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Summary

Today we set up formal power series. We defined ring, ring of polynomials, ring of formal
power series, and ring of formal Laurent series. The latter three definitions are almost the
same, for the first the expressions start at 0 and are of finite length, for the second they start
at 0 and are infinite, for the last they can start at any integer. Here they are:

Definition 1. Let R be a ring. The ring of polynomials over R, denoted R[x] is the set of
expressions of the form

a0 + a1x + · · · anxn

with a0, a1, . . . , an ∈ R and n ∈ Z≥0 with operations

(a0+a1x+· · · anxn)+(b0+b1x+· · · bmxm) = (a0+b0)+(a1+b1)x+· · ·+(amax(m,n)+bmax(m,n))x
max(m,n)

where a` = 0 for ` > n and b` = 0 for ` > m, and

(a0 + a1x + · · · anxn)(b0 + b1x + · · · bmxm) =
m+n∑
k=0

(
k∑

`=0

a`bk−`

)
xk

Definition 2. Let R be a ring. The ring of formal power series over R, denoted R[[x]] is
the set of expressions of the form

a0 + a1x + a2x
2 + · · · =

∞∑
n=0

anx
n

with a0, a1, a2, . . . ∈ R and with operations

(
∞∑
n=0

anx
n) + (

∞∑
m=0

bmx
m) =

∞∑
k=0

(ak + bk)xk

and

(
∞∑
n=0

anx
n)(

∞∑
m=0

bmx
m) =

∞∑
k=0

(
k∑

`=0

a`bk−`

)
xk

Definition 3. Let R be a ring. The ring of formal Laurent series over R, denoted R((x)) is
the set of expressions of the form

∞∑
n=I

anx
n

with a0, a1, a2, . . . ∈ R and I ∈ Z, with operations

(
∞∑
n=I

anx
n) + (

∞∑
m=J

bmx
m) =

∞∑
k=min(I,J)

(ak + bk)xk

1



where a` = 0 for ` < I and b` = 0 for ` < J , and

(
∞∑
n=I

anx
n)(

∞∑
m=J

bmx
m) =

∞∑
k=I+J

(
k−J∑
`=I

a`bk−`

)
xk

You can iterate these constructions and we can use that to define generalized binomial
expansions as follows:

Definition 4. In Q[y] define(
y

n

)
=

y(y − 1) · · · (y − (n− 2))(y − (n− 1))

n!

for n ∈ Z≥0.

Definition 5. In (Q[y])[[x]] define

(1 + x)y =
∞∑
n=0

(
y

n

)
xn

Throughout, these definitions make sense in and of themselves at a purely formal level, but
they are also good definitions in a more human sense because they line up with the calculus
functions that are written using the same or similar notation when those calculus functions
are defined. That is why we use this kind of notation for formal power series instead of just
writing them as sequences of coefficients and defining the ring operations directly on these
sequences.

References

The beginning of chapter 7 of the course notes covers this material.
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