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Summary

We continued our work on Boltzmann samplers today.
Last time we left off without defining the Boltzmann sampler for products. Suppose
A = B × C. Take a = (b, c) ∈ A. Then a should be generated with probability

x|a|

A(x)
=

x|b|+|c|

B(x)C(x)
=

x|b|

B(x)

x|c|

C(x)

so the two components are independent! This is a big speedup compared to pure recursive
random generation and we get

def BoltzmannA=BxC

input x

return(BoltzmannB(x), BoltzmannC(x))

We tried out standard binary tree example (code linked on the webpage in both maple
and python) but it didn’t actually work very well for reasons which we’ll clarify soon.

First, let’s think about Seq. As we did for recursive random generation we could rewrite
specifications to not use Seq, but for Boltzmann generators there is also a direct way.

Say to generate an element of Seq(B) we first pick k and then generate an element of Bk.
The second part is easy, we just saw the components are independent so just make k calls
to BoltzmannB. The question is with what probability each k should occur. We need

Px((b1, b2, . . . , bk)) =
x|b1|+···+|bk|

A(x)
=

x|b1|

B(x)
· · · x

|b1|

B(x)

(
B(x)k(1−B(x))

)
so we should choose k with probability (1−B(x))B(x)k. This is a geometric distribution.

Definition 1. The random variable X is geometrically distributed if P (X = k) = (1− λ)λk

for some 0 < λ ≤ 1.

How do we know B(x) ≤ 1? We know that x < ρ where ρ is the radius of convergence
of A(x) = 1/(1 − B(x)) but B(x) is increasing as x increases so when B(x) = 1 we get a
singularity. So either this singularity is ρ or ρ is smaller. Either way B(x) ≤ 1.

Taking this together we get

def BoltzmannA=Seq(B)

input x

k = geometric_rand(B(x))

return(BoltzmannB(x), ..., BoltzmannB(x)) (k times)

Next we started talking about practicalities. First how do we find the right x? We saw
last class that the expected size is Ex = xA′(x)/A(x) so if you want size n, solve Ex = n to
find the best x. Typically you will do this numerically.
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However, our tree example showed that this doesn’t always work very well – even if the
expected value is right, there could still be many small ones generated (and occaisional very
big ones). Different classes have quite different distributions for each value of x. We looked
at the three examples from Figure 1 of http://algo.inria.fr/flajolet/Publications/
DuFlLoSc04.pdf. The bumpy ones are great. The flat ones work if you use a rejection
strategy (that is just keep generating until you get one in the size range you want). The
peaked ones are not so good, and that is what we had in our tree example.

So how do we fix peaked ones? You need to modify the class. We already know a way to
do this: pointing. If you sample from the pointed class and then forget the extra information
of which atom is pointed to then you get an element of the original class. Furthermore this
will still be uniform by size relative to the original class because all elements of size n have n
pointed versions. Even better, in the pointed class larger objects are preferred (since more
copies have been made), so the distribution is improved.

We ran code in our example (also included on the website) and it was much improved.
We’ll talk more about the theory of it and other practicalities on Friday.

Also bring a device for course evaluations on Friday.
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