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O ul\\&/\&

Instructions:

All answers must be justified, unless otherwise stated.

Unless otherwise stated, you may use any result proved or stated in class but you should be explicit
about which result you are using.

For full marks you should answer question 1 and any three of questions 2,3,4 and 5. If you
answer more than three of 2,3,4 and 5 only the first three will be graded.

No collaboration is allowed.

Please put your solutions in the space provided. If you need more space use the last page and clearly
indicate the problem number your solution corresponds to.
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1. On this question, no explanation is required for full marks, however, if you provide explanation you may
be able to obtain partial marks in the case of an incorrect answer.

(a) (2 points) Let A(x) and B(x) be formal power series. Which of the following are valid formal power
series operations under the indicated restrictions

(i) A(1+B(x)) with B(0) =0 (i) A(1) with A a polynomial (i1i) A'(x) (iv) B(z)+B(z)*+B(x)*+- - -

PNVAN velid Vol face\id
(valess A (unless @(0)=0)

(b) (2 points) Which of the following are specifications for the class of Dyck paths?

(1) D=SEQ( xDx ) (1) D=EU( " xSEQ(D)x \,) (i11) D=EU(/ xDx \, xD) (iv)D =" xDx N\, xD

oo

(¢) (2 points) Let C be a combinatorial class and (w; (¢),w2(c)) a weight function on C. Give a formula
(using the bivariate generating function) for the average value of wy among all elements of C with
wi(e) = n.
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(d) (2 points) Give a classical binomial identity to which the following is a g-analogue:

b
a+1+5 o (a+1)(b—3) l’1+j
{ b ]‘Zq R
q q

=0

ar\lxY = (q*&"\
o B )

JZY)

(e) (2 points) Give the generating function for partitions where every part is even and there are no
more than two copies of any part.
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2. (Answer any three of questions 2,3.4 and 5.) Let B be the combinatorial class of rooted trees where
exactly one vertex has more than 1 child, and all the children of this vertex are leaves. Such trees look
like brooms.

(a) (2 points) Give a specification for B.
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(b) (1 point) Is B regular? Explain.
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(¢) (2 points) Give a class of binary strings which has a size-preserving bijection to B. Explain your
answer, but you do not need to prove the bijection.
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3. (5 points) (Answer any three of questions 2,3.4 and 5.)

Let exp(z) be the formal power series
o T
T
exp(z) = ) F
n=0

Prove that
exp(z) ™" = exp(—a)

as formal power series.
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4. (5 points) (Answer any three of questions 2,3.4 and 5.)

Fix ¢ € Z~y. For each n € Z~ find the number of ordered rooted trees where each vertex has a number
of children divisible by ¢. Binomial coefficients in your answer should not have negative or fractional
arguments.
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5. (5 points) (Answer any three of questions 2,3.4 and 5.) Give a combinatorial proof that
om n > In 2
-]y
a9 k=0 q

for all n € Zxy.
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Extra space for solutions.



