
CO 330, LECTURE 28 SUMMARY

FALL 2017

Summary

Today we started random generation. Random generation is useful for getting a feel for
what objects in a class look like; it is useful for testing hypotheses experimentally; and it is
useful for making input for testing an algorithm.

By random generation we mean the following

Definition 1. Let C be a combinatorial class. An algorithm which takes as input a nonneg-
ative integer n and returns as output an element c ∈ Cn such that every element of Cn has
probability 1

cn
of being produced is known as a uniform generation algorithm.

We will assume that we can generate random numbers uniformly in (0, 1), call this function
rand().

Today’s random generation algorithm was recursive random generation. The idea is to
use the specification to randomly generate elements. Today we stuck to unlabelled classes.
To start with we also restricted ourself to specifications using ∪,+,Z and E (but they could
be recursive).

We just need to know how to deal with each of these things and will call recursively on
the children if any. Z and E are easy.

def genZ

input n (the desired size of the output object)

if n=1

return Z

else

return null

def genE

input n

if n=0

return E

else

return null

Next suppose A = B ∪ C with B ∩ C = ∅. How do we pick a random element of size n?
We should pick from Bn bn

an
of the time and we should pick from Cn cn

an
of the time in order

to be uniform over all. This gives

def genA=BcupC)

input n

x = rand()

if x < b_n/a_n
1



return genB(n)

else

return genC(n)

Note that we’re cheating slightly. The input is more than just n, we also need bn and an
(or bn and cn). For some classes we have closed forms for the bn and an so we can just put
these in the function. Otherwise we should precalculate them and put them in a table. We
can do this by iterating the specification so this is reasonably fast.

Also, you should think of this as acting on the expression tree for the specification, so
when we are acting on a ∪ vertex then the need the two subtrees (the B and C) so we can
call recursively on them.

Now suppose A = B×C and we want to generate a random element of An. The probability
that an element of An has its B part of size k is

bkcn−k

an
so to generate uniformly, imagine stacking together all those chunks for k = 0, k = 1, k = 2,
etc. which together fill up (0, 1). Then we can choose a random number in (0, 1) and we just
need to find which k’s chunk it belongs to. This is done in the following:

def genA=BxC

input n

x = rand()

k = 0

s = b_0*c_n/a_n

while x > s

k = k+1

s = s+b_k*c_{n-k}/a_n

return (genB(k), genC(n-k))

Finally what about Seq? We can always rewrite Seq away. This is because A = Seq(B)
is equivalent to A = E ∪ B × A. (Check the generating functions for one justification of
why.) Note that inside a larger specification you’ll probably need to introduce a new class
to represent each Seq and so you’ll end up with more equations than you started with. Also
this makes the specification recursive even if it wasn’t originally recursive.

References

Today we followed http://people.math.sfu.ca/~kyeats/teaching/math343/11-343-all.

pdf

2


