CO 330, LECTURE 27 SUMMARY

FALL 2017

Summary

We started by looking at labelled trees and labelled rooted trees and calculated that the number of labelled (unrooted) trees on n vertices is n^{n-2} which is a classic formula that we will return to bijectively in a couple of weeks.

Then we did some problems in groups. The problems, solutions, and references are included below (with the error that the green one had in class corrected).
r-cycle permutations. (The was the one printed on purple paper.)
Let $\mathcal{P}^{(r)}$ be the class of permutations that decompose into r cycles

- Give an example of an element of $\mathcal{P}^{(r)}$ of size 10.
- Give a specification for $\mathcal{P}^{(r)}$ using the operations we discussed in class.
- Write the exponential generating function for $\mathcal{P}^{(r)}$

Permutation answers

- Many answers are possible, here's one

- $\mathcal{P}^{(r)}=\operatorname{SET}_{r}(\operatorname{CyC}(\mathcal{Z}))$
- $P^{(r)}(x)=\frac{1}{r!}\left(\log \left(\frac{1}{1-x}\right)\right)^{r}$.
(Reference: example II. 12 on p121 of Flajolet and Sedgewick "Analytic Combinatorics")

Surjections. (This was the one printed on blue paper.)
Let $\mathcal{R}_{n}^{(r)}$ be the class of surjections (that is, onto maps) from $\{1, \ldots, n\}$ onto $\{1, \ldots, r\}$ and let $\mathcal{R}^{(r)}=\bigcup_{n \geq 0} \mathcal{R}_{n}^{(r)}$ as a combinatorial class with n as the size.

- Draw an element of $\mathcal{R}_{10}^{(4)}$.
- Thinking of these as labelled objects with the elements of $\{1, \ldots, n\}$ as the atoms, give a specification for $\mathcal{R}^{(r)}$ using the operations we discussed in class. Hint, think about the preimages $f^{-1}(1), \ldots, f^{-1}(r)$.
- Write down the exponential generating function for $\mathcal{R}^{(r)}$ and for $\mathcal{R}=\bigcup_{r \geq 0} \mathcal{R}^{(r)}$.

Surjection answers

- Many answers are possible, here's one

- $\mathcal{R}^{(r)}=\operatorname{SEQ}_{r}\left(\operatorname{SET}_{\geq 1}(\mathcal{Z})\right)$
- $R^{(r)}(x)=\left(e^{x}-1\right)^{r}, R(x)=\frac{1}{2-e^{x}}$.
(Reference: Flajolet and Sedgewick "Analytic Combinatorics" p107)
1-cycle trivalent graphs. (This was the one printed on green paper.)
Let \mathcal{Q} be the class of connected labelled graphs with exactly one cycle and maximum vertex degree 3 and where all vertices of degree 3 are on the cycle.
- Draw an example of an element of Q of size 10 .
- Give a specification for \mathcal{Q} using the operations we discussed in class. You may use $\frac{1}{2}$ Cyc for undirected cycles (since there are exactly two directed cycles for each undirected cycle).
- Write the exponential generating function for \mathcal{Q}
- Calculate the number of these graphs of size n.

1-cycle answers

- Many answers are possible, here's one

- $\mathcal{Q}=\frac{1}{2} \mathrm{CYC}_{\geq 3}\left(\mathrm{SEQ}_{\geq 1}(\mathcal{Z})\right)$
- $Q(x)=\frac{1}{2}\left(\log \left(\frac{1}{1-\frac{x}{1-x}}\right)-\frac{x}{1-x}-\frac{x^{2}}{2(1-x)^{2}}\right)$
- $(n-1)!\left(2^{n}-1-\binom{n+1}{2}\right)$ for $n \geq 2$ and 0 otherwise
(Reference: example 11.22 in the course notes.)

References

The tree example we started with is example 11.18 in the course notes. The three group problems have their references listed above.

