CO 330, LECTURE 13 SUMMARY

FALL 2017

Summary

Today we finally finished the proof of the q-binomial theorem. The remaining work was in proving the following proposition:

Proposition 1.

$$
\sum_{S \in \mathcal{B}(n, k)} q^{\sum_{s \in S} s}=q^{\frac{k(k+1)}{2}} \frac{[n]!_{q}}{[k]!_{q}[n-k]!_{q}}
$$

The idea of the proof is to use the bijection $\mathcal{S}_{n} \simeq \mathcal{B}(n, k) \times \mathcal{S}_{k} \times \mathcal{S}_{n-k}$ and then consider how the inversions of a permutation of $\{1,2, \ldots, n\}$ break up through this bijection: the ones involving two indices $\leq k$ become inversions in the permutation in \mathcal{S}_{k}, the ones involving two indices above k become inversions in the permutation in \mathcal{S}_{n-k} and the ones which cross k are counted by $\sum_{s \in S} s-k(k+1) / 2$ where S is the set in $\mathcal{B}(n, k)$. See the course notes for details.

This finally gives everything we need for the q-binomial theorem itself
Theorem 2 (q-binomial theorem).

$$
(1+x q)\left(1+x q^{2}\right) \cdots\left(1+x q^{n}\right)=\sum_{k=0}^{n} q^{\frac{k(k+1)}{2}} \frac{[n]!_{q}}{[k]!_{q}[n-k]!_{q}} x^{k}
$$

We define the q-binomial coefficient to be

$$
\frac{[n]!_{q}}{[k]!_{q}[n-k]!_{q}}
$$

and denote it

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} .
$$

We next talked a little about the idea of q analogues and finished up by proving

Theorem 3.

$$
\sum_{P \in \mathcal{L}(a, b)} q^{\operatorname{area}(P)}=\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}
$$

where $\mathcal{L}(a, b)$ is the set of lattice paths beginning at $(0,0)$, ending at (a, b) and using the steps \uparrow and \rightarrow and where the area of a lattice path is the area of the region bounded by it along with the segments $(0,0)-(a, 0)$ and $(a, 0)-(a, b)$.

Here's an example

The area of this example is 11.
Now let's prove this theorem
Proof. Use the bijection $\mathcal{L}(a, b) \simeq \mathcal{B}(a+b, a)$ which takes a lattice path to the subset of $\{1,2, \ldots, a+b\}$ which index its \rightarrow steps. In the case of the example above the subset would be $\{2,4,5,7,8\}$.

Given a lattice path P let S be the corresponding subset and write $S=\left\{s_{1}<s_{2}<\cdots<\right.$ $\left.s_{a}\right\}$. In the case of the example above we'd have $s_{1}=2, s_{2}=4, s_{3}=5, s_{4}=7, s_{5}=8$. The area of the column topped by the step \rightarrow corresponding to s_{i} is the number of up steps before s_{i} (since the \rightarrow itself has length 1); this is the same as s_{i} minus the number of right steps before s_{i} including s_{i} itself; this is $s_{i}-i$.

Therefore

$$
\begin{aligned}
\sum_{P \in \mathcal{L}(a, b)} q^{\operatorname{area}(P)} & =\sum_{S \in \mathcal{B}(a+b, a)} q^{\sum_{s \in S} s-\frac{a(a+1)}{2}} \\
& =\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q} q^{\frac{a(a+1)}{2}} q^{-\frac{a(a+1)}{2}} \\
& =\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}
\end{aligned}
$$

If you didn't find the proof so clear in class look at the example (or make your own example).

References

This material finishes chapter 5 of the course notes. The lattice path result is stated in the course notes as Theorem 5.8 but the proof is exercise 7 of chapter 5 , which is why I gave more details on that proof in this summary.

