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1 Introduction

Cointeractions are a new topic in abstract algebra that attracts wide interest
from mathematicians around the world. Its inherent relation to combinatorial
structures promises applications in many fields such as graph theory and quan-
tum field theory in theoretical physics. For example, in 2008, Damien Calaque,
Kurusch Ebrahimi-Fard, and Dominique Manchon demonstrated the cointerac-
tion between two Hopf algebras on rooted trees[6]. In addition, Mohamed Ayadi
and Dominique Manchon explore the cointeraction of two bialgebras from finite
topologies in their 2020 paper[7]. In 2021, Dirk Kreimer and Karen Yeats con-
structed two Hopf algebras from Feynmann graphs in the quantum physics and
proved their cointeraction[4]. This paper attempts to build up the work by
Kreimer and Yeats and add the order structure on the edges of the graphs they
were studying.

In this paper, we want to develop cointeractions on word bialgebra, specif-
ically, the word bialgebras that show up in studying the fundamental cycles
and order structure on the edges of finite graphs. In Section 2, we want
to set up the algebraic foundation for bialgebras and discuss in detail the
two classic word bialgebras, namely, the concatenation-deshuffle and shuffle-
deconcatenation bialgebras. We also introduce the concept of grading and Hopf
algebra, since many bialgebras that appear naturally in combinatorial struc-
tures are Hopf algebras. In Section 3, we construct the concatenation-deshuffle
bialgebra on two alphabets which has a graph theoretical motivation. How-
ever, when trying to prove the cointeraction on the incidence structure of the
concatenation-deshuffle bialgebra on two alphabets, we run into issues caused
by words’ rigid dependence on orders. We offer two approaches to resolve this
issue and build up the correct cointeraction relation.

2 Algebraic Background

In this section, we will systematically build up the algebraic background for this
paper. Most of the results can be found in [1][2][3]. However, we will supply
most of the proofs and explain how they are related to the results of this paper.
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We will first introduce the concepts of algebra and coalgebra that leads
to the concept of bialgebra. Then we will discuss the concatenation-deshuffle
and shuffle-deconcatenation bialgebras as two examples to illustrate how to
construct and verify the properties of bialgebras. These two bialgebras will be
related to the algebra structure that we are trying to construct in the next
section. Next we will define commutativity and grading in bialgebras, since
they will be important in finding the antipode that we need to construct a Hopf
algebra structure. With all the tools, we will define Hopf algebras. In the final
subsection, we introduce the incidence strucuture that we will utilize in the next
section.

2.1 Algebra and Coalgebra

First we need to introduce the concept of algebra.

Definition 1. An algebra A over a field K is a vector space over K with two
linear maps, the multiplication map m : A⊗A→ A and the unit map u : K → A
such that the following two diagrams commute.

A⊗A⊗A A⊗A

A⊗A A

Id⊗m

m⊗Id m

m

K ⊗A A A⊗K

A⊗A A A⊗A

u⊗Id

a7→1⊗a a7→a⊗1

Id Id⊗u

m m

The first diagram shows that the multiplication map m is associative. For
any a1, a2, a3 ∈ A, we have m(m(a1 ⊗ a2) ⊗ a3) = m(a1 ⊗ m(a2 ⊗ a3)). The
second diagram shows that the algebra behaves like a ring, where m(u(1)⊗a) =
m(a⊗ u(1)) = a for any a ∈ A, so u(1) is the multiplicative identity in A.

Note that the multiplication map here is defined on A ⊗ A instead of the
usual A×A. This definition is valid because of the universal property of tensor
products.

Theorem 1 (Universal Property of Tensor Product). For any algebras A,B and

a bilinear map f : A×A→ B, there exists a unique linear map f̂ : A⊗A→ B
such that f̂ ◦ r = f . Here r is the bilinear map r : A ⊗ A → A ⊗ A such that
r(a1, a2) = a1 ⊗ a2 for any a1, a2 ∈ A.

A×A A⊗A

B

r

f
f̂
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The proof of this universal property depends on the construction of the
vector space A ⊗ A that we will not explore in this paper. From this point
onward, we will use both definitions of multiplications interchangeably.

Tensor products tend to preserve some algebraic structures of factor. For
example, it is easy to verify that if A is an algebra, then A ⊗ A is also an
algebra. However, we will soon find out that we cannot just naively tensor the
operations together to get the correct operation. We need to be careful when
deriving properties of the tensor product from its factors.

Definition 2. A coalgebra C over a field K is a vector space over K with two
linear maps, the coproduct ∆ : C → C⊗C, and the counit map ε : C → K such
that the following two diagrams commute.

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

Id⊗∆

∆⊗Id

∆

∆

K ⊗ C C C ⊗K

C ⊗ C C C ⊗ C

k⊗c7→kc c⊗k 7→kc

ε⊗Id

∆

Id

∆

Id⊗ε

The first diagram shows that the coproduct map ∆ is co-associative, and
the second diagram shows that the coalgebra behaves like a co-ring.

Next we introduce the notion of algebra homomorphism and coalgebra ho-
momorphism.

Definition 3. Let A and B be algebras over K. Then the map f : A → B is
an algebra homomorphism if the following two diagrams commute.

A B

A⊗A B ⊗B

f

mA

f⊗f

mB

K B

A

uB

uA
f

This definition matches our understanding of ring homomorphism. The first
diagram shows that the product of the map equals the map of the product, and
the second diagram shows that f maps a unit in A to a unit in B.

Definition 4. Let C and D be coalgebras over K. Then the map g : C → D is
a coalgebra homomorphism if the following two diagrams commute.

3



C D

C ⊗ C D ⊗D

g

∆C ∆D

g⊗g

C D

K

g

εC
εD

Similar to our discussion above, the coalgebra homomorphism g matches our
understanding of co-ring homomorphism.

Theorem 2. If a vector space B is simultaneously an algebra and a coalgebra
over K, then the product and unit are coalgebra homomorphisms if and only if
the coproduct and counit are algebra homomorphisms.

Proof. First we want to show the sufficiency. If the coproduct is an algebra
homomorphism, then the following four diagrams commute. Note that the unit
map from K to K is the identity map.

B B ⊗B

B ⊗B B ⊗B ⊗B ⊗B

∆

m

∆⊗∆

m13,24

K B ⊗B

B

uB⊗B

u ∆

B K

B ⊗B K ×K

ε

m

ε⊗ε

mK

K K

B

Id

u ε

We introduce the map m1,3,2,4 : A⊗A⊗A⊗A→ A⊗A⊗A⊗A such that

m1,3,2,4(a1 ⊗ a2 ⊗ a3 ⊗ a4) = a1 ⊗ a3 ⊗ a2 ⊗ a4,

and letm13,24 = (m⊗m)◦m1,3,2,4. We introduce this map instead of usingm⊗m
directly because m13,24 is the multiplication deduced with the universal property
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of tensor product and the original multiplication map m̂ : B ⊗ B × B ⊗ B →
B⊗B multiplies the first and third terms, and second and fourth terms together
respectively. If we use m ⊗ m directly, then the first and second terms, and
third and fourth terms are multiplied together respectively, which is not the
multiplication map we would get from the universal property of tensor product.

Hence, we have

∆ ◦m = (m13,24) ◦ (∆⊗∆) = (m⊗m) ◦m1,3,2,4 ◦ (∆⊗∆),

∆ ◦ u = uB⊗B ,

ε ◦m = mK ◦ (ε⊗ ε),
ε ◦ u = Id .

We know that the counit map from K to K is the identity map. Let ∆13,24 =
m1,3,2,4 ◦ (∆⊗∆). The following two diagrams commute.

B ⊗B B

B ⊗B ⊗B ⊗B B ⊗B

m

∆13,24 ∆

m⊗m

K B

K

u

Id
ε

The map m1,3,2,4 is also required in writing out the coproduct of B ⊗ B.
By the universal property of tensor product, we want the terms from first B to
occupy the first and third positions and the terms from second B to occupy the
second and fourth positions.

Now we look at the other two diagrams.

B ⊗B B

K

m

εB⊗B
ε

K B

K ⊗K B ⊗B

u

∆K ∆

u⊗u

Since the coalgebra B⊗B is the tensor product of the coalgebra B, we have
εB⊗B = mK ◦ (ε ⊗ ε). Hence, we have ε ◦m = mK ◦ (ε ⊗ ε) = εB⊗B and the
diagram commutes.
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Since K is a one-dimensional vector space over K with the basis {1}, we
can see that K ⊗ K is also a one-dimensional vector space over K with the
basis {1⊗ 1}. By the definition of coalgebra, the coproduct ∆K can only map
1 to 1 ⊗ 1, and by the universal property of vector spaces, ∆K is defined over
K. Since the algebra B ⊗ B is the tensor product of the algebra B, we have
uB⊗B = (u⊗ u) ◦∆K . Hence, we have ∆ ◦ u = uB⊗B = (u⊗ u) ◦∆K and the
diagram commutes.

Therefore, if the coproduct and counit are algebra homomorphisms, then
the product and unit are coalgebra homomorphisms.

We note that sixth diagram is the same as the fourth diagram up to rotation.
In addition, ∆ ◦m = (m ⊗m) ◦ ∆13,24 = (m ⊗m) ◦m1,3,2,4 ◦ (∆ ⊗ ∆) is the
same as ∆ ◦ m = (m13,24) ◦ (∆ ⊗ ∆) = (m ⊗ m) ◦ m1,3,2,4 ◦ (∆ ⊗ ∆). By
our previous discussion, we can see that the second diagram is the same as the
eighth diagram and the third diagram is the same as the seventh diagram, so
the necessity follows.

With the definitions of algebra, coalgebra and algebra homomorphism, we
are able to define bialgebra.

Definition 5. If the vector space B is both an algebra and a coalgebra over K
and the coproduct and counit are algebra homomorpisms, then B is a bialgebra
over K.

2.2 Concatenation-Deshuffle and Shuffle-Deconcatenation
Bialgebras

We want to introduce the two bialgebras that we are discussing in this paper.
LetW be the set of all words over an alphabet Ω, and let W = spanKW be the
vector space of formal linear combinations of words. By the definition of W , we
can see that W is a basis of W .

First we can define the concatenation-deshuffle bialgebra. It suffices to define
the multiplication map m̂ over the basisW⊗W. For any w1⊗w2 ∈ W⊗W, let
m̂(w1 ⊗w2) be the concatenation of w1 and w2 and i be the inclusion map. By
the universal property of vector spaces, there exists a unique linear map m which
we define as the multiplication for the bialgebra. We call this multiplication
concatenation.

W ⊗W W ⊗W

W

i

m̂ m

Similarly, we define coproduct ∆̂ over the the basis W. For any non-empty
word a1 · · · an ∈ W, where a1, . . . , an ∈ Ω, n ∈ Z+, we let the ∆̂ be the deshuffle
map such that

∆̂(a1 · · · an) =
∑

I⊂{1,...,n}

aI ⊗ a{1,...,n}\I ,
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where aI is a subword of a1 · · · an consisting of letters indexed by I. We define
∆̂(E) = E ⊗ E , where E is the empty word. For example, we have

∆̂(aba) = E ⊗ aba+ a⊗ ba+ b⊗ aa+ a⊗ ab+ ab⊗ a+ aa⊗ b+ ba⊗ a+ aba⊗E ,

where a, b ∈ Ω. By the universal property of vector spaces, there exists a unique
linear map ∆ which we define as the coproduct for the bialgebra. We call this
coproduct deshuffle.

W W

W ⊗W

i

∆̂
∆

For any k ∈ K, we can define the unit map u(k) = kE where E is the empty
word. We define the counit ε̂ over the basis W. Let ε̂(E) = 1 and ε̂(w) = 0 for
any non-empty word w ∈ W. By the universal property of vector spaces, there
exists a unique linear map ε which we define as the counit for the bialgebra.

W W

K

i

ε̂ ε

We need to verify that our W constructed in the way described above is
indeed a bialgebra. By the universal property of vector spaces, we only need to
verify that the diagrams in the definition of bialgebras commute over the basis
of W .

For any w1, w2, w3 ∈ W, we can see that m is associative, since

m(m(w1 ⊗ w2)⊗ w3) = w1w2w3 = m(w1 ⊗m(w2 ⊗ w3)),

where w1w2w3 is the concatenation of w1, w2, w3 in that order.
For any w ∈ W, we have Id⊗u(w⊗1) = w⊗E , so m(w⊗E) = w. Similarly,

we have u⊗Id(1⊗w) = E⊗w, so m(E⊗w) = w. Both diagrams in the definition
commute, so W is an algebra.

If w = E , we have (∆ ◦ Id) ◦∆(w) = E ⊗ E ⊗ E = (Id ◦∆) ◦∆(w). For any
w = a1 · · · an ∈ W where n ∈ Z+, we have

(∆ ◦ Id) ◦∆(w) =
∑

I,J,K disjoint,I∪J∪K={1,...,n}

aI ⊗ aJ ⊗ aK = (Id ◦∆) ◦∆(w),

so ∆ is co-associative.
For any w ∈ W, we have (Id⊗ε) ◦∆(w) = w ⊗ 1, since all summands other

than w⊗E are mapped to 0 because ε maps all non-empty words to 0. We have
1·w = w = Id(w). Following the same argument, we have (ε⊗Id)◦∆(w) = 1⊗w,
and 1 · w = w = Id(w). Both diagrams in the definition commute, so W is a
coalgebra.
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For any k ∈ K, we have u(k) = kE , so ε ◦ u(k) = kε(E) = k = Id(k).
For any w1, w2 ∈ W, if w1 or w2 is empty (without loss of generality, we can

assume that w1 = E), then

ε ◦m(w1 ⊗ w2) = ε(w2) = 1 · ε(w2) = ε(w1)ε(w2) = mK ◦ (ε⊗ ε)(w1 ⊗ w2).

If w1 and w2 are non-empty, then m(w1 ⊗ w2) is also non-empty, so

ε ◦m(w1 ⊗ w2) = 0 = 0 · 0 = ε(w1)ε(w2) = mK ◦ (ε⊗ ε)(w1 ⊗ w2).

We conclude that the counit ε is an algebra homomorphism.
For any k ∈ K, we have ∆ ◦ u(k) = k∆(E) = kE ⊗ E = uW⊗W (k).
For any w1, w2 ∈ W, if w1 or w2 is empty (without loss of generality, we

can assume that w1 = E), then ∆ ◦ m(w1 ⊗ w2) = ∆(w2). We can see that
∆ ⊗ ∆(w1 ⊗ w2) = E ⊗ E ⊗ ∆(w2) and m13,24(E ⊗ E ⊗ ∆(w2)) = ∆(w2) =
∆◦m(w1⊗w2). For any w1 = a1 · · · ak, w2 = ak+1 · · · ak+l ∈ W where k, l ∈ Z+,
we have

∆ ◦m(w1 ⊗ w2) =
∑

I∈{1,...,k+l}

aI ⊗ a{1,...,k+l}\I ,

and

m13,24 ◦ (∆⊗∆)(w1 ⊗ w2)

=m13,24(
∑

I∈{1,...,k}

∑
J∈{k+1,...,k+l}

aI ⊗ a{1,...,k}\I ⊗ aJ ⊗ a{k+1,...,k+l}\J)

=
∑

I∈{1,...,k},J∈{k+1,...,k+l}

aI∪J ⊗ a{1,...,k+l}\(I∪J)

=∆ ◦m(w1 ⊗ w2)

We conclude that the coproduct ∆ is an algebra homomorphism. Therefore, W
constructed on concatenation and deshuffle is indeed a bialgebra.

We can also define the shuffle-deconcatenation bialgebra structure on W .
Similar to our discussion above, by the universal property of vector spaces, it
suffices to define the multiplication map m̂ over the basis W ⊗ W. For any
w1, w2 ∈ W, let m̂(w1, w2) = sum of all words formed by shuffling w1 and w2.
If w1 = E , then m̂(w1, w2) = w2 and if w2 = E , then m̂(w1, w2) = w1. If
w1 = u1 · · ·uk, w2 = uk+1 · · ·uk+l ∈ W where k, l ∈ Z+, then

m̂(w1, w2) =
∑

σ permutes {1,...,k+l}
σ−1(1)<···<σ−1(k)

σ−1(k+1)<···<σ−1(k+l)

uσ(1) · · ·uσ(k+l),

. We denote the multiplication from the universal property of vector spaces as
� and call it shuffle. Then we have the following examples,

uv� x = uvx+ uxv + xuv,
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uv� ux =uvux+ uuvx+ uuvx+ uuxv + uuxv + uxuv

=uvux+ 2uuvx+ 2uuxv + uxuv.

Next we define the coproduct over the basis W. Let ∆̂(E) = E ⊗ E . For any
w = u1 · · ·uk where k ∈ Z+, we have

∆̂(w) = E ⊗ w + w ⊗ E +

k−1∑
i=1

u1 · · ·ui ⊗ ui+1 · · ·uk.

We call the coproduct from the universal property of vector spaces deconcate-
nation, and we have the following examples,

∆(aba) = E ⊗ aba+ aba⊗ E + a⊗ ba+ ab⊗ a,

where a, b ∈ Ω.
We use the same definitions of unit and counit in the concatenation-deshuffle

bialgebra.
We also want to verify that shuffle and deconcatenation do introduce a bial-

gebra structure. For any w1, w2, w3 ∈ W, if any of the three word is empty, then
we have (w1�w2)�w3 = w1� (w2�w3) since both of them equal to the shuf-
fle product of the other two words. If w1 = u1 · · ·uj , w2 = uj+1 · · ·uj+k, w3 =
uj+k+1 · · ·uj+k+l ∈ W where j, k, l ∈ Z+, since the composition of two permu-
tation is still a permutation, we have

(w1�w2)�w3 =
∑

σ permutes {1,...,j+k+l}
σ−1(1)<···<σ−1(j)

σ−1(j+1)<···<σ−1(j+k)

σ−1(j+k+1)<···<σ−1(j+k+l)

uσ(1) · · ·uσ(j+k+l) = w1�(w2�w3).

Hence, the shuffle product is associative.
For any w ∈ W, we have Id⊗u(w⊗1) = w⊗E , so m(w⊗E) = w. Similarly,

we have u⊗Id(1⊗w) = E⊗w, so m(E⊗w) = w. Both diagrams in the definition
commute, so W is an algebra.

For any w ∈ W, we have

(∆⊗ Id) ◦∆(w) =
∑

w1,w2,w3∈W,w1w2w3=w

w1 ⊗ w2 ⊗ w3 = (Id⊗∆) ◦∆(w),

so ∆ is co-associative.
For any w ∈ W, we have (Id⊗ε) ◦∆(w) = w ⊗ 1, since all summands other

than w⊗E are mapped to 0 because ε maps all non-empty words to 0. We have
1·w = w = Id(w). Following the same argument, we have (ε⊗Id)◦∆(w) = 1⊗w,
and 1 · w = w = Id(w). Both diagrams in the definition commute, so W is a
coalgebra.

For any w1, w2 ∈ W, we can see that w1�w2 = E if and only if w1 = w2 = E .
Following the same argument as in the concatenation-deshuffle bialgebra, we can
see that ε is an algebra homomorphism.
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For any k ∈ K, we have ∆ ◦ u(k) = k∆(E) = kE ⊗ E = uW⊗W (k).
For any w1, w2 ∈ W, if w1 or w2 is empty (without loss of generality, we

can assume that w1 = E), then ∆ ◦ m(w1 ⊗ w2) = ∆(w2). We can see that
∆ ⊗ ∆(w1 ⊗ w2) = E ⊗ E ⊗ ∆(w2) and m13,24(E ⊗ E ⊗ ∆(w2)) = ∆(w2) =
∆◦m(w1⊗w2). For any w1 = a1 · · · ak, w2 = ak+1 · · · ak+l ∈ W where k, l ∈ Z+,
we have

∆ ◦m(w1 ⊗ w2) =

k+l∑
i=0

∑
σ permutes {1,...,k+l}

aσ(1) · · · aσ(i) ⊗ aσ(i+1) · · · aσ(k+l),

where σ−1(1) < · · · < σ−1(k) and σ−1(k + 1) < · · · < σ−1(k + l). We have

∆⊗∆(w1⊗w2) =
k∑
i=0

l∑
j=0

a1 · · · ai⊗ai+1 · · · ak⊗ak+1 · · · ak+j⊗ak+j+1 · · · ak+l.

We can see that every summand in ∆ ◦ m(w1 ⊗ w2) is also in m13,24 ◦ (∆ ⊗
∆)(w1 ⊗ w2) since we can choose the first and third terms such that their
product can be permuted to give the first term in ∆ ◦m(w1 ⊗w2). The second
term in ∆ ◦ m(w1 ⊗ w2) can be obtained in a similar way. We can see that
every summand in m13,24 ◦ (∆ ⊗ ∆)(w1 ⊗ w2) is also in ∆ ◦ m(w1 ⊗ w2) by
choosing the appropriate permutation σ. We conclude that ∆ is also an algebra
homomorphism. Therefore, W constructed on shuffle and deconcatenation is
indeed a bialgebra.

2.3 Commutativity and Grading

Next we want to introduce the transposition operation τ : A⊗A→ A⊗A such
that τ(a1⊗a2) = a2⊗a1. We can see that m1,3,2,4 = Id⊗τ ⊗ Id. In addition to
moving the factors around so that the correct factors are multiplied together,
the transposition operation can also be used to define the commutativity of
algebra.

Definition 6. An algebra A is commutative if the following diagram commutes.

A⊗A A⊗A

A

τ

m m

Similarly, we can define the cocommutativity of coalgebra.

Definition 7. A coalgebra C is cocommutative if the following diagram com-
mutes.

C

C ⊗ C C ⊗ C

∆
∆

τ
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We know that the concatenation operation is not commutative. For example
m(a ⊗ b) = ab 6= ba = m(b ⊗ a) where a, b ∈ Ω. Hence, the concatenation-
deshuffle bialgebra is not commutative. However, the deshuffle operation is
cocommutative. For any non-empty word a1 · · · an ∈ W, where a1, . . . , an ∈
Ω, n ∈ Z+, we have

∆(a1 · · · an) =
∑

I⊂{1,...,n}

aI ⊗ a{1,...,n}\I .

For any summand aI ⊗ a{1,...,n}\I , let J = {1, . . . , n}\I, and we can see that
aJ ⊗a{1,...,n}\J = a{1,...,n}\I ⊗aI is also a summand. Hence, the concatenation-
deshuffle bialgebra is cocommutative.

Similarly, by definition, we can see that the shuffle operation is commutative
whereas the deconcatenation operation is not cocommutative. Therefore, the
shuffle-deconcatenation bialgebra is commutative but not cocommutative.

Next we introduce the concept of grading of a bialgebra. We need the concept
of grading of a vector space first.

Definition 8. A vector space V over a field K is graded (or Z≥0-graded to be
more precise) if it has a direct sum decomposition V =

⊕∞
i=0 Vi, where V1, V2, . . .

are vector spaces over K. For any i ∈ Z≥0, the vector space Vi is called the
graded piece of degree i and the elements of Vi are called homogeneous of degree
i.

We observe that if V is a graded vector space, then V ⊗ V is also graded.
Specifically, the graded piece of degree n is

(V ⊗ V )n =

n⊕
j=0

Vj ⊗ Vn−j

for any n ∈ Z≥0.
Let Wn be the set of words over the alphabet Ω with length n where n ∈

Z≥0, and let Wn = spanKWn. We have W =
⋃∞
i=0Wn and we can see that

W =
⊕∞

i=0Wn, so W is graded with Wi being the graded piece of degree i for
any i ∈ Z≥0.

Specifically, we want to define the connected graded vector spaces, which
will be useful in proving a theorem coming up later.

Definition 9. A graded vector space V over K is connected if V0
∼= K.

Since W0 = spanK{E} ∼= K, we can see that W is a connected graded vector
space.

In addition, we can see that any vector space V is trivially graded if we let
V0 = V and Vi = {0} for any i ∈ Z+. However, this trivial grading is usually
not helpful when we consider graded linear maps.

Definition 10. A linear map f : V → W , where V and W are graded vector
spaces, is graded if f(Vn) ⊂Wn for any n ∈ Z≥0.
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With graded vector spaces and graded linear maps, we can define graded
algebras, graded coalgebras and graded bialgebras.

Definition 11. An algebra, coalgebra, or bialgebra is graded if the underlying
vector space and all the defining maps are graded.

As we discussed before, for any n ∈ Z≥0, the graded piece of degree n of
W ⊗W is

⊕n
j=0Wj⊗Wn−j . With our definition of concatenation-deshuffle and

shuffle-deconcatenation bialgebras, we can see that both multiplications map
the graded piece of degree n of W ⊗W to the graded piece of degree n of W ,
and both coproducts map the graded piece of degree n of W to the graded piece
of degree n of W ⊗W . Therefore, both bialgebra are graded.

We want to prove the following results about the graded connected bialge-
bras, which will be referred to later.

Theorem 3. Let A =
⊕∞

n=0An be a graded connected bialgebra over K.

1. u : K → A0 is an isomorphism.

2. ε|A0
is the inverse to the isomorphism in 1.

3. ker ε =
⊕∞

n=1An.

4. For any x ∈ ker ε, ∆(x) = E ⊗ x + x ⊗ E + ∆̃(x) where E = u(1) and
∆̃(x) ∈ ker ε⊗ ker ε.

Proof. 1. Since A is connected, we have A0
∼= K, so there exists u1 ∈ A0

such that m(u1 ⊗ x) = m(x ⊗ u1) = x for any x ∈ A0. By the definition
of algebra, we have m(u(1) ⊗ x) = m(x ⊗ u(1)) = x for any x ∈ A.
Since A0 ⊂ A and the multiplicative identity is unique in A0, we have
u1 = u(1). Since A0

∼= K, any element in A0 can be expressed as ku1 for
some k ∈ K and we have u(k) = ku(1) = ku1, so u : K → A0 is surjective.
In addition, the only solution to 0 = ku1 = ku(1) = u(k) is k = 0, so the
map is injective. Since u : K → A0 is an algebra homomorphism, it is an
isomorphism.

2. Since ε is an algebra homomorphism, in the proof of Theorem 2, we have
shown that ε ◦ u = Id. Since any element in A0 can be expressed as ku(1)
for some k ∈ K, we have u◦ε(ku(1)) = ku◦(ε◦u)(1) = ku(1), so u◦ε = Id.
Hence, ε|A0

is the inverse to u : K → A0.

3. Suppose that for some x ∈
⊕∞

n=1An, ε(x) = k 6= 0 for some k ∈ K,
then x = ku(1) = ku1 ∈ A0. Since x 6= 0, it contradicts the definition of
direct sum. Suppose ε(ku1) = 0 for some ku1 ∈ A0 where k 6= 0, we have
0 = kε ◦ u(1) = k, which is a contradiction. Hence, ker ε =

⊕∞
n=1An.

4. For any x ∈ ker ε, x cannot be expressed as kE for some nonzero k ∈ K,
so x ⊗ E 6= E ⊗ x by part 3. Since (Id⊗ε) ◦ ∆(x) = x ⊗ 1, there is
a x ⊗ E summand in ∆(x). Similarly, since (ε ⊗ Id) ◦ ∆(x) = 1 ⊗ x,
there is a E ⊗ x summand in ∆(x). For any other summand x1 ⊗ x2 of
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∆(x), where x1, x2 ∈ A, we have Id ◦ε(x1 ⊗ x2) = 0 = ε ◦ Id(x1 ⊗ x2),
so x1 ⊗ x2 ∈ ker ε ⊗ ker ε. Since ker ε ⊗ ker ε is a vector space, we have

˜∆(x) ∈ ker ε⊗ ker ε.

For a bialgebra A and a ∈ A, if ∆(a) = a ⊗ a, then we say that the el-
ement a is group-like. We can easily see that the only group-like element in
both concatenation-deshuffle and shuffle-deconcatenation bialgebras is E . For a
bialgebra A and a ∈ A, if ∆(a) = E ⊗ a + a⊗ E , then we say that the element
a is primitive. If ∆(a) = E ⊗ a+ a⊗ E + ∆̃(a), then we call E ⊗ a+ a⊗ E the
primitive part.

2.4 Hopf Algebra

Before we define Hopf algebras, we want to introduce the concept of the convo-
lution product.

Definition 12. For any algebra A and coalgebra C, let f, g : C → A be linear
maps. The convolution product of f and g is

f ? g = m ◦ (f ⊗ g) ◦∆.

In addition, we need to introduce a linear map called the antipode to define
Hopf algebras.

Definition 13. A bialgebra B is a Hopf algebra if there exists a linear map S :
B → B, which we call the antipode, such that the following diagram commutes.

B ⊗B B ⊗B

B K B

B ⊗B B ⊗B

S⊗Id

m∆

ε

∆

u

Id⊗S

m

By the definition of convolution product, we can see that this diagram shows
that the antipode has to satisfy the relation S ? Id = Id ?S = u ◦ ε.

We want to determine whether the concatenation-deshuffle bialgebra and
the shuffle-deconcatenation bialgebra are Hopf algebras. Since we have shown
before that both bialgebras are graded and connected, we could use the following
proposition to help us find the antipode.

Theorem 4. 1. For any Hopf algebra A, the antipode S is an algebra anti-
automorphism, i.e., S is an algebra isomorphism, S(E) = E and S(ab) =
S(b)S(a) for any a, b ∈ A.

2. For any Hopf algebra A, if A is commutative or cocommutative then S◦S =
Id.
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3. For any graded connected bialgebra A, A has a unique antipode S which is
determined recursively. In addition, S is a graded map, so A is a graded
Hopf algebra.

The proof of this theorem can be found in Section 1.4 of [1]. However, since
the third statement gives information about the antipode, which is required to
prove whether a bialgebra is a Hopf algebra, we will go through the proof of
that statement in detail. In particular, the proof gives us the recursive relation
with which we can compute the antipode.

Proof. Since A is graded, we have A =
⊕∞

n=0An. Since A is connected, we have
A0
∼= K. Since S(E) = E ∈ A0, by the universal property of vector spaces, we

can see that S|A0 = Id. For any x ∈ An where n ∈ Z+, by Theorem 3, we have
∆(x) = E ⊗ x+ x⊗ E + ∆̃(x), where ∆̃(x) ∈ ker ε⊗ ker ε. We can write

∆̃(x) =
∑
i

xi,1 ⊗ xi,2.

By our discussion of the grading of the tensor product of vector spaces before,
we know that xi,1 and xi,2 are homogeneous of degrees strictly less than n and
the degrees add up to n.

Since x ∈ ker ε by Theorem 3, we have

0 = u ◦ ε(x) = S ∗ Id(x) = x+ S(x) +
∑
i

S(xi,1)xi,2,

so
S(x) = −x−

∑
i

S(xi,1)xi,2.

With this recursive relation, we can determine S. Since the base case is S(x) =
−x, and the degree of xi,1 and xi,2 add up to n, we can see that S is graded.

By induction, we can show that the antipode for both bialgebras is

S(w1 · · ·wk) = (−1)kwk · · ·w1,

for any w1 · · ·wk ∈W where k ∈ Z≥0.

2.5 Incidence Structure

In order to introduce the incidence structure, we need to first define intervals
inside a poset.

Definition 14. Let (P,≤) be a partially ordered set (poset). An interval in P
is a nonempty subposet of the form

[x, y] = {z ∈ P | x ≤ z ≤ y},

for any x, y ∈ P . We denote the set of all intervals in P as int(P ).
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When defining an incidence structure on a poset, we want the poset to be
locally finite.

Definition 15. A poset is locally finite if all its intervals are finite.

We can introduce the following incidence coalgebra strucutre on locally finite
posets.

Definition 16. Let P be a locally finite poset and C = spanK int(P ) be the
vector space over K constructed from the basis int(P ). The incidence coalgebra
of P is the coalgebra C with the coproduct

∆([x, y]) =
∑

z∈[x,y]

[x, z]⊗ [z, y],

and the counit

ε([x, y]) =

{
1 if x = y

0 if x 6= y
,

for any [x, y] ∈ int(P ).

We need to check that C is indeed a coalgebra. Similar to our discussion
on the concatenation-deshuffle and shuffle-deconcatenation bialgebras, by the
universal property of vector spaces, we need to verify the properties of the
coalgebra only on the basis.

For any [x, y] ∈ C, where x, y ∈ P , We can see that

(∆⊗ Id) ◦∆([x, y]) =
∑

w,z∈P,x≤w≤z≤y

[x,w]⊗ [w, z]⊗ [z, y] = (Id⊗∆) ◦∆([x, y]),

so ∆ is co-associative.
For any [x, y] ∈ C, where x, y ∈ P , we have (Id ◦ε) ◦ ∆([x, y]) = [x, y] ⊗ 1,

since any summand [x, z] ⊗ [z, y] is mapped to 0 by Id⊗ε if z 6= y. We have
1 · [x, y] = [x, y] = Id([x, y]). Similarly, we have (ε ◦ Id) ◦∆([x, y]) = 1 ⊗ [x, y],
and 1 · [x, y] = [x, y] = Id([x, y]). Therefore, we conclude that C is indeed a
coalgebra.

We can also introduce the incidence algebra structure on locally finite posets.
However, the definitions will be a bit involved and we will not use the multi-
plication associated with the incidence algebra. Therefore, we will skip further
discussion on the incidence structure.

3 Word Bialgebras and Cointeraction

3.1 Concatenation-Deshuffle Bialgebra on Two Disjoint
Alphabets

We can try to develop the concatenation-deshuffle bialgebra and construct a
similar structure on two disjoint alphabets.
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Let Ω and Ω′ be two disjoint alphabets. Let W be the set of all words over
the alphabet Ω∪Ω′, and let W = spanKW be the vector space of formal linear
combinations of words over the field K. By the definition of W , we can see that
W is a basis of W .

Note that if there were no additional restriction, we could define a new
alphabet Γ = Ω ∪ Ω′ such that W would become the same concatenation-
deshuffle bialgebra described in the previous section. We want to introduce a
correspondence relation between the letters from two different alphabets.

Consider the map f : Ω→ P(Ω′), where P(Ω′) = {S | S ⊂ Ω′} is the power
set of Ω′, which maps each letter in Ω to the set of letters it corresponds to in
Ω′. Note that for each a ∈ Ω in w, the letters of f(a) also appear in w, and
we choose particular copies of the letters of f(a) and consider that they are
associated with that particular a.

For example, let Ω = {a1, a2} and Ω′ = {b1, b2, b3}. Let f(a1) = {b1, b2} and
f(a2) = {b1, b2, b3}. Without further explanation, for the sake of consistency,
ai will be letters in Ω and bj will be letters in Ω′ for any i, j ∈ Z+ for this whole
paper. We consider the word w = a1b1b2a2b1b3 ∈ W, where a1 corresponds to
b1, b2 of indices 2, 3 and a2 corresponds to b1, b2, b3 of indices 5, 3, 6 (Note that
the same letter in Ω′ inside a word can be associated with multiple different
letters in Ω inside that word; here b2 of index 3 is associated with both a1

of index 1 and a2 of index 4). The map f is insufficient to determine the
exact correspondence relation within each word. We can see that there are two
different b1’s in w. If a1 corresponds to b1, b2 of indices 5, 3 and a2 corresponds
to b1, b2, b3 of indices 2, 3, 6, we have a difference correspondence relation that
also satisfies f .

For any w = w1 · · ·wk ∈ W where k ∈ Z+, we introduce the map f̃w :
{1, . . . , k} → P({1, . . . , k}) to determine uniquely the correspondence relation
within the word w. For any i = 1, . . . , k, if wi ∈ Ω, let f̃w(i) be the set of
indices of the one copy of elements of f(wi) that wi corresponds to. If wi 6∈ Ω,
let f̃w(i) = ∅. For the word w that we described above, we have f̃w(1) = {2, 3},
f̃w(4) = {3, 5, 6}, and f̃w(2) = f̃w(3) = f̃w(5) = f̃w(6) = ∅.

Although these two new maps make the correspondence uniquely determined
within each word, the map f introduces restrictions on the underlying vector
space with which we are going to construct the bialgebra structure. For example,
with our previous Ω, Ω′ and f , we can see that w = a1 is not a valid word
anymore, since the associated letters b1 and b2 are missing. In addition, we do
not want letters in Ω′ that are not associated with any letter in Ω, so with our
previous Ω, Ω′ and f , we want to exclude words such as w = b1b2. Hence, if a
valid word has only one letter in Ω, all letters in Ω′ will be associated with that
letter in Ω. In this case there is only one way to define f̃ , and we will omit it in
the following discussion. Let Wf be the set of all valid words over the alphabet
Ω∪Ω′ with respect to f , and let Wf = spanKWf be the vector space of formal
linear combinations of words over the field K. By the defintion of Wf , we can
see that Wf is a basis of Wf .
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a1 a2

a3

a4b1

b2

b3

b4

The definition of the bialgebra Wf and the maps f
have graph theoretical motivation. The detail of the def-
inition can be found in [4]. We will briefly go over an
example to illustrate the relation to graph theory. For
the graph G on the left, we fix a spanning tree T . We
associate each edge in T with a letter in Ω′ and each
edge not in T with a letter in Ω. Since T is the span-
ning tree of G, adding an additional edge e would create
a unique cycle C. We call this cycle C the fundamen-

tal cycle of the edge e. For any edge e not in the spanning tree T , we want
{e}∪f(e) to be the fundamental cycle of e. Hence, we have f(a1) = {b1, b2, b4},
f(a2) = {b3, b4}, f(a3) = {b1, b2}, and f(a4) = {b2, b3}. Every word consisting
of a1, . . . , a4, b1, . . . , b4 gives an ordering of the edges in the graph. Note that
there are a few key differences between the graph theoretical motivation and our
bialgebra. First, letters in Ω can only appear once in this situation, while they
can appear multiple times in the words in our bialgebra. Moreover, if we remove
the edges a1 and a2 from the previous graph, then b4 becomes an unassociated
letter in Ω′, which is excluded in our definition.

Similar to the concatenation on one alphabet, it suffices to define the multi-
plication map m̂ over the basisWf ⊗Wf . Let m̂ be the concatenation of words.
We can easily see that the concatenation of two words in Wf is still in Wf with
the unique correspondence relation preserved in both subwords. Let i be the
inclusion map. By the universal property of vector spaces, there exists a unique
linear map m which we define as the multiplication for the bialgebra. We call
this multiplication concatenation.

Wf ⊗Wf Wf ⊗Wf

Wf

i

m̂ m

For example, let w1 = a1b1b2a2b1b3 be the word described above and w2 =
a1b1b2a2b3 where f̃w2

(1) = {2, 3}, f̃w2
(4) = {2, 5}, and f̃w2

(2) = f̃w2
(3) =

f̃w2(5) = ∅. We have w3 = m(w1⊗w2) = a1b1b2a2b1b3a1b1b2a2b3 with f̃w3(1) =
{2, 3}, f̃w3(4) = {3, 5, 6}, f̃w3(7) = {8, 9}, f̃w3

(10) = {8, 11}, and f̃w3
(2) =

f̃w3
(3) = f̃w3

(5) = f̃w3
(6) = f̃w3

(8) = f̃w3
(9) = f̃w3

(11) = ∅.
Similarly, by the universal property of vector spaces, we can define the co-

product ∆̂ on the basis Wf to obtain the unique coproduct map ∆ : Wf →
Wf ⊗Wf .

Wf Wf

Wf ⊗Wf

i

∆̂
∆

It is difficult to write out an exact expression for this coproduct, but the
idea is easy to grasp. The coproduct ∆ deshuffles the word with respect to
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the alphabet Ω and puts letters in the alphabet Ω′ in the result in a way such
that the correspondence relation and the relative position are preserved. For
example, we have

∆(w1) = a1b1b2a2b1b3⊗E+E⊗a1b1b2a2b1b3+a1b1b2⊗b2a2b1b3+b2a2b1b3⊗a1b1b2

and

∆(w2) = a1b1b2a2b3 ⊗ E + E ⊗ a1b1b2a2b3 + a1b1b2 ⊗ b1a2b3 + b1a2b3 ⊗ a1b1b2.

This definition of coproduct explains why we want to exclude unassociated let-
ters in Ω′. If we concatenate w1 with unassociated b1b2, then the question
about where to put unassociated b1b2 in the coproduct of this word will become
problematic.

We have ∆(E) = E ⊗ E , and for any w ∈ Wf in which there are n letters in
Ω for any n ∈ Z+, we have

∆(w) =
∑

I⊂{1,...,n}

w∗I ⊗ w∗{1,...,n}\I ,

where w∗I is the word formed from w by choosing all i-th letters in Ω for i ∈ I
and filling in letters from Ω′ in a way such that the correspondence relation and
the relative position are preserved.

We use the same definitions of unit and counit in the concatenation-deshuffle
bialgebra on one alphabet.

We need to verify that our Wf constructed in the way described above is
indeed a bialgebra. By the universal property of vector spaces, we only need to
verify that the diagrams in the definition of bialgebras commute over the basis
of Wf .

For any w1, w2, w3 ∈ Wf , we can see that m is associative since

m(m(w1 ⊗ w2)⊗ w3) = w1w2w3 = m(w1 ⊗m(w2 ⊗ w3)).

For any w ∈ Wf , we have Id⊗u(w⊗ 1) = w⊗E , so m(w⊗E) = w = Id(w).
Similarly, we have u ⊗ Id(1 ⊗ w) = E ⊗ w, so m(E ⊗ w) = w = Id(w). Both
diagrams in the definition commute, so Wf is an algebra.

If w = E , we have (∆ ◦ Id) ◦∆(w) = E ⊗ E ⊗ E = (Id ◦∆) ◦∆(w). For any
w ∈ Wf in which there are n letters in Ω, where n ∈ Z+, we have

(∆ ◦ Id) ◦∆(w) =
∑

I,J,K disjoint,I∪J∪K={1,...,n}

w∗I ⊗ w∗J ⊗ w∗K = (Id ◦∆) ◦∆(w),

so ∆ is co-associative.
For any w ∈ Wf , we have (Id⊗ε) ◦∆(w) = w⊗ 1, since all summands other

than w⊗E are mapped to 0 because ε maps all non-empty words to 0. We have
1·w = w = Id(w). Following the same argument, we have (ε⊗Id)◦∆(w) = 1⊗w,
and 1 · w = w = Id(w). Both diagrams in the definition commute, so W is a
coalgebra.
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For any w ∈ Wf , we have (Id⊗ε) ◦∆(w) = w⊗ 1, since all summands other
than w⊗E are mapped to 0 because ε maps all non-empty words to 0. We have
1·w = w = Id(w). Following the same argument, we have (ε⊗Id)◦∆(w) = 1⊗w,
and 1 · w = w = Id(w). Both diagrams in the definition commute, so W is a
coalgebra.

For any k ∈ K, we have u(k) = kE , so ε ◦ u(k) = kε(E) = k = Id(k).
For any w1, w2 ∈ Wf , if w1 or w2 is empty (without loss of generality, we

can assume that w1 = E), then

ε ◦m(w1 ⊗ w2) = ε(w2) = 1 · ε(w2) = ε(w1)ε(w2) = mK ◦ (ε⊗ ε)(w1 ⊗ w2).

If w1 and w2 are non-empty, then m(w1 ⊗ w2) is also non-empty, so

ε ◦m(w1 ⊗ w2) = 0 = 0 · 0 = ε(w1)ε(w2) = mK ◦ (ε⊗ ε)(w1 ⊗ w2).

We conclude that the counit ε is an algebra homomorphism.
For any k ∈ K, we have ∆ ◦ u(k) = k∆(E) = kE ⊗ E = uWf⊗Wf

(k).
For any w1, w2 ∈ Wf , if w1 or w2 is empty (without loss of generality, we

can assume that w1 = E), then ∆ ◦ m(w1 ⊗ w2) = ∆(w2). We can see that
∆ ⊗ ∆(w1 ⊗ w2) = E ⊗ E ⊗ ∆(w2) and m13,24(E ⊗ E ⊗ ∆(w2)) = ∆(w2) =
∆ ◦m(w1 ⊗w2). For any w1, w2 ∈ Wf where there are k letters in Ω in w1 and
l letters in Ω′ in w2, k, l ∈ Z+, we have

∆ ◦m(w1 ⊗ w2) =
∑

I∈{1,...,k+l}

w1w2
∗
I ⊗ w1w2

∗
{1,...,k+l}\I ,

and

m13,24 ◦ (∆⊗∆)(w1 ⊗ w2)

=m13,24(
∑

I∈{1,...,k}

∑
J∈{k+1,...,k+l}

w∗1I ⊗ w
∗
1{1,...,k}\I ⊗ w

∗
2J ⊗ w

∗
2{k+1,...,k+l}\J)

=
∑

I∈{1,...,k},J∈{k+1,...,k+l}

w1w2
∗
I∪J ⊗ w1w2

∗
{1,...,k+l}\(I∪J)

=∆ ◦m(w1 ⊗ w2).

We conclude that the coproduct ∆ is an algebra homomorphism. Therefore, W
constructed on concatenation and deshuffle is indeed a bialgebra.

We can see that the proof is very similar to the concatenation-deshuffle bial-
gebra on one algebra. This similarity is understandable since in our definition,
all letters in Ω′ are associated with letters in Ω. In the definition of coproduct,
we deshuffle with respect to Ω and bring letters in Ω′ accordingly for the ride.

We could also try to define the shuffle-deconcatenation bialgebra on Ω and
Ω′ that are correlated with the map f . However, we immediately run into the
similar problem about unassociated letters in Ω′ that we tried to exclude in the
definition. For example, let w1 = b1a1b2a2, where f̃w1

(2) = {1, 3}, f̃w1
(4) = {3},

and f̃w1
(1) = f̃w1

(3) = ∅, and w2 = a3b3. If we try to define w1 � w2 as the
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shuffle product with respect to letters in Ω and with letters in Ω′ filled in to
preserve the correspondence relation and the relative position, then there is no
way of filling in b1, b2, b3 into a1a3a2 that would make sense. Therefore, the
shuffle-deconcatenation bialgebra cannot be extended to two alphabets in the
same way as the concatenation-deshuffle bialgebra.

Next we can check the commutativity of Wf . Let w1 = a1b1 and w2 = a2b2.
We have m(w1 ⊗ w2) = a1b1a2b2 6= a2b2a1b1 = m(w2 ⊗ w1), so Wf is not
commutative. For any non-empty word w with n letters in Ω, where n ∈ Z+,
we have

∆(w) =
∑

I⊂{1,...,n}

w∗I ⊗ w∗{1,...,n}\I .

For any summand w∗I ⊗ w∗{1,...,n}\I , let J = {1, . . . , n}\I, and we can see that
w∗J ⊗w∗{1,...,n}\I = w∗{1,...,n}\I ⊗w

∗
I is also a summand. Hence, Wf is cocommu-

tative.
Furthermore, we want to check whether Wf is a Hopf algebra. We could

check whether the antipode S(w) = (−1)kwR for any w ∈ Wf would work,
where k is the length of w and WR is the reverse of the word w. Let w = a1b1a2,
where f̃w(1) = f̃w(3) = {2} and f̃w(2) = ∅. We have

∆(w) = a1b1a2 ⊗ E + E ⊗ a1b1a2 + a1b1 ⊗ b1a2 + b1a2 ⊗ a1b1,

so

(S ⊗ Id) ◦∆(w) = −a2b1a1 ⊗ E + E ⊗ a1b1a2 + b1a1 ⊗ b1a2 + a2b1 ⊗ a1b1,

and thus

S ? Id(w) = −a2b1a1 + a1b1a2 + b1a1b1a2 + a2b1a1b1.

We also have u◦ε(w) = u(ε(w)) = 0 6= (S⊗Id)◦∆(w), so S is not an antipode of
Wf . The main reason why this definition fails is that the concatenation product
of each summand can be of different length when a letter in Ω′ is associated
with multiple letters in Ω.

We could check the grading of Wf first. By Theorem 4, any graded connected
bialgebra is a graded Hopf algebra and has a unique antipode that can be
determined recursively.

Unlike the concatenation-deshuffle bialgebra on one alphabet, Wf is not
graded on the length of words. If we were to grade the bialgebra on the length of
words, w = a1b1a2 described above would be homogeneous of degree 3. However,
the coproduct ∆(w) = a1b1a2⊗E+E⊗a1b1a2+a1b1⊗b1a2+b1a2⊗a1b1 would be
homogeneous of degree 4 becuase of the summands a1b1⊗ b1a2 and b1a2⊗a1b1,
so the coproduct map would not be graded. As we have discussed before, this
situation happens when a letter in Ω′ is associated with multiple letters in Ω.

Since the coproduct is based on deshuffling with respect to Ω, one natural
way to fix this issue is to try to grade the bialgebra on the number of letters
in Ω. Let Wf,n be the set of words in Wf with n letters in Ω, and let Wf,n =
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spanKWf,n. We can see that Wf =
⊕∞

n=0Wf,n, so the vector space Wf is
graded. Specifically, we can see that Wf,0 = {E}, so Wf,0

∼= K.
The graded piece of degree n for Wf ⊗Wf is

⊕n
j=0Wf,j ⊗Wf,n−j for any

n ∈ Z≥0. For any w1⊗w2 ∈Wf,i⊗Wf,j of degree (i+j), where i, j ∈ Z≥0, w1 has
i letters in Ω and w2 has j letters in Ω, so the concatenation product m(w1⊗w2)
has (i+j) letters in Ω and is of degree (i+j). Hence, the concatenation product
map is graded. We can see that ∆(E) = E ⊗ E where both E and E ⊗ E are of
degree 0. For any w ∈Wf,n of degree n, where n ∈ Z+, we have

∆(w) =
∑

I⊂{1,...,n}

w∗I ⊗ w∗{1,...,n}\I .

By definition w∗I is of degree |I| and w∗{1,...,n}\I is of degree (n − |I|), so any

summand w∗I ⊗w∗{1,...,n}\I is of degree n (here |I| is the cardinality of I). Hence,
the coproduct is graded. We conclude that Wf is a graded connected bialgebra.
By Theorem 4, Wf is a graded Hopf algebra.

For any w ∈ Wf with n letters in Ω where n ∈ Z+, we have ε(w) = 0, so
w ∈ ker ε. By the proof of Theorem 4, we have

S(w) = −w −
∑
i

S(wi,1)wi,2

where ∆̃(w) =
∑
i wi,1 ⊗ wi,2 is the non-primitive part of ∆(w).

Consider the example w = a1b1a2, where f̃w(1) = f̃w(3) = {2} and f̃w(2) =
∅. We have

S(w) = −w − S(a1b1)b1a2 − S(b1a2)a1b1 = −a1b1a2 + a1b1b1a2 + b1a2a1b1.

As we can see, S(w) has no clear relation to w, so there is no clean expression
for antipode for Wf .

3.2 Incidence Structure on the Concatenation-Deshuffle
Bialgebra on Two Disjoint Alphabets

For any word w ∈ W, let Iw be the set of indices of letters in Ω′. We can see
that P(Iw) is a poset. Since w is of finite length, Iw is also finite, so any interval
in P(Iw) and thus P(Iw) is locally finite.

Let
WI =

⊕
w∈Wf

spanK{(w, [A,B]) | [A,B] ∈ int(P(Iw))},

and Cw = spanK int(P(Iw)), and we can see that WI ∼=
⊕

w∈Wf
Cw. We can

see that WI is a vector space over K with the basis

B =
⋃

w∈Wf

{(w, [A,B]) | [A,B] ∈ int(P(Iw))}.
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By our discussion in Section 2.5, we can introduce an incidence coalgebra struc-
ture on WI with the coproduct

δ(w, [A,B]) =
∑

A⊂C⊂B
(w, [A,C])⊗ (w, [C,B]),

and the counit

εδ(w, [A,B]) =

{
1 if A = B

0 if A 6= B
,

for any (w, [A,B]) ∈ B (we only gave the definition on the basis, but both
the coproduct and counit can be extended by the universal property of vector
spaces).

B WI

WI ⊗WI

i

δ̂
δ

B WI

K

i

ε̂δ εδ

This incidence structure also has graph theoretical motivation. Let us con-
sider the relation between Wf and the graphs described in 3.1. We are attaching
an interval [A,B] to a word w. Note that [A,B] is an interval in the power set
of the edges of the spanning tree T . The edges in A are to be contracted and the
edges in E(T )\B are to be removed from the spanning tree. We can get a span-
ning forest from these changes. This spanning forest induces a cut of the graph,
since with any edge between different components of the forest having been cut,
the resulting components have the different trees of the spanning forest as their
spanning trees.

Instead of using the multiplication map from the incidence algebra structure,
we want to define the multiplication map in the following way.

m((w1, [A,B])⊗ (w2, [C,D])) = (w1w2, [A ∪ C∗, B ∪D∗]),

for any w1, w2 ∈ Wf , [A,B] ∈ int(P(Iw1
)), and [C,D] ∈ int(P(Iw2

)), where
C∗ = C + |w1|, D∗ = D + |w1|, and |w1| is the length of w1.

For example, let w1 = a1b1b2 and w2 = b1a2b3, and we have

m((w1, [{3}, {2, 3}])⊗ (w2, [{1}, {1, 3}])) = (a1b1b2b1a2b3, [{3, 4}, {2, 3, 4, 6}]).

We want to make sure that m : V ⊗ V → V has the property that the
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underlying vector space V is the same as WI. We can see that the basis of V is⋃
w∈Wf

⋃
[A,B]∈int(P(Iw))

{(w, [A,B])}

=
⋃

w∈Wf

{(w, [A,B]) | [A,B] ∈ int(P(Iw))} = B,

so V = WI.
We can also introduce another coproduct ∆ based on the deshuffle coproduct

of Wf . For any w ∈ Wf and [A,B] ∈ int(P(Iw)), we define the coproduct on B

∆̂(w, [A,B]) =
∑
i

(wi,1, [Awi,1 , Bwi,1 ])⊗ (wi,2, [Awi,2 , Bwi,2 ]),

where ∆(w) =
∑
i wi,1 ⊗ wi,2 for the coproduct on the concatenation-deshuffle

bialgebra on two alphabets, and Awi,1 (similarly for Bwi,1 , Awi,2 and Bwi,2) is
A restricted to letters in Ω′ in wi,1 with indices adjusted accordingly. By the
universal property of vector spaces, there exists a unique linear map on WI
which we define as the coproduct ∆.

B WI

WI ⊗WI

i

∆̂
∆

For example, let w = a1b1b2a2b3 ∈ Wf where f̃w2(1) = {2, 3}, f̃w2(4) =

{2, 5}, and f̃w2
(2) = f̃w2

(3) = f̃w2
(5) = ∅. We have

∆(w, [{3}, {2, 3}]) =(a1b1b2a2b3, [{3}, {2, 3}])⊗ (E , [∅,∅])

+ (E , [∅,∅])⊗ (a1b1b2a2b3, [{3}, {2, 3}])
+ (a1b1b2, [{3}, {2, 3}])⊗ (b1a2b3, [∅, {1}])
+ (b1a2b3, [∅, {1}])⊗ (a1b1b2, [{3}, {2, 3}]).

For any (w, [A,B]) ∈ B, we define the counit on ε̂∆(w, [A,B]) = 1 if w = E
and ε̂∆(w, [A,B]) = 0 if w is non-empty. By the universal property of vector
spaces, there exists a unique counit map ε∆.

B WI

K

i

ε̂∆ ε∆

We define the unit map u for both (WI,m, δ) and (WI,m,∆) such that
u(k) = k(E , [∅,∅]).

We want to verify that both (WI,m, δ) and (WI,m,∆) are bialgebras. By
the universal property of vector spaces, we only need to verify that the diagrams
in the definition of bialgebras commute over the basis B.
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For any (w1, [A1, A2]), (w2, [B1, B2]), (w3, [C1, C2]) ∈ B, we have

m(m((w1, [A1, A2])⊗ (w2, [B1, B2]))⊗ (w3, [C1, C2]))

=(w1w2w3, [(A1 ∪B∗1) ∪ C∗1 , (A2 ∪B∗2) ∪ C∗2 ]),

and

m((w1, [A1, A2])⊗m((w2, [B1, B2])⊗ (w3, [C1, C2])))

=(w1w2w3, [A1 ∪ (B1 ∪ C∗1 )∗, A2 ∪ (B2 ∪ C∗2 )∗]).

We can see that (A1 ∪B∗1) ∪C∗1 = A1 ∪ (B1 ∪C∗1 )∗ (likewise (A2 ∪B∗2) ∪C∗2 =
A2 ∪ (B2 ∪C∗2 )∗), since all indices in B1 are shifted to the right by |w1| and all
indices in C1 are shifted to the right by |w1|+ |w2|, so m is associative.

For any (w, [A,B]) ∈ B, we have

m ◦ (Id⊗u)((w, [A,B])⊗ 1) = m((w, [A,B])⊗ (E , [∅,∅])) = (w, [A,B]),

and similarly,

m ◦ (u⊗ Id)((w, [A,B])⊗ 1) = m((E , [∅,∅])⊗ (w, [A,B])) = (w, [A,B]).

We conclude that (WI,m, δ) and (WI,m,∆) are both algebras.
For any (w, [A,B]) ∈ B, We can see that

(δ ⊗ Id) ◦ δ(w, [A,B]) =
∑

A⊂C⊂D⊂B
(w, [A,C])⊗ (w, [C,D])⊗ (w, [D,B])

=(Id⊗δ) ◦ δ(w, [A,B]),

so δ is co-associative.
For any (w, [A,B]) ∈ B, we have (Id ◦εδ) ◦ δ((w, [A,B])) = (w, [A,B]) ⊗ 1,

since any summand (w, [A,C])⊗ (w, [C,B]) is mapped to 0 by Id⊗εδ if C 6= B.
We have 1·(w, [A,B]) = (w, [A,B]) = Id(w, [A,B]). Similarly, we have (εδ ◦Id)◦
δ(w, [A,B]) = 1 ⊗ (w, [A,B]), and 1 · (w, [A,B]) = (w, [A,B]) = Id(w, [A,B]).
Therefore, we conclude that (WI,m, δ) is indeed a coalgebra.

For any (w, [A,B]) ∈ B, We can see that

(∆⊗ Id) ◦∆(w, [A,B])

=
∑
i

(wi,1, [Awi,1 , Bwi,1 ])⊗ (wi,2, [Awi,2 , Bwi,2 ])⊗ (wi,3, [Awi,3 , Bwi,3 ])

=(Id⊗∆) ◦∆(w, [A,B]),

where (∆⊗ Id) ◦∆(w) =
∑
i wi,1 ⊗ wi,2 ⊗ wi,3, so ∆ is co-associative.

For any (w, [A,B]) ∈ B, we have (Id ◦ε∆) ◦∆((w, [A,B])) = (w, [A,B])⊗ 1,
since any summand (wi,1, [Awi,1 , Bwi,1 ])⊗(wi,2, [Awi,2 , Bwi,2 ]) is mapped to 0 by
Id⊗εδ if wi,2 is non-empty. We have 1 · (w, [A,B]) = (w, [A,B]) = Id(w, [A,B]).
Similarly, we have (ε∆ ◦ Id) ◦ δ(w, [A,B]) = 1⊗ (w, [A,B]), and 1 · (w, [A,B]) =
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(w, [A,B]) = Id(w, [A,B]). Therefore, we conclude that (WI,m,∆) is indeed a
coalgebra.

For any k ∈ K, we have u(k) = k(E , [∅,∅]), so εδ ◦ u(k) = kεδ(E , [∅,∅]) =
k = Id(k) and ε∆ ◦ u(k) = kε∆(E , [∅,∅]) = k = Id(k).

For any (w1, [A,B]), (w2, [C,D]) ∈ B, if A = B or C = D (without loss
of generality, we can assume that A = B), then εδ(w1w2, [A ∪ C∗, B ∪ D∗]) =
εδ(w2, [C,D]), so

εδ ◦m((w1, [A,B])⊗ (w2, [C,D])) = εδ(w1w2, [A ∪ C∗, B ∪D∗])
=εδ(w2, [C,D]) = 1 · εδ(w2, [C,D]) = εδ(w1, [A,B])εδ(w2, [C,D])

=mK ◦ (ε∆ ⊗ ε∆)((w1, [A,B])⊗ (w2, [C,D])).

If A 6= B and C 6= D, then A ∪ C∗ 6= B ∪D∗, so

εδ ◦m((w1, [A,B])⊗ (w2, [C,D])) = 0 = 0 · 0 = εδ(w1, [A,B])εδ(w2, [C,D])

=mK ◦ (εδ ⊗ εδ)((w1, [A,B])⊗ (w2, [C,D])).

We conclude that counit εδ is an algebra homomorphism.
For any (w1, [A,B]), (w2, [C,D]) ∈ B, if w1 or w2 is empty (without loss of

generality, we can assume that w1 = E), then

ε∆ ◦m((w1, [A,B])⊗ (w2, [C,D])) = ε∆(w2, [C,D]) = 1 · ε∆(w2, [C,D])

=ε∆(w1, [A,B])ε∆(w2, [C,D]) = mK ◦ (ε∆ ⊗ ε∆)((w1, [A,B])⊗ (w2, [C,D])).

If w1 and w2 are non-empty, then w1w2 is also non-empty, so

ε∆ ◦m((w1, [A,B])⊗ (w2, [C,D])) = 0 = 0 · 0 = ε∆(w1, [A,B])ε∆(w2, [C,D])

=mK ◦ (ε∆ ⊗ ε∆)((w1, [A,B])⊗ (w2, [C,D])).

We conclude that the counit ε∆ is an algebra homomorphism.
For any k ∈ K, we have

δ ◦ u(k) = kδ(E , [∅,∅]) = k(E , [∅,∅])⊗ (E , [∅,∅]) = uWI⊗WI(k).

For any (w1, [A,B]), (w2, [C,D]) ∈ B, we have

δ ◦m((w1, [A,B])⊗ (w2, [C,D]))

=
∑

A∪C∗⊂E⊂B∪D∗
(w1w2, [A ∪ C∗, E])⊗ (w1w2, [E,B ∪D∗]),
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and

m13,24 ◦ (δ ⊗ δ)((w1, [A,B])⊗ (w2, [C,D]))

=m13,24(
∑

A⊂F⊂B
C⊂G⊂D

(w1, [A,F ])⊗ (w1, [F,B])⊗ (w2, [C,G])⊗ (w2, [G,D])

=
∑

A⊂F⊂B
C⊂G⊂D

(w1w2, [A ∪ C∗, F ∪G∗])⊗ (w1w2, [F ∪G∗, B ∪D∗])

=
∑

A∪C∗⊂E⊂B∪D∗
(w1w2, [A ∪ C∗, E])⊗ (w1w2, [E,B ∪D∗])

=δ ◦m((w1, [A,B])⊗ (w2, [C,D])),

since A ∪ C∗ ⊂ F ∪ G∗ ⊂ B ∪ D∗, and we can let E = F ∪ G∗. We conclude
that the coproduct δ is an algebra homomorphism. Therefore, (WI,m, δ) is a
bialgebra.

For any k ∈ K, we have

∆ ◦ u(k) = k∆(E , [∅,∅]) = k(E , [∅,∅])⊗ (E , [∅,∅]) = uWI⊗WI(k).

For any (w1, [A,B]), (w2, [C,D]) ∈ B, we have

∆ ◦m((w1, [A,B])⊗ (w2, [C,D]))

=
∑
i

(w1w2i,1, [(A ∪ C∗)w1w2i,1
, (B ∪D∗)w1w2i,1

])

⊗ (w1w2i,2, [(A ∪ C∗)w1w2i,2
, (B ∪D∗)w1w2i,2

]),

where ∆(w1w2) =
∑
i w1w2i,1 ⊗ w1w2i,2, and

m13,24 ◦ (∆⊗∆)((w1, [A,B])⊗ (w2, [C,D]))

=m13,24(
∑
i,j

(w1i,1, [Aw1i,1
, Bw1i,1

])⊗ (w1i,2, [Aw1i,2
, Bw1i,2

])

⊗ (w2j,1, [Cw2j,1
, Dw2j,1

])⊗ (w2j,2, [Cw2j,2
, Dw2j,2

]))

=
∑
i,j

(w1i,1w2j,1, [Aw1i,1
∪ C∗w2j,1

, Bw1i,1
∪D∗w2j,1

])

⊗ (w1i,2w2j,2, [Aw1i,2
∪ C∗w2j,2

, Bw1i,2
∪D∗w2j,2

])

=
∑
i

(w1w2i,1, [(A ∪ C∗)w1w2i,1
, (B ∪D∗)w1w2i,1

])

⊗ (w1w2i,2, [(A ∪ C∗)w1w2i,2
, (B ∪D∗)w1w2i,2

])

=∆ ◦m((w1, [A,B])⊗ (w2, [C,D])),

where ∆(w1) =
∑
i w1i,1 ⊗ w1i,2 and ∆(w2) =

∑
j w2j,1 ⊗ w2j,2. The last

equality holds since w1w2i,1 factor (similarly for w1w2i,2) can be obtained by
concatenating certain w1i,1 and w2j,1, and the indices in the intervals move along
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with the words while always pointing to the same letters in Ω. We conclude
that the coproduct ∆ is an algebra homomorphism. Therefore, (WI,m,∆) is a
bialgebra.

Next we want to check the grading structure of (WI,m,∆). Let WIn =
spanK{(w, [A,B]) ∈ B | w has n letters in Ω}. We have WI =

⊕∞
n=0WIn, so

the vector space WI is graded. Specifically, we can see that {(w, [A,B]) ∈ B |
w has 0 letters in Ω} = {(E , (∅,∅))}, so WI0 ∼= K.

The graded piece of degree n for WI ⊗WI is

n⊕
i=0

WIi ⊗WIn−i

for any n ∈ Z≥0. For any (w1, [A,B]) ⊗ (w2, [C,D]) ∈ WIi ⊗WIj of degree
(i+ j) where i, j ∈ Z≥0, w1 has i letters in Ω and w2 has j letters in Ω, so w1w2

in m((w1, [A,B])⊗ (w2, [C,D]) = (w1w2, [A∪C∗, B ∪D∗]) has (i+ j) letters in
Ω and is of degree (i+ j). Hence, the multiplication map m is graded. For any
(w, [A,B]) ∈WIn where n ∈ Z≥0, we have

∆(w, [A,B]) =
∑
i

(wi,1, [Awi,1 , Bwi,1 ])⊗ (wi,2, [Awi,2 , Bwi,2 ]),

where ∆(w) =
∑
i wi,1⊗wi,2. We can see that the sum of number of letters in Ω

in wi,1 and wi,2 is (i+ j) for every summand in the coproduct, so the coproduct
∆ is graded. We conclude that (WI,m,∆) is a graded connected bialgebra. By
Theorem 4, (WI,m,∆) is a graded Hopf algebra. As we have shown in Section
3.1, Wf does not have a clean expression for its antipode. (WI,m,∆) does
not have a clean expression for its antipode either, since the coproduct is still a
deshuffle with respect to letters in Ω with indices adjusted accordingly.

We want to check the grading on (wI,m, δ). Consider the coproduct

δ(w, [A,B]) =
∑

A⊂C⊂B
(w, [A,C])⊗ (w, [C,B]),

for any (w, [A,B]) ∈WI. We define the length of an interval |[A,B]| = |B|−|A|.
If WI =

⊕∞
i=0WIi, we want

δ(WIn) ⊂
n⊕
i=0

WIi ⊗WIn−i

for any n ∈ Z≥0, and only grading on the length of the intervals would sat-
isfy this relation, and |A,B]| = |[A,C]| + |[C,B]| for every summand in the
coproduct.

Let

WIn =
⊕
w∈Wf

spanK{(w, [A,B]) | [A,B] ∈ int(P(Iw)), |[A,B]| = n}.
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We can see that WI =
⊕∞

i=0WIi, so the vector space WI is graded. However,
we have (E , [∅,∅]), (a1b1b2, [{2}, {2}]), (a1b1b2, [{3}, {3}]) ∈ WI0 and they are
distinct basis elements, so WI0 6∼= K.

For any (w1, [A,B])⊗ (w2, [C,D]) ∈WIi⊗WIj of degree (i+ j) where i, j ∈
Z≥0, we have |[A,B]| = i and |[C,D]| = j and m((w1, [A,B])⊗ (w2, [C,D])) =
(w1w2, [A ∪ C∗, B ∪D∗]), so

|[A ∪ C∗, B ∪D∗]| = |B ∪D∗| − |A ∪ C∗| = |B|+ |D| − |A| − |C| = i+ j

and m((w1, [A,B]) ⊗ (w2, [C,D])) is of degree (i + j). We conclude that the
multiplication map m is graded. Therefore, (WI,m, δ) is a graded bialgebra
but not connected. We do not know whether (WI,m, δ) is a Hopf algebra.

3.3 Cointeraction

A more detailed explanation of cointeration between bialgebras and its applica-
tions can be found in [4][5]. For the purpose of this paper, we give the definition
of cointeraction between a pair of bialgebras below.

Definition 17. A pair of bialgebras in cointeraction is a pair (A,mA,∆), and
(B,mB , δ) of bialgebras with a (right) coation ρ : A→ A⊗B of B on A such that
the product, coproduct, counit, and unit of A are morphisms of right comodules.
In other words,

• ρ(EA) = EA ⊗ EB and for any a, b ∈ A, ρ(ab) = ρ(a)ρ(b): ρ is an algebra
morphism.

• (∆⊗ Id) ◦ ρ = m1,3,24 ◦ (ρ⊗ ρ) ◦∆ where m1,3,24 is a linear map m1,3,24 :
A⊗B⊗A⊗B → A⊗A⊗B such that m1,3,24(a1⊗b1⊗a2⊗b2) = a1⊗a2⊗b1b2
for any a1, a2 ∈ A and b1, b2 ∈ B.

• For any a ∈ A, (εA ⊗ Id) ◦ ρ(a) = εA(a)EB.

We can see that m1,3,24 = (Id⊗ Id⊗m)⊗m1,3,2,4. Similar to our discussion
on the algebra homomorphism, we have the transposition map m1,3,2,4. The
map m1,3,24 is important in the definition of cointeraction. For any a ∈ A, we
can see that (∆⊗ Id) ◦ ρ(a) ∈ A⊗A⊗B and (ρ⊗ ρ) ◦∆(a) ∈ A⊗B ⊗A⊗B.
Therefore, the map m1,3,24 is required to move the elements in A into the correct
positions and multiply the elements in B together.

We can check whether the pair of bialgebras (WI,m,∆) and (WI,m, δ) with
ρ = δ are in cointeraction.

We have shown in Section 3.2 that the coproduct δ is an algebra homomor-
phism, so the first property is satisfied.

For any (w, [A,B]) ∈ B, we have

(ε∆ ⊗ Id) ◦ δ(w, [A,B]) =
∑

A⊂C⊂B
ε∆(w, [A,C])⊗ (w, [C,B]),
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so (ε∆ ⊗ Id) ◦ δ(w, [A,B]) = 0 if w is non-empty and (ε∆ ⊗ Id) ◦ δ(w, [A,B]) =
(E , [∅,∅]) if w = E . The right hand side is 0 if w is non-empty, and (E , [∅,∅])
if w = E , so the third property is satisfied.

Now we want to check the second property. For any (w, [A,B]) ∈ B, we have

(δ ⊗ δ) ◦∆(w, [A,B])

=
∑
i

Awi,1⊂C⊂Bwi,1
Awi,2⊂D⊂Bwi,2

(wi,1, [Awi,1 , C])⊗ (wi,1, [C,Bwi,1 ])

⊗ (wi,2, [Awi,2 , D])⊗ (wi,2, [D,Bwi,2 ]),

so

m1,3,24 ◦ (δ ⊗ δ) ◦∆(w, [A,B])

=
∑
i

Awi,1⊂C⊂Bwi,1
Awi,2⊂D⊂Bwi,2

(wi,1, [Awi,1 , C])⊗ (wi,2, [Awi,2 , D])

⊗ (wi,1wi,2, [C ∪D∗, Bwi,1 ∪B∗wi,2 ]),

and we have

(∆⊗ Id) ◦ δ(w, [A,B])

=
∑
i

A⊂E⊂B

(wi,1, [Awi,1 , Ewi,1 ])⊗ (wi,2, [Awi,2 , Ewi,2 ])⊗ (w, [E,B]),

where ∆(w) =
∑
i wi,1 ⊗wi,2. Given Ewi,1 and Ewi,2 , we can choose C = Ewi,1

and D = Ewi,2 , such that the first two factors in the tensor product are equal.
Given C and D, we can choose E such that Ewi,1 = C and Ewi,2 = D such
that the first two factors in the tensor product are equal. However, in the
third factor of the tensor product, wi,1wi,2 is not necessarily equal to w. For

example, let w = a1b1a2, where f̃w(1) = f̃w(3) = {2} and f̃w(2) = ∅. We have
∆(w) = a1b1a2 ⊗ E + E ⊗ a1b1a2 + a1b1 ⊗ b1a2 + b1a2 ⊗ a1b1, but a1b1b1a2 6=
a1b1a2 6= b1a2a1b1. In fact, if w ∈ Wf has two or more different letters in Ω,
we will always have summand w1 ⊗w2 in the coproduct where w1 and w2 each
have at least one letter in Ω and w1 6= w2, and then w1w2 = w2w1. Therefore,
the pair of bialgebras (WI,m,∆) and (WI,m, δ) is not in cointeration.

The cause of this issue is that when the deshuffle operation in the coproduct
takes apart a word with respect to letters in Ω, we lose the information about
how the parts fit together, so the multiplication map fails to reconstruct the
original word. There are two ways in which we can resolve this issue, either
by introducing an equivalence relation such that the multiplication map gives a
word that is equivalent to the original word, or by introducing global information
such that the multiplication map is able to give back the original word.

Let us consider the first approach. We introduce the irreducible decomposi-
tion D such that D(E , [∅,∅]) = (E , [∅,∅]) and for any (w, [A,B]) ∈ B with n
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letters in Ω, where n ∈ Z+, D((w, [A,B])) returns a tensor product in
⊗n

i=1WI
equivalent up to permutation of factors, where each factor (wi, [Awi , Bwi ]),
which we call a singleton, contains only one letter in Ω in wi for any i = 1, . . . , n.
These singletons are obtained by obtained by recursively applying deshuffling
coproduct to each factor of the tensor product until there is only the primitive
part. By the universal property of vector spaces, the definition of D can be
extended to WI. For example, let w = a1b1b2a2b3a3 where f̃w(1) = {2, 3},
f̃w(4) = {2, 5}, f̃w(6) = {3}, and f̃w2

(2) = f̃w2
(3) = f̃w2

(5) = ∅. We have

D(a1b1b2a2b3a3, [{3}, {2, 3}])
=(a1b1b2, [{3}, {2, 3}])⊗ (b1a2b3, [∅, {1}])⊗ (b2a3, [{1}, {1}]).

Note that the irreducible decomposition D is similar to the prime factorization
of integers.

We define the equivalence relation ∼ such that for any a, b ∈ WI, a ∼ b
if D(a) = D(b). By the universal property of quotient spaces, all the maps
discussed above are uniquely defined in the quotient space WI/ ∼. With the
choice of C,D,E described above, we have (wi,1wi,2, [C ∪D∗, Bwi,1 ∪B∗wi,2 ]) =
(w, [E,B]) since they have the same irreducible decomposition. With the second
property also satisfied, we can claim that the pair of bialgebras (WI/ ∼,m,∆)
and (WI/ ∼,m, δ) is in cointeraction. We can see that this quotient structure
completely subverts the structure of words. Since words corresponds to order-
ings of edges in a graph, this quotient structure also removes the order structure
on the graph. We observe that without the order structure on the graph, our
cointeraction relates back to the cointeraction by generators in [4].

The second approach is to give a global order when we define the multiplica-
tion. We want to introduce an additional restriction that for any (w, [A,B]) ∈ B
each letter in Ω in w appear only once. We introduce a global order wg ∈ Wf

in which each letter in the alphabet Ω appears exactly once. We also have the
global association map f̃wg that associates letters in Ω′ in wg with letters in Ω.
Then all the valid words are formed by taking some letters in Ω from wg and
filling in letters from Ω′ in a way that preserves the correspondence relation and
the relative position. We keep the definitions of ∆, δ, ε∆, εδ and u and change
the multiplication map m. For any (w1, [A,B]), (w2, [C,D]) ∈ RWI (RWI is
restricted WI in the way described above), let m((w1, [A,B])⊗ (w2, [C,D])) =
(w1 ∪w2, [(A∪C)†, (B ∪D)†]), where w1 ∪w2 is the word formed by taking the
union of letters in Ω in w1 and w2 and filling in letters from Ω′ in a way that
preserves the correspondence relation and the relative position with respect to
wg, and (A ∪ C)† (or similarly (B ∪ D)†) is the set of indices of letters in Ω′

pointed to by A and C adjusted with respect to the new word w1∪w2. Following
the similar proofs as before, we can show that (RWI,m,∆) and (RWI,m, δ)
are bialgebras.

For example, consider the graph G that we gave in 3.1 and let

wg = a1b1b2b4a3a2b3a4,

and f̃wg (1) = {2, 3, 4}, f̃wg (5) = {2, 3}, f̃wg (6) = {4, 7}, f̃wg (8) = {3, 7}, and
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f̃wg (2) = f̃wg (3) = f̃wg (4) = f̃wg (7). We have m((a1b1b2b4a2b3, [{2}, {2, 3}]) ⊗
(b1b2b4a3a2b3, [{6}, {1, 6}])) = (a1b1b2b4a3a2b3, [{2, 7}, {2, 3, 7}]).

With this new definition of the multiplication map m, we have

m((wi,1, [C,Bwi,1 ])⊗(wi,2, [D,Bwi,2 ])) = (wi,1∪wi,2, [(C∪D)†, (Bwi,1∪Bwi,2)†]]).

By our choice of C,D,E before, we havem((wi,1, [C,Bwi,1 ])⊗(wi,2, [D,Bwi,2 ])) =
(w, [E,B]), so the second property is satisfied. Since the definitions of ∆, δ, ε∆, εδ
and u are kept the same, the first and the third properties still hold. Therefore,
we conclude that the pair of bialgebras (RWI,m,∆) and (RWI,m, δ) are in
cointeraction.

Note that with the modification, the bialgebras in both approaches become
commutative. The commutativity is required for the third factors in the tensor
products to be equal. Compare to the first approach, the second approach
preserves the order structure on the graph. However, if the alphabets are big,
we would have to maintain an extremely long word wg.

The multiplication, coproduct, unit, and counit maps of the bialgebras men-
tioned in this paper can be summarized into the following two tables.

Multiplication Coproduct
Concatenation-Deshuffle Concatenation Deshuffle
Shuffle-Deconcatenation Shuffle Deconcatenation

C-D on Ω ∪ Ω′ Concatenation Deshuffle the Ω letters
Carry along Ω′ letters

(WI,m, δ) Concatenate the words
Union the sets in the intervals

Carry along the word
Interval incidence coproduct

(WI,m,∆) Concatenate the words
Union the sets in the intervals

Deshuffle the word
Adjust the intervals

(WI/ ∼,m, δ) Concatenate the words
Union the sets in the intervals

Carry along the word
Interval incidence coproduct

(WI/ ∼,m,∆) Concatenate the words
Union the sets in the intervals

Deshuffle the word
Adjust the intervals

(RWI,m, δ) Fit subwords into the global order
Adjust the intervals

Carry along the word
Interval incidence coproduct

(RWI,m,∆) Fit subwords into the global order
Adjust the intervals

Deshuffle the word
Adjust the intervals

Unit Conunit
Concatenation-Deshuffle u(1) = E ε(E) = 1, ε(w) = 0 for non-empty w
Shuffle-Deconcatenation u(1) = E ε(E) = 1, ε(w) = 0 for non-empty w

C-D on Ω ∪ Ω′ u(1) = E ε(E) = 1, ε(w) = 0 for non-empty w
(WI,m, δ) u(1) = (E,∅,∅) εδ(w, [A,B]) = 1 if A = B, 0 otherwise
(WI,m,∆) u(1) = (E,∅,∅) ε∆(w, [A,B]) = 1 if w = E, 0 otherwise

(WI/ ∼,m, δ) u(1) = (E,∅,∅) εδ(w, [A,B]) = 1 if A = B, 0 otherwise
(WI/ ∼,m,∆) u(1) = (E,∅,∅) ε∆(w, [A,B]) = 1 if w = E, 0 otherwise

(RWI,m, δ) u(1) = (E,∅,∅) εδ(w, [A,B]) = 1 if A = B, 0 otherwise
(RWI,m,∆) u(1) = (E,∅,∅) ε∆(w, [A,B]) = 1 if w = E, 0 otherwise

4 Conclusion

By exploring the pair (WI,m,∆) and (WI,m, δ) from the incidence structure
of concatenation-deshuffle bialgebra on two alphabets, we find that the two
bialgebras are unfortunately not in cointeraction. Specifically, commutativity
is necessary for the cointeraction of such word bialgebras, and we also lose
information about the relative position when deshuffling words with respect to
letters in Ω. The two solutions, namely, introducing a quotient structure such
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that the information about relative position no longer matters, or including
global information to allow multiplication to construct the original word from
summands of coproduct, each yield a way of making two word bialgebras in
cointeraction.

Although we introduced the concept of Hopf algebra in Section 2, we only
need bialgebras in the definition of cointeractions. Yet many of the bialgebras
from combinatorial problems are indeed Hopf algebras and the antipode map
is related to Möbius inversion in incidence algebra [3] and renormalization in
Feynmann graphs [2]. As we have shown in Section 2 and Section 3, finding the
antipode can often be difficult and it may not have a clean expression. Since
(WI,m, δ) is not a graded connected bialgebra, we do not even know whether it
is a Hopf algebra, and constructing its antipode might be an interesting research
direction.

The original motivation of studying (WI,m,∆) and (WI,m, δ) was to add
an order structure to the graph. One immediate question that we can ask is
what will be the impact of the cointeractions that we constructed in two differ-
ent ways. As Kreimer and Yeats explored in [4], the order on the graph comes
from the sector decomposition of Feynmann integrals. The coproduct ∆ on
WI corresponds to taking out subgraphs as in renormalization Hopf algebras,
because we take out the union of fundamental cycles that forms the subgraph
and only bridgeless subgraphs are relevant for renormalization Hopf algebras.
As we have discussed in Section 3.2, the incidence structure induces cuts inside
the graph. These cuts show up in understanding the monodromy of singulari-
ties of Feynman integrals, so the cointeraction shows how renormalization and
monodromy work well together. One way to do Feynman integrals is by sector
decomposition, where we break up the region of integration based on ordering
the edges, we want to put an order on the edges. By developing the cointerac-
tion Kreimer and Yeats constructed in [4], we can see that sector decomposition
is also compatible with how the renormalization and monodromy work together,
albeit with additional restrictions.
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