
CO 330, LECTURE 31 SUMMARY

FALL 2017

Summary

If you didn’t do the course evaluation in class today make sure you do it on your own time
(evaluate.uwaterloo.ca).

We again continued our work on Boltzmann samplers.
Last time we left off by showing the code where pointing helped performance, but without

going over how pointing works in this situation. Previously we have pointed before building
the specification (usually to make building the specification easier). Now we already have
a specification and want to know what happens to it when we point. The answers are as
follows:

Z• is a new atom

E• = ∅ so E•(x) = 0

(A ∪ B)• = A• ∪ B• when A ∩ B = ∅
(A× B)• = A• × B ∪A× B•

Seq(A) = Seq(A)×A• × Seq(A)

these can be proved by looking at what derivatives do to the generating functions or by
thinking about what pointing does to the objects.

With all this in mind we looked in more detail at the pointed code (on the website with
lecture 30.)

The next practicality we looked at is how to implement a geometric random generator if
you have a uniform random generator:

def geometric_rand

input lambda

p(k) = (1-lambda)*lambda^k

u = rand() (uniform random in (0,1))

s = 0

k = 0

while s<u

s = s + p(k)

k = k + 1

return k

Finally, we talked a bit about speed. There’s a lot more that can be said here, but that
would be a different more algorithm-oriented course. See also question B2 on assignment 8.
Let’s forget about the desired size for the moment and just ask how long it takes to draw
from the Boltzmann sampler.

1

For each of E , Z, ∪, ×, the only potentially non-constant-time things (other than the
recursive calls themselves) are rand() and evaluating the generating function. We will as-
sume these are both constant-time. The assumption that we can evaluate the generating
function in constant time is called the oracle assumption (that is we have a generating func-
tion oracle). It is plausible in practice because we can precompute the generating function
to some fixed precision (by series expansion if we don’t have a closed form) and then only
compute more if we need it, though there are issues of sensitivity to round-off errors. As
to the recursive calls themselves, the worst we need to do is generate all the atoms, so all
together this gives:

Proposition 1. Let A be a combinatorial class specified (either iteratively or recursively) in
terms of E, Z, ∪ and ×. Under the oracle assumptions, generating a ∈ A by the Boltzmann
generator takes O(|a|) time.

References

We’re continuing in the same references as last time: An excellent paper on Boltzmann
generators is
http://algo.inria.fr/flajolet/Publications/DuFlLoSc04.pdf. I recommend it.
We are more specifically following
http://people.math.sfu.ca/~kyeats/teaching/math343/12-343.pdf and
http://people.math.sfu.ca/~kyeats/teaching/math343/13-343.pdf.

2

