CO 330, LECTURE 1 SUMMARY

FALL 2017

Summary

Today we began with an overview of administrative things, all of which can be found in the syllabus which is posted on the website http://www.math.uwaterloo.ca/~kayeats/ teaching/co330.html. Most important to note is the date of the midterm: October 20 in class. We decided on my office hours which will be Mondays 2:30-3:30 and Tuesdays 1:30-2:30.

Then we began looking at the content of the course. The first week or so will serve to set the foundations while also summarizing the enumerative half of $239 / 249$. The key definitions today were the definition of combinatorial class and of ordinary generating function:

Definition 1. A combinatorial class is a set \mathcal{C} with a size or weight function $\omega: \mathcal{C} \rightarrow \mathbb{Z}_{\geq 0}$ such that for all $n \in \mathbb{Z}_{\geq 0}$ the set $\{c \in \mathcal{C} \mid \omega(c)=n\}$ is finite.

Definition 2. Given a combinatorial class \mathcal{C} the ordinary generating series of \mathcal{C}, notated $\Phi_{\mathcal{C}}^{\omega}(x)$ or $C(x)$ is

$$
\sum_{c \in \mathcal{C}} x^{\omega(c)}
$$

After discussing some things about these definitions and giving some examples, we concluded the class with a more substantial example. We let \mathcal{T} be the combinatorial class of binary rooted trees where each vertex has a left and a right child either or both of which may be empty. We observed that there is a decomposition captured by the following bijection

$$
\mathcal{T} \rightarrow\{\bullet\} \times(\mathcal{T} \cup\{\epsilon\}) \times(\mathcal{T} \cup\{\epsilon\})
$$

which describes taking a binary rooted tree and decomposing it into its root, its left child, and its right child. Then using the properties of generating series that we knew in math 239/249 we converted this decomposition into a functional equation for the generating function:

$$
B(x)=x(B(x)+1)^{2} .
$$

This process is very typical of what will happen in this course.

References

To the extent that generating series were not familiar you should review your 239/249 notes. For those hankering for a more rigorous foundation, look at chapters 1 and 4 of the CO 330 course notes. The binary rooted tree example (with slightly different notation) can be found at the beginning of chapter 6 in the CO 330 course notes.

