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SUMMARY

Today we finally finished the proof of the g-binomial theorem. The remaining work was
in proving the following proposition:

Proposition 1.
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The idea of the proof is to use the bijection S,, ~ B(n, k) X Sy X S,,_x and then consider
how the inversions of a permutation of {1,2,...,n} break up through this bijection: the ones
involving two indices < k become inversions in the permutation in Sy, the ones involving
two indices above k£ become inversions in the permutation in S,,_; and the ones which cross
k are counted by ) . ¢s —k(k+1)/2 where S is the set in B(n, k). See the course notes for
details.

This finally gives everything we need for the g-binomial theorem itself

Theorem 2 (g-binomial theorem).
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We define the g-binomial coefficient to be

and denote it

We next talked a little about the idea of ¢ analogues and finished up by proving

Theorem 3.
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where L(a,b) is the set of lattice paths beginning at (0,0), ending at (a,b) and using the steps
T and — and where the area of a lattice path is the area of the region bounded by it along
with the segments (0,0) — (a,0) and (a,0) — (a,b).
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Here’s an example

The area of this example is 11.
Now let’s prove this theorem

Proof. Use the bijection L(a,b) ~ B(a + b,a) which takes a lattice path to the subset of
{1,2,...,a+ b} which index its — steps. In the case of the example above the subset would
be {2,4,5,7,8}.

Given a lattice path P let S be the corresponding subset and write S = {s1 < 59 < -+ <
Sq}. In the case of the example above we’d have s; = 2,59 = 4,83 = 5,54 = 7,85 = 8. The
area of the column topped by the step — corresponding to s; is the number of up steps
before s; (since the — itself has length 1); this is the same as s; minus the number of right
steps before s; including s; itself; this is s; — i.

Therefore
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If you didn’t find the proof so clear in class look at the example (or make your own
example).
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This material finishes chapter 5 of the course notes. The lattice path result is stated in
the course notes as Theorem 5.8 but the proof is exercise 7 of chapter 5, which is why I gave
more details on that proof in this summary.



