CO 330, LECTURE 12 SUMMARY

FALL 2017

Summary

Today we looked at inversions in permutations. An inversion is a pair of indices where the corresponding entries occur in the wrong order. Formally,

Definition 1. Let $a_{1} a_{2} \cdots a_{n}$ be a permutation of $\{1,2, \ldots, n\}$. An inversion is a pair (i, j) with $1 \leq i<j \leq n$ such that $a_{i}>a_{j}$.

Then we proved

Proposition 2.

$$
\sum_{\sigma \in \mathcal{S}_{n}} q^{\operatorname{inv}(\sigma)}=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q}
$$

where $\operatorname{inv}(\sigma)$ is the number of inversions of σ and

$$
[k]_{q}=1+q+q^{2}+\cdots+q^{k-1}
$$

The proof of this statement is by going through a the classical proof that there are n ! permutations very carefully while keeping track of the inversions.
$[k]_{q}$ is the q-analogue of the natural number k. Not surprisingly we also define

$$
[n]!_{q}=[n]_{q}[n-1]_{q} \cdots[2]_{q}[1]_{q}
$$

which is the q-factorial.
We ended by stating the next proposition

Proposition 3.

$$
\sum_{S \in \mathcal{B}(n, k)} q^{\sum_{s \in S} s}=q^{\frac{k(k+1)}{2}} \frac{[n]!_{q}}{[k]!_{q}[n-k]!_{q}}
$$

which we will also prove by revisiting the classical proof, but that's for next time.

References

This material continues chapter 5 of the course notes and again the classical proof can be found in chapter 2 of the course notes. If you're not sure about how to rigorously write down any of the details we left out the course notes are a very good place to look.

