CO 330, FALL 2017, ASSIGNMENT 2

DUE WEDNESDAY SEPTEMBER 27 AT 4PM VIA CROWDMARK

PART A

Do all problems in part A.

- (1) Let \mathcal{D} be the class of all plane rooted trees where each vertex has either 0 children or at least 2 children.
 - (a) Give a combinatorial specification for \mathcal{D} , that is, give an equation involving \mathcal{D} using operators like $\times, +, SEQ$, and classes \mathcal{E}, \mathcal{Z} .
 - (b) Give a polynomial equation involving D(x).
- (2) Show that the number of trees from part A question 1 with n vertices is

$$\frac{1}{n} \sum_{j=1}^{\lfloor (n-1)/2 \rfloor} {n \choose j} {n-2-j \choose n-1-2j}$$

PART B

Do **any two** of the following three problems for part B. If you submit more than two only the first two will be graded.

- (1) Course notes chapter 8 question 4. First give a specification for the class of trees in the question which is suited to answering the question. (Plane planted trees are what we've been calling ordered rooted trees).
- (2) Consider rooted trees where each vertex has k ordered children any of which may be empty, so in particular there are k such trees on two vertices (analogous to the binary rooted trees we saw in class). Prove that as $n \to \infty$ the expected proportion of vertices which are leaves in a random such tree of size n is asymptotic to

$$\frac{(k-1)^k}{k^k}$$

(3) For $n \ge 1$ a $2 \times n$ Standard Young Tableau is a $2 \times n$ matrix where each number $1, 2, \ldots, 2n$ occurs exactly once and where the rows increase from left to right and the columns increase from top to bottom. Show that for $n \ge 1$, the number of $2 \times n$ Standard Young Tableau is $\frac{1}{n+1} \binom{2n}{n}$ by finding a bijection with some other class with these sizes.