively order the chords of each Ci by the intersection order. The intersection
order of the chords ofC is first the root, then the chords ofC1 in intersection order,
then the chords of C2 in intersection order, and so on.

For example the intersection order is indicated in the example in Fig. 9.2. Note
that in this case the intersection order does not match the order given by the first
endpoints of the chords. However, the terminal chords are still those which do not
cross any later chords. Another way to see the terminal chords is that they correspond
to the base case of Definition 19. We will write b(C) to denote the index of the first
terminal chord in intersection order.
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9.2 Rooted Connected Chord Diagrams 75

Later on we will want to decorate chord diagrams by associating a nonnegative
integer to each chord. The size of a decorated chord diagram is the sum of its dec-
orations. Thus the undecorated case corresponds to the case where all decorations
are 1. There is another trickier invariant which we’ll need in the decorated case and
which is discussed in Sect. 9.4.

9.3 The s = 2, k = 1 Result

The first case of (9.1) to consider is the case where s = 2 and there is a single
primitive (k = 1). This corresponds to the combinatorial Dyson-Schwinger equation

T (x) = I − x B+
(

1

T (x)

)
,

that is, to plane rooted trees. A physical example with these combinatorics is the
Yukawa example studied by Broadhurst and Kreimer (see Sect. 9.1). In general it
corresponds to inserting a single 1-loop propagator correction into itself in one place
recursively in all possible ways (nested and chained in that one place). At the analytic
level this means we are trying to solve (9.1) with s = 2 and k = 1. Specifically we
are trying to solve

G(x, L) = 1 − xG

(
x,

d

d(−ρ)

)−1

(e−Lρ − 1)F(ρ)

∣∣∣∣
ρ=0

.

Given a rooted connected chord diagram C , let the indices of its terminal chords
in intersection order be b(C) = t1 < t2 < · · · < tk . The main result of [12], work
with Nicolas Marie, is that the series solution to this equation can be written

G(x, L) = 1 −
∑

i≥1

(−L)i

i !
∑

C
b(C)≥i

x |C | fb(C)−i f
|C |−k
0

k∏

j=2

ft j−t j−1 (9.2)

where the sum is over rooted connected chord diagrams with the indicated restriction
and

F(ρ) = f0
ρ

+ f1 + f2ρ + · · · .

Note that k and the t j depend on C but this has been suppressed in the notation.
This is an interesting result because it gives the Green function as a combinatorial

expansion over chord diagrams. Of course, we began with the Green function as an
expansion over Feynman graphs, but the Feynman diagram expansion isn’t a fully
combinatorial expansion because each graph is weighted by its Feynman integral
which is a complicated analytic object. The chord diagram expansion is different
because for a fixed power of L and fixed power of x each chord diagram contributes
a single monomial in the coefficients of the expansion of F(ρ).
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This result is also interesting because it shows explicitly how the expansions in
x for fixed powers of L relate to each other. Specifically, as the power of L changes
two aspects of the chord diagram expansion in L change. First, as the power of L
increases more diagrams are truncated from the sum; in particular we can easily see
the standard fact that the exponent of x must be at least as large as the exponent of L .
Second, one of the f� in the monomial shifts depending on the power of L , namely
fb(C)−i for Li .
The result is useful because a combinatorial understanding of chord diagrams

gives us a better understanding of the Green function. Perhaps most interesting is
to look at asymptotics of chord diagrams and what it can give us. This has been
pursued with Julien Courtiel in [13], one important aspect of which will be discussed
in Chap.10.

Another interesting facet of this result is that now thatwehave an explicit combina-
torial expansion for the Green function, we can look at other equations for the Green
function from quantum field theory and see what they look like as combinatorial
expressions for chord diagrams. Most striking along these lines is the renormaliza-
tion group equation which ends up being a key part of the proof of (9.2).

The renormalization group equation tells us how the x and L derivatives of the
Green function relate. That is, it tells us how theGreen function changes as the energy
scale changes. In the most naive possible situation the Green function would simply
be invariant under change of scale, but this is too simple for the kinds of theories we
are interested in. Rather, two other things can happen. First, the coupling constant
may change with the energy scale; this makes sense because we are working with
the renormalized coupling not the bare coupling. The beta function of the theory
tells us how the coupling constant changes with the energy scale. The dynamics of
the beta function are extremely important in a qualitative understanding of quantum
field theories. The other thing that can happen is that the field gets rescaled. This
gives the anomalous dimension of the field, and we will denote it by γ .

In our context the renormalization group equation reads

(
d

dL
+ β(x)

d

dx
+ 2γ (x)

)
G(x, L) = 0

where 2γ (x) is the coefficient of L in G(x, L) and in this case β(x) = −2xγ (x).
In general β(x) is an appropriate linear combination of the anomalous dimensions
of the theory, but in this case we began with a single equation, not a system of
Dyson-Schwinger equations, so there is only the one anomalous dimension γ (x).

Applying the renormalization group equation to the chord diagram expansion and
equating coefficients gives the recurrence on chord diagrams

gk,i =
i−1∑

�=1

(2� − 1)g1,i−�gk−1,� for 2 ≤ k ≤ i (9.3)
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where

gk,i =
∑

C|C |=i
b(C)≥i

fb(C)−i f
|C |−k
0

k∏

j=2

ft j−t j−1 .

To illustrate the idea of the proof of this recurrence without getting bogged down
in details, let’s forget the monomials in the f� for the moment. Let sn be the number
of rooted connected chord diagrams with n chords. Then the recurrence becomes

si =
i−1∑

�=1

(2� − 1)si−�s� for i ≥ 2

This is a classical recurrence originally due to Stein [14] and rephrased by Rior-
dan. Nijenhuis and Wilf [10] prove this recurrence using a decomposition of chord
diagrams.

Given a rooted connected chord diagram C , define the root share decomposition
of C to be the rooted connected chord diagrams C1 and C2 obtained as follows. First
remove the root of C . Of the connected components which remain, the one rooted
at the next vertex counterclockwise from the original root is C2. C1 is the rooted
connected chord diagram resulting from removing the chords of C2 from C . See
Fig. 9.3 for an example. The root of C2 is marked with an × in the example.

This process can be reversed, but we need one extra piece of information. Given
C1 and C2 first choose 1 ≤ k ≤ |C2| − 1. Each k corresponds to an interval along
the circle between successive vertices of C2, excluding the interval between the last
vertex and the root vertex. We can then insert C1 into C2 in interval k by putting the
root of C1 immediately before the root of C2 and putting all other vertices of C1 in
interval k. See Fig. 9.3.

Insertion and the root share decomposition are inverses of each other and so
give a bijection between rooted connected chord diagrams and triples of two rooted
connected chord diagrams C1 and C2 and an integer 1 ≤ k ≤ |C2| − 1. Therefore
these two sets are equinumerous which gives Stein’s recurrence. Following through
this proof keeping track of the terminal chords gives (9.3). See Proposition 4.1 of
[12] for details.

→

insertion interval

Fig. 9.3 The root share decomposition
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The proof of (9.2) in [12] is by recurrences. We show the Green function defined
as the solution to the Dyson-Schwinger equation and the chord diagram expansion
satisfy the same recurrence and have the same initial conditions. This is done in two
parts. The first part is the renormalization group equation. We know from quantum
field theory that the solution to the Dyson-Schwinger equation satisfies the renor-
malization group equation while the argument sketched above shows that the chord
diagram expansion also satisfies it. This tells us that the coefficients of the powers
of L (which are series in x) satisfy the same recurrence in both cases. It remains to
show that the coefficient of L agrees between the solution to the Dyson-Schwinger
equation and the chord diagram expansion. That is, it remains then to show that the
anomalous dimension matches its chord diagram expansion.

Showing this requires a second recurrence to show the coefficients in x agree. This
recurrence is considerably more technical and involves going through another class
of combinatorial objects, certain leaf-labelled plane binary trees. For the purposes of
[12] these binary treeswere purely a technical device, but subsequentwork, discussed
in the next section, showed they do carry some important structure.

9.4 Binary Trees and the General Result

To generalize the chord diagram expansion to a wider class of Dyson-Schwinger
equations we need to define a map from rooted connected chord diagrams to plane
binary trees. The leaves of the treeswill be in bijectionwith the chords of the diagram.

The map is as follows. Associate the chord diagram with only one chord to the
binary tree with only one vertex; the single chord corresponding to this one vertex.
Given a rooted connected chord diagram C with |C | > 1, let its root share decompo-
sition be C1 and C2 inserted into interval k. Recursively form the binary trees of C1

and C2. Call them T1 and T2. Find the kth vertex of T2 in a pre-order traversal1; call
this vertex v. Take T2, remove the subtree rooted at v putting a new vertexw where v

used to be. Let T1 be the right subtree of w and let the subtree originally rooted at v
be the left subtree of w. This defines the tree of C . See Fig. 9.4 for a schematic of the
tree insertion and Fig. 9.5 for an example. The appendix of [12] has many examples.

Note that these trees are not insertion trees for Feynman graphs. They are rep-
resenting a different tree-like structure of the chord diagrams. In fact they are a bit
mysterious in exactly what they are encoding.

We are interested in solving the Dyson-Schwinger equation (9.1). The solution
againwill be an expansion indexed by chord diagrams.However, we are nowworking
with chord diagrams with chords decorated by positive integers and where the size
of the diagram is the sum of the decorations. These decorations correspond to the

1In a pre-order traversal the root vertex comes first. Next come all the vertices of the subtree rooted
at the left child of the root ordered following a pre-order traversal. Finally come all the vertices of
the subtree rooted at the right child of the root also ordered following a pre-order traversal.
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=

v w

v

in

Fig. 9.4 A schematic of the tree insertion

Fig. 9.5 A rooted connected
chord diagram and its binary
tree

1
2

3

4

5

1 5

4

2

3

different loop orders of the primitives. Given a chord diagram C and a chord c of C
write dc for the decoration of c.

We also need a weight given by the binary tree. Specifically, given a rooted
connected chord diagram C and a chord c of C , build the tree of C . Begin at the leaf
associated to c and walk up and left from c as far as possible. Denote the length of
this path by ν(c). For example in Fig. 9.5 ν(1) = 0 and ν(4) = 1. Then the overall
weight of C , depending on the parameter s, is

w(C) =
∏

c∈C

(
dcs + ν(c) − 2

ν(c)

)

where the product is over all chords of C .
Given a decorated rooted connected chord diagram C , write |C | for the sum

of the decorations, let the indices of its terminal chords in intersection order be
b(C) = t1 < t2 < · · · < tk and write ter(C) = {t1, t2, . . . , tk}. Then the main result
of [15] is that the solution to (9.1) is

G(x, L) = 1 −
∑

i≥1

(−L)i

i !
∑

C
b(C)≥i

x |C |w(C) fdb(C),b(C)−i

k∏

j=2

fdt j ,t j−t j−1

∏

c �=ter(C)

fdc,0
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where the sum is over decorated rooted connected chord diagrams with the indicated
restrictions and

Fk(ρ) = fk,0
ρ

+ fk,1 + fk,2ρ + · · · .

The proof has the same basic structure as the s = 2, k = 1 case but is substantially
more intricate and was worked out with Markus Hihn. See [15] for details.
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Chapter 10
Differential Equations and the (Next-To)m

Leading Log Expansion

10.1 The (Next-To)m Leading Log Expansions

We are still one important step away from a physical understanding of solutions to
Dyson-Schwinger equations because we are still working with series expansions but
we want functions. Furthermore, we know the number of rooted chord diagrams is
counted by double factorial, specifically the number of rooted chord diagrams with
n chords is (2n − 1)!! = (2n − 1)(2n − 3)(2n − 5) · · · 1. Imposing connectivity
does not change the fundamentally factorial growth. Thus, as expected for quantum
field theory, our series are divergent. In principal this means that the expansion is
only telling us about the function in an infinitesimal neighbourhood of the expansion
point. In practice, however, things seem to be much better. Summing the perturba-
tive expansion as far as it has been computed is highly predictive in quantum field
theory. Mathematically, this is hinting that the series which occur in the perturbative
expansion have extra structure.

Resumming divergent series is a subtle business. Much has been done both theo-
retically and practically, see the references in [1], but much remains to be understood.
These ideas are beyond the scope of this brief and not particularly combinatorial in
flavour and so will not be explored further here.

What then can we hope to do? First we can ask about asymptotics for the coef-
ficients of our expansions. Since our series are essentially generating functions we
can apply the tools of asymptotic combinatorics. Some results along these lines
were obtained for the chord diagram expansion in the s = 2, k = 1 case in [2].
Asymptotics are necessary for any qualitative understanding of the behaviour after
resummation.

Another thing we can do to extract functions of physical significance out of the
perturbative expansion is to think again about how the expansion is indexed and use
that to break it up in a different way. We have triangular sums of the form

G(x, L) = 1 +
∑

i≥1

∑

j≥i

ai, j L
i x j .
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Rather than thinking of the sum first as an expansion in one of the variables with
coefficients which are series in the other variable, we can write the expansion as

G(x, L) =
∑

m≥0

∑

i≥0

ai,i+mx
m(Lx)i .

If there are further parameters such as masses and scattering angles they can be
included in the ai,i+m . The m = 0 part of this sum, namely the terms of G(x, L)
where the powers of L and x are the same, is known as the leading log expansion.
The m = 1 part of this sum, namely the terms of G(x, L) where the power of x is
one more than the power of L is known as the next-to-leading log expansion. The
m = 2 part is known as the next-to-next-to-leading log expansion and so on.

This leading log language comes from the fact that L is log(q2/µ2) or some
similar logarithm of an energy scale, while x is the coupling constant. So the leading
log expansion captures the maximal powers of x relative to the powers of the energy
scale, and so is in an important sense the leading term. The next-to-leading log
expansion is the part suppressed by one power of x , and so on.

The expansions of this log hierarchy are simpler analytically and combinatorially
and so are a place where we can hope to obtain and understand the functions, not
just the expansions.

10.2 Combinatorial Expansions of the Log Expansions

There are two recent combinatorial approaches to understanding the next-tom leading
log expansions. The first of these is by Krüger and Kreimer [3]. The second follows
from the chord diagram expansion of the previous chapter with a combinatorial
analysis by Courtiel [2].

To illustrate both approaches consider first the Dyson-Schwinger equation (9.1)
with s = 2 but for now allow any k. An example of this would be fermion prop-
agator corrections in Yukawa theory. The leading log expansion is easy enough to
understand. Primitives with more than 1 loop are suppressed by at least one power
of x and so do not appear in the leading log expansion. This leaves us in the s = 2,
k = 1 case, but even more is stripped away in the leading log expansion as we only
take the leading part of each insertion. The question is how to capture this leading
part in a generalizable way.

Krüger and Kreimer’s answer is to map the renormalization Hopf algebra of
Feynman graphs to a Hopf algebra of words based on a quasishuffle-deconcatenation
Hopf algebra. This is like the shuffle-deconcatenationHopf algebra of Sect. 4.1 except
that the shuffle is a quasishuffle, that is extra combination terms appear in the shuffle
formula. The B+s in this word algebra correspond to prepending a letter. The letters
initially correspond to the primitive Feynman graphs—for the leading log case we
have just one. The key here is that an arbitrary word cannot be written in terms of just
the quasishuffle product, so Krüger and Kreimer rewrite it as a linear combination
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of pieces made with the quasishuffle, a concatenation commutator, and letters which
are either the basic letters corresponding to primitives or are new letters associated to
the extra term in the quasishuffle. The pure quasishuffle part in the 1 loop primitive
corresponds to the leading log part while any parts with commutators or other letters
show up suppressed by powers of x . Mapping the Dyson-Schwinger equation over
to this word Hopf algebra gives an easy to solve differential equation for this pure
quasishuffle part.

Courtiel and I instead use the chord diagram expansion to understand how to take
only the leading log part of each insertion. From (9.2) we want only the |C | = i part;
that is we only want the b(C) = |C | part:

∑

b(C)=|C |

(−Lx f0)|C |

|C |!

which is the exponential generating function for rooted connected chord diagrams
with b(C) = |C |. These are easy to count from the root-share decomposition (which
was defined in Sect. 9.3). Every component after removing the root contributes at
least one terminal chord, so theC1 of the root share decompositionmust be simply the
root chord and there are 2|C |−3 ways to do this. So recursively there are (2|C |−3)!!
rooted connected chord diagrams with b(C) = |C |.

With either technique the s = 2 leading log expansion is

1 − √
1 − 2Lx f0.

Next consider how this generalizes. For Krüger and Kreimer, as they go further
down the hierarchy of log expansions they need to consider quasishuffles involving
higher loop primitives, commutators, and new letters from the quasishuffle. For
any fixed inventory of these exotic pieces, shuffling on more copies of the 1 loop
primitive does not change the amount of x suppression, so they collect together the
contributions into families based on this inventory. For any given family, the Dyson-
Schwinger equation mapped to words gives a differential equation. For a fixed m
only finitely many families contribute. Making the argument for a general family
they get a master differential equation. Some coefficients in the master differential
equation come from counting how many ways certain matrices can be built. In any
given case these values can be calculated but they are not well understood in general.
They work out the answers explicitly in the Yukawa (s = 2) and QED(s = 1) cases
down to the next-to-next-to leading log expansion.

Courtiel and I have looked at the s = 2, k = 1 case in [2]. For the next-tom

leading log expansion we need to consider all distributions of terminal chords which
give rooted connected chord diagrams with b(C) ≤ |C | − m. We work them out
explicitly for the next-to and next-to-next-to leading log expansions. The root-share
decomposition gives recurrences hence differential equations in each case. This is
our analogue of the master equation. Furthermore, we prove that the diagrams with
precisely the last m chords terminal dominate and so, asymptotically, the coeffi-
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cients of any of the log expansions in the s = 2, k = 1 case are dominated by the
contributions of f0 and f1. See Sect. 3 of [2] for precise results.

On the commondomain of applicability both groups’ results are the same.This had
to happen because we are both describing the same underlying physics. Both groups
have a combinatorial perspective and a combinatorially derived master equation.
However, the basic objects in each case are quite different. It is not clear if or how
the objects could be directly connected combinatorially, but it is tantalizing to think
that these different methods hint at a deep connection between words and chord
diagrams. Also the groups index the new numbers appearing differently. For Courtiel
and I they come from subsequent terms in the expansion for the primitive. For Krüger
and Kreimer they come from letters, both the original letters from primitives and
those from the quasishuffle term which are identified noncanonically with other
Feynman graphs. Krüger and Kreimer’s techniques immediately hold at a high level
of generality. Courtiel and mine will take some work to generalize.

Ultimately the different strengths and perspectives of the two approaches are
enriching and exciting.
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Chapter 11
Feynman Integrals and Feynman Periods

In the chord diagram expansion and the Krüger-Kreimer log expansion we saw that
the primitive Feynman diagrams were the analytic input. In both cases, with these
primitives taken as black boxes, there was a nice combinatorial understanding of
how to put things together. Now it is time to look at these black boxes.

In general this is very hard. There is a whole community with expertise in calcu-
lating diagrams, see for example the articles from [1]. To keep things simple, here
we will stick to primitive 4-point Feynman graphs in φ4. In graph theory language
this means that we are looking at graphs which come from a 4-regular graph (hence
in φ4 theory, see Sect. 5.2) with one vertex removed (hence 4 external edges, that
is, 4-point). Next we need to understand what primitive means graph theoretically.
Recall from Sect. 5.2 the notion of superficial degree of divergence. In the case of a
φ4 graph γ this says that γ is divergent if 4�(γ ) − 2|E(γ )| ≥ 0 where �(γ ) is the
loop number of the graph and E(γ ) is the set of internal edges. By Euler’s formula
this inequality is equivalent to the statement that γ has 4 or fewer external edges.
Note in particular that double edges are divergent. So let G be the result of removing
a vertex from a 4-regular graph K and let γ � G be divergent. We can also view γ

as a subgraph of K . But γ has 4 or fewer external edges and K has none, so there
must be an edge cut of 4 edges or fewer which separates γ from the rest of K . Con-
versely, any 4 edge cut of K other than the ones which cut off only a single vertex
gives a divergence subgraph. Since all vertices of K have even degree if K has no
such 4 edge cuts then it also has no such 5 edge cuts. The property of having no 5
edge cuts other than the ones which cut off a single vertex is called being internally
6-edge-connected.

For the remainder of this brief wewill be primarily concerned with these primitive
4-point φ4 graphs. Furthermore we will look only at the massless case. This case
is already very interesting both combinatorially and number theoretically [2–9].
Furthermore, many of the techniques generalize to the massive case and to more
realistic physical theories [10, 11] as well as, on the combinatorial side, to not
necessarily 4-regular graphs, see for example [12].
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In Sect. 5.6 we saw the Feynman rules in momentum space for φ4 theory. For
the purposes of Feynman periods the Feynman integral in parametric space is very
important, and position space is also useful.

We first need a few observations about the momentum space integrals. In building
the momentum space integrand we put an arbitrary orientation on the graph and then
assigned a momentum to each edge with the restriction that the sum of the momenta
coming into any vertex is the same as the sum of the momenta going out of that
vertex. Graph theoretically this means that the momenta give a flow on the graph
with values in R4. For the purposes of the Feynman period we can set all the external
momenta to 0.

Recall the cycle space of a graph from Sect. 5.5. As observed in Sect. 5.6 the
dimension of the cycle space is the number of free momentum variables in the
integrand. To be explicit, if we choose a set of oriented cycles C1,C2, . . . ,C� which
is a basis for the cycle space, then we can let the momentum variables be p1, . . . , p�

and then take the momentum of edge e to be pe = ∑±pi where pi appears with a
positive sign if cycle Ci goes through edge e in the direction of e and with a negative
sign if it goes through in the opposite direction.

Proposition 5 Let G be a primitive 4-point graph in φ4 with loop number �. The
following three integrals converge and give the same number.

1. (momentum space) Choose a unit vector in R4 and call it 1. Choose a basis
C1,C2, . . . ,C� of the cycle space and assign momenta to the edges as described
above. Set p� = 1. Then the momentum space period integral is

π−2(�−1)
∫

R4(�−1)

d4 p1 · · · d4 p�−1∏
e∈E(G) p

2
e

2. (position space) Choose a unit vector in R4 and call it 1. Choose two vertices v0
and v1 of G. Associate to each vertex v of G a variable xv and set xv0 = 0, the
zero vector in R4 and xv1 = 1. Orient the edges of G and given an edge e let e+
and e− be the initial and terminal vertices of e. Then the position space period
integral is

π−2(�−1)
∫

R4(�−1)

∏
v∈V (G),v �=v0,v1

d4xv∏
e∈E(G)(xe+ − xe−)2

3. (parametric space) Choose an edge e1 of G and set ae1 = 1. Then the parametric
space period integral is ∫

ae≥0
e �=e1

∏
e∈E(G),e �=e1

dae

Ψ 2
G

where ΨG is the Kirchhoff polynomial (see Definition 18).

In all cases the square of a vector denotes its norm squared.
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Proof This proposition is part of Definition and Theorem 2.7 of [9] which the reader
can see for details. The idea of the proof is as follows. To get from momentum space
to parametric space, notice that

∫ ∞

0
e−ap2da = 1

p2
.

Use that fact on each edge in the momentum space integral to convert the integrand
to

e
∑

e∈E(G) −ae p2e .

The expression in the exponent is a quadratic form and so if we do the momentum
integrations first this is a big Gaussian integral. Gaussian integrals are easy to solve
with standard techniques; the outcome is some appropriate power of π multiplied by
a power of the determinant of the matrix of the quadratic form. For a 1-dimensional
Gaussian integral the power of the determinant is−1/2, but because the pe are in R4

we instead get (−1/2)4 = −2. The matrix of the quadratic form is the matrix whose
(i j)th entry contains −ae if pi and p j appear in the momentum of e where pi and p j

are associated to elements Ci and C j of the cycle basis. This means that the matrix
is like the graph Laplacian matrix (see Sect. 5.5) but with cycles in place of vertices.
That is, it is the dual Laplacian which by the matrix tree theorem has determinant
ΨG . This gives the 1

Ψ 2
G
of the parametric integrand.

To get from position space to momentum space we need two standard facts about
the Fourier transform. First, for vectors p, x ∈ R4 we have a Fourier duality

∫

R4

d4x

(2π)2

eip·x

x2
= 1

p2
,

and second, the Fourier transform of 1 is the Dirac delta

∫ ∞

−∞
1√
2π

1e−iabdb = √
2πδ(a).

So if we apply a Fourier transform to the position space integral we end up with
factors of 1

p2e
for each edge, with the pe independent, and we get for each vertex v a

factor ∫

R4
e−i xv

∑
e∼v ±ped4v

where the sum runs over the edges incident to v. Treating this last integral one
variable at a timewe get a factor of δ(

∑
e∼v ±pe) for each vertex—that is momentum

conservation has been enforced at each vertex giving the momentum space integral.

There are a number of other equivalent integrals. The integrals given above are
affine versions; projective versions exist for each of them, see [9] and [4, Sect. 3.1].
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Furthermore, as well as position space, momentum space, and parametric space,
there is also dual parametric space which instead of ΨG would use the polynomial

∑

T spanning
tree of G

∏

e∈T
ae.

In most contexts this polynomial would be called the Kirchhoff polynomial. Here,
because of the transition from momentum space, ΨG is more natural and hence
it makes sense simply to call ΨG the Kirchhoff polynomial. At a graph theoretic
level, these polynomials exchange spanning trees for their complements. This is the
relationship between a planar graph and its dual. For non-planar graphs this is the
relationship between the matroid of the graph and its matroidal dual. See Sect. 12.1
for more on duality.

Definition 20 Let G be a primitive 4-point φ4 graph. The period of G, which we
write PG , is any of the equivalent integrals from Proposition 5. The period of an
arbitrary graph is defined by the same integrals whenever they converge.

It is worth understanding how the full Feynman integral relates to the period.
Suppose we begin with a scalar Feynman integral in momentum space, not yet
renormalized and including masses and external momenta. If we set the masses
and external momenta to 0 we almost get the period. The difference is that we have
not set one of the variables to 1. Doing this takes care of the overall divergence giving
a convergent integral for primitive graphs—the period.

We can also see the full Feynman integral in parametric space and relate it di-
rectly to the period in parametric space. Starting again with the momentum space
Feynman integral we can follow the same procedure as for the period to convert
it into parametric form. The quadratic form will now have parts which involve the
masses and external momenta and so are less than quadratic in the internal momen-
tum variables, but the part which is quadratic in the internal momenta will remain
the same. The result is that there is a second Symanzik polynomial which exists in
order to take care of the masses and external momenta, see for example [13]. Let’s
also think about the overall divergence. Suppose for the moment that we have no
specified relationship between the number of edges and the number of vertices of the
graph. We have not used the homogeneity of the Kirchhoff polynomial yet. Change
variables so that we have a scaling variable along with all but one of the edge vari-
ables where the last edge variable has been set to 1, or any other linear constraint has
been imposed (setting the sum of them to 1 is typical in the physics literature). Then
we can integrate the scaling variable explicitly and what it gives is a gamma function
Γ (2|V (G)| − |E(G)| − 2). See [14, Sect. 6-2-3] for this calculation in detail. For a
primitive logarithmically divergent graph this gamma function is being evaluated at
a pole but the rest of the integral is convergent. Taking this rest of the integral with
masses and external momenta set to 0 we get exactly the period. Thus the period is a
kind of residue, or coefficient of infinity. Because of this it is largely renormalization
scheme independent and is extracting a key part of the Feynman integral.
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On the more mathematical side, the period of a graph is a period in the sense of
Kontsevich and Zagier [15]. Namely it is an integral of an algebraic function over an
algebraically defined region. Consequently it is a sensible algebro-geometric object.
There has been interest [2, 4, 16–18] in taking an algebro-geometric approach to
these objects. Adding to this interest is the fact that the kinds of numbers which
show up in Feynman periods are very interesting. Many of them are multiple zeta
values. This tells us something about the types of algebro-geometric objects which
underlie them. They get much more complicated; if we move outside φ4 they get
arbitrarily complicated in a precise sense [19], and even within φ4 they get outside
of multiple zeta values [20].

The Kirchhoff polynomial is also a sensible combinatorial object, hence we can
hope to get some understanding of the period with combinatorial techniques. In the
denominator reduction algorithm (see Sect. 14.1) we’ll see that we can, in nice cases,
interpret the denominators combinatorially after integrating some of the parametric
variables.
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Chapter 12
Period Preserving Graph Symmetries

Feynman graph period calculations are quite difficult, aswould be expected for some-
thing capturing a substantial chunk of the interesting mathematics of the Feynman
integrals themselves. So, one thing any physicist would do to try to simplify the
calculations would be to look for useful symmetries. Looking for symmetries is also
an excellent mathematical instinct, and particularly well suits a combinatorial per-
spective because the major symmetries are graph theoretic. The topic of this chapter,
then, is simply, what period preserving graph transformations do we know. There
may be other symmetries which we do not know.

Many of these symmetries hold more generally than stated, but to keep things
straightforward and brief we will stick strictly to the 4-point φ4 case and largely to
the primitive case.

12.1 Planar Duality: Fourier Transform

The first period preserving graph operation we’ll discuss is planar duality defined in
Sect. 5.5. Broadhurst and Kreimer used this symmetry in [1] to compile their table
of φ4 periods. This table was key to starting number theoretic interest in Feynman
periods.

We saw in Chap.11 how the Fourier transform takes us from momentum space
to position space and back. By the coincidences of 4 dimensions, there is symmetry
in the Fourier transform, and so a momentum space integral can sometimes be inter-
preted as a position space integral for a different graph where edge cuts have been
swapped for cycles. This kind of swapping is precisely planar duality of graphs and
gives a graph precisely when the original graph was planar. Consequently, we get
the following theorem (see Theorem 2.13 of [2] for details).

Theorem 4 Let G be a primitive 4-point φ4 graph. Suppose G is planar and G∗, its
planar dual, is also a primitive 4-point φ4 graph. Then PG = PG∗ .
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12.2 Completion

In position space, we are free to choose coordinates so as to place one vertex at the
origin and another at a fixed unit vector 1. In fact there is more freedom than this.
Recall, the external edges don’t contribute to the period. If we imagine completing
R

4 with a point at infinity, then we can also view the external edges as each ending at
the vertex at infinity with the Feynman rules just giving 1 for factors including this
vertex. Then if we invert xi �→ xi/x2i for i �= 0, 1,∞ we swap the roles of 0 and ∞
and so we can change which vertex is at infinity without changing the integral. See
the end of the proof of Theorem 2.7 of [2] for details.

Inspired by the language of completingwith a point at infinity, define the following
graph operation.

Definition 21 Let G be a primitive 4-point φ4 graph. Let K be the 4-regular graph
given by G with a new vertex which connects to each external edge. We say K is the
completion of G and the G is a decompletion of K .

See Fig. 12.1 for an example. Note that decompletions can be nonisomorphic.
By the calculations sketched above, the period is completion invariant, that is, we

have the following result.

Theorem 5 Let G and G ′ be primitive 4-point φ4 graphs with the same completion.
Then PG = PG ′ .

Thiswas also an important result foundbyBroadhurst andKreimer in [1]. Schnetz’
catalogue [2] lists graphs by their completions.

Completion is particularly interesting because it is very clear in position space,
but not at all apparent parametrically. The connections of this theory to algebraic
geometry and number theory are primarily through the Kirchhoff polynomial, and
hence completion is quite difficult to understand algebro-geometrically or number
theoretically. In particular it is still unknown if the c2 invariant, see Chap.15, is
completion invariant.

12.3 Schnetz Twist

A third period preserving graph operation was discovered by Schnetz (see [2]).
It is also best seen in position space, and is most symmetrically stated in terms of

K decompletions

Fig. 12.1 Two nonisomorphic decompletions of the graph K

karen_yeats@sfu.ca

http://dx.doi.org/10.1007/978-3-319-47551-6_15


12.3 Schnetz Twist 95

Fig. 12.2 The Schnetz twist

completions. Recall fromChap.11 that a 4 regular graph has primitive decompletions
if and only if it is internally 6-edge connected.

Suppose we have a 4-regular graph K with a 4-vertex cut. Let v1, v2, v3, and v4
be the cut vertices and let K1 and K2 be the two sides of the cut. Include in each of
K1 and K2 the vertices v1, v2, v3, and v4 along with their incident edges which are
on the correct side. We can now rejoin K1 and K2 identifying v1 in K1 with v2 in K2,
identifying v2 in K1 with v1 in K2, identifying v3 in K1 with v4 in K2, and identifying
v4 in K1 with v3 in K2. See Fig. 12.2 for an illustration. Suppose the result of this
rejoining is 4-regular. Then we say the rejoined graph is related to K by a Schnetz
twist.

Theorem 6 Let K be an internally 6-edge connected 4 regular graph and let K ′ be
a Schnetz twist of K which is also 4 regular. Let G and G ′ be decompletions of K
and K ′ respectively. Then PG = PG ′ .

This is Theorem 2.11 of [2]. The idea is to work in position space and set v3 to 0
and v4 to infinity. Then an appropriate inversion of the variables in K2 is an invariant
of the integral. In fact this works even if wemove outside the 4-regular world slightly
as we twist, see [2] for details.

12.4 Products and Subdivergences

The period also has a product property. This can be stated nicely either at the com-
pleted or uncompleted level. We will start at the completed level. For the Schnetz
twist we were working with a 4-vertex cut. Now suppose K is an internally 6-edge
connected 4 regular graph with a 3-vertex cut.

Let v1, v2, and v3 be the cut vertices and let K1 and K2 be the two sides of the cut,
again including in each of K1 and K2 the cut vertices themselves along with those
incident edges which are on the correct side. Now augment K1 and K2 each with a
triangle on the vertices v1, v2, and v3; call the augmented graphs K 1 and K 2. For an
illustration see Fig. 12.3. Suppose K 1 and K 2 are themselves 4 regular; another way

K K1 K2

Fig. 12.3 Graphs involved in the completed product property
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Fig. 12.4 Graphs involved
in the decompleted 2-vertex
cut property

G G1 G2

to say this is that in the original vertex cut, two edges out of each vi went to each
side. Then we have the following theorem.

Theorem 7 With notation and hypotheses as above, let G be any decompletion of
K and let G1 and G2 be any decompletions of K 1 and K 2. Then PG = PG1 PG2 .

See Theorem 2.10 of [2] for a proof. The idea is to calculate in momentum space
with v1, v2, and v3 set to 0, 1, and infinity, respectively.

Thinking at the level of primitive 4-point φ4 graphs we can decomplete at v3 to
get a nice corollary. See Fig. 12.4 for an illustration.

Corollary 1 Let G be a primitive 4-point φ4 graph with a two vertex cut which
partitions the external edges into two pairs. Let v1 and v2 be the cut vertices and let
G1 and G2 be the two sides including the cut vertices and those incident edges which
are on the correct side. Let G1 and G2 be G1 and G2 respectively with an additional
edge from v1 to v2. Then PG = PG1

PG2
.

Decompleting a graph with a 3-vertex cut at a vertex other than one of the cut
vertices will give a graph at the decompleted level whose period is a product but
which does not have a 2-vertex cut.

Moving briefly outside the world of primitive graphs, we have not defined the
period on subdivergent graphs. To do so we would need to deal with renormalization
in a nontrivial way. One way to keep it polynomial based and geometric in feel is
given by Brown and Kreimer in [3].

None the less, when looking for graph invariants with the same symmetries as
the period we should also consider what will happen with subdivergences, or more
graph theoretically, what the 4-edge cut behaviour of the invariant is. One reasonable
thing which could happen is we could obtain a product, one factor for the divergent
subgraph and one for the graph obtained by contracting the divergent subgraph. This
corresponds to a term in the coproduct and is in some sense the leading behaviour
of the Feynman integrals [3]. Another reasonable thing which could happen is to
simply obtain 0 whenever there is a subdivergence.
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Chapter 13
An Invariant with These Symmetries

Now we are searching for graph invariants with the symmetries of the previous
chapter. One, which is inspired by flow theory, is based on permanents [1, 2]. This
is the only nontrivial graph invariant I am aware of for which all the symmetries are
proven. On the other hand, it is not so clear what this invariant is telling us about
the Feynman period. In comparison, the c2 invariant (see Chap.15) is more clearly
related to the period, but many of the symmetries remain conjectural.

The permanent is like the determinant except without the alternating signs.

Definition 22 Let A = (ai, j ) be an n × n matrix. The permanent of A is

Perm(A) =
∑

σ

n∏

i=1

ai,σ (i)

where σ runs over all permutations of {1, 2, . . . , n}.
Equivalently we can define the permanent by cofactor expansion using the same

formula as for the determinant but with every term taken with a positive sign.
Unfortunately, this means the permanent is a very bad object from a linear alge-

bra perspective. It simply doesn’t behave well under linear algebra operations. Con-
cretely, consider elementary row operations. The permanent is invariant under swap-
ping rows and scales upon scaling rows. The problem is the row operation of adding
a multiple of one row to another; call this the third row operation. In general the
permanent has no nice behaviour under this operation. The first thing we need to do
to define this permanent invariant is to put ourselves into a situation where we can
salvage the third row operation.

Proposition 6 Let A be a square matrix of the form
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A =

⎡

⎢⎢⎢⎣

B
B
...

B

⎤

⎥⎥⎥⎦

where there are n copies of the matrix B. Then Perm(A) is unchanged modulo n+ 1
if we perform the same third row operation in each B block.

This is Lemma 5 of [2]. The idea is to expand by linearity in the changed rows
and note that the parts coming from adding the multiple of another row give matrices
with n + 1 rows the same. Any permutation of these n + 1 rows leaves the matrix
and hence the permanent unchanged, so the permanent for these matrices must be
divisible by (n + 1)! and hence is 0 modulo n + 1.

The point is that for these kinds of block matrices, as long as we work modulo
n+1, we do get awell behaved linear algebra object. To apply this to a graph invariant
recall the signed incidence matrix from Sect. 5.5 and let E be the signed incidence
matrix with any one row removed. For a 4-point φ4 graph, this matrix will be �× 2�
where � is the loop number. Consequently

Perm

([
E
E

])
mod 3

is an object of the desired sort. There is one subtlety, namely the choices involved
in building E can change the overall sign and so we define the graph permanent
in work with Crump and DeVos [2], to be this permanent up to sign. In fact for any
prime p > 2, we can stack p−1 copies of E vertically and (p−1)/2 horizontally to
obtain a squarematrix of the required type. Taking the permanent modulo p and up to
sign in that case gives the extended graph permanent at p defined in [1] by Crump.
The overall extended graph permanent is the sequence indexed by odd primes of
the extended graph permanent at each prime.

The extended graph permanent has the same graph symmetries as the period
[1]. To keep things simpler, we’ll just look at the arguments in the original graph
permanent (p = 3) case; the extended graph permanent arguments are similar.

For planar duality, since we can row reduce we can put E into the form [I A]. The
matrix [−AT I ] is row equivalent to the E matrix for the dual (see [3] for this fact
in the more general matroid language). By cofactor expanding the I parts first for
both matrices, and since the permanent is transpose invariant, the graph permanents
agree. For details see [2, Proposition 20].

For completion and decompletionwe need to think about how to index the nonzero
terms in the cofactor expansion of the permanent. A term in the cofactor expansion
is a choice of entries with exactly one in each row and in each column. Each nonzero
entry in the matrix is a pair of a vertex and an edge; think of it as a half edge. One
entry in each column means that each edge is involved once. One entry in each row
means that each vertex other than the one corresponding to the removed row is taken
twice (once for each block). We will call the vertex corresponding to the removed
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row the special vertex. So a nonzero entry in the matrix is a choice of half edges
of the graph with one half edge from each edge and two half edges around each
vertex except for none around the special vertex. We can extend this selection to the
completed graph by taking all four half edges around the completion vertex. If for
all edges in the completed graph we swap which half edge we choose then we have
swapped the role of special vertex and decompletion vertex and obtained a term in
the cofactor expansion for this swapped graph. This gives a bijection between the
terms in the expansions of the two permanents and hence they are the same up to
sign. For details see [2, Theorem 16].

For the Schnetz twist we use the same idea as for completion. On the completed
graphs, set one of the cut vertices to be to be the decompletion vertex and one of the
others to be the special vertex. Again think of the terms in the cofactor expansion of
the permanent as selections of half edges, but this time swap only one side of the cut
to get a term for the twisted graph. For details see [2, Proposition 19].

For the product, by completion invariance we can choose to decomplete at one
of the vertices of the 3-vertex cut and so it suffices to consider decompleted graphs
with a 2-vertex cut. Of those two vertices, make one of them the special vertex
and cofactor expand along the other to get the desired identity. For details see
[2, Theorem 22].

Furthermore, subdivergences also give products. This comes from cofactor
expanding along the four cut edges, see [2, Theorem 24].

These symmetries suggest the extendedgraphpermanent should be aperiod invari-
ant in the sense that if two graphs have the same Feynman period then they should
have the same extended graph permanent. Hence the extended graph permanent
should be telling us something about the period. In the case of the original graph per-
manent, because of the sign ambiguity, we have a binary invariant, zero or nonzero.
Unfortunately it is not at all clear what it is telling us about the period. The extended
graph permanent is evenmore tantalizing. It contains more information and has some
mysterious connections with the c2 invariant but it is still unclear what it tells us about
the Feynman period (see [1]).
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Chapter 14
Weight

14.1 Denominator Reduction

In [1] Brown gave a technique for calculating Feynman periods and Feynman inte-
grals of certain graphs by step by step integration in parametric space. We will return
to this algorithm in Chap.16. For now, we will investigate a key part of the algorithm
known as denominator reduction. Denominator reduction is about keeping track of
the denominators which show up over the course of the integration algorithm. These
denominators are, like the Kirchhoff polynomial, polynomials which can be under-
stood combinatorially. Furthermore they contain important information about the
period as a whole. In particular they know about the weight which we will define in
Sect. 14.2.

First we need the building blocks for the polynomials.

Definition 23 Let G be a graph. Let

M =
[

Λ ET

−E 0

]

be as in Sect. 5.5. Let I and J and K be sets of edge indices of G with |I | = |J |. Let
M(I, J ) be the matrix obtained from M by removing the rows indexed by I and the
columns indexed by J . Then the polynomial

Ψ
I,J
G,K = det M(I, J )|ai=0

i∈K

is called a Dodgson polynomial.

Dodgson polynomials satisfy a contraction-deletion relation.

Proposition 7 For i /∈ I ∪ J ∪ K,
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102 14 Weight

Fig. 14.1 An example for a
spanning forest polynomial

a

b c d

e
f

Ψ
I,J
G,K = Ψ

I∪{i},K∪{i}
G,K ai + Ψ

I,J
G,K∪{i}

Ψ
I∪{i},K∪{i}
G,K = Ψ

I,K
G\i,K

Ψ
I∪{i},K∪{i}
G,K = Ψ

I,K
G/ i,K

Proof These follow from the form of the matrix defining the Dodgson polynomials.
(See for example [2, Section 2.2]).

Dodgson polynomials can also be understood, via the all-minors matrix-tree the-
orem [3], as sums of spanning forest polynomials.

Definition 24 Let P be a set partition of a subset of the vertices of a graphG. Define

Φ P
G =

∑

F

∏

e/∈F
ae

where the sum runs over spanning forests F of G with a bijection between the trees
of F and the parts of P where each vertex in a part lies in its corresponding tree.

Note that trees consisting of isolated vertices are permitted. For example in the graph
given in Fig. 14.1 if the partition has the two white vertices in one part and the black
vertex in the other part then the spanning forest polynomial is

ab(ec + cd + c f + d f ).

The relationship between Dodgson polynomials and spanning forest polynomials
is given in [4].

Proposition 8 (Proposition 12 from [4]) Let I, J, K be sets of edge indices of G
with |I | = |J |, then

Ψ
I,J
G,K =

∑

P

±Φ P
G�(I∪J∪K )

where the sum runs over all set partitions P of the end points of edges of (I ∪ J ∪
K ) � (I ∩ J ) with the property that all the forests corresponding to P become trees
in both G � I/(J ∪ K ) and G � J/(I ∪ K ).

Now let’s return to the Dodgson polynomials in order to define denominator
reduction.
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Proposition 9 Given 5 edge indices i, j, k, l,m

5ΨG(i, j, k, l,m) = ±
(
Ψ

i j,kl
G,m Ψ

ikm, jlm
G − Ψ

ik, jl
G,m Ψ

i jm,klm
G

)

is independent (up to overall sign) of the order of i, j, k, l,m.

For a proof see Lemma 87 in [1]. We call 5ΨG(i, j, k, l,m) the 5-invariant of
G depending on edges i, j, k, l,m. The denominator reduction story starts with the
5-invariant because fewer integrations do not have the general shape yet and more
integrations are not always possible.

Definition 25 Given G with at least 5 edges, denominator reduction is a sequence
of polynomials D5, D6, …Dk , defined by

• D5(i1, i2, i3, i4, i5) = 5ΨG(i1, i2, i3, i4, i5)
• If Dj (i1, . . . , i j ) can be factored as

Dj (i1, . . . , i j ) = (Aat + B)(Cat + D)

where A, B,C, D are polynomials (not necessarily nonzero but not all zero) in
the edge variables not involving at then Dj+1(i1, . . . , i j , t) = ±(AD − BC)

• If Dj+1 = 0 or Dj cannot be factored then denominator reduction ends.

Denominator reduction is important because it is a purely algebraic process but
it gives the denominators remaining in the parametric Feynman period integral after
successive parametric integrations.

There are a few things to notice about denominator reduction. First, each
Dj (i1, . . . , i j ) is defined up to overall sign. Second, for a given graph, different
edge orders will give a different sequence of polynomials, and such sequences may
not all be the same length. Long sequences are better for our purposes because the
longer the sequence the further the integration algorithm works and the more we
can learn combinatorially about the period. Third, the factorizations in the denom-
inator reduction algorithm are often combinatorially meaningful in the sense that
the factors are themselves sums of Dodgson polynomials, hence of spanning forest
polynomials.

Fourth, for many purposes we can begin the sequence with D4 or even D3 at the
expense of no longer having a unique choice. For any choice of four edges i , j , k, l
there are three generically distinct possible choices for D4,

Ψ i j,klΨ ik, jl , Ψ i j,klΨ il, jk, or Ψ ik, jlΨ il, jk

any of which we will call D4 and each of which yields the same D5 and onwards
following the denominator reduction algorithm. For D3 we can take any permutation
of indices of

Ψ
i, j
k Ψ ik, jk .
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14.2 Weight Drop and Double Triangles

Feynman periods give interesting and presumably transcendental numbers so it is
natural to ask about their transcendentalweight. Intuitively, the transcendentalweight
of a number is the minimum number of nested integrals needed to write it as a period,
that is, as an integral of an algebraic function over an algebraically defined region.
Unfortunately, this intuitive definition is not well suited to upgrading to a formal
definition, so we will have to be satisfied with some special cases.

To begin with, we find many multiple zeta values among the Feynman periods.
For low loop orders they suffice (see the tables of [5]). If s1, s2, . . . , sk are positive
integers with s1 > 1 then the multiple zeta value ζ(s1, s2, . . . , sk) is defined to be

ζ(s1, s2, . . . , sk) =
∑

n1>n2>···>nk>0

1

ns11 n
s2
2 · · · nskk

.

These generalize special values of the Riemann zeta function and are mathematically
very interesting, see [6–8]. For our purposes we don’t need to know any more about
them beyond the definition of the weight of a multiple zeta value as the sum s1 +
· · · + sk . This is consistent with the intuitive idea of weight because multiple zeta
values also have an iterated integral representation of the appropriate length. All
nontrivial multiple zeta values are believed to be transcendental and there are precise
conjectures about the algebraic relations between them. However, it is extremely
difficult to prove transcendence, or even to prove irrationality, of these numbers.

For more general periods we are left without a good definition of weight to work
with. From a mathematical perspective a good approach is to upgrade periods to
mixed Hodge structures and use the weight filtration there, but then, outside of
simple examples, we are left without good, concrete tools.

Insteadwewill use the special properties of Feynman periods to get partial combi-
natorial access to the weight using denominator reduction. Integrating one variable at
a time in parametric space following Brown [1], we schematically get the following:

• Begin with
∫

1
Ψ 2
G
.

• Integrate one edge variable to get
∫

1
ΨG/e1ΨG\e1

.

• Integrate another edge variable to get
∫ logs

(Ψ 1,2)2
.

• Integrate a third edge variable to get
∫ more logs

a polynomial .

• Integrate a fourth edge variable to get
∑∫ dilogs

D4
, one term for each version of D4.

Along with the actual dilogs are products of pairs of logs which are also weight 2.
• Integrate a fifth edge to get

∫ weight 3 stuff
5Ψ

.

In all cases the pieces are fully explicit, see [1] or [4, Sect. 4.1] for further details.
In particular the pieces are made up of polylogarithms which we will look at briefly
in Chap.16. Polylogarithms have multiple zeta values as special evaluations and
have a comparable definition of weight. From the point of view of weight, what is
happening in the sketch above is that the first and third integrations do not change the
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weight while the other integrations each increase the weight by 1. The cases where
the weight was unchanged were the cases where the denominator ended up being a
square after the previous step.

Schematically, Brown’s algorithm looks similar in general. From
∫ weight n stuff

Dn
,

• If Dn factors into two distinct factors then we get
∫ weight n + 1 stuff

Dn+1• If Dn is a square we get a sum of pieces of weight at most n in the numerator.
• If Dn doesn’t factor then the algorithm fails.

Again the pieces are all explicit. We will see a bit more about them in Chap. 16 and
[1] has further details.

Recall that for a 4-point φ4 graph the number of edges is 2� where � is the loop
number of the graph and one of the edge variables is not integrated in the period.
We see from the above that two of the integrations don’t increase the weight, so this
leaves 2� − 3 possible integrations, so the maximal weight of a Feynman period
obtained in this way is 2�−3. From the known multiple zeta value Feynman periods
we know thismaximal weight is frequently achieved. On the other hand, if we ever hit
the square denominator case for some Dn then the weight will be less than 2�−3. In
this case we say the graph hasweight drop. We can use this as a purely combinatorial
definition of weight drop.

The easiest weight drop graphs to understand are graphs which are products in
the sense of Sect. 12.4. Suppose G is a primitive 4-point φ4 graph with a 2 vertex cut
separating the external edges so PG = PG1 PG2 . Say G has loop number � and G1

has loop number k. In splitting G into G1 and G2, we break one loop by splitting
at the cut vertices and adding the extra edge back into G1 and G2 adds one loop to
each of them. So the loop number of G2 is � − k + 1. Then the maximum weight
of G1 is 2k − 3 and the maximum weight of G2 is 2(� − k + 1) − 3. The weight
of a product is the sum of the weights of the pieces so the maximum weight of G is
2k − 3 + 2(� − k + 1) − 3 = 2� − 4 < 2� − 3 so G has weight drop.

A really interesting example of the graph theory telling us about the periods gives
another criteria for weight drop. Suppose G is of the form

G= .

Let H be the graph which is otherwise unchanged from G but the pair of triangles
is converted to a single triangle in the following way
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H = .

In G we can denominator reduce the 7 edges shown explicitly and obtain

D7 = Φ
{a,d},{b},{c}
L

(
Φ

{a,b},{c,d}
L − Φ

{a,c},{b,d}
L

)

where

L=

a

b c

d

.

In H we can denominator reduce the 5 edges shown explicitly and obtain

D5 = Φ
{a,d},{b},{c}
L

(
Φ

{a,b},{c,d}
L − Φ

{a,c},{b,d}
L

)

which is the same. The calculations can all be done at the level of spanning forest
polynomials where they are purely graph theoretic manipulations (see [4, Theorem
35]). The point is that the denominators are the same after that point, so the denom-
inators will continue to agree for any further denominator reductions. In particular
the denominator reduction will give a square in one case if and only if it gives a
square in the other, so G has weight drop if and only if H has weight drop.

In the next chapter we will look at an arithmetic graph invariant which can see
the weight of the period.
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Chapter 15
The c2 Invariant

Schnetz [1] defined the following graph invariant based on counting points on the
affine variety defined by the vanishing of ΨG .

Definition 26 Let p be a prime, let Fp be the field with p elements, and let G have
at least 3 vertices. Let [ΨG]p be the number of points on the affine variety of ΨG over
Fp. Define the c2-invariant of G at p to be

c(p)
2 (G) = [ΨG]p

p2
mod p

Write c2(G) for the sequence (c(2)
2 (G), c(3)

2 (G), . . .).

The fact that this is well defined depends on G having at least three vertices (see
Proposition 2 of [2]). When c(p)

2 (G) is a constant k independent of p we’ll just write
c2(G) = k.

To make this definition more motivated we need to understand a bit of the history.
From the calculations of [3] there came the conjecture that all φ4 Feynman periods
could be written in terms of linear combinations of products of multiple zeta values.
Thinking algebro-geometrically, one is led to think that if this conjecture were true,
then these multiple zeta values should be appearing for some good reason. In the
languageofmotives, this good reason should be that the varieties definedbyKirchhoff
polynomials give mixed Tate motives. Coming back to the concrete side, this would
mean that the point counting functions for these varieties would be polynomials in
p. Likely inspired by thoughts along these lines, Kontsevich informally conjectured
this last part in 1997. This conjecture turned out to be false. This was proved in the
context of all graphs by Belkale and Brosnan [4], and explicit φ4 counterexamples
were found a little later [2, 5].

However, there is more to get out of this idea of the polynomiality of point count
functions of Kirchhoff varieties. In the cases when the point count function is a
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polynomial the c2 invariant is the quadratic coefficient of this polynomial—this is
the reason for the name c2. In particular, the c2 invariant in such cases is constant as a
function of p. In other cases the c2 invariant is nonconstant as a function of p but it is
still informative and perhaps even more interesting as one gets coefficient sequences
of modular forms [6, 7] and even more mysterious sequences. The c2 invariant is
telling us about what kinds of numbers show up in the Feynman period.

Weknowsome things about the symmetries of the c2 invariant. LetG be a primitive
4-point graph in φ4. One key fact is that the c2 invariant can be computed using
denominator reduction. Specifically, for n ≥ 3,

c(p)
2 (G) = (−1)n[Dn]p mod p.

This is Theorem 29 of [2] and is proved by stepping through the denominator reduc-
tion process keeping track of the point counts. This has many useful consequences
([2]):

• If G has weight drop in the sense of Chap.14 then it has c2(G) = 0. In particular,
if G has a 2-vertex cut then c2(G) = 0.

• If H differs from G by a double triangle transformation (see Sect. 14.2) then
c(p)
2 (G) = c(p)

2 (H) for all p.

With a bit more work, denominator reduction is also useful for showing that φ4

graphs with subdivergences all have c2(G) = 0 (see [8]).
This still leaves many of the major symmetries of Chap.12 open. All of them are

fully supported by all the examples which have been calculated. Doryn has proved
that the c2 invariant is invariant under planar duality (Corollary 34 and Theorem 5
of [9]) but not necessarily under a more general duality for nonplanar graphs. The
key idea is to look at the analogue of the c2 invariant in dual parametric space as
well as in momentum space and position space and try to show that they coincide.
Completion invariance for c2 is open (Conjecture 4 of [2]) as is the Schnetz twist.

Brown and Schnetz also make a stronger conjecture (Conjecture 5 of [2]), that
PG1 = PG2 implies c2(G1) = c2(G2).

Brown and Schnetz [6] have computed c2 invariants systematically on primitive
4-point φ4 graphs up to 9 loops on the first 12 primes. They found c2 invariants
which were constant, c2 invariants which were constant except for a dependence on
the modulo class of the prime, c2 invariants which were the coefficient sequences
of modular forms, and some unknown sequences. They computed the unknown
sequences up to 50 or 100 primes. These sequences give great staring material for
people who like sequences, (see [6]).

Rather than fixing a graph and calculating the c2 invariant for different primes,
a slightly different approach is to fix a prime and calculate the c2 invariant at this
prime on different graphs in some structured family. This was looked at in [10] for
decompletions of circulant graphs. The outcome is (often large) recurrences so the
flavour is quite different. The techniques are largely graph theoretic working with
spanning forest polynomials.
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Chapter 16
Combinatorial Aspects of Some Integration
Algorithms

The art of computingFeynman integrals has always involved graph theory in the sense
that the specific structure of each Feynman graph reallymatters. Feynman integration
is very hard so quantum field theorists have become very skilled at extracting every
bit of information they can from the structure of the graphs as well as having many
more analytic tricks. Recently there have been some new ideas which are related to
this brief. This chapter will overview some of their combinatorial aspects.

We have already looked a bit at Brown’s denominator reduction algorithm in
Chap.14. The analytic piece that we have ignored so far has been the polylogarithms
which appear in the numerators. Let σ1, . . . , σn be n distinct points in C

∗ and let
x0, x1, . . . , xn be n + 1 letters. Given a word w = xi1 · · · xir on these letters build an
iterated integral

Lw(z) =
∫

0≤tr≤tr−1≤···≤t1≤z

dtr
tr − σir

· · · dt1
t1 − σi1

where σ0 = 0. Then for i �= j we get the following indefinite integrals with constants
of integration omitted

∫
Lw(z)

z − σi
dz = Lxiw

∫
Lw(z)

(z − σi )(z − σ j )
dz = 1

σi − σ j
(Lxiw(z) − Lx jw(z))

∫
Lxi1 ···xin (z)dz =

n∑

k=1

(−1)k(z − σik )Lxik+1 ···xin (z)

∫ Lxri x jw
(z)

(z − σi )
2 dz = 1

σi − σ j
(Lxiw(z) − Lx jw(z)) + 1

1 − σi

r∑

k=1

(−1)k+1Lxr−k
i x jw

.
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See [1, Sect. 4.1] for details. We can see in these formulas the different denominator
reduction steps. The second formula is the case when the denominator factors into
distinct factors. After normalizing appropriatelywe end upwith the newdenominator
built of the old ones and in the numerator the iterated integrals are of weight one
larger than before. The fourth formula is the case when the denominator is a square.
The result is hairier but all of the iterated integrals on the right hand side have the
same weight or lower.

Polylogarithms have many analytic and geometric properties and are very rich
objects. However, they are substantially controlled by the word w. Denominator
reduction accentuates this in the way the words are built letter by letter. In some
sense what this algorithm does is convert from graphs to words in a subtle and
physically significant way. This algorithm is readily implementable; variants and
extensions have been implemented by Bogner [2] and Panzer [3–5].

In [6] Schnetz introduced graphical functions. A graphical function is the eval-
uation of the Feynman integral of a graph G with three distinguished vertices 0, 1,
z using position space Feynman rules and with no integration over z [6, Sect. 1.3].
The unintegrated z behaves like a hook; more edges can be added connecting at 0, 1
and z and the integration continues. Thus graphical functions give a recursive way
to compute certain classes of Feynman integrals again using polylogarithms.

Themost important class computed in this way is the zigzag family. Zigzag graphs
are graphs of the form showed in the first part of Fig. 16.1. Broadhurst and Kreimer
conjectured in [7] that the period of the zigzag graph with � loops is a particular
rational multiple (see below) of ζ(2� − 3). Brown and Schnetz prove this in [8]
using graphical functions. Zigzag graphs are well suited to integration by graphical
functions. Work with the planar dual, see the second part of Fig. 16.1. Take z as
running along the middle with the top vertex as 0 and the bottom vertex as 1. So to
calculate the period by graphical functions start with the path from 0 to z to 1. Then
step along adding a new edge out of z, integrating the old z and putting the new z at
the other end of this edge, and alternately adding an edge from z to 1 or an edge from
z to 0. With the help of some identities of multiple zeta values, the general form of
the zigzag period was proved by this approach in [8] to be

4(2� − 2)!
�!(� − 1)!

(
1 − 1 − (−1)�

22�−3

)
ζ(2� − 3).

Fig. 16.1 A zigzag graph
and its planar dual
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Ultimately, many tools, including combinatorial ones, come together to make
these integration algorithms work. This is the same phenomenon which has appeared
throughout this brief: combinatorics playing a nontrivial role in the physics and
mathematics of quantum field theory.
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Index

Symbols
B+, 15, 30, 32, 44, 45, 57, 63, 67, 82
E , see signed incidence matrix
F(ρ), 72, 73, 75
G/e, 49
GE30Fe, 49
K , 9, 20–22, 67
L , see kinematical parameter
�G , see Kirchhoff polynomial
I, 10, 14, 42
φ3, see scalar field theory
φ4, see scalar field theory
b(C), 74, 75, 83
c2 invariant, 94, 99, 109, 110
k2, 53
s, 48, 73
tv , 9, 67, 78
1-cocycle, 30, 31, 44–46, 67
1PI, see one particle irreducible
2-edge-connected, 40
2-vertex cut, 96, 105
3-vertex cut, 95
4-edge cut, 96
4-vertex cut, 95
5-invariant, 103

A
Action, 50
Algebra, 20
Anomalous dimension, 76
Antichain, 10, 26
Antipode, 23, 24, 26, 28, 29, 40
Automorphism, 36, 37

B
Base field, see K
Beta function, 76
Bialgebra, 22, 30
Birkhoff decomposition, 30
Block matrix, 98
Bogoliubov’s R, 27
BPHZ, 27
Bridge, 31
Bridgeless, 40

C
Child, 9, 14, 62, 78
Chord, 73, 74, 78
Chord diagram, 73–76, 78, 79, 81, 83, 84
Circulant, 110
Coalgebra, 21
Cocommutative, 22
Cofactor expansion, 97–99
Cohomology, 30
Combinatorial class, 9, 14, 23, 25, 35
Combinatorial object, 6, 19
Combinatorial operation, 14, 57
Combinatorial physical theory, 37, 38
Combinatorial specification, 10, 14, 15
Commutative, 22
Completion, 94, 98, 110
Concatenation, 19, 22
Connected

bialgebra, 23
chord diagram, 74, 75, 78

Contraction, 41
Convolution, 23, 32
Coproduct, 19, 21–23, 25, 30, 32, 42, 62, 96
Counit, 21
Counterterm, 29
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118 Index

Coupling constant, 6, 58, 76, 78, 82, 83
Crossing, 73
Cycle, 12, 39, 48, 49, 88
Cycle space, 49, 88

D
Deconcatenation, 22, 82
Decorated chord diagram, 75
Denominator reduction, 91, 101, 103–106,

110, 113, 114
Dependency digraph, 64
Deshuffle, 22
Dirac gamma matrices, 52, 53
Divergent

graph, 12, 39–42
integral, 6, 12, 27–29, 39, 90
series, 6, 81
subgraph, 27

Dodgson polynomial, 101–103
Double triangle, 105, 110
Dyson-Schwinger equation, 5, 6, 10, 16, 18,

32, 44, 47, 57, 58, 61–63, 67–69, 71,
72, 75, 78, 81–83

E
Edge, 37, 50

external, 35, 37, 87
internal, 35, 37
oriented, 38
unoriented, 38

Elementary row operation, 97, 98
Empty cut, 26
Evaluation map, 11, 36
Exploded Laplacian, 49
Exponential map, 32, 36, 40
External leg structure, 39, 41–43, 46, 57

F
Face, 50
Fermion, 38, 58
Feynman graph, 5, 10, 27, 31, 35, 36, 38, 51,

52, 57, 59, 62, 82, 87, 88, 90, 93–96,
101, 105, 110, 113, 114

Feynman integral, 5, 11, 51, 72, 88, 90, 101,
113, 114

Feynman period, see period
Feynman rules, 6, 11, 13, 28–32, 38, 39, 50,

52, 53, 57, 67–69, 71, 73, 88, 114
Feynman slash notation, 53
Field characteristic, 9
Finite field, 109

Flow, 88, 97
Fourier transform, 89, 93

G
Gauge theory, 46, 51
Gaussian integral, 89
Generating function, 40, 81

augmented, 10, 14–16, 25, 45, 57, 61
exponential, 11, 14, 36, 68
ordinary, 11, 14, 36

Ghost, 38
Gluon, 38, 51
Graded

bialgebra, 23, 26
map, 22
piece, 22
vector space, 22

Graph, 35, 48, 87, 105
Graphical function, 114
Graph permanent, 98, 99
Green function, 5, 12, 57–59, 69, 70, 75, 76,

78
Group-like, 23

H
Half edge, 35, 37, 99
Half edge labelling, 35, 36
Half edge type, 37, 38
Hochschild cohomology, 30
Homogeneous, 22
Homomorphism, 21
Hook weight, 67–69
Hopf algebra, 6, 9, 13, 20, 22, 23, 25–27, 30,

31, 40, 42, 61, 62, 69, 82, 83

I
Insertion

Feynman graph, 43, 45, 46, 63, 71
tree, 79

Insertion tree, 12, 31, 45, 57, 62, 63
Internally 6-edge connected, 87
Intersection graph, 73
Intersection order, 74, 75, 79
Invariant charge, 47, 73

K
Kinematical parameter, 28, 58, 71, 76, 78,

82, 90
Kirchhoff polynomial, 48, 88, 90, 101, 109
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L
Lagrangian, 50, 51
Laplacian, 89
Lattice, 13
Leading log, 67, 82, 83
Leaf, 9, 78, 79
Lie algebra, 32, 43, 44, 63, 83
Logarithmically divergent, 39
Loop number, 35, 40, 46, 49, 88, 105
Loop order, 12, 40, 63

M
Mass, 50, 53, 87, 90
Master equation, 83
Matrix tree theorem, 49, 89, 102
Matroid, 49, 50, 98
Mellin transform, 72, 73
Meson, 38
Möbius inversion, 25
Modular form, 110
Momentum space, 52, 88–90, 93, 110
Multiple zeta value, 91, 104, 109, 114

N
Next to leading log, 82, 83
Nonperturbative phenomenon, 6, 58, 59, 81

O
One particle irreducible, 31, 40–42, 57
Overlapping subdivergences, 13, 27, 42, 45

P
Parametric space, 52, 88–90, 94, 101, 103,

104
Parent, 9
Path integral, 7, 50, 52
Period, 88, 90, 93–97, 99, 101, 103–105,

109, 110
Permanent, 97
Perturbation theory, 5, 6, 27, 40, 51, 58, 73,

81
Photon, 38, 51
Planar dual, 50, 90, 93, 98, 110, 114
Planar embedding, 50
Planar graph, 50, 90
Polylogarithm, 104, 113, 114
Poset, 10
Position space, 88, 89, 93–95, 110, 114
Power counting weight, 37, 38
Pre-order, 78

Primitive, 12, 23, 44, 72, 79, 82–84, 87, 90,
95

Primitive part, 23
Product property, 95, 99, 105

Q
QCD, see quantum chromodynamics
QED, see quantum electrodynamics
Quantum chromodynamics, 38, 46, 47, 51,

73
Quantum electrodynamics, 38, 46, 47, 51,

53, 58, 73, 83
Quantum field theory, 5, 38, 50, 58, 76, 84,

115
Quark, 38

R
Regularization, 72
Renormalization, 6, 27, 28, 39, 40, 42, 58,

62
Renormalization group equation, 76, 78
Root

chord diagram, 73–75, 77, 78
tree, 9

Rooted tree, 9, 13, 25, 27, 28, 64, 67
binary, 14, 16, 68
plane, 10, 15, 44, 75
plane binary, 78, 79

Root share decomposition, 77, 83
Rota-Baxter map, 30

S
Scalar field theory, 38, 40, 42, 50, 53, 87, 88,

90, 93–96, 105, 109, 110
Schnetz twist, 94, 99, 110
Seq, 14, 15, 57
Shuffle, 19, 22, 82, 83
Signed incidence matrix, 48
Simple tree class, 16, 61, 62, 69
Size

chord diagram, 75, 78
combinatorial class, 9, 14
Feynman graph, 12
rooted tree, 10

Spacetime, 38, 50
Spanning forest polynomial, 102, 103, 110
Spanning tree, 48
Special vertex, 99
Structure coefficients, 63
Subdivergence, 42, 96
Subgraph, 41
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Sub-Hopf, 62, 64
Subtree rooted at v, see tv
Superficial degree of divergence, 39
Superrenormalizable, 40
Symanzik polynomial

first, see Kirchhoff polynomial
second, 90

Symmetry, 93, 97, 99, 110
Symmetry factor, 36, 63

T
Terminal chord, 74, 75, 79
Transcendental number, 104
Tree factorial, 13, 28, 67, 68, 70

U
Unit, 20
Universality, 13, 31, 32, 57, 67

V
Variety, 109
Vertex, 35, 37, 50, 78

W
Weight

chord diagram, 79
transcendental, 101, 104, 105

Weight drop, 105, 106, 110
Word, 19, 22, 23, 82–84, 114

Y
Yukawa theory, 38, 44, 58, 71, 75, 82, 83

Z
Zigzag, 114
Zimmerman’s forest formula, 27
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