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Abstract

While a quantum field theorist has many uses for mathematics of all kinds, the re-
lationship between quantum field theory and mathematics is far too fluid in the world
of modern research to be described as the simple provision of mathematical tools to
physicists, as Feynman often framed it. Problems large and small of a seemingly purely
mathematical nature often arise directly from a physical setting. In this thesis we focus
on two combinatorial problems with deep physical motivations.

The first of these is the Quadrangulation Conjecture of Jackson and Visentin, which
asks for a bijective proof of an identity relating numbers of maps to numbers of maps
which are quadrangulations. We provide a set of auxiliary bijections culminating in a
bijection between maps with marked spanning trees and chord diagrams with partitions
of the chords into a non-crossing part and a ‘genus-g’ part, and a bijection between these
partitioned chord diagrams and four-regular maps with marked euler tours.

The second problem comes from the CHY integral formulation of tree-level Feyn-
man integrals in supersymmetric Yang-Mills theory, but amounts to the enumeration
of ways to decompose 4-regular graphs into pair of edge-disjoint Hamiltonian cycles.
We show that for any graph which is the edge-disjoint union of an arbitrary 2-regular
graph and a cycle, there are at least (n−2)!/4 ways to decompose the result into two full
cycles. Moreover, if the chosen 2-regular graph consists of only even cycles this bound
improves to (n − 2)!/2. Further, if the graph consists only of 2-cycles, we obtain the
exact number of decompositions, which is 1

2(n−2)!!S±H(n/2−1, 1), where S±H(a,b) is the
so-called signed Hultman number. Interestingly, this combinatorial problem turns out
to have further connections to the study of genomic rearrangements in bioinformatics.
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Chapter 1

Introduction

While a quantum field theorist has many uses for mathematics of all kinds, the rela-
tionship between quantum field theory and mathematics is far too fluid in the world
of modern research to be described as the simple provision of mathematical tools to
physicists, as Feynman often framed it. Problems large and small of a seemingly purely
mathematical nature often arise directly from a physical setting. In this thesis we focus
on two combinatorial problems with deep physical motivations.

In this chapter we begin by defining some basic notions from graph theory and the
theory of combinatorial maps for the sake of self-consistency. Then an introduction
to the basics of quantum mechanics and quantum field theory is provided in order to
give some context for the reader who may be unfamiliar with this background material.
Finally we provide some limited information on the moduli space Mg,n of complex
curves of genus gwith nmarked points. This object is not studied directly in this thesis,
but it is something of a focal point for all of the material covered, from the directions of
both physics and mathematics.

Chapter 2 regards the Quadrangulation Conjecture of Jackson and Visentin, which
asks for a bijective proof of an identity relating numbers of maps to numbers of maps
which are quadrangulations. In genus zero, we give a set of bijections from maps with
a marked spanning tree to quadrangulations with a marked Euler tour, to what we call
medial strings, to chord diagrams partitioned into a pair of non-crossing subdiagrams,
and back to maps. We generalize these bijections to genus g, where in particular the
partitioned chord diagrams lift to chord diagrams with partitions of the chords into a
non-crossing part and a ‘genus-g’ part.

Chapter 3 regards the problem of finding a lower bound to the number of so-called
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compatible cycles to an arbitrary 2-regular graph. The motivation for this problem
comes from the CHY integral formulation of tree-level Feynman integrals in super-
symmetric Yang-Mills theory, but amounts to the enumeration of ways to decompose
4-regular graphs into pair of edge-disjoint Hamiltonian cycles. We show that for any
graph which is the edge-disjoint union of an arbitrary 2-regular graph and a cycle, there
are at least (n−2)!/4 ways to decompose the result into two full cycles. Moreover, if the
chosen 2-regular graph consists of only even cycles this bound improves to (n − 2)!/2.
Further, if the graph consists only of 2-cycles, we obtain the exact number of decompo-
sitions, which is 1

2(n−2)!!S±H(n/2−1, 1), where S±H(a,b) is the so-called signed Hultman
number. Interestingly, this combinatorial problem turns out to have further connections
to the study of genomic rearrangements in bioinformatics.

1.1 Graphs and Combinatorial Maps

For self-consistency we provide some standard definitions and results about common
concepts here. In what follows we choose slightly more complicated versions of the
definitions one might see in [12], for example, in an effort to allow for our graphs to
contain multiple edges between the same pair of vertices.

Definition 1.1.1. A graph is an ordered pair G = (V ,E) consisting of a set V and a
multiset E of unordered pairs of elements of V . We often write V(G) and E(G) for the
vertex- and edge-sets of G, and we often write |G| for the number of vertices in G.

Definition 1.1.2. A path P in a graph G is a finite sequence e1, e2, . . . , ek of edges in G
for which ei and ei+1 share a vertex for each i, and for which the vertex common to any
pair of consecutive edges appears in no other edge of the sequence. The start and end
of a path P are the vertex of e1 which does not appear in e2 and the vertex of ek which
does not appear in ek−1, respectively. A cycle C in G is a path with an additional edge
between its start and end. The length of a path or cycle is the number of vertices along
that path or cycle.

Definition 1.1.3. A subset S ⊆ E(G) is connected if there is a path from any vertex on
an edge in S to any other. A tree T in a graph G is a connected subset of the edges of G
which contains no cycles. A spanning tree is a tree for which every vertex is contained in
at least one edge.

In the third chapter we will require the basics of matching theory, so we provide
definitions following [12].

2



Definition 1.1.4. A matching M in a graph G is a subset of E(G) with the property that
no two edges in M share a vertex. A matching M is called perfect if every vertex of G is
in an edge fromM. A vertex in G is saturated inM if it appears in some edge ofM.

Definition 1.1.5. A graph G is bipartite if its vertices can be partitioned into two disjoint
sets A and B, with the property that any vertex in A is only adjacent to vertices in B and
vice versa.

Proposition 1.1.6. A graph is bipartite if and only if it has no cycles of odd length.

Definition 1.1.7. In a bipartite graph G with a matching A, a path P is alternating if the
edges of P are alternately in and not inA along P. In an arbitrary graphGwith two edge-
disjoint matchingsA and B, a path P isAB-alternating if the edges of P are alternately in
A and in B along P. Analogously we also discuss alternating and AB-alternating cycles.

Now we give some preliminary information about combinatorial maps [21] [18].

Definition 1.1.8. A rooted map is a 2-cell embedding of a graph in a surface, with a
distinguished half-edge called the root. Henceforth, when we use the term ‘map’, we
always mean rooted map. By ‘2-cell embedding’ here we mean an embedding of the
graph such that every face is homeomorphic to a 2-cell, i.e., an open disk.

Definition 1.1.9. A submap of a map G is a subgraph of the underlying graph whose
inherited embedding is also a 2-cell embedding.

Definition 1.1.10. A quadrangulation is a (rooted) map with the property that a walk
along the boundary of any face touches exactly four vertices (not necessarily distinct)
before returning to its starting position. Note that this is slightly different from the
condition that every face is bounded by four edges. The path on three vertices, for
example, is a quadrangulation of the sphere despite not satisfying this second condition.
C.f. figure 1.1.

Probably the most famous fact about graphs in surfaces, and one which we use heav-
ily, is the following.

Theorem 1.1.11 (Euler’s Formula). For any map G with v vertices, e edges, and f faces
in genus g,

v− e+ f = 2 − 2g.

3



Figure 1.1: Left: a map in genus zero. Center: a quadrangulation in genus
one. Right: a quadrangulation in genus zero. Roots are marked with a thicker
edge segment.

An important piece of preliminary information is the notion of rotation systems. Given
a map, three permutations can be constructed on the set H of half-edges. First, the per-
mutation ν is constructed by recording the clockwise cyclic order of half-edges around
each vertex. Second, the permutation ε is constructed by recording a transposition for
every pair of half-edges that form an edge. Finally, the permutation φ is constructed by
recording the outgoing half-edges from each vertex we hit along each facial walk, being
sure to stay on the left of each edge as we walk along it in order to ensure the directions
of these walks are coherent with each other.

1

2

3 4

5 6

7

8

9

10

11

12

Figure 1.2: In this example map, we can read off the permutations of its
rotation system:

ν = (1 3)(2 5)(6 9 7)(8 11 4)(10 12)
ε = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)
φ = (1 5 9 12 4)(2 3 8 6)(7 11 10)
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The following propositions are elaborated on in chapter 1.3.3 of [21].

Proposition 1.1.12. The permutations ν, ε, and φ uniquely determine a map, up to
homeomorphism.

Proposition 1.1.13. For any map, we have νε = φ.

As a consequence of these propositions, map enumeration (in orientable surfaces,
so that walking on the ‘left’ as above is a sensible thing to do) amounts to a specific
instance of a permutation enumeration problem. Observe that a map is also equivalent
to the data of an abstract graph G = (V ,E) and a cyclic edge-incidence order around
each vertex. Sometimes we refer to a pair of consecutive half edges around a vertex as
an angle. As an aside, there is also a generalization of maps to non-orientable surfaces:
we thicken every edge to a ribbon and track all four corners of each ribbon instead of
both halves of each edge. This lets us track the additional information of whether an
edge has been ‘twisted’.

1.2 Quantum Mechanics and Quantum Field Theory

This section aims to very quickly bring a mathematician with little physics background
up to speed with the basics of quantum mechanics and quantum field theory. This is
necessary to explain the physical context for the material in this thesis. Such an under-
taking has no doubt been done countless times, but it is still a worthwhile thing to do
again, in the author’s own words, and tailored to the particular direction the author in-
tends to take the material described herein. In order to treat this material carefully from
a mathematical standpoint we would need to use a significant amount of functional
analysis, which we do not intend to do here. We take the view that the details of any
analytic fact can be checked elsewhere, and we do not dwell on issues of convergence
or well-definedness. The portion of this section focused on quantum mechanics follows
[11] and the portion focused on quantum field theory follows [26].

From a mathematical standpoint, the key paradigm shift in physics that led to the
development of quantum mechanics was to model a particle or physical system with
a state function, which is a smooth, complex-valued function of position and time, with
an additional property we shall provide shortly. We can consider these functions as
elements of an infinite-dimensional complex Hilbert space with inner product

(φ(x, t),ψ(x, t)) 7→
∫
RN
dx1 · · ·dxN φ(x, t)∗ψ(x, t).

5



This inner product is often written in the so-called Dirac notation as 〈φ(t)|ψ(t)〉. In
this notation we also write |ψ(t)〉 := ψ(x, t) and 〈φ(t)| := |φ(t)〉† where † denotes the
Hermitian conjugate. You will not go wrong if you think of this as being just like the
conjugate-transpose in a finite-dimensional space. The additional property we require
of an element |ψ(t)〉 of such a Hilbert space for it to be a state function is just that

〈ψ(t)|ψ(t)〉 = 1,

in other words that it be normalized.

A physicist would be interested in such an abstract construction because at a partic-
ular time t, if S ⊆ RN, then ∫

S

dx1 · · ·dxNψ∗(x, t)ψ(x, t)

is interpreted as the probability of finding the particle or physical system with state
ψ(x, t) in the region S, and if S = RN then this integral is just 〈ψ(t)|ψ(t)〉 = 1: we
can always find it somewhere. The abstraction becomes necessary for a physicist when
experiment shows that particles are actually waves that don’t exist in a specific place
but rather across all of space.

The product ψ(x, t)∗ψ(x, t) can be interpreted as a probability mass function of a
random variable, a sampling of which gives a possible classical position of a particle or
system described by ψ. ψ itself is often thought of as something like the square-root of
a probability, whence it is termed a probability amplitude. For two state functions φ(x, t)
and ψ(x, t), there is also a physical interpretation of 〈φ(t)|ψ(t)〉 at a particular time t:
this is the probability amplitude of the state ψ producing a classical outcome which
could also have been produced by the state φ.

Given a state |ψ(t)〉, a physicist wants to recover classical information like position,
momentum, angular momentum, etc. To this end, let us consider some examples. De-
fine the Hilbert space operator X̂ by

X̂ψ(x, t) = xψ(x, t)

=

 x1ψ(x, t)
...

xNψ(x, t)


X̂ is typically called the position operator. The point of this definition is that

〈X̂〉ψ,t := 〈ψ(t)|X̂|ψ(t)〉 =
∫
RN
dx1 · · ·dxNxψ(x, t)∗ψ(x, t)

6



(i.e., the N-dimensional vector whose jth component is
∫
RN dx1 · · ·dxnxjψ(x, t)∗ψ(x, t))

which is interpreted as an expression for the expected position of |ψ(t)〉. It is the standard
first example of a so-called observable. The next example is the momentum operator p̂
defined by

p̂ψ(x, t) = −i h∇ψ(x, t)

= −i h


∂
∂x1
ψ(x, t)

...
∂
∂xN

ψ(x, t)


and for which 〈p̂〉ψ,t := 〈ψ(t)|p̂|ψ(t)〉 not-as-obviously gives an expression for the ex-
pected momentum. Both of these operators happen to have the property of being Her-
mitian, i.e., having all real eigenvalues, or equivalently having the property that Ô = Ô†.
For a physicist it turns out that the terms ‘Hermitian’ and ‘observable’ are interchange-
able.

As it happens, it is usually the case that

〈ψ(t)|X̂p̂|ψ(t)〉 6= 〈ψ(t)|p̂X̂|ψ(t)〉.

The interpretation of this fact is that observing the position of some state has a non-
negligible physical effect on any future observation of the momentum of that state, and
vice versa. In other words, the fact that the commutator [X̂, p̂] 6= 0 means that position
and momentum cannot be observed simultaneously.

As another critical example, if we are looking at a state with a prescribed mass m,
define the kinetic energy operator T̂ by

T̂ =
p̂ · p̂
2m

= −
 h2

2m
∇ · ∇ = −

 h2

2m

N∑
i=1

∂2

∂x2
i

.

If we are given a particular system to describe, we will be able to determine some par-
ticular potential energy operator V(X̂) for the particular physical system we are looking at.
If we have such an operator we define the Hamiltonian operator Ĥ := T̂ +V(X̂), for which
〈Ĥ〉ψ,t = 〈ψ(t)|Ĥ|ψ(t)〉 gives the total energy of the state ψ at the time t. If we have a
system of n particles, we might write

Ĥ =

n∑
i=1

p̂i · p̂i
2mi

+ V(X̂1, . . . , X̂n) (1.1)

7



decomposing the operator T̂ into operators that each tell us the state of a specific indi-
vidual particle in the system, and having V express the potential energy of the system
in terms of each of the individual position operators. We might also decompose V into
functions that describe interactions between pairs, triples, etc., of particles,

V(X̂1 . . . X̂n) =
∑
i,j

ki,jV(X̂i, X̂j) +
∑
i,j,k

`i,j,kV(X̂i, X̂j, X̂k) + . . .

The main mathematical engine of quantum mechanics amounts to choosing a par-
ticular function V(X̂), and plugging it into the Schrodinger equation,

Ĥ|ψ(t)〉 = i h ∂
∂t

|ψ(t)〉.

This will give a partial differential equation that can be solved for |ψ(t)〉, so that the
particular choice of Hamiltonian forces a structure on the allowed states of the phys-
ical system. As it turns out, you can typically separate the variables x and t, writing
ψ(x, t) = ψ(x)T(t), giving a pair of equations

Ĥψ(x) = Eψ(x) and i h
∂

∂t
T(t) = ET(t),

with E representing the total energy. The first of these is often called the time-independent
Schrodinger equation, and the second has no dependence on the choice of V , and hence
is always exactly the same, T(t) = eiEt/

 h. Therefore we can typically focus only on the
time-independent equation. For particular values of E the time-independent Schrodinger
equation is an eigenvalue equation! Depending on the particular properties of V(X̂), the
spectrum of Ĥ can take values in a continuum [Emin,∞) or it can take only discrete val-
ues {En : n ∈ N}. The latter phenomenon is called quantization.

Example 1.2.1. We shall solve the Schrodinger equation in one dimension with the po-
tential V(X̂) being a constant V ∈ [0,∞). In this case we have

Ĥ = −
 h2

2m
∂2

∂x2 + V ,

and we aim to first solve the partial differential equation

−
 h2

2m
∂2

∂x2ψ(x, t) + Vψ(x, t) = i h
∂

∂t
ψ(x, t).

8



Separate the variables, writing ψ(x, t) as ψ(x)f(t), and we will first solve the time-
independent equation Ĥψ(x) = Eψ(x). To that end, plug in T̂ + V(X̂) and rearrange
to get

∂2

∂x2ψ(x) = −
2m(E− V)

 h2 ψ(x)

and observe that a solution to this equation must take the form

ψ(x) = Aeikx + Be−ikx with k =

√
2m(E− V)

 h
.

If we require this to be normalized we can derive an algebraic relationship between A
and B, but for the purposes of this document this is not worth doing.

In the last example, If E < V then k is imaginary, andψ(x) = Aeikx+Be−ikx becomes
a sum of real exponentials. In the particular case we are working in where there are no
bounds on the space we are looking at this cannot be allowed because these functions
are unbounded and so cannot be normalized, but it we specify

V(x) =

{
0 x > 0
V x 6 0

,

then an exponential decay to the left is completely allowed for x 6 0. This means that
even though there would be no way for a particle to exist in this region in the classical
picture, there is in fact a small chance of observing it there in the quantum picture.

Example 1.2.2. We shall solve the Schrodinger equation in one dimension with the po-
tential

V(X̂) =

{
0 x ∈ (−1, 1)∞ otherwise

.

This is known to physicists as an infinite potential well. Notice that if |x| > 1, we can solve
for ψ in this region by taking the limit V → ∞ from the constant case. If x 6 −1 then
ψ(x) = Be−ikx with k positive-imaginary. As V → ∞ we get k → i∞, which gives that
ψ(x) tends to the constant 0 function as V → ∞ in this region. The case is similar for
x > 1.

Now, in the region (−1, 1) we can use the first example again with V = 0, and since
we require thatψ be continuous, we get the extra condition thatψ(−1) = ψ(1) = 0. This
will force wavelength restrictions on ψ(x) = Aeikx + Be−ikx, which amounts to only
allowing a discrete set of energy levels. This is the typical first example of quantization.
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Depending on the choice of Hamiltonian, the eigenvalue equation X̂|ψ(t)〉 = x|ψ(t)〉
(more carefully, each coordinate of X gives us a different eigenvalue equation) might
have a unique solution for particular x, and in such a situation we would denote the
symbol |x0〉 to be the state for which X̂|x0〉 = x0|x0〉. In general when we are working
under an unspecified Hamiltonian the symbol |x0〉 just represents an arbitrary such state.
We can do the exact same thing for any other observable. For p̂, we might denote by |p0〉
a state for which p̂|p0〉 = p0|p0〉. If we take each |x〉 to be normalized, we find that they
form an orthonormal basis for the infinite-dimensional Hilbert space of states, and the
same is true for the |p〉. One can compute the coefficients for changing between these
bases as

〈x|p〉 = eix·p√
2π h

, (1.2)

so that converting a vector |x〉 into so-called momentum space can be done by computing

|x〉 =
∫
RN
dp1 · · ·dpN〈x|p〉|p〉

in analogy with the finite-dimensional change-of-basis formula x = (
∑
i x · yi)yi.

Another linear algebraic fact we will make heavy use of is that, as operators,∫
dx1 · · ·dxN|x〉〈x| =

∫
dp1 · · ·dpN|p〉〈p| = id, (1.3)

where id is the identity operator. To see these in an informal way, think of how in a
finite-dimensional vector space V with orthonormal basis {e1, . . . , en}, the sum of outer
products

∑n
i=1 eie

T
i is equal to the identity matrix.

Let us say more about how a state can evolve over time. We can give an operator,
U(t, t0), defined by U(t, t0)|ψ(t0)〉 = |ψ(t)〉. We can find an explicit form for U(t, t0) in
terms of the Hamiltonian operator: we have

ĤU(t, t0)|ψ(t0)〉 = i h
∂

∂t
U(t, t0)|ψ(t0)〉 =⇒ ĤU(t, t0) = i h

∂

∂t
U(t, t0)

and so

U(t, t0) = e
i(t−t0)

 h Ĥ =

∞∑
n=0

1
n!

(
i(t− t0)

 h

)n
Ĥn

is the unique operator that satisfies this equation if we require that U(t, t) = I. A sur-
prisingly important observation: U(t, t1)U(t1, t0) = U(t, t0).
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If we have an initial state |xI〉, we can compute the probability that it evolves to
another state |xF〉 over a time interval t by computing the integral

〈xF| exp(itĤ/ h)|xI〉 =
∫
RN
dx1 · · ·dxNψF(x)∗ exp(itĤ/ h)ψI(x),

where |ψF〉 and |ψI〉 are eigenstates of xF and xI, respectively, under X̂. For the sake of
a thought experiment, if we place a barrier between our initial and final positions with
tiny holes at positions x1 and x2, we get

〈xF| exp(itĤ/ h)|xI〉 = 〈xF| exp(itĤ/2 h)|x1〉〈x1| exp(itĤ/2 h)|xI〉
+ 〈xF| exp(itĤ/2 h)|x2〉〈x2| exp(itĤ/2 h)|xI〉.

If we have a large hole covering a region S in the barrier we would replace the sum with
an integral, getting

〈xF| exp(itĤ/ h)|xI〉 =
∫
S

dNx〈xF| exp(itĤ/2 h)|x〉〈x| exp(itĤ/2 h)|xI〉,

and if there is no barrier at all, that should be the same as choosing S = RN in this
integral. Depending on your philosophy, this could be another reason for equation 1.3
to be true. Further, we can divide the time interval t into a large number n of equal
segments δt and write

〈xF| exp(itĤ/ h)|xI〉 =
n∏
i=1

(∫
RN
dNxi

)
〈xF| exp(iδtĤ/ h)|x1〉〈x1| exp(iδtĤ/ h)|x2〉

· · · 〈xn| exp(iδtĤ/ h)|xI〉.

For convenience we would like a closed form for the term 〈xi| exp(iδtĤ/ h)|xi+1〉. If
potential energy is zero, we have

〈xi| exp(iδtĤ/ h)|xi+1〉 =
∫
RN
dNp〈xi| exp(iδtĤ/ h)|p〉〈p|xi+1〉 (using equation 1.3)

=

∫
RN
dNpe

iδtp2
2m 〈xi|p〉〈p|xi+1〉 (|p〉 an eigenstate of Ĥ)

=
1

2π h

∫
RN
dNpe

iδtp2
2m eip(xi+1−xi) (using equation 1.2).
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This is a type of Gaussian integral, which we can evaluate. Not dwelling on it too much
for now, the result is

〈xi| exp(iδtĤ/ h)|xi+1〉 =

(√
−im

2πδt

)N
e
im(xi+1−xi)

2

2δt .

If from here we throw caution to the wind and let δt ‘become infinitesimal’ we can
say

e
im(xi+1−xi)

2

2δt = e
imδt

2 (
xi+1−xi
δt )

2

−→n→∞ e imdt2 (dx
dt)

2

,

and then

〈ψF| exp(iδtĤ/ h)|x1〉 · · · 〈xn| exp(iδtĤ/ h)|xI〉 = e
∑n
i=0

im(xi+1−xi)
2

2δt

−→n→∞ e∫dt 1
2m(dx

dt)
2

And, especially terrifyingly for a mathematician, a physicist will write∫
Dx := lim

n→∞
n∏
i=1

(∫
RN
dNxi

)(√
−im

2πδt

)N
to give the expression

〈xF| exp(itĤ/ h)|xI〉 =
∫
Dxe

∫
dt 1

2m(dx
dt)

2

,

known as the Feynman path integral. If we allow for a nonzero potential the numbers
still go through (to the extent that they ‘went through’ in the first place) and we get

〈xF| exp(itĤ/ h)|xI〉 =
∫
Dxe

∫
dt 1

2m(dx
dt)

2
−V(x). (1.4)

On the left we have the exponential of a Hamiltonian Ĥ, and on the right we have the
exponential of a Lagrangian L = 1

2m
(
dx
dt

)2
− V(x). The indefinite integral S =

∫
dtL is

called the action.

Now we shall make one final abstraction, and we will have completely stepped out
of the world of quantum mechanics and into the world of quantum field theory. We
consider all of the particles of a particular type in the universe to manifest from a par-
ticular quantum field φ(x, t) : RN × R → RM, a variation in which corresponds to the
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presence of a particle. To adapt to this development we need to change the instances of
position in equation 1.4 to be expressions in terms of φ. In analogy with equation 1.1,
we do this by replacing the massmwith a mass per unit volume σ and writing

1
2
m

(
dx
dt

)2

→
∫
RN
dNxσ

(
∂φ

∂t

)2

and V(x)→ V(φ).

We would write the path integral in this case as

Z =

∫
Dφe

∫t
0 dt

∫
RN d

Nxσ(∂φ∂t )
2
−V(φ) =

∫
Dφe

∫t
0 dt

∫
RN d

NxL(φ),

and physicists are typically concerned with situations where V is a sum of a polynomial
in φ and a ∇ · ∇φ term. Often this last is grouped with the

(
∂φ
∂t

)2
and rewritten with

the symbol (∂φ)2, leaving V(φ) just a polynomial. Physicists are typically interested in
situations where the action S =

∫
dtL has an explicit form in terms ofφwhich will make

numerical calculation feasible.

We might be interested now in setting up an instance of this machinery which is as
basic as possible in order to see what happens. We might choose to look at a scalar the-
ory, i.e., one with φ : R → R, and a common first example would be L = 1

2(∂φ)
2 −

1
2m

2φ2 + λ
4!φ

4, the well-known φ4-theory. There is no inherent dimension of space
in which we need to work, and all of this material still holds together nicely with-
out so much analytic baggage if we restrict to zero dimensions. If we focus on zero-
dimensional spacetime, the density σ becomes a mass m again and the path integral
just becomes an ordinary integral of the form

Z =

∫∞
−∞ dφe

S(φ).

In the case of φ4-theory in zero dimensions, the 1
2(∂φ)

2 is zero because there’s noth-
ing to differentiate over, and this gives us a Gaussian integral∫∞

−∞ dφe
− 1

2m
2φ2+ λ

4!φ
4
=

∫∞
−∞ dφe

− 1
2m

2φ2
e
λ
4!φ

4

=

∞∑
n=0

∫∞
−∞ dφe

− 1
2m

2φ2 1
n!

(
λ

4!
φ4
)n

(1.5)

=

√
2π
m

∞∑
n=0

1
n!
λn

4!n
(4n− 1)!!
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where the last equality comes from the fact that the kth moment of the Gaussian distri-
bution is (k − 1)!! := 1 · 3 · 5 · · · (k − 1) if k is even and 0 otherwise. So if we ignore the
extraneous

√
2π/m, it turns out after some manipulation that the path integral in this

case is just an exponential generating function, and it turns out to count graphs with n
4-valent vertices, with labelled vertices and half-edges. These are the Feynman diagrams
of this particular quantum field theory.

In the general case of a scalar quantum field theory, if the action is

S = −
1
2
m2φ2 +

∞∑
k=1

ckxk

k!
φk

for ck ∈ {0, 1} for all k, we end up counting graphs (labelled as above) whose vertices
have degrees exclusively from the set {k ∈ N : ck = 1}. For physical reasons, we typically
write x1 = J. In terms of graphs, the J term counts degree-one vertices, while for a
physicist, Feynman integrals are often written

Z[J] =

∫
Dφe

∫
dt
∫
dNxL(φ)+Jφ (1.6)

for the same reason: the inclusion of the J term allows for the existence of sources and
sinks of particles in an interaction.

Now let us circle around to a related mathematical problem, loosely following the
presentation in chapters 3.1, 3.2, and 3.3 of [21]. Say we are interested in stratifying our
enumeration of maps by genus. Using evocative symbols, let T(N, s) be the exponential
generating function for which the constant term is 1 and in the non-constant terms,
(2n−1)!!

2 [Nksn]T(N, s) is the number of one-face maps with k vertices and n edges. The
constant term and fractions are chosen to give the generating function the particularly
nice form T(N, s) =

(
s+1
s−1

)N, a famous result of Harer and Zagier [25].

One way to calculate the coefficients of T(N, s) goes as follows. First, let H be an
N×NHermitian matrix, and letHN be the (N2-real-dimensional) space of all Hermitian
matrices, with real diagonal entries hii = xii and complex off-diagonal entries hij =
xij + iyij such that hji = h∗ij, the complex conjugate of hij. Let

dv(H) :=

N∏
i=1

dxii ·
∏
i<j

dxijdyij,

the so-called standard measure, and let

dµ(H) :=
1

√
2π
N2 2(N2−N)/2e−

1
2 tr(H2)dv(H),
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the Gaussian measure. For example, in theN = 1 case, if we set the massm to 1 we can
rewrite the integral 1.5 as

∞∑
n=0

∫∞
−∞ dφe

− 1
2m

2φ2 1
n!

(
λ

4!
φ4
)n

=

∞∑
n=0

√
2π
∫∞
−∞ dµ(φ)

1
n!

(
λ

4!
φ4
)n

.

Now for f : HN → C, write

〈f〉µ :=

∫
HN
dµ(H)f(H).

This is the expected value of fwith respect to the Gaussian measure.

Second, we give the following result on Gaussian expectations.

Theorem 1.2.3 (Wick’s Theorem, theorem 3.2.5 of [21]). Let f1, . . . , f2n be degree-one
polynomials in the xii, xij and yij. Then

〈f1f2 · · · f2n〉µ =
∑
〈fp1fq1〉µ〈fp2fq2〉µ · · · 〈fpnfqn〉µ

where the sum is taken over all permutations of 1, 2, . . . , 2n with a one-line notation
expression of the form p1q1p2q2 . . .pnqn where p1 < p2 < . . . < pn and pi < qi for all
i ∈ {1, . . . ,n}. In other words, the sum is over all the distinct ways of pairing the fi, and
we place a natural ordering on the indices of the fi when we write any particular term.
There are (2n− 1)!! terms in the sum.

It should be noted that (2n − 1)!! is also the number of rooted chord diagrams with
n chords, since every choice of a pair of endpoints to place a chord between lowers the
number of remaining endpoints by two.

We also remark that for H = (hij) ∈ HN, we have

〈hijhkl〉µ =

{
1 kl = ji

0 kl 6= ji

and if f is a polynomial in the hij of odd degree then 〈f〉µ = 0.

Third, we observe that because the hij = xij + iyij are indeed degree-one polynomi-
als in the xij and yij, we can write

〈trHn〉µ =

N∑
i1,i2,...,in=1

〈hi1i2hi2i3 · · ·hin−1inhini1〉µ
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and apply Wick’s theorem. In a particular term of the Wick sum, if hikik+1 and hi`i`+1

get paired, then for the contribution of the summands containing 〈hikik+1hi`i`+1〉µ to be
nonzero we must have ik = i`+1 and ik+1 = i`. If the identifications made by the pairs
leave us with k degrees of freedom in choosing the i1, . . . , in we will get a contribution
of Nk from those terms in the trace sum. So 〈trHn〉µ is a polynomial in N.

Fourth, we interpret the polynomial 〈trHn〉µ combinatorially. For n even, imagine
an n-gon with vertices labelled i1 through in, going clockwise around. The different
ways of gluing the sides ikik+1 of the n-gon together will correspond to different terms
in the Wick sum. The resulting surface will be orientable, since we can only make iden-
tifications ik = i`+1 and i` = ik+1, rather than ik = i` and ik+1 = i`+1. Moreover, the
obtained surface with the identified sides and vertices on it will constitute a map with
one face. If a term contributesNk in the trace sum, the map obtained by the correspond-
ing side identification will have k vertices. Because we started with an n-gon, we know
the map will have n/2 edges. This means we can isolate terms with a specific genus by
picking n and k such that k − n/2 + 1 = 2 − 2g for our desired g, and computing all of
the 〈trHn〉µ that we want.

In summary, the second variable we needed for our generating function came out
of the sizes of the matrices we were looking at when we generalized the Gaussian in-
tegral calculation from scalars to Hermitian matrices of arbitrary sizes. One can ex-
tend these computations to arbitrary graphs with face degrees f1, . . . , fk by computing
〈
∏k
i=1 trHfi〉µ. One could recover an expression for maps by putting these into a gen-

erating function and reducing to the connected case by taking a logarithm in the usual
way.

Now let us briefly return to the Feynman path integral, this time in the positive-
dimensional case. The graph-enumerative structure still appears here, but in contrast
with the zero-dimensional scenario the 1

2(∂φ)
2 from the Lagrangian and the integral in

the exponential do not disappear and so for every graph we obtain a finite-dimensional
integral to compute. If the particular quantum field theory we work with is well-
behaved then the magnitude of the integral for a graph will quickly shrink with an
increase in some graph-theoretic parameter such as the number of vertices or the num-
ber of cycles in the graph (known to physicists as loops), and so we can estimate the true
value of the path integral with a finite computation. Later in this thesis, the theory of
the contribution of trees to a certain class of Feynman integrals is the main motivation
for posing one of the problems we solve.
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1.3 The Moduli Space of Curves

The goal of this section is merely to provide some context from the wider mathematical
world for the content of this thesis. While map enumeration is a relatively down-to-
earth subject, it turns out to lie at the heart of one of the most strikingly broad areas of
mathematics. The combinatorial treatment of Gaussian integrals from the last section
originally appeared in [25] in the context of computing the Euler characteristic ofMg,n.
The following short barrage of definitions [21] is necessary, although the details of these
definitions are not particularly important for us.

Definition 1.3.1. A complex curve X is a connected complex manifold of complex di-
mension 1, in other words, it is a connected manifold with charts U → C for open
subsets U ⊆ X. As with real manifolds, we call X smooth when for any two open subsets
U,V ⊆ X with charts φ : U → C and ψ : V → C, the restrictions to U ∩ V have the
property that φ ◦ψ−1 : C→ C is holomorphic.

Definition 1.3.2. A holomorphism between two complex curves X1 and X2 is a map f :
X1 → X2 such that for any p ∈ X1 there is a neighbourhood U of p ∈ X1 with a chart
φ : U→ C and a neighbourhood V of f(p) ∈ X2 with a chart ψ : V → C such that ψ ◦ f ◦
φ−1 : C → C is holomorphic at p. Two complex curves X1 and X2 are biholomorphically
equivalent if there is an invertible holomorphism f : X1 → X2 with a holomorphic inverse.

Definition 1.3.3. A ramified covering of the Riemann sphere CP1 is a compact complex
curve X with a holomorphic function φ : X → CP1 endowing it with the structure of
a covering space, except at a finite number of points, known as the ramification points.
If S is the set of ramification points, a sheet is a connected component of the preimage
φ−1(CP1 \ S). If the covering has k sheets away from the ramification points, a ramifica-
tion point with a fibre of size k− 1 is called simple.

If we imagine a ramified cover of CP1 with some particular number k of sheets away
from the ramification points, we find that starting on the ith sheet and travelling, say,
clockwise, around a particular ramification point for one full turn will take us to the
jth sheet. In this way we recover a permutation σp for each ramification point p. A
permutation arising from a simple ramification point must be a transposition.

One of the most important external motivations for studying the enumeration of
maps is its application to the problem of computing Hurwitz numbers hg,n. These are the
numbers of ramified coverings of the Riemann sphere by a surface of specified genus g
with non-simple ramification at one point, which we take to be∞, and with the fibre of
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∞ havingn elements, up to biholomorphic equivalence. The Riemann-Hurwitz formula is
a statement about more general ramified coverings which in the case of Riemann sphere
coverings with one non-simple ramification point states that such a covering must have
n + k + 2g − 2 additional simple ramification points, and that the group generated by
their corresponding transpositions τi, for i = 1, . . . ,n+ k+ 2g− 2, must act transitively
on the set of sheets. It also happens that for any such covering,(

n+k+2g−2∏
i=1

τi

)
· σ∞ = id .

Up to biholomorphic equivalence the permutation σ∞ and the transpositions τi com-
pletely determine the covering. Hence both the computation of Hurwitz numbers and
the enumeration of maps have interpretations as particular permutation-factorization
enumeration problems.

If we take a basepoint x0 ∈ CP1 away from any of these ramification points, the
preimage of a curve drawn from x0 to∞
Definition 1.3.4. The moduli space of curves of genus g with nmarked points, denotedMg,n

is the set of compact smooth complex curves of genus g with n marked points, taken
up to biholomorphic equivalence. A precise definition of the topology on this set would
take us far beyond the scope of this thesis. An element ofMg,n is written (X; x1, . . . , xn).

It is a famous result [13] that the Hurwitz number hg,n can be computed as a partic-
ular integral over the compactified moduli spaceMg,n, which is not unlike a Feynman
integral.
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Chapter 2

A Cycle of Bijections With Application
to the Quadrangulation Conjecture

2.1 Background

2.1.1 Bijective Proofs

This chapter is focused on the notion of a ‘bijective proof’ of an equation. For any
unfamiliar readers we begin with a brief example.

Given an integer equation to prove, we can do so by constructing two sets of sizes
given by the left and right sides of the equation and constructing a bijective function
between the two sets. As an archetypical example, we can show 2

(
n
2

)
= n(n − 1) by

writing down the sets A = {0, 1} × {(a,b) : a,b ∈ {1, . . . ,n},a > b} and B = {1, . . . ,n} ×
{1, . . . ,n−1}, noting that |A| = 2

(
n
2

)
and |B| = n(n−1), and then showing by constructing

a bijection that |A| = |B|. To complete this example, consider the function f : A → B

given by

(q, (a,b)) 7→


(a,b) q = 0
(b+ 1,a) q = 1,a 6= n
(1,b) q = 1,a = n

.

One can see that f is injective since a > b means a can never be 1, and it can be verified
using a case analysis on the elements of B that f is surjective: let (x,y) ∈ B. If x > y,
then (x,y) is the image of (0, (x,y)), etc. Often we are instead interested in showing a
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function is a bijection by constructing a second function which we would show is the
two-sided inverse of the first.

2.1.2 The Quadrangulation Conjecture

LetQ(u2, x,y, z) andM(u2, x,y, z) be the generating functions for maps which are quad-
rangulations, and all maps, respectively, where the powers of u2 mark genus, and pow-
ers of x, y, and z mark the numbers of vertices, edges, and faces, respectively. It is a
result of Jackson and Visentin [16] [18] that

Q(u2, x,y, z) =
1
2
M(4u2, x− u,y, xz2) +

1
2
M(4u2, x+ u,y, xz2).

The proof they give of this fact makes heavy use of the character theory of symmetric
groups. Extracting coefficients gives the following result.

Proposition 2.1.1.

q(g, 2e) =
g∑
γ=0

∞∑
f=1

22γ
(

f

2g− 2γ

)
a(γ, f, e),

where quadrangulations are specified by their genus and number of edges, since the
number of faces and vertices are then determined by Euler’s formula, and similarly for
all maps if the numbers of faces and edges are specified.

Since this formula has been stated in many places but to the author’s knowledge
has never been explicitly derived in the literature, we shall do so here. Essentially it
amounts to writing down an explicit generating function forM andQ and manipulating
the two series in a standard way.

Proof. Begin by writing M(u2, x,y, z) =
∑
g,f,e a(g, f, e)u2gxvyezf, where v := 2 − 2g +

e− f by Euler’s formula. Now,

M(4u2, x± u,y, xz2) =
∑
g,f,e

a(g, f, e)22gu2gyexfz2f
v∑
k=0

(±1)k
(
v

k

)
xkuv−k

=
∑
g,f,e

v∑
k=0

a(g, f, e)(±1)k22g
(
v

k

)
u2g+v−kxf+kyez2f
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So in the expression F := 1
2M(4u2, x − u,y, xz2) + 1

2M(4u2, x + u,y, xz2), we will have
terms with odd k cancelling, leaving only the even terms. We get

Q =
∑
g,f,e

bv/2c∑
k=0

a(g, f, e)22g
(
v

2k

)
u2g+v−2kxf+2kyez2f.

Since Q is a generating function for quadrangulations, which are the duals of 4-regular
maps, we also know by the handshake lemma on the duals that 4f = 2e, i.e., e = 2f.
Now if we extract the coefficient [u2αy2β]Q(u2, x,y, z), we will find that as the sum over
k runs from k = 0 to bv/2c, the genus 2g will range in increments of two from 2α− v to
2α− v+ 2bv/2c = 2α. Equivalently, by rearranging the equations 2g = 2α− v, . . . , 2g =
2α, we will have a sum with 2α ranging from 2g − v to 2g. Applying this reindexing
and the handshake lemma will give the result.

The so-called quadrangulation conjecture, or ‘q-conjecture’, is not so much a conjecture
but an open problem: construct a bijective proof of the above identity.

Well-known in the literature regarding the quadrangulation conjecture [2][20] is the
so-called medial construction. This is a natural bijection for the genus-zero case, but it
does not generalize in an obvious way to higher genera.

Definition 2.1.2. Given a map G, the medial graph (or medial map) of G is the graph
M(G) obtained by adding a vertex to every face f, connecting the f-vertex to each vertex
bounding f, and deleting the original edges of the graph.

Observe that any edge in the original map is bounded by a unique quadrangle in
the medial graph, which itself can be shown to be a well-defined map since it naturally
inherits a cyclic edge incidence order at each vertex. These boundaries of the old edges
are all of the faces of the new map, and so we get a quadrangulation. It is worth clari-
fying that in the literature either M(G) or its dual map are considered the medial map,
depending on the author’s preference. The dual can be realized in a more straightfor-
ward way by placing a vertex halfway along each edge, and then connecting these once
for each facial walk which hits one and then the other.

In the plane, we can also go the other way in this construction, since we can 2-colour
the vertices and then connect the black ones by an edge in a new map if they share a
face in the old map. Swapping the colours here gives the dual map. If we turn to higher
genera, though, we find that there is more ambiguity than we hoped.

There are a few more auxiliary concepts to record some basic information about
before we move on to the results.
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Figure 2.1: Left: A plane map (dashed edges) along with its medial map
(solid edges). Right: a construction of the dual medial map directly from the
original.

Definition 2.1.3. An Euler tour in a graphG is a path that touches every edge and returns
to its starting vertex.

Theorem 2.1.4 ([12]). A connected graph G admits an Euler tour if and only if every
vertex of G has even degree.

Proof. (=⇒) If some vertex has odd degree, then it is impossible for the tour to exit that
vertex from a unique edge for every time it is entered.

(⇐=) Assume that G has all even degrees and is a smallest counterexample. Then
let W be a longest-possible walk in G that hits every edge at most once. Since G is
connected and assumed not to admit an Euler tour, this walk must miss at least two
edges at some vertex v which is hit by W. Now, in the graph G \ W, the connected
component of v must have all even degrees, and since it is smaller than G we know by
assumption that it admits an Euler tour. But we can append this tour to W at any point
where it hits v to get an even longer tour in G that hits every edge at most once, which
is a contradiction.

The layout of the remainder of this chapter is as follows. Section 2 will discuss a cycle
of correspondences between various combinatorial objects, including genus-zero maps
and genus-zero quadrangulations, proving correctness of each. These are all known
to different groups of researchers within the broad field of combinatorics, but to our
knowledge have never been put together. Additionally we track some new special sub-
structures through the correspondences and find that they have natural realizations at
each stage. Section 3 will discuss generalizations of this cycle of bijections to higher
genera. The reasoning for this approach is that if we factor one correspondence into
several, then each part will individually be easier to bring to arbitrary genus.
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2.2 The Correspondence Cycle

We begin by laying out the set of correspondences to be constructed. We first give
a correspondence between marked quadrangulations and non-crossing Eulerian tours
thereof. Next, we show that these can be made into chord diagrams, and then that the
chord diagrams correspond to maps with marked spanning trees. Finally, we will show
that the medial construction will turn the resulting map into the original quadrangula-
tion.

2.2.1 Quadrandulations and Euler Tours

We start with a 2-vertex-coloured quadrangulation. We may consider the same colour-
ing as a 2-face-colouring on the dual in the natural way. For now we will focus on
showing that a quadrangulation has the necessary structure for our construction to be
well-defined. We additionally take our quadrangulation to have a distinguished span-
ning tree, and we observe how this additional structure is translated through the differ-
ent correspondences.

Lemma 2.2.1 ([14]). The dual of any planar quadrangulation admits a non-crossing Eu-
ler tour.

Figure 2.2: At least one way of resolving any crossing must not disconnect
the tour.
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Proof. It is a standard result that every connected graph whose degrees are all even
admits some Euler tour. Since 4 is even, this result applies in our case. From here we
will show that any Euler tour gives rise to a non-crossing one. So, assume there is at
least one such crossing, at a vertex v. If the tour has the form . . .avb . . . cvd . . ., then we
may redirect the tour as . . .avc . . .bvd . . . with the segment between b and c reversed
from the original tour. By induction on the number of crossings, we have the result.

Given this result, we know that there is a non-crossing Euler tour of the dual of any
medial graph. Moreover, if we track the correct information we can actually get a canon-
ical tour. In particular, if we mark vertices in this dual-medial map which correspond
to a spanning tree in the original map, we get a turning rule for a walk: at a marked
vertex, stay in the light face of the current edge, and on an unmarked vertex, stay in the
dark face of that edge.

We do not know a priori that these rules always give Euler tours, though, so we must
prove that this is the case.

Lemma 2.2.2. The turning rule described above always gives an Euler tour on dual-
medial maps with markings given by a spanning tree of the original map.

Proof. Observe first that the edges of the dual-medial map correspond to the angles
between the edges in the original map. Second, notice that if we walk around a spanning
tree for a map, we hit every such angle. Third, recording the angles in the order they
are hit gives the desired tour. The unmarked vertex rule corresponds to turning across
an edge in the original map while staying on the same vertex, and the marked vertex
rule corresponds to walking to the next vertex in the spanning tree.

Definition 2.2.3. Say we are given an Euler tour in the form of a cyclic string up to
rotation, whose alphabet is the vertex set of a graph, which contains each letter twice,
and with the letters of the string containing the additional information that the string is
2-coloured with the colouring coming from marking presence in a spanning tree in the
original map, and that both instances of each letter will always have the same colour.
For conciseness, we shall call a cyclic string so obtained medial.

We must show that all of the above information can be recovered. We first want to be
able to naively draw a map out of the string. A given medial string does not necessarily
represent a unique Euler tour, but the following result shows that it does represent a
unique non-crossing Euler tour.
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Figure 2.3: Top: an example of a labelled 2-coloured dual-medial map
obained from a map with a labelled spanning tree. Bottom: the turning rules.
In the example from the top figure we obtain the tour abefecfdcbad.

Proposition 2.2.4. Every medial cyclic string is a non-crossing Euler tour of a unique
4-regular map with marked vertices.

Proof. We begin with existence. Let the Euler tour be given by the cyclic string S =
v1v2 . . . v2k. We will construct the map by constructing its rotation system. We will use
the symbols ei,0 and ei,1 to denote the half-edges traversed as we pass through vi. Then
the edge permutation can be given in cycle notation as

η = (e1,1 e2,0)(e2,1 e3,0) · · · (e2k−1,1 e2k,0)(e2k,1 e1,0).

Next, we construct the vertex permutation. We know that every letter in S appears
exactly twice, so there exists a function f : [2k] → [2k] which sends i to the position of
the other instance of vi. Indeed, f is an involution. Since the tour is non-crossing, we
know that, clockwise around a vertex vi, the half edges must be arranged as one of the
following four choices, as in figure 2.4:

(ei,0 ei,1 ef(i),0 ef(i),1) (ei,1 ei,0 ef(i),0 ef(i),1)

(ei,0 ei,1 ef(i),1 ef(i),0) (ei,1 ei,0 ef(i),1 ef(i),0)
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ei,0

ei,1 ef(i),0

ef(i),1

ei,0

ei,1

ef(i),0

ef(i),1

ei,0

ei,1

ef(i),0

ef(i),1 ei,0

ei,1 ef(i),0

ef(i),1

Figure 2.4: An illustration of the four possible configurations of a vertex.

Now, since f is an involution and we make no distinction between i and f(i), it is
plain to see that the first and last of these four configurations are equivalent. The case
is similar for the second and third configurations. The choice of which one of the two
cycles we use to record the order around a vertex comes down to the spanning tree
turning rule, so we are done.

Lemma 2.2.5. Removing both instances of any letter from a medial cyclic string with at
least two distinct letters produces another medial cyclic string.

Proof. Let S be a medial cyclic string containing the letter S. Let a be a letter in S, and
let Ŝ be the string S with both instances of a removed. We know by proposition 2.2.4
that S is an Euler tour in some 4-regular map G. For a nontrivial string S there are two
cases: either the two instances of a are adjacent or they are not. If they are adjacent,
S has the form . . . xaay . . . with x and y not necessarily distinct. Then construct the
map Ĝ by deleting the vertex a and all incident edges, and inserting the edge xy. On
the other hand, if the two instances of a are not adjacent in S, then S has the form
. . . xay . . . zaw . . ., with x, y, z, and w not necessarily distinct. In this case, construct the
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map Ĝ by deleting the vertex a and all incident edges, and adding edges xy and zw. It
is clear in both cases that Ĝ is a 4-regular map and that Ŝ is a non-crossing Euler tour of
Ĝ, so by another application of proposition 2.2.4, we are done.

2.2.2 Euler Tours and Chord Diagrams

Definition 2.2.6. A chord diagram is a finite set S with a cyclic order and a partition of
S into subsets of size two. The size-two subsets of S are called chords, and we typically
represent chord diagrams as a drawing of a disc with several lines, possibly crossing,
drawn inside of the disc, so that no two such lines begin or end at the same point along
the disc.

Definition 2.2.7. A crossing in a chord diagram is a pair of chords {a,b} and {c,d} such
that in the cyclic order along S, the symbols appear in the order a, c,b,d. A chord
diagram is said to be non-crossing if it contains no crossings.

An Euler tour of a 4-regular map can be represented by a cyclic word in the vertices
of the graph which contains every vertex twice. We can obtain a chord diagram by
writing this word around a 2|V |-gon and drawing chords between vertices with the
same label, and having the chords inherit the vertex colouring from the tour. On the
other hand, if we are given a chord diagram with two edge colours, labelling the ends
of each chord with matching symbols produces a cyclic sequence of letters satisfying
the hypotheses of proposition 2.2.4, and thus describes an Euler tour of some 4-regular
map.

Proposition 2.2.8. The inherited colouring on the chords partitions the chord diagram
into two non-crossing subdiagrams.

Proof. Say two chords a and b of the same colour are crossing. By repeatedly applying
lemma 2.2.5 to every letter besides a and b, we can assume that the cyclic string is
exactly abab, whose 4-regular graph must be the banana on 4 edges. Since a and b
are assumed to be the same colour, we would have that there is a non-crossing Euler
tour of the 4-edge banana where we only turn, say, clockwise at every vertex. This is
impossible, so we have achieved the desired contradiction.

The 4-regular map can also be recovered by drawing all of the chords of one colour
on the outside of the disc and all of the chords of the other colour on the inside of the
disc, and then contracting all the chords into vertices. The underlying graph can be
recovered by contracting the chords without this intermediate step.
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Figure 2.5: An example of a chord diagram obtained from a medial cyclic
string.

2.2.3 Chord Diagrams and Maps

Given a chord diagram which can be partitioned into two sets of non-crossing chords,
we now aim to demonstrate that this structure also uniquely corresponds to a planar
map when obtained as above, with the partition corresponding to a choice of spanning
tree. Further, we aim to demonstrate that this correspondence is equal to the compo-
sition of the correspondences in the last several sections. We begin by showing that a
chord diagram with a partition into two sets of non-crossing edges generates a unique
planar map with a marked spanning tree.

Lemma 2.2.9. Given a map G of genus 0, the set of one-face submaps of G touching
every vertex is exactly the set of spanning trees of G.

Proof. Let H be a one-face submap of G containing every vertex of G. Then by Euler’s
formula applied to H, and since we are in genus zero,

|V(H)|− |E(H)|+ |F(H)| = 2

but since V(H) = V(G) and |F(H)| = 1, we get

|E(H)| = |V(G)|− 1.

Since H has one face, we also know it has no nontrivial cycles, and so we obtain the
desired result.
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On the other hand, say that T is a spanning tree of G. Then since T is acyclic, we
know it has one face, and since G had genus zero, we know that T is indeed a submap
of G, since its face is homeomorphic to a disc.

As a bit of foreshadowing, be careful that in higher genera, a spanning tree is not a
submap because its one face is not homeomorphic to a disc.

Proposition 2.2.10. Let C be a chord diagram and M be a set of non-crossing chords in
C with the property that the chord diagram C \M is also non-crossing. Then the pair
(C,M) uniquely corresponds to a planar map with a marked spanning tree.

Proof. To achieve the result we must draw the chord diagram in the plane as follows:
first, we draw the chord diagram C\M in the standard way, recognizing that this draw-
ing also specifies a 3-regular planar map, which we label GC. Now, we create a sort of
dual map ĜC by placing a vertex in each bounded region of GC and connecting these
by an edge if they share a chord. Notice now that ĜC is a tree since GC is connected and
has one more region than it has chords, meaning ĜC must be connected and have one
more vertex than it has edges.

Now we incorporateM into our construction. To do this, we interpret each chord of
M as a new edge of ĜC, connecting the vertices of the two regions it touches. In this way
ĜC becomes a spanning tree of the resulting map, and the edges of M simply complete
the cycles of this map. This transformation from a chord diagram with a chord partition
to a map with a labelled spanning tree was injective because our actions were fully
determined at every step.

For the second half of the proof we need to show the other direction of the corre-
spondence. So, let Γ be a planar map with a marked spanning tree T . Say it has the
associated vertex, edge, and face permutations ν, ε, and φ. The permutation ε admits a
factorization into the product εTεΓ\T , where

εT =
∏

e=(e1,e2)
e∈E(T)

(e1 e2) and εΓ\T =
∏

e=(e1,e2)
e∈E(Γ\T)

(e1 e2)

are products of transpositions. Since these two permutations have no common half-
edges, they also commute.

Using the characterization of spanning trees in genus zero as one-face spanning
submaps proven in Lemma 2.2.9, we can observe that the permutation νεT is a cycle
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Figure 2.6: A graph obtained from a chord diagram. Notice that the inte-
rior edges on the right form a spanning tree of the resulting map, so this is
determined entirely by the partition of the chord diagram.

Figure 2.7: An example of the process of drawing a curve around a spanning
tree to generate a chord diagram.

corresponding to a walk along the one face of the spanning tree T . This is our essential
use of the genus in this proof.

We can draw a curve around the spanning tree sufficiently near to it that each edge
not in the spanning tree is crossed exactly twice, and such that the order in which the
half edges are touched corresponds with the order that half-edges not in T appear in the
cyclic permutation νεT . This cyclic order, along with the connectivity information from
εΓ\T , specifies a chord diagram CΓ\T , and this is the same chord diagram one would
get by deforming the curve around the spanning tree into a disc containing the edges of
Γ \ T . The chord diagram CT is similarly obtained from the cyclic order of the half edges
from T in the cyclic permutation νεT .
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11

12

13

14
15 16

ν = (1 3)(2 9 7 6)(4 5 15 14)(8 11 16)(10 13 12)

εT = (1 2)(5 6)(13 14)(15 16)

νεT = (1 9 7 6 15 8 11 16 14 12 10 13 4 5 2 3)

Figure 2.8: An example of the calculation of the cycle νεT . The thick edges
mark our choice of T . In this case CT would be the chord diagram on the
cycle (1 6 16 14 13 5 2) with the four chords 1 − 2, 5 − 6, 13 − 14, and 15 − 16.

As a small remark on the construction laid out in proposition 2.2.10, notice that
swapping M and C \M and then computing the resulting map gives the dual of the
original map. Also, different partitions of the same chord diagramC can result in totally
different maps. Since a chord diagram can admit partitions into pairs of non-crossing
chord diagrams of completely different sizes, there can be no expectation that, say, the
different partitions all amount to choices of spanning tree in one particular map, or that
all the spanning trees in a particular map arise from choices of partition in one particular
chord diagram.

2.2.4 Maps and Quadrangulations

This section will serve as a brief summary of the set of correspondences above. We
began with maps with marked spanning trees, and we transformed them into quadran-
gulations with vertex- and face-colourings, found a canonical way to read Euler tours
from those maps (remembering the vertex colouring along the way), realized those
coloured tours as chord diagrams that partition into pairs of non-crossing subdiagrams,
and transformed those diagrams back into maps in a way that recovered the original
spanning tree.
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Figure 2.9: A full worked example of the cycle of correspondences in genus
zero.
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2.3 Positive Genus

Our goal now is to lift as many of the correspondences above from the planar case to
surfaces of positive genus. The medial construction does not lift directly because quad-
rangulations in positive genus do not necessarily admit 2-face-colourings. A significant
effort has been made to create robust analogies of the medial construction in positive
genus [16], and there has been a successful, though difficult, extension to genus one [2].
However, the rest of the correspondences laid out in the last section will turn out to lift
in a reasonable way. In effect, by constructing so many peripheral correspondences we
will have built a path around this fundamental issue in positive genus.

As we saw in the proof of proposition 2.2.10, the essential fact about a spanning tree
in the construction of a chord diagram from a map in genus zero was that it could be
equivalently characterized in that genus as a one-face submap touching every vertex. In
order to make the correspondence go through in other genera, we must take ‘one-face
submap touching every vertex‘ as the fundamental substructure to be labelled through-
out. This is similar to the notion of ‘quasitrees’ appearing in, for example, [22]. The
literature regarding these is very focused on a notion of ‘partial duality’ which may
have a fruitful application here if explored in future work.

Lemma 2.3.1. LetM be a map of arbitrary genus g. For a submap T ofM, the following
are equivalent:

1. T is a spanning one-face submap ofM,

2. T has one face and |E(T)| = |V(M)|− 1 + 2g,

3. T is spanning and νεT is a cyclic permutation of the half-edges inM.

Proof. 1⇐⇒ 2. Assume T is a spanning one-face submap ofM. Then by Euler’s formula
applied to T , we have |V(T)|− |E(T)|+ 1 = 2 − 2g. Since T is spanning, |V(T)| = |V(M)|,
and we have the result by rearranging the last equation. On the other hand, assume T
is spanning and |E(T)| = |V(M)|− 1 + 2g. Then by applying Euler’s formula to T again,
we learn that |F(T)| = 1 as desired.

1 ⇐⇒ 3. First we aim to compute ν in terms of νT . We can use the basic fact that if
we have a cycle (x1 x2 . . . xk) and wish to insert an ordered list of terms y1, . . . ,y` all
distinct from the xi before some term xi0 , we can write

(x1 x2 . . . xi0−1 y1 . . . y` xi0 . . . xk) = (xi0 y1 . . . y`)(x1 x2 . . . xk).
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As long as all the terms are distinct, we can insert as many lists as we like at as many
positions as we like since all of these insertions commute, and we can perform insertions
in permutations composed of multiple cycles since each insertion only effects one cycle.
For a map M with submap T , we can thus write ν as a sequence of insertions on νT ,
say ν = ινT . With this in mind, assume T is a spanning one-face submap of M. Then
νεT = ινTεT is simply the same series of insertions performed on the single cycle νTεT
and is therefore a cycle. In the other direction of implication, νεT = ινTεT is a cycle and
so νTεT is too, so T has one face as desired.

1
2

3
4

5

6

7

8

910

11

12

ν = (1 12 4 5)(2 3 8)(6 9 7 11 10)

εT = (1 2)(3 4)(5 6)(7 8)

νεT = (1 3 5 9 7 2 12 4 8 11 10 6)

Figure 2.10: Example computation of the cycle νεT in a genus-1 map.

With the importance of one-face spanning submaps established, we are now pre-
pared to lift the correspondence between maps and chord diagrams to higher genera.
The specific subclasses of chord diagrams to be examined in each genus are novel.
Given a surface of genus g, draw a closed curve bounding a disc, and consider the
possible chord diagrams on the outside of that disc that can be drawn without crossing
chords. Equivalently, consider the non-crossing chord diagrams that can be drawn on
a disc with g handles glued onto it. We shall call such a chord diagram a genus-g non-
crossing chord diagram. In particular, where in genus zero we had maps corresponding
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to chord diagrams with a partition into a pair of chord diagrams with both being non-
crossing, we lift in positive genus to pairs of chord diagrams with one being (genus-0)
non-crossing, and one being genus-g non-crossing.

Genus-g non-crossing chord diagrams seem completely unstudied in the literature.
While beyond the scope of this thesis, some obvious questions arise about the enumer-
ation of such objects. If Fg(x) is the generating series for genus-g non-crossing chord
diagrams, we would have the relations [xn]Fg(x) 6 [xn]Fg ′(x) whenever g 6 g ′. We
also know that the coefficients of F0(x) are the Catalan numbers and limg→∞ Fg(x) is
the generating function for all chord diagrams. It would be valuable to know a closed
form for Fg(x) in terms of g and x. It would also be valuable to know whether the
genus-g non-crossing chord diagrams admit a characterization in terms of forbidden
subdiagrams for every g, and whether certain correspondences between non-crossing
chord diagrams and connected chord diagrams studied by physicists lift to higher gen-
era. Would such a correspondence then collapse to the identity in the g → ∞ limit, or
express some form of duality, or turn into some more complicated automorphism on
the set of all chord diagrams on n chords? There are many variants of chord diagrams
studied in the literature already, so it would also be valuable to know if there is a direct
relationship with any of these.

The process for obtaining a map from such a chord diagram by placing the grey
edges on the outside and performing something akin to dualizing can be lifted from
the genus-zero case depicted in figure 2.6 if we add handles to our chord diagram as
necessary, but this can quickly become difficult to do by hand. It is simpler to label the
ends of the chords around the diagram as drawn in the standard way and then use that
cycle to define the value of νεT . Since the chords and colouring encode both ε and εT we
can compute ν = (νεT )εT , and we will have the information necessary to reconstruct
the map by its permutations.

Now we are faced with the problem of translating a chord diagram of genus g into
a new 4-regular map. We create the set of half edges for the new map by giving the
letters of the cyclic string subscripts to distinguish between the pairs, and reading the
vertex information from the cyclic order of the ends of chords around the diagram.
Each chord x will have two sets of neighbours in the diagram, corresponding to the
substrings ax1b and cx2d for some chords a,b, c,d, which may or may not be distinct.
Call these the neighbourhoods of x in the cyclic string. To construct the permutations for
our new map, we begin by creating symbols −→ax1,

←−
bx1,−→cx2,

←−
dx2 with x on the right and

arrows corresponding to the incidence direction in the cyclic word. To construct the
permutation ν ′, we include one of the two cycles (−→ax1

←−
bx1
−→cx2
←−
dx2) or (−→ax1

←−
bx1
−→cx2
←−
dx2)

−1
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Figure 2.11: Interpretation of the cycle νεT as a chord diagram using edges
from ε, and cyclic string corresponding to cyclic incidence of the chords
around the circle. Equivalently the chord diagram can be constructed by
walking along the face of T to create a closed curve bounding a disc on one
side and drawing chords as depicted here.

from every x, depending on the colour of x in the chord diagram. To construct ε ′ we
include the edge (−→xy←−yx) for every pair of consecutive characters xy in the cyclic string.

While this is enough information to construct the 4-regular map, we can actually
read the faces off of the chord diagram by walking clockwise along the outside, walking
along the dark chords, and walking past the light chords. Likewise, we can read the
faces of the original map by walking along the light chords and across the dark ones.

2.4 The Coefficient-Level Formula

With all the structure of the bijections finally elucidated, we turn to the task of ‘genus-
shifting’, i.e., the question of obtaining the lower-genus maps corresponding to a quad-
rangulation in the coefficient-level formula, or equivalently raising a map’s genus to
obtain a particular quadrangulation of higher genus. Once again, the coefficient-level
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Figure 2.12: Reading the vertex information for a 4-regular map from the
cyclic string. Since we know how the half-edges fit together unambiguously
and we know the cyclic order around every vertex, we can compute the faces
and thus the structure of the entire map in a unique way.

formula is

q(g, 2e) =
g∑
γ=0

∞∑
f=1

22γ
(

f

2g− 2γ

)
a(γ, f, e).

Proposition 2.4.1. Let eTγ(v) = v− 1+ 2γ be the number of edges in a spanning one-face
submap of a genus-γmap with v vertices. Then in the formula above,(

f

2g− 2γ

)
=

(
e+ 1 − eTγ(v)

2g− 2γ

)
=

(
e+ 1 − eTγ(v)

e+ 1 − eTg(v)

)
.

Proof. By Euler’s formula,

f = 2 − 2γ− v+ e

= 1 + e− eTγ(v)
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Figure 2.13: Walking in the chord diagram to read a face of the 4-regular map.

which gives
(

f
2g−2γ

)
=
(
e+1−eTγ(v)

2g−2γ

)
. For the other equality,(

e+ 1 − eTγ(v)

2g− 2γ

)
=

(
e+ 1 − eTγ(v)

2 − 2γ− v+ e− 2g+ 2γ

)
(since

(
a
b

)
=
(
a
a−b

)
)

=

(
e+ 1 − eTγ(v)

2 − v+ e− 2g

)
=

(
e+ 1 − eTγ(v)

e+ 1 − eTg(v)

)
.

So, take an arbitrary map G. We can try to raise its genus in a way that seems to be
combinatorially evocative of the formula

q(g, 2e) =
g∑
γ=0

∞∑
v=1

22γ
(
e+ 1 − eTγ(v)

2g− 2γ

)
a(γ, f, e)

by the following process.

1. Add a self-loop with corresponding transposition t = (h + 1 h + 2) (here h was
the number of half-edges in the original map) directly before the root half-edge,
and remember that this edge was special. The addition of t will modify ν and ε
by giving permutations ν+ = (1 h + 1 h + 2)ν, ε+ = εt, and ε+T = εT . Notice that
ν+ε+T = (1 h+ 1 h+ 2)νεT , which is still a cycle if νεT was.
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2. Choose edges e1, . . . , e2g−2γ not in the spanning one-face submap, with correspond-
ing transpositions t1, . . . , t2g−2γ.

3. Set ε ′ = ε+, ε ′T = ε+T t1 · · · t2g−2γ and ν ′ = ν+t1 · · · t2g−2γ. This creates a new map
G ′ with ν ′ε ′T = ν+ε+T , which is once again a full cycle as long as νεT was.

We have the following weak result on the application of this strategy to genus-
raising.

Proposition 2.4.2. If the edges ei corresponding to the transpositions ti all have the
property that both ends hit the same vertex and both sides touch the same face, then the
map G ′ has genus g.

Proof. We shall induct on g − γ. In the case g − γ = 0, we get G ′ = G+, which is just G
with an extra self-loop on the root vertex immediately before the root half-edge. Now
say g−γ > 0, and say we have chosen ε ′T = ε+T t1 · · · t2g−2γ and ν ′ = ν+t1 · · · t2g−2γ. Then
we know that the map G ′′ given by ε ′′ = ε+ and ν ′′ = ν+t1 · · · t2g−2γ−2 has genus g− 1
by induction, so we may dispense with the extra terms, replace Gwith G ′′, and assume
without loss of generality that g−γ = 1, and that we are only examining transpositions
t1 and t2.

We must determine how many vertices and faces the map G ′ has to compute its
genus. This depends on t1 and t2. If the edge corresponding to t1 has both ends on the
same vertex in G+ then multiplication by t1 will increment the number of cycles in ν+,
and if not then it will decrement the number of cycles in ν+. Similarly t2 will do the
same to ν+t1. For φ ′, observe that

φ ′ = ν ′ε ′

= ν+t1t2ε
+

= ν+ε+t1t2

= φ+t1t2.

So if the edge e1 corresponding to t1 has the same face on both sides inG+ then multipli-
cation by t1 will increment the number of cycles in φ+ (and if not then multiplication by
t1 will decrement the number of cycles in φ+), and similar for t2 and φ+t1. Now, if e1 has
both ends on the same vertex in G+ then an analogous argument shows that νt1t2 will
have two extra cycles. If both of these phenomena occur then applying Euler’s formula
shows that the genus has indeed increased as desired.
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Chapter 3

Cycle Decompositions of 4-Regular
Graphs

3.1 Background

Introduced in a series of papers published in 2014 and 2015 [4–9], the CHY formalism is
a way of rewriting the Feynman integrals in various quantum field theories as integrals
over the moduli space M0,n when the integral concerns the interaction of n particles.
Let α : i 7→ αi be a cyclic permutation of {1, . . . ,n}. Of importance in the CHY integral
formulation are the Parke-Taylor factors

Cn[α] =
1

σα1α2σα2α3 · · ·σαn−1αnσαnα1

where σij = σi − σj.

The σi are variables to be integrated over in the near future. Terms of this form orig-
inally appeared in a formula for computing the so-called maximally helicity violating
amplitudes in Yang-Mills theory [23]. Pairs of Parke-Taylor factors are combined in the
expression mn[α|β] which is a particular integral over all the σi involving the product
Cn[α]Cn[β]. The following set-up lets us computemn[α|β] combinatorially.

Definition 3.1.1. If a tree with leaves labelled 1, . . . ,n can be drawn in the plane with
leaves appearing in the cyclic order α1, . . . ,αn, we call it α-ordered. Define T [α] to be the
set of trees with n leaves and internal vertices of degree 3 which are α-ordered.
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Theorem 3.1.2 ([24]). Up to a sign,

mn[α|β] = 2n−3
∑

g∈T [α]∩T [β]

∏
e∈E(g)

1
se

where se is the square of the momentum along the edge e, considering g as a Feynman
diagram.

An important consequence of theorem 3.1.2 is that T [α] and T [β] are disjoint if and
only ifmn[α|β] = 0, suggesting a notion of orthogonality for cycles.

Now we intend to generalize mn[α|β] to arbitrary permutations. If we take a per-
mutation πwith many cycles, we can still write down a Parke-Taylor factor for π, as the
product of the Parke-Taylor factors for each of its cycles. Moreover, if π has no fixed
points, if we take a cycle α and try to compute mn[α|π] it is often the case that by rear-
ranging the 1

σπi ,πi+1
and the 1

σαj ,αj+1
we can saymn[α|π] = mn[α ′|β ′] for two cycles α ′ and

β ′. We can equivalently view the fixed-point-free permutations π as 2-regular graphs
with no self-loops. With this in mind we can even write mn[G|H] for 2-regular graphs
G and H.

As a real vector space,M0,n is known to be (n− 3)!-dimensional. If it can be shown
there are (n − 3)! pairwise orthogonal 2-regular graphs, we will have created a po-
tentially useful structure on top of M0,n. This problem splits into two steps: if we
can show first that any 2-regular graph G has enough cycles C with the property that
mn[G|C] = mn[C

′|C ′′] for two cycles C ′ and C ′′, and second that enough of these C are
pairwise orthogonal, then we will be done. The contribution of this chapter is to solve
the first half of this problem.

From a physical point of view, when α and β are cycles the integral mn[α|β] is a
sum of Feynman diagrams which are trees, and when they are not then the Feynman
diagrams can be arbitrary graphs. If it can be shown that for arbitrary α and β,mn[α|β]
decomposes into a finite linear combination of tree-level integrals, then we will have a
reasonable means of computing arbitrary Feynman integrals in the applicable quantum
field theories.

3.2 Bounding the number of compatible cycles in general

These results first appeared in the paper [10], which was co-authored by the author of
this thesis.
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Definition 3.2.1. The edge-disjoint union of two graphs G and H on the same vertex set
V , denoted simply G ∪ H, is the graph whose vertex set is V and whose edge set is
E(G) t E(H). The square union symbol here means that these sets are forcibly disjoint;
any shared edges get duplicated in the resulting graph.

To begin, we are given a 2-regular (multi)graphG, or equivalently a disjoint union of
cycles, on the vertices {1, . . . ,n}. We are interested in finding cycles C on {1, . . . ,n} such
that G ∪ C admits a new decomposition as C1 ∪ C2, with both C1 and C2 being cycles.
In particular, we want to count how many C induce such a decomposition for a fixed
G, or at least show that this number is relatively large. This motivates the following
definition.

Definition 3.2.2. For a 2-regular graph G, a cycle C is said to be compatible to G if G ∪ C
admits a decomposition into a union C1 ∪ C2 of two cycles.

Theorem 3.2.3. When G consists of only even cycles, there are more than (n − 3)! com-
patible cycles to G. In fact, there are at least (n− 2)!/2 such cycles.

We can do this with the help of two lemmas, as follows. First, since G is bipartite,
we decompose G as G = A ∪ Bwith A and B perfect matchings on G, so that G consists
of AB-alternating cycles.

Lemma 3.2.4. WithG as above, there exist at least (n−2)!! choices for a perfect matching
P on the vertices of G such that P ∪A is a cycle.

Proof. Pick a vertex v ∈ G. Let its neighbour in A be a and its neighbour in B be b.
Starting from v, draw a P-edge from v to some vertex p which is distinct from a and
v. There are then n − 2 choices for the edge vp. Now continue as follows: let v ′ be the
neighbour of p in A, and choose one of the n − 4 remaining vertices to join it with in P.
Continuing by induction there are (n− 2)!! choices for P.

Lemma 3.2.5. WithG,A, B, and a choice of P as before, there are at least (n−3)!! choices
for a perfect matching Qwith the property that both Q ∪ B and P ∪Q are cycles.

Proof. This proof is the main part of the whole argument for the general result. We
proceed by induction. In the base case n = 4 and the result follows by checking several
diagrams: either G is a 4-cycle or it is a pair of 2-cycles. In either case, we can simply
draw enough Q no matter the choice of P, as in the following figure.
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Figure 3.1: The base case for the lemma. Thick black edges are A, thick grey
edges are B, thin black edges are P, and thin dashed edges are Q.

For the induction, first pick a vertex v. Label its A-neighbour a, its B-neighbour b,
and its P neighbour p. Pick a vertex q not in {v,b,p} and draw aQ-edge vq. Given such
a choice of q, label its A-neighbour α, its B-neighbour β, and its P-neighbour π. From
here, we create a new graph G ′ as follows: set V(G ′) := V(G) \ {v,q}, and let E(G ′) be
the set of all those edges in G which avoid v and q, along with the edges aα, bβ, and
pπ. The graph G ′ inherits a natural decomposition into three matchings from G. These

v
a

b
qα

β

p
π

a

b

α

β

p
π

 

Figure 3.2: A demonstration of the construction of G ′ from G.

are A ′ = (A ∩ G ′) ∪ {aα}, B ′ = (B ∩ G ′) ∪ {bβ}, and P ′ = (P ∩ G ′) ∪ {pπ}. It should
be noted that these are indeed matchings, since none of a,b,p,α,β,π are saturated in
the restrictions of their respective matchings to G ′. Certainly all of these matchings are
also perfect. Now, G ′ and the three matchings satisfy the induction hypothesis, and so
give rise to (n − 2 − 3)!! choices of Q ′ with the property that both C ′B := Q ′ ∪ B ′ and
C ′P := P ′ ∪Q ′ are cycles.

From here the goal is to lift Q ′ up to the perfect matching Q := Q ′ ∪ {vq} on G and
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show that Q satisfies the lemma. To this end, note that C ′B \ {bβ} and C ′P \ {pπ} induce
paths SB and SP on G which hit all of the vertices except v and q. Notice now that
SB ∪ {bv, vq,qβ} is a cycle consisting of all of the edges of B andQ, and SP ∪ {pv, vq,qπ}
is a cycle consisting of all the edges of P and Q. This means Q satisfies the lemma.

Now, there were at least n − 3 choices for the edge vq and at least (n − 5)!! choices
for the matchingQ ′. If there is no repetition here, we will have at least (n− 3)!! choices
for Q and the claim will be proven. To see that there is indeed no repetitition, note that
two different choices of q cannot lead to the same cycle, and given the same choice of
q, the paths SB and SP will depend only on the (already distinct) choices of Q ′. This
completes the proof.

Proof of Theorem 3.2.3. We simply multiply the numbers in the results of the last two
lemmas and divide by two since the matchings P and Q are indistinguishable. The
result is

(n− 2)!!(n− 3)!!
2

=
(n− 2)

2
(n− 3)! > (n− 3)!

as desired.

Figure 3.3: An example graph G with all even cycles decomposed as A ∪ B,
with the black edges being A and the grey edges being B.

To illustrate how this theorem can be used algorithmically to construct compatible
cycles, consider the example in figure 3.3. By the first lemma we can construct the
perfect matching P by beginning at a vertex, say the upper of the two leftmost vertices
in the figure, following A, in this case to the top vertex, and then choosing any vertex
other than the two already mentioned to join to the top vertex making an edge for P.
Suppose we choose the lower of the two vertices to the right in the same cycle of G.
Then we follow A again and pick any vertex not already seen to add a new edge to P
and so on. Continuing in this way one possible P we could obtain is as illustrated in
Figure 3.4.
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Figure 3.4: The example graph G along with a perfect matching P given by
the thin black edges, so that P ∪A is a cycle.

Figure 3.5: G and P along with a first edge for the construction of Q, drawn
dashed here.

Next we follow the second lemma. Beginning again at the upper of the two leftmost
vertices, we pick any vertex other than this vertex’s neighbours in B and P to make an
edge for Q. In this case, say we pick the lower vertex of the leftmost 2-cycle. This is
illustrated in figure 3.5.

From this choice of edge the second lemma tells us to construct G ′ (along with P ′) as
illustrated in figure 3.6.
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a

b

α = β p

π

Figure 3.6: The graph G ′ = A ′ ∪ B ′ with P ′.

Figure 3.7: The graph G ′ = A ′ ∪ B ′ with P ′, along with a first choice of edge
for Q ′

The process now continues. Progressing one more step explicitly, choose the first
edge of Q ′ as shown in figure 3.7. This results in the graph G ′′ as illustrated in figure
3.8. Continuing this process we can construct Q ′′. One possibility for Q ′′ is shown in
figure 3.9.

Bringing Q ′′ up to Q ′ on G ′ we obtain the situation illustrated in figure 3.10, and
bringing Q ′ up to Q on G we obtain our compatible cycle P ∪Q as illustrated in figure
3.11. Observe that in this last figure, A ∪ P, B ∪Q, and P ∪Q are all cycles as expected.
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b = π

β
p

Figure 3.8: The graph G ′′ = A ′′ ∪ B ′′ with P ′′.

Figure 3.9: The graph G ′′ = A ′′ ∪ B ′′ with both P ′′ and Q ′′.

As this worked example shows, the theorem in fact gives an algorithm to generate
(n− 2)!/2 compatible cycles for any 2-regular graph Gwith all even cycles.

Theorem 3.2.6. For an arbitrary 2-regular graphG, there are more than (n−3)! compat-
ible cycles to G. In particular, there are at least (n− 2)!/4 such cycles.

Proof. To start, letO1, . . . ,Ok be the odd cycles of G. Pick a vertex vi from eachOi. Now
we will ‘bandage’ these cycles at the vi in the sense that they will be treated just as a
point along the ‘single edge’ between their neighbours. From this perspective we have
reduced the graph G to a graph G ′ with only even cycles on n − k vertices. Applying
the previous theorem, there are (n− k− 2)!/2 choices for C on the bandaged graph G ′.

Now we must extend C to the full graph. Assume we partition G ′ into a pair of
perfect matchings A ∪ B as before, and assume our compatible cycle decomposes into
a pair of perfect matchings P ∪ Q as before. We would like to do this by, for each vi
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Figure 3.10: The graph G ′ = A ′ ∪ B ′ with both P ′ and Q ′ inherited from G ′′.

Figure 3.11: The graph G = A ∪ B with P and Q. The thick black edges are
A, the thick grey edges are B, the thin black edges are P and the thin dashed
edges are Q.

in turn, picking an edge ww ′ of C and replacing it with wviw ′. As we reroute we
increase the number of edges by one each time, and so there would be (n − k)(n − k +
1) · · · (n − 1) choices of how to extend C. However, not every choice of ww ′ preserves
the compatibility of C. Indeed, as in figure 3.12, if vi sits along an edge in A and the
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edge ww ′ is in P, then P ∪ A will not remain a cycle because vi will have degree 4 in
P∪A. The same would be true for B∪Q if vi were along a bandaged edge in B andww ′

were in Q.

A

B

P

→

Figure 3.12: An example of a bandaged graph consisting of one odd cycle.
The matching Q is not drawn for clarity, and the bandaged vertex is marked
in white. If we extend our choices of A, B, and P to the original graph by
picking the edge ww ′ from P, A ∪ P will not be a cycle.

So, instead of picking an arbitrary edge ww ′, we must pick edges from the correct
choice of P or Q. As we reroute edges and unbandage vertices, A, B, P and Q will not
remain matchings, but this is not a problem, since we only care about A ∪ B, A ∪ P, and
A ∪ Q being cycles, and they still will be. So we begin with (n − k)/2 choices, and at
every step we gain one additional choice in either P or Q. So, if there are kA bandaged
vertices in A and kB bandaged vertices in B, then we will have k = kA+ kB and we will
get a total of (

n− k

2

)(
n− k

2
+ 1
)
· · ·
(
n− k

2
+ kA − 1

)
·
(
n− k

2

)(
n− k

2
+ 1
)
· · ·
(
n− k

2
+ kB − 1

)
choices in total. The smallest this number can be is when kA = kB = k/2, causing the
expression to simplify, giving(

n
2 − 1

)
!2(

n−k
2 − 1

)
!2

=
1

22k/2

(n− 2)!!2

(n− k− 2)!!2

>
1

2k
(n− 2)!

(n− k− 2)!
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choices.

Keeping the vi fixed, note that in the initial choice of decomposition ofG ′ intoA and
B, each vi is either in A or in B. Let us fix a choice of A and B for G ′ with v1 along an
A-edge. Suppose we have a compatible cycleC forG constructed as above based on this
choice ofA and B. Then the edges of C alternate between P andQ except at the vi where
two edges in the same set occur consecutively. Since we know v1 is along an A-edge in
G ′ , the construction above gives that v1 is between two Q-edges in C. Following the
alternation of edges around C, starting with the Q-edges around v1 we can determine
for each vi whether it is surrounded by P-edges or Q-edges. If a vi is surrounded by
P-edges in C then it lies along a B-edge in G ′ and if vi is surrounded by Q edges in C
then it lies along an A-edge in G ′.

This means that knowing a compatible cycle C constructed as described above and
knowing that v1 is along an A-edge in G ′ is enough to determine which vi lie along an
A-edge and which lie along a B-edge in G ′. However, this choice comes from our initial
choice of decomposition of G ′ into A and B. Consequently, different choices of how the
vi are assigned to edges in A and B must give different compatible cycles C. Since the
argument required us to fix v1 along an A-edge, it remains to choose which of A or B
for the vi for 2 6 i 6 k. That is, there remain k − 1 binary choices. Together with the
construction given above for C, this means that we obtain a total of at least

2k−1 · 1
2k

(n− 2)!
(n− k− 2)!

· (n− k− 2)!
2

=
1
4
(n− 2)!

choices for a compatible cycle C. When n > 6 this proves the theorem. For n < 6 we
refer the reader to the explicit computation for small n in [3].

3.3 Breakpoint Graphs

There is a surprising relationship between the enumeration of compatible cycles and
the study of genomic rearrangements in bioinformatics. In [15], the authors give the
following series of definitions reformulating a concept originally appearing in [1].

Definition 3.3.1. Given vertices {0, 1, . . . , 2m, 2m+ 1}, define the perfect matching δG =
{{2i, 2i+ 1} : 0 6 i 6 m}. A configuration is a union δB ∪ δG with δB being another perfect
matching.

Definition 3.3.2. Let δG = {{2i− 1, 2i} : 1 6 i 6 m}∪ {{2m+ 1, 0}}. Given a configuration
δG ∪ δB, define the complement of δG ∪ δB to be δG ∪ δB.
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Definition 3.3.3. A signed permutation π is a permutation of the set {−n,−n + 1, . . . ,
−2,−1, 1, 2, . . . ,n − 1,n} with the property that π(−i) = −π(i). The set of signed per-
mutations on {−n,−n + 1, . . . ,−2,−1, 1, 2, . . . ,n − 1,n} forms a group, which is called
the hyperoctahedral group, denoted S±n .

Definition 3.3.4. Given a signed permutation π : i 7→ ±πi in S±n , transform it into an
unsigned permutation π ′ ∈ S2n by mapping positive πi to the sequence (2πi−1, 2πi) and
negative πi onto the sequence (2πi, 2πi − 1). Define a matching δB(π) := {{π ′2i,π

′
2i+1} :

0 6 i 6 n}. The breakpoint graph of π is the graph BG(π) := δB(π) ∪ δG.

Definition 3.3.5. The signed Hultman number S±H(m,k) is the number of signed permu-
tations onm elements whose breakpoint graph has exactly k disjoint cycles.

The following lemma is proven in [15], and we can use it to relate signed Hultman
numbers to the enumeration of compatible cycles.

Lemma 3.3.6 (Grusea-Labarre). A configuration δB ∪ δG is a breakpoint graph if and
only if the complement δB ∪ δG is a cycle.

Using this lemma, we can improve our bounds from the last section to an exact count
of the compatible cycles in one particular case.

Theorem 3.3.7. The number of compatible cycles to a graph G consisting of n vertices
with n/2-many 2-cycles is exactly

1
2
(n− 2)!!S±H(n/2 − 1, 1).

Proof. First, we claim that the one-cycle breakpoint graphs on n = 2m + 2 vertices
are exactly the compatible cycles to a graph consisting of n/2-many 2-cycles. If C is
a breakpoint graph with one cycle on 2m + 2 vertices, then by lemma 3.3.6, the cycle
C can be written as δB ∪ δG with δB ∪ δG also a cycle, and so C is a compatible cycle
for G = δG ∪ δG, the graph consisting of (2m+ 2)/2 disjoint pairs of double edges. The
other direction of the claim is clear. It is also shown in [15] that the number of breakpoint
graphs onm+ 1 cycles with 2m+ 2 vertices is S±H(m, 1) = S±H(

n
2 − 1, 1).

Finally, we need to consider how many different labellings of G would result in
different families of breakpoint graphs. This is asking, given δG, how many different δG
could it correspond to? This question is answered by lemma 3.2.4: there are (n − 2)!!
such δG. Once again we need to divide by 2 since either of the two matchings could
have been δG. Multiplying everything together gives the result.
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This formula was conjectured by Cachazo and Gomez in [3], where it is also shown
that asymptotically

1
2
(n− 2)!!S±H(n/2 − 1, 1) ∼

π

4
n(n− 3)!.

This means that in the case of a 2-regular graph where all of the cycles have size 2,
comparing this asymptotic with the lower bound of (n − 2)!/2 in theorem 3.2.3 finds a
ratio tending to π/2 as n→∞.
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Chapter 4

Conclusions

In chapter 2 we began with genus-zero maps and demonstrated a cycle of bijections
from quadrangulations with face colourings, to Euler tours of four-regular graphs, to
chord diagrams partitioned into pairs of non-crossing subdiagrams, to maps with a
marked spanning tree. We then lifted this correspondence to higher genera, where the
role of the spanning tree from before was played by a spanning one-face submap. The
partitioned chord diagrams changed as well: in positive genus one of the parts remains
non-crossing as before, but the other has the requirement of being non-crossing when
its chords are drawn in a surface of positive genus, with ends on the boundary of a disk
in that surface.

These genus-g non-crossing chord diagrams, arising from the work in this chapter,
seem completely unstudied in the literature. Some obvious questions arise about the
enumeration of such objects. If Fg(x) is the generating series for genus-g non-crossing
chord diagrams, we would have the relations [xn]Fg(x) 6 [xn]Fg ′(x) whenever g 6 g ′.
We also know that the coefficients of F0(x) are the Catalan numbers and limg→∞ Fg(x) is
the generating function for all chord diagrams. It would be valuable to know a closed
form for Fg(x) in terms of g and x. It would also be valuable to know whether the
genus-g non-crossing chord diagrams admit a characterization in terms of forbidden
subdiagrams for every g. There are many variants of chord diagrams studied in the
literature already, so it would also be valuable to know if there is a direct relationship
with any of these.

The Quadrangulation Conjecture remains open. While new structure was elucidated
by the series of bijections constructed in this thesis, there remains a problem of ‘genus-
reduction‘ whereby a quadrangulation in genus g must be made to correspond to a
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set of maps of all genera from 0 through g − 1, in addition to a map of genus g. We
found some combinatorial suggestions that this also be done through the manipulation
of one-face spanning submaps by re-expressing the coefficient-level formula in terms of
the numbers eTγ(v) of edges of a spanning one-face submap in genus γ with v vertices.
The nature of these manipulations remains elusive, however. Another task that remains
is to relate the work in this document to the work in [2] which provides a bijection in
genus 1. Our focus on spanning one-face submaps also aligns with the literature on so-
called ‘quasitrees’ appearing in, for example, [22]. Work on quasitrees is very focused
on a notion of ‘partial duality’ which may have a fruitful application here if explored in
future work.

In chapter 3 we demonstrated that any two-regular graph G has at least (n − 2)!/4
compatible cycles, i.e., cycles C for which the edge-disjoint union G ∪ C decomposes as
an edge-disjoint union C1 ∪ C2 of two cycles. If the cycles in G are all of even lengths,
we demonstrated that this bound increases to (n−2)!/2. We additionally demonstrated
that our proof of these results can be used to algorithmically construct compatible cycles
in sufficient numbers for any 2-regular graph G.

We also found a connection between our results and some existing literature on ge-
nomic rearrangements in bioinformatics. We used some results from that literature to
find an exact value for the number of compatible cycles to a graph consisting only of
2-cycles, in terms of the signed Hultman numbers S±H(n/2 − 1, 1).

The results of chapter 3 are the first step of two in a possible way of computing gen-
eral Feynman integrals in terms of tree-level integrals in a large class of quantum field
theories including Supersymmetric Yang-Mills theory. The second step, which remains
to be completed, is to demonstrate that enough of the cycles compatible to a particu-
lar graph are orthogonal in the sense that a certain inner product inM0,n computed in
terms of them be zero.
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