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A B S T R A C T

In this thesis, we take a journey through two different but not dissimilar stories with an underlying
theme of combinatorics emerging from scattering amplitudes in quantum field theories.

The first part tells the tale of the c2-invariant, an arithmetic invariant related to the Feynman integral in
φ4-theory, which studies the zeros of the Kirchoff polynomial and related graph polynomials. Through
reformulating the c2-invariant as a purely combinatorial problem, we show how enumerating certain
edge bipartitions through fixed-point free involutions can complete a special case of the long sought
after c2 completion conjecture.

The second part tells the tale of the positive Grassmannian and a combinatorial T-duality map on its
cells, as related to scattering amplitudes in planar N = 4 SYM theory. In particular, T-duality is a bridge
between triangulations of the hypersimplex and triangulations of the amplituhedron, two objects that
appear as images of the positive Grassmannian. We give an algorithm for viewing T-duality as a map
on Le diagrams and characterize a nice structure to the Le diagrams (which can then be used in lieu
of the algorithm). Through this Le diagram perspective on T-duality, we show how the dimensional
relationship between the positroid cells on either side of the map can be directly explained.
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1 | I N T R O D U C T I O N

1.1. C O M B I N A T O R I C S I N D I S G U I S E I N T H E W O R L D O F P H Y S I C S :
T H E S T O R Y O F T W O T Y P E S O F S C A T T E R I N G A M P L I T U D E S

One of the fundamental problems in high energy physics is to understand how particles interact, how
they scatter when they collide. For example, as illustrated in Figure 1.1, we can think of experiments
done in particle accelerators like the Large Hadron Collider (LHC) in which some number of particles
are brought together, and the particles resulting from that interaction are detected. Quantum field
theory (QFT) is one such framework to understand these processes, and one which unifies quantum
mechanics and special relativity. A natural question that arises is: what is the probability of a given
configuration of particle scatterings? In quantum field theory, this probability is encoded in the
scattering amplitude [IZ80].

However, we don’t know what actually happens when the particles interact and what paths the particles
are taking, the "history" of the collision. Perturbative quantum field theory thus expresses each of
these scatterings as a formal power series, a perturbative expansion, in the coupling constant which is
measuring the strength of the interactions. In this expansion, each term corresponds to a particular
"history" that the particles trace out when interacting. In other words, in the spirit of quantum physics,
we are taking a weighted sum of all possible interactions that get us to some particular scattering
configuration. The weights in this sum are called Feynman integrals and the scattering amplitude of
some configuration is then the sum of all the Feynman integrals in the expansion. However, in general
these integrals are notoriously hard to calculate and the number of terms in each sum rapidly expands
as the number of particles grows.

The fascinating part about these particular problems is the emergence of rather beautiful connections
to combinatorics, and the study of discrete structures. Here begins our tale of two different connections
to combinatorics as related to scattering amplitudes in quantum field theory.

F I G U R E 1 . 1 : A candidate Higgs boson event from collisions between protons in the
LHC where the particle is decaying into two protons indicated by the yellow dashed-
lines with green towers (Image: CMS/CERN)
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S. SIMONE HU

(1.1.1) Feynman diagrams.

One way to view these particle scatterings is through the underlying graphs of the interactions, called
Feynman diagrams or Feynman graphs, formed by the paths that the particles take. The edges of the
graphs correspond to the propagations of particles, while the vertices correspond to the collisions or
interactions. Incoming and outgoing particles are then represented by external half-edges (legs). As
such, the complexity of a problem involving Feynman graphs can be measured in two ways, via the
number of cycles, which physicists call loops, or via the structure of the external legs. For a particular
field theory, we can further encode the different fundamental particles through having different edge
types, and the permissible interactions between them can be encoded through allowable vertex types
(as defined by the number of each edge type adjacent to a vertex).

F I G U R E 1 . 2 : A Feynman diagram in quantum electrodynamics (QED), a quantum
field theory of the electromagnetic force. The squiggly edge represents the propagation
of a proton and the directed half-edges represent incoming and outgoing fermions.

Each graph can then be associated to a Feynman integral though the Feynman rules. That is the
rules dictate how to build the integral based on the structure of the graph. In the standard approach
to quantum field theory, the Feynman rules can be seen as arising from the Lagrangian in the path
integral formulation for the scattering amplitude. However, by taking a graphs-first approach to
particle interactions, this opens the door to using tools from the well established and classical field of
graph theory to tackle problems in perturbative quantum field theory [Yea17].

In practice, as many of the Feynman integrals are often divergent, physicists introduced a technique
called renormalization in order to extract meaningful quantities from these integrals. As an example,
one such scheme for renormalizing Feynman integrals is called BPHZ renormalization, which we
can think of as recursively subtracting off divergent parts of the integral corresponding to divergent
subgraphs, "subdivergences". In particular, renormalization itself has an interesting connection to
combinatorics via the combinatorial Hopf algebras that appear as the underlying algebraic structure to
some of these schemes. For BPHZ renormalization, this is the Connes-Kreimer Hopf algebra of rooted
trees. Renormalization, Hopf algebras, and recursive structures on Feynman diagrams then also open
the door to Dyson-Schwinger equations, Green’s functions, and their related combinatorics such as
chord diagrams [Yea17]. With renormalization, we can much more easily study graphs with high loop
orders and a low number of external legs.

Going back to Feynman integrals, other than their relation to the scattering amplitude, one of the
other reasons to study them lies in the many interesting numbers that they can evaluate to. As an
example, there are Euler sums, some of which evaluate to zeta values, and polylogarithms. However
as we mentioned before, these integrals are quite complicated due to the need for renormalization
and very hard to compute. Thus in order to study the numbers that appear as Feynman integrals,
we instead restrict to a particular residue of the integral called the Feynman period [Bro10] which is
renormalization scheme independent and captures much of the number-theoretic content for massless
scalar field theories in four-dimensional space-time. We can think of this period as taking only the
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1. INTRODUCTION

x1 x2 position space 1

(x1 −x2)2

p1

p2

momentum space 1

(p1 −p2 +·· · )2 = 1

p2
e

F I G U R E 1 . 3 : Feynman rules for massless scalar field theories. For momentum space,
pe refers to the signed sum of the cycles running through edge e.

"primitive divergent" part of the leading contribution to the integral, that is the part corresponding to
subdivergence free Feynman graphs.

We will focus on periods in massless Euclidean φ4-theory, which is a scalar field theory with one
particle type and whose interactions are all quartic, that is, there is only one type of edge and all
vertices are 4-valent. In graph theory language, the Feynman graphs are just 4-regular graphs with
some number of external half-edges. Historically, φ4-theory has been an important toy model for more
complicated field theories. As an motivating example, some of the numerical structure seen in the
anomalous magnetic moment of the electron in perturbative QED is also manifest in the beta-function
of φ4-theory via its coefficients, which are periods.

Now, to build the period of a given primitive divergent graph G , we can use the Feynman rules which
give equivalent representations of the period in the different spaces: position, momentum, parametric,
and dual parametric. The first two of these corresponds to assigning 4-dimensional vectors to vertices
and cycles (in a cycle basis) respectively, with each edge of the graph contributing a factor to the
integrand following the rules in Figure 1.3. Note that we are arbitrarily orienting the edges and cycles
of the graph and choosing a cycle basis in momentum space. For a graph with loop order `, i.e. the
number of cycles or first Betti number, the period of G in momentum space is

PG =π−2(`−1)

∫
dp2 · · · dp`∏

e
p2

e

∣∣∣
p1=1

,

where we are integrating over R4(`−1) and we take p2
e to mean taking the norm squared. Note that

we can set one momentum vector, say p1, to a fixed choice of unit 1 as we can always normalize the
momentum variables. In momentum space, we can then think of the period as the Feynman integral
where we are setting all external properties, masses and momenta, to zero (and setting a variable to 1).

We could similarly represent the period in position space using the rules or through a Fourier transform
of the momentum space period. Using the Schwinger trick, we can transform the period to parametric
space, which will be our main focus,

PG =
∫ ∞

0

dα1 · · · dα|E(G)|−1

Ψ2
G

∣∣∣
α|E(G)|=1

.

HereΨG is the Kirchhoff polynomial. Continuing with the graphs-first approach to study the period,
here starts one story of combinatorics emerging in scattering amplitudes. We will continue with this
story in Part I.
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(1.1.2) On-shell diagrams.

One of the limitations of the classical formulation of perturbative quantum field theory is the explosion
in the number of Feynman diagrams that can appear for any particular scattering configuration, even
in the simple case of two particles interacting. This is a consequence of taking an all possible "histories"
expansion, which introduces a large amount of redundancy adding to the complexity of computing
scattering amplitudes. These redundancies can be seen as coming from the fact that we don’t actually
know the paths that the particles are taking and the internal edges in the Feynman diagrams are
actually representing virtual, or off-shell particles. They are called virtual particles as they do not
satisfy the energy-momentum relation and thus are non-physical particles whose momenta cannot
exist.

As an answer to this problem, a small group of researchers [AH+16] (as part of an ongoing program)
developed a new way of thinking about scattering amplitudes in quantum field theory, one using
only physical, or on-shell particles. This reformulation illuminated the many beautiful mathematical
structures underlying on-shell processes and the remarkable simplicity of their amplitudes.

At the heart of it all, this theory was built upon the extensive exploration of scattering amplitudes in
planar N = 4 supersymmetric Yang-Mills (SYM) theory. To try to simply explain what this theory
is, we take a brief detour using the language of differential geometry. Instead of working directly on
space-time like scalar field theories, gauge theories are models that are defined on fibre bundles over
space-time in which the Lagrangian is invariant under certain symmetries, gauge transformations. To
get back to space-time, one would then need to pick a local section, a gauge. In particular, Yang-Mills
theory is one such important gauge theory when trying to understand the Standard model. To study
this rather complicated theory, researchers turn to N = 4 SYM, which is a maximally supersymmetric
theory often considered as a toy model for four-dimensional Yang-Mills theory, and thus for quan-
tum chromodynamics (QCD), which is a quantum field theory (and a particular Yang-Mills theory)
describing the strong interactions between quarks and gluons. The N = 4 here refers to the number of
supersymmetries. While N = 4 SYM incorporates many complicated particles into its theory, its highly
symmetric nature lends itself to having many special properties and dualities, and is what makes this
theory attractive.

Unlike the Feynman integral story where the main study is on diagrams with high loop orders but low
numbers of external legs, much of the work in these gauge theory amplitudes started with the opposite
complexity; looking at low loop orders but high numbers of external legs. In particular, at tree-level (no
loops) one of the breakthroughs has been in the discovery of the BCFW recurrence relations [Bri+05]
for amplitudes in Yang-Mills theory, which could decompose the amplitude in various ways depending
on the choices at each recursive step. Furthermore, each step only ever involved on-shell particles.

Building upon these relations and related work at the time, a surprising connection between scattering
amplitudes in N = 4 SYM theory and the positive Grassmannian, which is a certain "non-negative"
subset of the Grassmannian, started to emerge. In the flurry of work which culminated in [AH+16],
on-shell diagrams were introduced to describe on-shell processes like those that decompose the
scattering amplitude and which arise from glueing together three-particle amplitudes.

In graph theory language, these diagrams are bi-coloured trivalent graphs which are planar when
in the context of planar N = 4 SYM. In this story about scattering amplitudes, the on-shell diagram
plays the role of the Feynman diagram. These on-shell diagrams, which satisfied certain equivalences,

4



1. INTRODUCTION

F I G U R E 1 . 4 : An on-shell diagram which represents a four-particle tree-level am-
plitude. Note that "tree" here refers to the amplitude in the context of the Feynman
diagram expansion. (Image: [AH+16])

turned out to be plabic graphs, which Postnikov [Pos06] introduced as one of the many combinatorial
objects that index cells of the positive Grassmannian!

Inspired by these connections and the question of where the on-shell diagram decompositions of the
amplitude comes from, Arkani-Hamed and Trnka [AHT14] introduced a new mathematical object
called the amplituhedron. They proposed that the m = 4 amplituhedron was a geometric representa-
tion of scattering amplitudes in planar N = 4 SYM, which would be encoded through its "volume",
and one in which the BCFW recursion relations could be manifested through its "triangulations".
Through the positive Grassmannian, the amplituhedron and triangulations, herein lies our second
combinatorial story, this time in a different type of scattering amplitude. We will pursue this story in
Part II.

1.2. O V E R V I E W A N D O R G A N I Z A T I O N

This thesis is composed of two self-contained parts, consisting of two stories with the underlying
theme of combinatorics related to scattering amplitudes in quantum field theories.

In the first part, Part I, we delve deeper into the combinatorics of an arithmetic invariant, called the
c2-invariant, related to a particular residue of the Feynman integral called the Feynman period. This
invariant studies the zeros of the denominators of these periods that arise after several integrations.

We start off in Chapter 2 with an overview of the main object of interest in this story, the c2-invariant.
Section 2.1 provides some background on φ4-theory and Feynman periods, setting up the motivation
for defining the c2-invariant which we present in Section 2.2. In Section 2.3 we develop the framework
of graph polynomials, specifically Dodgsons and spanning forest polynomials, which then allows us
to start interpreting the c2 combinatorially via spanning trees and spanning forests. Going back to
the period and using this framework, in Section 2.4 we present the main algorithms used to compute
the c2 which are based on the denominators appearing in periods after successive integrations. In
particular in Section 2.4.2 we see how we can reformulate the c2 into a purely combinatorial problem,
one about taking particular coefficients of graph polynomials! We end this introductory chapter with
Section 2.5, giving some of the symmetries of and computational results on the c2-invariant.

In Chapter 3 we answer a special case of an over 10-year old conjecture on the c2-invariant using
combinatorial methods involving enumerating certain edge bipartitions, completing the argument
as first started by Yeats [Yea18b]. We first set-up the problem in Section 3.1 and then give a complete,

5
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self-contained proof of each of the three cases in the following sections, Sections 3.2, 3.3 and 3.4.
In particular in Sections 3.3.3 and 3.4.3 we prove two new involutions that together with results
from [Yea18b] completes the proof of the conjecture in their respective cases. We assemble everything
in Section 3.5 and give the main result of Part I in Theorem 3.5.1.

The second part, Part II, then moves to exploring the combinatorics of a geometric object called the
positive Grassmannian and a particular map on cells of the positive Grassmannian called T-duality.
These cells on one side of the map are then related to the on-shell diagrams from N = 4 SYM theory.

We open this part with an introductory chapter, Chapter 4, on the many objects behind T-duality. In
Section 4.1 we motivate the study of the positive Grassmannian through one particular decomposition
of the Grassmannian called its matroid stratification. Section 4.2 then introduces the main combina-
torial objects of interest that are in bijection with cells of the positive Grassmannian, which we call
positroids cells as they are indexed by positroids. We end this chapter with Section 4.3, where we look
at the geometric objects arising from images of the positive Grassmannian under two different maps
and how they are related. In particular in Section 4.3.3, we define T-duality as a combinatorial map
which arose from looking at triangulations of these geometric objects, and set-up the motivation for
the central question of Chapter 5.

In Chapter 5 we investigate what T-duality looks as a map on Le diagrams, one of the combinatorial
objects in bijection with positroids, doing so in two different ways. Starting with Section 5.1, we define
an explicit algorithm in Section 5.1.3 for determining the Le diagram resulting from the T-duality map.
At the end of the section, in Section 5.1.5, we work through an example of this intricate algorithm. In
Section 5.2 we notice that there is actually a nice structure to the Le diagrams created from the above
algorithm, giving a more visual perspective of how T-duality affects Le diagrams, the main result being
Theorem 5.2.5. Finally in Section 5.3, we prove that the algorithm does indeed give the correct Le
diagram, resulting in Theorem 5.3.3. In particular, here we see in Theorem 5.3.1 how viewing T-duality
on Le diagrams directly explains the dimensional relationship between the positroid cells on either
side of the map.

We conclude this thesis in Part III with Chapter 6, giving some further research directions for both
stories in Section 6.1 and tying everything together with some final thoughts in Section 6.2.

6
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2 | O N T H E c2 - I N V A R I A N T

In the first part of this thesis, we present one story on the combinatorics arising in perturbative
quantum field theory. Among the many combinatorial connections, this is specifically a story about an
arithmetic invariant called the c2-invariant that is related to scattering amplitudes in scalar φ4 theory
and the Feynman integrals in their expansion.

We begin with an introductory chapter on the c2-invariant, providing the background needed for the
specific problem that we will focus on in Chapter 3, which aims to answer one of the conjectured
symmetries of the c2-invariant via combinatorial techniques. As we will see in Section 2.4.2, a com-
binatorial picture emerges where the c2-invariant can be thought of as an enumeration problem on
graphs, counting certain edge partitions.

2.1. M O T I V A T I O N F R O M φ4 - T H E O R Y

(2.1.1) 4-point graphs.

The Feynman graphs we are interested in are those arising from 4-point Feynman integrals in four-
dimensional (D = 4) massless Euclidean φ4-theory. The "4-point" here corresponds to the number
of particles in the scattering configuration that we are interested in and the "massless" corresponds
to setting masses to 0. Viewing this scalar field theory as a combinatorial physical theory (see §5.2
of [Yea17]), the Feynman graphs in question correspond to graphs with 4 external half-edges, or "legs",
where the (internal) edges are thought of as consisting of two half-edges, and where every vertex is
of degree 4 (with external edges contributing to the degree). As we will be considering the Feynman
period in the massless case, these external legs can usually be disregarded outside of playing a role in
vertex degree counting. An example of a 4-point graph in φ4-theory is given in Figure 2.1a.

Let G be a 4-point graph in φ4-theory, that is a 4-regular graph, not necessarily simple, with 4 external
legs. We will also assume throughout that G is connected. Here |E(G)| is the number of internal edges
of G and `(G) is the loop order of G .

As we want to talk about Feynman integrals in this combinatorial context, recalling that renormal-
ization was needed to circumvent the divergent nature of these integrals, we need to translate these
notions into our setting. To measure how badly a Feynman integral diverges as the energies get large,
we can use power counting (counting the exponents) on the integration variables in comparison
with the number of such variables, which can then be directly distilled via the Feynman rules into a
property of the underlying graph. More precisely, the superficial degree of divergence (sdd) of a graph
is defined as

sdd(G) = D`(G)−∑
e

w(e)−∑
v

w(v),

where D is the dimension of space-time, w is the power counting weight function associated to the
specific combinatorial physical theory in question and the sums run over all internal edges e and all

8



2. ON THE C2-INVARIANT

vertices v , respectively. In scalar φ4-theory, which has only one type of edge and vertex, edges have
weight 2 (w(e) = 2) and vertices have weight 0 (w(v) = 0). We can see this directly through the Feynman
rules in momentum space (see Figure 1.3), where each edge contributes a power of 2 of its associated
variable in the denominator of the integrand. Generally, there may be different weights for different
edge types and for different vertex types.

We call a graph divergent when its sdd is non-negative and logarithimcally divergent when it is exactly
0. We then say that a combinatorial physical theory is renormalizable if the sdd of a graph in the
theory only depends on the structure of the external legs.

In our case, φ4-theory is renormalizable in D = 4 and thus the superficial degree of divergence of G is

sdd(G) = 4`(G)−2|E(G)| = 4−q,

where q is the number of external legs. Here we use that there are 2|E(G)|+q = 4|V (G)| half-edges and
Euler’s formula for connected graphs,

|V (G)|− |E(G)|+`(G) = 1,

which gives

4`(G)−2|E(G)| = 4(1+|E(G)|− |V (G)|)−2|E(G)| = 4+2|E(G)|−4|V (G)| = 4−q.

As q = 4, every 4-point graph is logarithmically divergent (because sdd(G) = 0), giving the equality
|E(G)| = 2`(G). Using Euler’s formula again gives us that |V (G)| = `(G)+1.

(2.1.2) Feynman periods.

Instead of looking at the full Feynman integral, we will look at a particular residue of it called the
Feynman period. In parametric space, the Feynman period (also referred to just as the period) of a
graph G is defined as

PG ··=
∫ ∞

0

dα1 · · · dα|E(G)|−1

Ψ2
G

∣∣∣
α|E(G)|=1

, (2.1.1)

where we associate a Schwinger parameter αe to each edge e in G and

ΨG = ∑
T

spanning tree

∏
e∉T

αe

is the graph polynomial or Kirchhoff polynomial of G. Note that this integral is independent of the
choice of edge e = |E(G)| to set αe = 1. There are many equivalent formulations of this integral, in the
different spaces (position, momentum etc.) as well projective versions of each. We refer the reader
to [Sch10] and §3.1, 3.2 of [Bro10] for further details.

Note that the term "period" comes from algebraic geometry: looking at PG in its parametric form
ΨG (if it exists) is simply a polynomial in the variables αe with integer coefficients. Thus Ψ−2

G is a
rational function with PG the evaluation of its integral over αe ≥ 0. That is, PG is a period as defined by
Kontsevich and Zagier [KZ01] and in the same sense as how multiple zeta values are periods.

It turns out that PG is well-defined when the graph G is primitive and logarithmically divergent. In fact,
these are necessary and sufficient conditions for the convergence of PG , see Proposition 5.2 of [BEK06].

9



PART I. THE C2-INVARIANT

In this case PG defines a positive real number which we call the period of G. In physics language, G is a
4-point graph with no 1PI divergent subgraphs and algebraically primitive here means primitive for
the co-product of the renormalization Hopf algebra on Feynman graphs. In terms of graphs we can
define primitivity with logarithmic divergence included as follows.

Definition 2.1.1 — A graph G is primitive (or primitive divergent) if

– |E (G)| = 2`; where |E (G)| is the number of edges in G and `= `(G) is the loop number of G, and
– every non-empty proper subgraph γ⊂G has |E(γ)| > 2`(γ).

We note that the second condition tells us our primitive graphs have no divergent subgraphs (subdi-
vergences), as

sdd(γ) = 4`(γ)−2|E(γ)| ≥ 0 ⇐⇒ 2`(γ) ≥ |E(γ)|.

We also have that any primitive graph with at least three vertices must be simple, namely without
multiple edges and self-loops. The only non-simple primitive graph is given in Figure 2.1a, which is
also the only graph of loop order `= 1. This graph also (most likely) corresponds to the only rational
φ4 period and has by far the easiest period to calculate.

α1

α2

(a) A primitive one-loop Feynman graph.

v

(b) The unique completion of (a).

F I G U R E 2 . 1 : The primitive graph of one loop and its completion.

Example 2.1.2 — (A period calculation) Consider the (unique) primitive graph with one loop G in
Figure 2.1a. Using Equation (2.1.1) we get

PG =
∫ ∞

0

dα1

Ψ2
G

∣∣∣
α2=1

=
∫ ∞

0

dα1

(α1 +α2)2
∣∣∣
α2=1

=
∫ ∞

0

dα1

(α1 +1)2 =− 1

1+α1

∣∣∣∣∞
0

= 1.

As the loop order ` increases, so does the number of non-isomorphic Feynman graphs and the dif-
ficulty of the integrations. Starting from ` = 3, we already see the appearance of special numbers,
namely multiple zeta values (see Section 2.1.4), as periods. For example, the complete graph on four
vertices K4 can be viewed as a primitive φ4 graph and has a period of 6ζ(3).

(2.1.3) Period symmetries.

One way to tackle the explosion of graphs is to find symmetries of the period, allowing us to create
equivalence classes of graphs with the same period. One particularly important symmetry is called

10



2. ON THE C2-INVARIANT

completion, which reduces the problem of calculating periods for primitive divergent graphs to one
on 4-regular graphs. Note that 4-regular graphs can also be thought of as φ4 graphs with no external
legs and thus no external momenta, sometimes called vacuum graphs.

As we are looking at graphs with 4 external legs where each vertex is of degree 4, notice that we can
uniquely "complete" such graphs by adding a new vertex connected to all the external half-edges
creating a 4-regular graph which we say is the completion of the primitive graph. Conversely, given a
4-regular graph and then "decompleting" it by removing a vertex, we are not guaranteed to always get
a primitive divergent graph, nor will we always get the same resulting graph when picking a different
vertex to remove. Thus first we need a notion of primitivity for these 4-regular graphs such that
removing any vertex indeed gives a primitive divergent graph which we then call a decompletion of
the 4-regular graph.

Definition 2.1.3 — (Definition 2.4 of [Sch10]) A 4-regular graph G with ≥ 3 vertices is called completed
primitive if the only way to split G into multiple connected components with 4 edge cuts is to separate
off a vertex, in other words, there are only trivial 4-edge cuts. In other words, G is internally 6-edge
connected. In this case, we say that G has loop order ` if G − v has loop order ` for any vertex v.

As an example, Figure 2.1 gives a primitive graph and its unique completion, which is completed
primitive. The complete graph on 5 vertices K5 is another example of a completed primitive graph.
Notice that any decompletion of K5 gives the primitive graph K4. In Section 2.5.1, we briefly discuss
why this completed primitive condition is necessary by relating it back to having no subdivergences in
primitive graphs.

Proposition 2.1.4 — (Proposition 2.6 of [Sch10]) Let G be a 4-regular graph and v any vertex in G.
Then G is completed primitive if and only if G − v is primitive.

With this notion of primitivity for completed graphs, Schnetz [Sch10] then proved that the period is
completion invariant: any two decompletions of the same 4-regular completed primitive graph have
the same period.

Theorem 2.1.5 — (Theorem 2.7 of [Sch10]) Let G be a 4-regular completed primitive graph of loop
order `. The period of G − v for any vertex v is the same for all choices of v.

This completion symmetry tells us that rather than looking at periods of 4-point graphs, we can instead
focus on 4-regular graphs. Note that completion considerably reduces the number of relevant graphs
at each loop order ≥ 5.

Other than completion, there are currently four other known period symmetries which we briefly
describe below. For each of the symmetries, we are taking our graphs G to be completed primitive,
that is 4-regular and internally 6-edge connected. The last three symmetries tells us that under their
respective transforms, the period stays invariant.

– Product identity for 3-vertex joins: When there is a 3-vertex cut, in which case we call G
reducible, the period decomposes as a product of two periods corresponding to the two sides
of the cut where to each side a triangle is added to the three vertices in the cut. In other words,

11



PART I. THE C2-INVARIANT

this occurs when G is the 3-vertex join of two connected completed primitive graphs. For
primitive divergent graphs, this product identity holds for 2-vertex joins.

– Planar duality, also called the Fourier identity: One natural period identity arises from
reinterpreting the Fourier transform as a graph transform. Graphically, this is taking the
planar dual of a decompletion G − v , and then completing it (if possible).

– Twist identity: This identity due to Schnetz arises from the twist transform which uses a
4-vertex cut that separates G into two connected subgraphs and reattaches one side of this
separation in a particular manner.

– Fourier split identity – This is a relatively new period symmetry which combines the ideas
of the Fourier and twist transforms. Instead of just reattaching the subgraph in the twist
transform, the Fourier split transform first takes a dual of this subgraph and then reattaches
it in a particular manner.

For more details on the first three symmetries, see §2.5-2.7 of [Sch10] and for the Fourier split see
§2.3 of [Hu+18]. We note that in the context of Feynman integrals and primitive divergent graphs, the
product identity for 2-vertex joins is a well-known result and the Fourier identity has been used as
early as [BK95].

While perhaps not as hard as the Feynman integral to compute, the period still poses quite the compu-
tational challenge even after utilizing these symmetries. As such, related invariants were introduced to
study properties of the period such as the c2-invariant, which is our main focus here, the extended
graph permanent [CDY16] and the Hepp bound [Pan19]. It is either conjectured or proven that these
invariants have all the above symmetries of the period.

(2.1.4) Multiple zeta values.

The number-theoretic content of the period is itself an interesting problem, in particular due to
its relationship to the underlying geometries of the period, see for instance [BEK06; Bro10; BS12].
By "geometries", we refer to types of varieties that appear as defined by the vanishing of the graph
polynomial. In some sense these varieties control the period, giving an algebro-geometric feel to the
period. In particular, many of the early computable periods [BK95; Sch10] were all found to be rational
linear combinations of multiple zeta values.

For s1, . . . , sk positive integers and s1 > 1, the multiple zeta value (MZV) is defined to be

ζ(s1, . . . , sk ) = ∑
n1>···>nk>0

1

ns1
1 · · ·nsk

k

,

and we call the sum of the exponents n = s1 +·· ·+ sk the weight of the MZV.

Viewing an MZV through its iterated integral representation, we can then also think of its weight in the
sense of Kontsevich-Zagier periods, as the minimum number of nested integrals needed to write it as
such a period. As such, we refer to the weight of a Feynman period in this same way, as the mininum
number of integrals needed to write it as an integral of an algebraic function over an algebraic domain.
From the definition of the Feynman period, we can already say that an upper bound for its weight is
2|E(G)|−1 = 2`(G)−1. We will discuss more about weight in Section 2.4.
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2. ON THE C2-INVARIANT

We end this section on φ4-theory and periods with a beautiful result [BS15] that gives a formula for the
period of an infinite family of graphs called zig-zag graphs, denoted by Z` where ` is the loop order of
the graph. The formula was first conjectured by Broadhurst and Kreimer in [BK95]. This special family
includes the complete graph Z3 = K4 and their completions form the circulant graphs C`+2(1,2).

Theorem 2.1.6 — (Theorem 1.1 of [BS15]) The period of the zig-zag graph Z` is given by

PZ`
= 4(2`−2)!

`!(`−1)!

(
1− 1− (−1)`

22`−3

)
ζ(2`−3).

2.2. D E F I N I N G T H E c2 - I N V A R I A N T

Looking at the period in its parametric form (2.1.1), notice we are integrating over the denominatorΨ2
G ,

which is just a polynomial in |E(G)| variables. In particular, in order to understand and characterize
properties of the period, we need to understand the structure ofΨG . This motivates the study of the
zeros ofΨG and the polynomials (denominators) that arise after several steps of integration.

In 1997, inspired by the work of Broadhurst and Kreimer [BK95; BK97], Kontsevich informally conjec-
tured that for all graphs, the function taking prime powers q to the number of zeros (also known as
point counts) ofΨG over the finite finite Fq is a polynomial in q . This stemmed from the appearance
of multiple zeta values in certain φ4 periods, which also led to the conjecture that all φ4 periods were
linear combinations of products of multiple zeta values. As such, it was thought that there must
have been some reason these special numbers were showing up in the period, namely due to specific
structures [BEK06] of the algebraic varieties defined byΨG , which in turn would imply Kontsevich’s
conjecture. However, the conjecture turned out to be false in general. Belkale and Brosnan [BB03]
first proved that Kontsevich’s conjecture was generically false in 2000 and later Doryn [Dor11] and
Schnetz [Sch11] independently found counterexamples specifically in the class of φ4 graphs. Brown
and Schnetz [BS12] then further showed that even under certain "physical" constraints on the graphs,
Kontsevich’s conjecture still could not hold.

Nevertheless, this point count function, which we denote by [ΨG ]q , still has an interesting connection
to the period. When Kontsevich’s conjecture is indeed true for some graph G , then the coefficient of q2

in [ΨG ]q , which is now a constant with respect to q , was found to give information on the weight of
the multiple zeta values that appear in the period of this graph. In [Sch11], Schnetz introduced the
following arithmetic invariant.

Definition 2.2.1 — (Theorem 2.9 of [Sch11]) Let q = pn be a prime power and Fq the finite field with q
elements. Let G be a connected graph with at least 3 vertices. Then the c2-invariant of G at q is

c(q)
2 (G) ≡ [ΨG ]q

q2 mod q, (2.2.1)

where [ΨG ]q is the number of zeros of ΨG in F|E(G)|
q .

Denote by c2(G) the sequence of c(q)
2 (G) for all prime powers q.

13



PART I. THE C2-INVARIANT

To show that this invariant is well-defined, Schnetz proved that [ΨG ]q was indeed divisible by q2.

In particular, the c(q)
2 (G) would then exactly be the quadratic coefficient of [ΨG ]q if it was indeed a

polynomial in q , hence the name "c2". When specifically referring to the c2 at primes q = p, we will
often use p instead of q .

In a sense, the c2-invariant is measuring how badly Kontsevich’s conjecture fails for a graph. More
importantly, other than its combinatorial flavour which we will see shortly, the interest in the c2-
invariant lies in how it seems to detect the types of numbers that appear in the period and thus telling
us something about the geometries underlying them [BS12; BS13; Sch19]. In Section 2.5, we give a
brief overview of some of the results in this direction.

This connection between the c2-invariant and the period is further strengthened by the following
conjecture, which says that the c2 is a period invariant.

Conjecture 2.2.2 — (Remark 2.11 (2) of [Sch11], Conjecture 2 of [BS13])
Let G1 and G2 be primitive divergent graphs. If their periods coincide, that is, PG1 = PG2 , then

c2(G1) = c2(G2).

Currently, this conjecture holds for all known examples. However, whether all the symmetries of the
period also hold for the c2-invariant is still unknown, which we would need for the above conjecture to
be true. There has been some progress along this front: first shown in 2013, Doryn [Dor17] proved that
the c2-invariant is indeed an invariant across the four representations of the period under a condition
for the graph called duality admissibility. This condition encompasses all planar graphs, and thus the
c2 remains invariant under planar duality, as does the period. For the completion symmetry, which for
the c2 we refer to as the completion conjecture, in 2018 Yeats [Yea18b] first made headway on this in
some special cases, and in Chapter 3 we complete the argument for when q = 2.

Finally, there wouldn’t be much interest in the c2-invariant if computationally it was as hard as the
period. In the following two sections, we will see how to transform the c2 into a more tractable form,
along the way illuminating its combinatorial nature. In this transformed form, the c2-invariant be-
comes relatively easy to calculate compared to the period, at least for low loop orders or small primes
q = p, while still encapsulating many of the properties of the period and its underlying graph.

2.3. G R A P H P O L Y N O M I A L S

Before we can work on massaging Equation (2.2.1), we need to familiarize ourselves with the function
in the numerator, the graph polynomial. Let G be a connected graph. Recall that the graph polynomial
of G is defined as

ΨG = ∑
T

spanning tree

∏
e 6∈T

αe ,

where the αe are parameters associated to each edge e and the sum runs over all spanning trees of G .
Notice thatΨG is a homogeneous polynomial of degree |E (G)|− |V (G)|+1 in |E (G)| variables. There is
also a nice deletion-contraction relation, where for any edge e in G we have
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ΨG =αeΨG\e +ΨG/e , (2.3.1)

since we can partition the sum based on whether a spanning tree of G contains e or not. To see this,
notice that the set of spanning trees of G not containing e is equal to the set of spanning trees on G \ e
and thus αe can be factored out of the monomials. The set of spanning trees of G containing e is then
equal to the set of spanning trees of G/e.

As the graphs get larger, these polynomials explode as well, and thus the first step in transforming
the c2 is to find smaller polynomials in which we can take point counts of. To do this, we need the
theory of some related graph polynomials, which following Brown we call Dodgson polynomials, and
which stem from the deletion-contraction relation of the graph polynomial and Kirchhoff’s matrix-tree
theorem.

As first introduced in [Bro10] in the context of calculating periods and the theory of denominator
reduction, which we will cover in the next section, Dodgson polynomials were originally defined up to
overall sign. Up until very recently, in the subsequent work on the c2-invariant this overall sign did not
matter. In 2019, Schnetz [Sch19] re-derived much of the work on Dodgson polynomials to account
for the correct signs, which we present here. Note that in the q = 2 case, which is our main focus in
Chapter 3, these signs won’t be needed.

(2.3.1) Determinantal framework.

The underlying framework of this theory on graph polynomials relies on the fact that the graph
polynomial can be seen as the determinant of a particular matrix. To represent the graph polynomial
as such, we first define the following.

Definition 2.3.1 — Given a connected graph G, choose an arbitrary orientation on the edges and an
order ι on the edges and vertices of G, where the edges are ordered before the vertices,

ι : E(G)∪V (G) −→ {1, . . . , |E(G)|+ |V (G)|}.

We denote by ιe or ιv , to mean the order of edge e or vertex v under ι, respectively.

Let EG be the |V (G)| × |E(G)| signed incidence matrix, with any one row (corresponding to a vertex)
removed. That is, for all vertices v except one, and all edges e

[EG ]v,e =


1 if e = (v,u),u ∈V (G),

−1 if e = (u, v),u ∈V (G),

0 otherwise.

LetΛ be the diagonal matrix of indeterminates αe for e in E(G) in the chosen order, that is

[Λ]ei ,e j =
{
αei if i = j ,

0 otherwise.
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PART I. THE C2-INVARIANT

Then we define the expanded Laplacian of G to be

LG =
 Λ EG

T

EG 0

 ,

which is an (|E(G)|+ |V (G)|−1)× (|E(G)|+ |V (G)|−1) matrix, with rows and columns ordered by ι.

While this matrix is not well-defined, as it depends on the choice of row removed in EG as well as the
choice of orderings and orientation, we have, for any such choice

ΨG = (−1)|V (G)|−1 det(LG ) . (2.3.2)

To see why this holds, following the proof in §2.2 of [Bro10], we need a lemma due to Kirchhoff which
we can think of as essentially the matrix-tree theorem.

Lemma 2.3.2 — ([Kir47]) Let U be a subset of edges of G such that

|E(G \U )| = `(G) = |E(G)|− |V (G)|+1.

Let EG (G \U ) denote the square (|V (G)| −1)× (|V (G)| −1) matrix obtained from EG by removing the
columns indexed by the edges of G \U (recall that EG already has one row removed). Then

detEG (G \U ) =
{
±1 if U is a spanning tree of G ,

0 otherwise.

We also need the Leibniz formula for determinants of square n ×n matrices A with entries ai , j

det(A) = ∑
σ∈Sn

sgn(σ)
n∏

i=1
ai ,σ(i ),

where Sn is the symmetric group on n elements and sgn(σ) is the sign of the permutation σ

sgn(σ) = (−1)N (σ).

Here N (σ) is the number of inversions inσ, i.e. the number of pairs (i , j ) such that i < j , butσ(i ) >σ( j ).

Then, expanding the determinant of LG via the Leibniz formula, we have that

det(LG ) = ∑
U⊂E(G)

det

[
0 EG (G \U )T

EG (G \U ) 0

] ∏
e 6∈U

αe = ∑
U⊂E(G)

|E(G\U )|=`(G)

(−1)|V (G)|−1 det(EG (G \U ))2
∏

e 6∈U
αe .

The first equality comes from choosing E (G \U ) to be the fixed points of permutation σ and passing to
the minor with the corresponding rows and columns removed, setting αe = 0 for e ∈U . Now, the terms
corresponding to any permutation with fixed points in the last |V (G)|−1 columns vanish, and thus
the only fixed points for non-zero terms in the sum are those in the first |E(G)| columns. Additionally,
the sign of a permutation σ is the same as the sign of the permutation π created by removing the
fixed points of σ. The second equality comes from a determinantal identity on block matrices and
the restriction in the sum occurs as all the terms with |E(G \U )| 6= `(G) vanish since the rank of EG is
|V (G)|−1 (recall we are removing the columns corresponding to E (G \U )). Then, applying Lemma 2.3.2
and rearranging gives Equation (2.3.2) since det(EG (G \U ))2 = 1 if U is a spanning tree of G .
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(2.3.2) Dodgson polynomials.

Under this determinantal framework and looking at the deletion-contraction relation (2.3.1) forΨG , we
see that removing an edge e to getΨG\e corresponds to the minor where the row and column indexed
by e is removed. This comes from noticing thatΨG\e is the coefficient of αe in det(LG ). Contracting an
edge e to getΨG/e then corresponds to setting αe to zero. In either case, some consideration is needed
for the signs. Motivated by this observation, we can extend the definition to minors of LG which we
call Dodgson polynomials, or just Dodgsons.

Before defining Dodgsons, we need to take care of the signs. As originally defined in §2.3 of [Bro10],
the edges corresponding to the rows and columns being removed from LG were taken as sets and thus
the original Dodgsons were only defined up to overall sign, depending on the minor taken. We refer to
these as unsigned Dodgsons.

The main idea here is that to get the correct signs, we need to keep track of the order in which the
rows and columns are being removed, as this affects the sign in the coefficient of the corresponding
minor in the cofactor expansion of LG following this order. In particular, this sign is determined by the
indices of the rows and columns being removed and the orders of these removals.

To get the correct signs, we lift the sets of edges being removed to words on E (G), where the letters are
the edges ordered with respect to the chosen ordering ι from Definition 2.3.1. For convenience, we
interchangeably use the terms edges and letters, as well as refer to edges e by their numerical position
ιe as given by ι. We also use set notation with these words when we are referring to the set of edges in
the words. For such a word w = w1 · · ·wn in the letters E(G), let ιw be the sum of the orders ιw j of the
letters w j of w under ι. We also define

sgn(w) =
{

0 if w has repeated letters,

sgn(π) otherwise, where π(i ) = j if w j is the i th smallest letter in w with respect to ι.

As an example, the word w = 31, where the edges are ordered naturally, has sgn(31) = −1 as the
permutation corresponding to w is π= 21. To add a letter x to w , we have

sgn(w x) = (−1)N (σ) = (−1)N (π)+|{ j : i < j ,σ(i )=n+1 >σ( j )}| = (−1)|{w j ∈ w : x < w j }| sgn(w),

where σ is the permutation corresponding to the word w x. The equalities hold as the inversions in σ
coming from x are exactly those involving σ−1(n +1), which then correspond to the letters of w larger
than x (with respect to ι). In other words, the sign of a word is the parity of how many transpositions it
takes to get the edges back in their order under ι. Now we are ready to define our Dodgson polynomials.

Definition 2.3.3 — (Definition 7 of [Sch19]) Let I and J be words in the edges such that |I | = |J | and let
K be a subset of edges of G. Denote LG (I , J )K the matrix obtained from LG by removing rows indexed by
I and columns indexed by J , and setting αe = 0 for e ∈ K . Then the Dodgson polynomial is defined to be

ΨI ,J
G ,K = (−1)|V (G)|+ιI+ιJ−1 sgn(I )sgn(J )detLG (I , J )K ,

We defineΨI ,J
G ,K = 0 if |I | 6= |J | and define the empty determinant to be 1.

While there is a choice of ordering ι and vertex removed in EG for the matrix LG , Dodgsons do not
depend on this choice (see Lemma 9 of [Sch19]). When the graph G is clear from the context, we will
drop the subscript of G . We also omit empty indices. When I , J ,K are all empty, we recoverΨG .
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Most, if not all, of the properties of unsigned Dodgsons (see §2.2, 2.3 of [Bro10]) also hold for Dodgsons,
and in particular Dodgsons also satisfy a deletion-contraction relation. The following proposition
captures some of these properties, see §2 of [Sch19].

Proposition 2.3.4 — Let I and J be words in the edges such that |I | = |J |, and K a subset of edges of G.

– ΨI ,J
G ,K =ΨJ ,I

G ,K .

– For any edge e ∈ E(G) \ (I ∪ J ∪K ), there is a deletion-contraction relation

ΨI ,J
G ,K =αeΨ

Ie,Je
G ,K +ΨI ,J

G ,K∪e =αeΨ
I ,J
G\e,K +ΨI ,J

G/e,K .

– It follows from the relation that we can always pass to a minor of G

ΨI ,J
G ,K =ΨI ′,J ′

G ′ ,

where G ′ =G \ (I ∩ J )/(K \ (I ∪ J )), I ′ = I \ (I ∩ J ), and J ′ = J \ (I ∩ J ).
By doing so, we can assume that I ∩ J = K =;.

– If ΨI ,J
G ,K 6= 0, the degree of ΨI ,J

G ,K is `(G)−|I |.

Lastly, like how the monomials ofΨG correspond to spanning trees of G , there is a nice combinato-
rial interpretation of the monomials appearing in Dodgsons. Once again, like for Equation (2.3.2),
expanding the determinant of a minor of LG and using Lemma 2.3.2 gives the following theorem.

Theorem 2.3.5 — (Proposition 23 of [Bro10]) Suppose I ∩ J = K =;. Then we have

ΨI ,J
G = (−1)ιI+ιJ sgn(I )sgn(J )

∑
U⊂G\(I∪J )

det(EG (G \ (U ∪ I )))det(EG (G \ (U ∪ J )))
∏

e 6∈U
αe ,

where the sum runs over all subgraphs U such that U ∪ I and U ∪ J are both spanning trees in G.

Ignoring the signs, what this theorem is saying is that we can view Dodgson polynomials through
the possible shapes of the underlying graph after some deletions and contractions. For U ∪ I to be a
spanning tree in G , we must have that U is a spanning tree in G \ J/I since U are edges not in I and J .
Similarly for U ∪ J to be a spanning tree, U must be a spanning tree in G \ I /J . The polynomial can
then be thought of as an "intersection" of graphs (G \ J/I )∩ (G \ I /J ) where the graphs represent the
spanning trees and ∩ is taken to mean the resulting polynomial of common terms which are spanning
trees in each minor. When K 6= ;, this corresponds to contracting the edges in K (that are not in I , J ) in
both graphs. When I ∩ J 6= ;, this corresponds to removing the edges in I ∩ J in both graphs.

(2.3.3) Dodgson identities.

In addition to having these nice properties for general Dodgsons, there is also a multitude of other
relations falling into two types:

– graph-specific identities,
– determinantal identities.
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The first type stems from the combinatorial nature of Dodgsons, which are enumerating particular
spanning trees of minors. Thus we can get identities, sometimes also using determinantal identities,
based on specific structures within a graph. Some structures include cuts, cycles, vertex-joins, 3-valent
vertices, and triangles, see [Bro10; BS12; BSY14; Sch19].

As a simple example, consider a graph with a 3-valent vertex v . We immediately see that if we label
the three adjacent edges of v as 1,2,3, then we haveΨ123,123 = 0, as removing all three edges from the
graph disconnects v and thus there are no possible spanning trees. Another identity occurs by noticing
that removing any two of the edges and contracting the third edge adjacent to v results in the same
underlying graph. Thus we have the identityΨ12,12

3 =Ψ13,13
2 =Ψ23,23

1 .

The second type stems from the determinantal framework of Dodgsons which allows us to use known
determinantal identities and formulas in the context of Dodgsons. Two determinantal identities that
we will highlight here are what are called Plücker identities and Dodgson identities.

Based on the Plücker relations, we have the following formula (§2.4 of [Bro10]) which we call the
Plücker identities

2n∑
k=n

(−1)kΨ
(i1···in−1ik ),(in ···îk ···i2n )
G = 0,

where i1 < ·· · < i2n is an increasing sequence of edges and îk means removing letter ik . For example,
in the case when n = 2, we have

Ψ12,34
G −Ψ13,24

G +Ψ14,23
G = 0.

An important family of identities are what we call Dodgson identities, which are based on Jacobi’s
determinant formula and Dodgson condensation (§2.5 of [Bro10], §2 of [Sch19]). One special case is
due to the classical Dodgson identity

det(M)det(M i j ,i j ) = det(M i ,i )det(M j , j )−det(M i , j )det(M j ,i ),

where M is a square matrix, i 6= j are indices and M I ,J is the matrix obtained from M by removing the
rows indexed by I and the columns indexed by J . Translating this to our Dodgson polynomials gives
the quadratic identity

ΨI ,J
K Ψ

Ie f ,Je f
K =ΨIe,Je

K Ψ
I f ,J f
K −ΨIe,J f

K Ψ
I f ,Je
K ,

where I , J , are words of equal length in the edges, K = K ′∪ {e, f } for some subset of edges K ′ and any
two edges e, f 6∈ I ∪ J ∪K ′. In particular, when I = J = K ′ =;

Ψ12Ψ
12,12 =Ψ1,1

2 Ψ2,2
1 − (

Ψ1,2)2
, (2.3.3)

where we are using the property of Dodgsons that we can always pass to K \ (I ∪ J) in the subscript
since the entries αe for e ∈ I ∪ J are removed from the matrix via the removal of rows I and columns J .
We can also think of Equation (2.3.3) as taking a particular coefficient of the more general quadratic
identity above.

(2.3.4) Spanning forest polynomials.

Following the discussion in Section 2.3.2, we saw that we could interpret Dodgson polynomials via
their underlying graphs. However, we are still dealing with the common spanning trees between two
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possibly different graphs. In an effort to better understand these polynomials combinatorially, Brown
and Yeats introduced spanning forest polynomials [BY11].

Definition 2.3.6 — (Definition 9 of [BY11]) Let P = P1 ∪·· ·∪Pk be a set partition of a subset of the
vertices of G. Let F be a spanning forest that partitions the vertices of P exactly into P1 ∪·· ·∪Pk . More
precisely, if F = T1 ∪·· ·∪Tk then each tree Ti of F contains all the vertices in Pi and no other vertices of
P, and possibly other vertices in V (G) \ P. Then we say that the spanning forest F is compatible with the
vertex partition P. Note that the vertices not in P can belong to any tree of F .

We define a spanning forest polynomial of G to be

ΦP
G =∑

F

∏
e 6∈F

αe ,

where the sum runs over all spanning forests F that are compatible with P.

To represent spanning forest polynomials graphically, we can associate a shape or colour to each part
of P and draw the vertices in P accordingly on the graph G .

Like Dodgsons, spanning forest polynomials also satisfy deletion-contraction relations.

Proposition 2.3.7 — (Proposition 10 of [BY11]) Let e be an edge in G and let P be a partition of a subset
of vertices of G. Then we have

ΦP
G =

{
αeΦ

P
G\e if the ends of e are in different parts of P,

αeΦ
P
G\e +ΦP/e

G/e otherwise,

where P/e is the partition created from P by identifying the ends of e if they appear in P.

To relate spanning forest polynomials back to Dodgsons, instead of viewing Dodgsons through the
matrix-tree theorem like in Theorem 2.3.5, we can interpret them via the all-minors matrix-tree
theorem [Cha82]. As a consequence, Dodgsons can be viewed as sums of spanning forest polynomials.

Theorem 2.3.8 — (Proposition 12 of [BY11]) Let I , J and K be sets of edges of G where |I | = |J |. Then we
can write

ΨI ,J
G ,K =∑

fPΦ
P
G\(I∪J∪K ),

where fP ∈ {−1,1}, and the sum runs over all partitions P of the vertices in (I ∪ J ∪K ) \ (I ∩ J ) such that
all forests compatible with P are spanning trees in both G \ I /(J ∪K ) and G \ J/(I ∪K ).

Following the proof in [BY11], comparing with Theorem 2.3.5 we can determine the sign fP via the
appropriate determinants. Passing to the case when I ∩ J = K = ;, notice from that theorem the
subgraphs U are exactly the forests in the spanning forest polynomials above since U ∪ I and U ∪ J
must be spanning trees in G . Equivalently, for a fixed forest U , this condition means that I and J must
be spanning trees in G \Ū /U where Ū are the edges in G \ (I ∪ J ∪U ).

Now in G \Ū /U , each tree of U has been contracted into a vertex and since the only edges left are
those in I ∪ J , each contracted vertex also tells us which vertices of I ∪ J are in the same tree of U . That
is, the vertices of G \Ū /U partition the vertices in I ∪ J exactly into P , which is the partition that U
is compatible with. In particular, any forest that is compatible with P gives a graph isomorphic to
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2. ON THE C2-INVARIANT

G \Ū /U . Thus, inΨI ,J
G the monomials of ΦP

G all have the same coefficient fP which is the following
product of determinants for any forest U compatible with P

det(EG (G \ (U ∪ I )))det(EG (G \ (U ∪ J ))) ,

up to an overall sign.

Similarly to Dodgsons, there are many identities and relations that spanning forest polynomials satisfy,
see §2, 3 of [BY11]. In particular, based on the Dodgson identity (2.3.3) we have the following identity
which we represent graphically:

= + +

Here each blob represents a spanning forest polynomial, all with the same underlying graph, and the
shapes (circle, square, and triangle) indicate the partitions of the three distinguished vertices for each
polynomial. Each term in the identity is a product of two spanning forest polynomials.

2.4. D E N O M I N A T O R R E D U C T I O N

With the theory of graph polynomials in place, we return to our main goal of transforming the definition
of the c2-invariant (2.2.1) into a more tractable form. The main idea behind this is an algorithm called
denominator reduction due to Brown [Bro10; Bro09], which goes back to the period of a primitive
divergent φ4 graph G and looks at its denominators after several integrations.

Order the edges according to ι and let N = |E(G)|. Recall that the period is defined as

PG ··=
∫ ∞

0

dα1 · · · dαN−1

(ΨG )2
∣∣∣
αN=1

.

Using the deletion-contraction relation (2.3.1), Dodgson identities, and the theory of hyperlogarithms
(see §10.2 of [Bro10], §5 of [Bro09] and lecture notes on iterated integrals in this context [Bro13]), we
can explicitly compute the first few integrations, where we are integrating with respect to the first five
edges. The first two integrations are relatively simple, starting with integrating with respect to α1

I1 =
∫
αN=1

dα1 · · · dαN−1

(α1Ψ1,1 +Ψ1)2 =
∫
αN=1

− dα2 · · · dαN−1

(α1Ψ1,1 +Ψ1)Ψ1,1

∣∣∣∣∞
α1=0

=
∫
αN=1

dα2 · · · dαN−1

Ψ1,1Ψ1
.

For the second integration with respect to α2, we use the Dodgson identity (2.3.3) in the denominator

I2 =
∫
αN=1

dα2 · · · dαN−1

(α2Ψ12,12 +Ψ1,1
2 )(α2Ψ

2,2
1 +Ψ12)

=
∫
αN=1

log

(
α2Ψ

12,12+Ψ1,1
2

α2Ψ
2,2
1 +Ψ12

) ∣∣∣∞
α2=0

Ψ12,12Ψ12 −Ψ1,1
2 Ψ2,2

1

dα3 · · · dαN−1

=
∫
αN=1

log(Ψ1,1
2 )+ log(Ψ2,2

1 )− log(Ψ12,12)− log(Ψ12)(
Ψ1,2

)2 dα3 · · · dαN−1.
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PART I. THE C2-INVARIANT

Starting from here is where the integrations get more complicated, though reducing with respect to α3

is still doable. By integration by parts, we first note that∫ ∞

0

log(cx +d)

(ax +b)2 dx = log(d)

ab
+ c

(
log(ab)− log(cd)

)
a(ad −bc)

.

Applying this to I2 after expanding the Dodgsons with respect to edge 3 gives the next integral

I3 =
∫
αN=1

log(Ψ1,1
23 )+ log(Ψ2,2

13 )− log(Ψ12,12
3 )− log(Ψ123)

Ψ13,23Ψ1,2
3

dα4 · · · dαN−1 +·· · ,

where we’ve combined the first terms of integration of each of the four logs in I2 and omit the rest of
the terms in the sums. Another form of I3 as given in §10.2 of [Bro10] is

I3 =
∫
αN=1

Ψ123,123 log(Ψ123,123)

Ψ12,13Ψ12,23Ψ13,23 −Ψ123 log(Ψ123)

Ψ2,3
1 Ψ1,3

2 Ψ1,2
3

+ ∑
{i , j ,k}

Ψi ,i
j k log(Ψi ,i

j k )

Ψi j ,i kΨi ,k
j Ψ

i , j
k

−
Ψ

i j ,i j
k log(Ψi j ,i j

k )

Ψi j ,i kΨi j , j kΨ
i , j
k

dα4 · · · dαN−1,

where the sum runs over the 6 permutations of {1,2,3}. For the last two integrations, we only present
the results, also from the same section of [Bro10]

I4 =
∫
αN=1

A

Ψ12,34Ψ13,24 + B

Ψ13,24Ψ14,23 + C

Ψ12,34Ψ14,23 dα5 · · · dαN−1,

I5 =
∫
αN=1

F
5Ψ(1,2,3,4,5)

dα6 · · · dαN−1,

where A,B ,C are di-logarithms, and F is a hyperlogarithm of weight 3. The denominator in I5 is an
important combination of Dodgson polynomials called the 5-invariant, which is defined as follows.

Definition 2.4.1 — Given edges 1, . . . ,5 for a graph G, define the 5-invariant of G, 5ΨG (1, . . . ,5), as

5ΨG (1, . . . ,5) =±det

(
Ψ12,34

5 Ψ13,24
5

Ψ125,345 Ψ135,245

)
=±

(
Ψ12,34

5 Ψ135,245 −Ψ13,24
5 Ψ125,345

)
.

The 5-invariant is defined up to overall sign and holds for any five distinct edges. Furthermore,
permuting the order of the edges only changes the sign of 5ΨG (1, . . . ,5), see Lemma 87 in [Bro10].

The things to notice in these integrations are that:

– The denominators are specific products of Dodgsons. Specifically the next denominator is the
resultant of the two factors of the previous denominator (the determinant of their associated
Sylvester matrix), assuming it is not a square.

– The weight of the numerators, in the sense of MZVs and hyperlogarithms, increases by exactly
1 when the previous denominator is not a square, i.e. 1 → 1 → log → log → di-log → weight 3.

– After the fifth integration, the denominator is in a special form.

These observations form the basis of denominator reduction, which in the context of the c2-invariant
allows us to reduceΨG with respect to a sequence of edges.
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2. ON THE C2-INVARIANT

(2.4.1) Reducing variables.

As we noticed above, after the fifth integration there was a special denominator which is the 5-invariant.
Thus using the theory of hyperlogarithms, when possible, we can then completely determine the de-
nominators of successive integrations, see Corollary 126 of [Bro10]. This gives the following algorithm
called denominator reduction, see §10 of [Bro10], which gives higher invariants.

Definition 2.4.2 — (Proposition 130 of [Bro10]) Given a graph G and a sequence of edges 1, . . . , |E(G)|,
we define

D5
G = 5ΨG (1,2,3,4,5).

For n > 5, we recursively define the n-invariant Dn
G (1, . . . ,n), also referred to as nΨG (1, . . . ,n), as follows:

Suppose Dn
G for n ≥ 5 factors into the following product of linear factors in αn+1

Dn
G (1, . . . ,n) = (Aαn+1 +B)(Cαn+1 +D).

Then we define

Dn+1
G (1, . . . ,n +1) =±(AD −BC ),

which is the resultant of the two factors of Dn . Otherwise, if Dn+1
G = 0 or Dn

G cannot be factored in such a
form (in which case the n +1-invariant and higher do not exist), we say that denominator reduction
ends. If Dn+1

G = 0 (and thus also for higher invariants) for some sequence of edges, we say that G has
weight drop. Note that in particular, when Dn

G is a perfect square, then G has weight drop.

Like the 5-invariant, these higher invariants (if they exist) are defined up to overall sign and do not
depend on the order of edges up to that point. However, a different sequence of edges may give a
sequence of denominators of a different length. As these Dn

G are indeed the denominators in the period
after integrating out the n edges variables, we can say we are "reducing" with respect to the n edges.
Note that the factors in the denominators are usually Dodgsons or combinations of Dodgsons.

The notion of weight drop for a graph G directly relates back to the weight of its Feynman period PG ,
which is the minimum number of nested integrals needed to write PG as a period. As the number of
edges in φ4 graphs is |E(G)| = 2` and we have set one edge variable to 1, we start with 2`−1 integrals.
From the initial integrations above, we notice that the weight of the numerators does not increase in
two of the integrations. Thus the maximum weight of a φ4 period is 2`−3. Note that this maximum
is frequently achieved like in the case of the zig-zag graphs, see Theorem 2.1.6. Now, when G has a
weight drop, this means that the weight of its period PG will be less than this maximum weight of 2`−3.
Hence denominator reduction, and thus the c2-invariant, can tell us about the weight of a graph’s
period. In Section 2.5.1, we discuss weight drop in the context of the c2-invariant.

We can also extend the definition of the n-invariant to n = 3,4 at the expense of uniqueness, where
now the denominator depends on the order of the edges chosen. For n = 3 we have three choices for
D3

G and taking the edges 1,2,3 in that order we can define

D3
G (1,2,3) =±Ψ13,23

G Ψ1,2
G ,3.

Similarly for n = 4 we also have three choices for D4
G , as seen in I4, but notice we can apply denominator

reduction to the D3
G above and use a Dodgson identity to get one such choice

D4
G (1,2,3,4) =±Ψ13,24

G Ψ14,23
G .

As we can denominator reduce any choice of D3
G or D4

G to the 5-invariant, these choices are sufficient.
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PART I. THE C2-INVARIANT

This brings us to the first equivalent definition of the c2-invariant where simultaneously we can get rid
of dividing by q2 and reduce the number of variables in the polynomial we need take point counts of.

Theorem 2.4.3 — (Theorem 29 of [BS12] with Corollary 28 of [BS12] for n < 5) Let G be a connected
graph with 2`(G) ≤ |E(G)| and |E(G)| ≥ 3. Suppose that Dn

G (e1, . . . , en) is the result of the denominator
reduction after 3 ≤ n < |E(G)| steps. Then

c(q)
2 (G) ≡ (−1)n [

Dn
G (e1, . . . , en)

]
q mod q.

If 2`(G) < |E(G)| ≥ 4, then c(q)
2 ≡ 0 mod q.

In particular, for any three distinct edges labelled 1,2,3 of G we have

c(q)
2 (G) ≡−

[
Ψ13,23

G Ψ1,2
G ,3

]
q

mod q.

This theorem becomes a powerful tool in computing the c2-invariant, at least for small q , as we can
usually reduce via denominator reduction for many steps before needing to take point counts. One
strategy then becomes to find "good" sequences of edges in which we can denominator reduce for as

long as possible. In [BS13], Brown and Schnetz was able to exhaustively compute the c(p)
2 for all φ4

graphs up to loop order 10 and for small primes p using these methods.

(2.4.2) Becoming a counting problem.

While Theorem 2.4.3 brings us to a much more tractable form of the c2-invariant, we are still left with
the problem of point counting, which itself is a hard problem as the denominators can still have many
variables. To tackle this we turn to a consequence of a theorem from number theory, see §2 of [Ax64],
which will allow us to determine coefficients instead of counting zeros.

Theorem 2.4.4 — (Corollary of Chevalley-Warning Theorem) Let F be a polynomial of degree N in N
variables, x1, . . . , xN , with integer coefficients. Then we have

coefficient of xq−1
1 · · · xq−1

N in F q−1 ≡ (−1)N−1[F ]q mod p,

where q is some power of the prime p.

Note that this theorem holds when reducing modulo prime p and not when reducing modulo q . An
example of this is given in §5 of [Sch19]. Thus, to use this theorem in the context of the c2-invariant,
we will restrict to when q = p is a prime (see also Conjecture 2.5.1).

To apply this theorem to Dn
G , we just need to make sure that the degree of the polynomial matches up

with the number of variables. We verify this recursively, recalling that |E(G)| = 2`(G) for our graphs of
interest (primitive divergent graphs):

– Starting withΨ2
G , as the monomials inΨG correspond to the complement edges of spanning

trees,Ψ2
G is a homogeneous polynomial of degree 2(|E(G)|− |V (G)|+1) = 2`(G) = |E(G)|.
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2. ON THE C2-INVARIANT

– AsΨG =α1Ψ
1,1+Ψ1, we have thatΨ1,1 must be a homogeneous polynomial of degree `(G)−1

andΨ1,1 is of degree `(G). This means thatΨ1,1Ψ1 has degree 2`(G)−1 = |E(G)|−1 which is
exactly the number of variables left after reducing with respect to edge 1.

– As Ψ1,1 = α2Ψ
12,12 +Ψ1,1

2 and Ψ1 = α2Ψ
2,2
1 +Ψ12 we have that Ψ12,12Ψ12 and Ψ1,1

2 Ψ2,2
1 are

both polynomials of degree `(G)−1+`(G)−1 = |E(G)|−2. Thus the second denominator is
of degree |E(G)|−2.

– Following a similar process for D3
G , we get a degree of |E(G)|−3.

– For n ≥ 3, suppose Dn
G is a homogeneous polynomial of degree |E(G)| − n in |E(G)| − n

variables. If Dn
G factors as (Aαn+1 +B)(Cαn+1 +D) then we must have that AD and BC are

both homogeneous polynomials of degree |E(G)|−n −1. Thus Dn+1
G =±(AD −BC ) must be

homogeneous of degree |E(G)|− (n +1) and in |E(G)|− (n +1) variables.

Thus, Dn
G (e1, . . . ,en) satisfies the criterion for Theorem 2.4.4 for n ≥ 3, where N = |E(G)|−n. Applying

this to Theorem 2.4.3 and returning the notation [·] back to meaning taking coefficients, we arrive at
the second transformation for the c2-invariant.

Corollary 2.4.5 — Let G be a connected graph with 2`(G) ≤ |E(G)| and |E(G)| ≥ 3. Suppose that
Dn

G (e1, . . . , en) is the result of the denominator reduction after 3 ≤ n < |E(G)| steps. Then

c(p)
2 (G) ≡ (−1)|E(G)|−1[αp−1

n+1 · · ·α
p−1
|E(G)|]

(
Dn

G (e1, . . . , en)
)p−1 mod p.

In particular, for any three distinct edges labelled 1,2,3 of G and when |E(G)| = 2`(G) we have

c(p)
2 (G) ≡−[αp−1

4 · · ·αp−1
|E(G)|]

(
Ψ13,23

G Ψ1,2
G ,3

)p−1
mod p. (2.4.1)

An example of using this equation to calculate the c2-invariant is given in Example 2.5.5.

What’s nice about this version of the c2-invariant is that we have reformulated what was a problem on
counting zeros of polynomials into a problem about finding the coefficient of a particular monomial
in some power of said polynomials. Furthermore, these polynomials inherently have a combinatorial
nature as they arise from spanning trees or spanning forests of particular graph minors. Thus, we
can interpret this coefficient as counting the number of ways to distribute edges into some of these
spanning trees or spanning forests, which is a purely combinatorial problem! We will expand on this
interpretation in Chapter 3.

Using this method with the theory of spanning forest polynomials and combinatorial techniques,

Yeats independently and also with Chorney were able to compute the c(p)
2 for entire families of graphs

(those which are called recursively constructible) and fixed small primes p [Yea16; Yea18c; CY19]. Some
examples of these families include particular circulants and toroidal grids.

Combining the two methods of finding "good" sequences of edges for denominator reduction and

taking coefficients, Shaw et al. [Hu+18] were able to extend Brown and Schnetz’s computations of c(p)
2

to all φ4 graphs up to loop order 11 and p = 7, with many graphs up to p = 13.
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PART I. THE C2-INVARIANT

(2.4.3) Quadratic denominator reduction.

Up until now, most of the results on the c2-invariant did not require us to know the specific signs of
Dodgsons. It was not until [Hu+18] that the question of signs became needed, where point counts
of sums of Dodgsons were being taken. Furthermore, up until now the main tool in computing the
c2-invariant has been denominator reduction. As we saw, denominator reduction only guarantees
up to the first five integrations. After the fifth integration, the use of denominator reduction requires
the previous denominator to be factored into two different linear factors. If this does not hold or we
have a perfect square, we cannot reduce any further. Often for high loop ordered graphs, even after
denominator reduction, point counting would be too computationally intensive. In [Sch19], Schnetz
addresses both of these issues; fixing a sign convention for Dodgsons as we presented in Section 2.3.2
and introducing an improved reduction called quadratic denominator reduction.

The main idea of quadratic denominator reduction is that instead of using point counts directly, we can
use sums of Legendre symbols, which enable us to move to quadratic factors instead of linear factors.
We can then define a similar reduction algorithm for particular forms of these quadratic factors. This
idea stemmed from the observation that if the denominator Dn

G does not factor into linear factors and
is a general quadratic in variable αn+1, integrating with respect to αn+1 produces a square root of its
discriminant in the next denominator. Notice that in the denominator reduction case, this fact is still
true, except now the discriminant is a perfect square (hence the ambiguity of the sign)! Thus quadratic
denominator reduction is generalizing the standard denominator reduction.

The Legendre symbol for any a ∈ Fq where q is an odd prime power is defined as(
a

q

)
= |{x ∈ Fq : x2 = a}|−1 ∈ {−1,0,1}.

For any polynomial F ∈Z[α1, . . . ,αN ], we can define

(F )q = ∑
α∈FN

q

(
F (α)

q

)
∈Z.

Then the point count [F ]q can be expressed as

[F ]q = q N − (F 2)q ≡−(F 2)q mod q.

Note that we can also extend these definitions and results to when q = 2 (Remark 3.7 of [Sch19]). For
more details see §5 of [Sch19].

Relating this back to the c2, we are now reducing with respect to (ΨG )4. Based on the results of an
additional integration after denominator reduction ends, Schnetz found two cases of denominators
which behave nicely, with respect to the geometry of the varieties, under such an integration, see §6
of [Sch19].

Definition 2.4.6 — (Definition 34 of [Sch19]) Given a graph G with at least three edges and a sequence
of edges 1, . . . , |E(G)|, we define

3Ψ2
G (1,2,3) = (±3ΨG (1,2,3)

)2 =
(
Ψ13,23

G Ψ1,2
G ,3

)2
.

For n ≥ 3, we recursively define the quadratic n-invariant nΨ2
G (1, . . . ,n), as follows.

If nΨ2
G for n ≥ 3 is of the form

nΨ2
G (1, . . . ,n) = (Aα2

n+1 +Bαn+1 +C )2,
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2. ON THE C2-INVARIANT

we define
n+1ΨG (1, . . . ,n +1) = B 2 −4AC .

If nΨ2
G for n ≥ 3 is of the form

nΨ2
G (1, . . . ,n) = (Dα2

n+1 +Eαn+1 +F )(Hαn+1 + J )2,

we define
n+1ΨG (1, . . . ,n +1) = D J 2 −E H J +F H 2.

Otherwise, if n+1Ψ2
G = 0 or nΨ2

G cannot be factored in such a form (in which case the quadratic n +1-
invariant and higher do not exist), we say that quadratic denominator reduction ends at step n. If
nΨ2

G = 0 (and thus also for higher invariants), we say that G has weight drop.

Note that for quadratic denominator reduction, if nΨ2
G factors into squares of linear factors, the signs

are completely determined, and both cases reduce to the standard denominator reduction. That is,

when Dn
G exists, we have that Dn

G =±(nΨ2
G )

1
2 .

Using quadratic invariants, we can once again reformulate the c2-invariant.

Theorem 2.4.7 — (Theorem 36 of [Sch19]) Let q be an odd prime power. Suppose G is a connected
graph with 2`(G) ≤ |E(G)| and |E(G)| ≥ 3. Then

c(q)
2 (G) ≡ (−1)n−1 (nΨ2

G (e1, . . . , en)
)

q mod q,

whenever nΨ2
G exists.

The power of quadratic denominator reduction allowed Schnetz to compute and extend previous

results on initial prime sequences for the c(p)
2 for all φ4 graphs up to loop order 11 and partially to loop

orders 12 and 13, see §10 of [Sch19]. This comes from the fact that we can always do a minimum of
nine initial reductions (and in numerous graphs we can do many more) using quadratic denominator
reduction as compared to the previous seven for standard denominator reduction, see §8 of [Sch19].
Furthermore, using this new technique, Schnetz and Yeats were able to determine a formula for a
special family of infinite graphs [SY21], which we briefly describe in Section 2.5.4.

2.5. FA M I L I E S O F G R A P H S A N D N U M E R I C A L R E S U LT S

As an avatar for the period, continued interest in the c2-invariant mostly falls into two categories
which are deeply intertwined. The first, based on its relative ease of computability, lies in the types of
sequences that can arise as a c2 and what that means for the geometries of the varieties underlying
the corresponding periods. This direction then motivates us to come up with better algorithms for
computing the c2-invariant that can handle higher values of q and larger graphs. In Section 2.4, we
introduced two algorithms, denominator reduction and quadratic denominator reduction, which
currently form the basis for most of the computational results.

The second category is based on finding symmetries and properties of the c2-invariant. For example,
resolving the period symmetries from Section 2.1.3 in the context of the c2 or finding graph transforms
that preserve the c2, both of which gives families of graphs with the same c2. On the one hand, these
aid computational results and the discovery of better algorithms as they allow us to either reduce the
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PART I. THE C2-INVARIANT

number of graphs we need to calculate the c2 for or extend computations by transforming the problem
to a simpler form (with respect to computability). On the other hand, many symmetries and properties
of the c2-invariant have an inherently combinatorial flavour and thus are interesting combinatorial
problems in their own right. These combinatorial problems then also use known algorithms to
solve some aspect of the problem or even to initially get the problem into a combinatorial form. In
Section 2.3, we introduced the notion of Dodgsons and spanning forest polynomials which allows us
to interpret the c2 through spanning trees and spanning forests. Chapter 3 uses this interpretation to
solve the c2 completion conjecture when q = 2.

In this final section, we present some of the results in both of these categories: the types of sequences
that appear as a c2, and graph transforms that give infinite families of graphs with the same c2.

First, we note that we will restrict the c2 sequence to all primes q = p instead of prime powers q = pn .
This is based on the following conjecture by Schnetz which says that prime powers do not give any
extra information.

Conjecture 2.5.1 — (Conjecture 2 of [Sch19]) Let G1 and G2 be two graphs with equivalent c(p)
2 for all

primes p, that is c(p)
2 (G1) ≡ c(p)

2 (G2) mod p. Then for all prime powers q = pn

c(q)
2 (G1) ≡ c(q)

2 (G2) mod q.

Part of the motivation for this conjecture (other than for computational reasons) came from the use of
only the primes to identify certain c2 sequences, see Section 2.5.5. Some evidence for this conjecture
was also given in [Sch11] for a few small prime powers. Very recently, Esipova and Yeats [EY21] were
able to prove a version of this conjecture where instead of working modulo q they worked modulo p.

Specifically, they proved that c(q)
2 (G1) ≡ c(q)

2 (G2) mod p.

Secondly, we note that in the context of numerical results on φ4 graphs, we normally assume the
completion conjecture for the c2-invariant which says that for any completed primitive graph G ,
decompleting at any vertex v gives the same c2 (see Section 2.1.3). Finally, when the c2 is a constant
sequence consisting of all c’s, we may say that c2 = c.

For the rest of this section, G will be a connected graph with 2`(G) ≤ |E(G)| and at least three edges.

(2.5.1) Weight drop, subdivergences and the trivial c2.

The first families of graphs that we will consider is when the c2 is trivial. These are graphs G with

c(p)
2 (G) ≡ 0 mod p for all primes p.

One type of family is based on the denominator reduction algorithm (Definition 2.4.2) which tells
us that when G has weight drop (i.e. when the denominator is 0 after reducing with respect to some
sequence of edges), by Theorem 2.4.3 we have that

c(p)
2 (G) ≡ 0 mod p.

Thus, any graph G that has weight drop will have a trivial c2. Intuitively, recall that for a graph the
weight of the (possibly transcendental) number that is its period can be thought of as the minimum
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2. ON THE C2-INVARIANT

number of nested integrals needed to write the period. From denominator reduction, we saw that the
maximal weight of a period is 2`(G)−3, and having weight drop then means that the weight is actually
less than this maximal value.

Two graph properties that give rise to weight drop are:

– doubled edges in graphs with at least five edges (Lemma 92 of [Bro10]), and
– 2-vertex reducible (Proposition 36 of [BY11]): These are graphs which have a 2-vertex cut,

in other words, they have vertex connectivity 2. For completed primitive graphs, the corre-
sponding property is what we call reducible, having 3-vertex cuts.

Note that being (2- or 3-vertex) reducible and having c2 = 0 is the c2-invariant equivalent of the product
identity (see Section 2.1.3) for the period!

The second type of graph we will look at that has trivial c2 are those from φ4-theory which are not
primitive but still logarithmic divergent. Recall from Definition 2.1.1 that these graphs G contain
non-trivial divergent subgraphs γ which are subgraphs such that |E(γ)| ≤ 2`(γ). To translate this
condition into an equivalent graph property, we think of γ as being 4-regular with k external legs giving

|E(γ)| = 4|V (γ)|−k

2
≤ 2`(γ) =⇒ |V (γ)| ≤ `(γ)+ k

4
.

Then, using Euler’s formula with the divergent subgraph condition, we have

|E(γ)| = |V (γ)|+`(γ)−1 ≤ 2`(γ)+ k

4
−1,

which tells us that k ≤ 4. Now, thinking of these k external legs in the context of the full graph G ,
this means that G has a cut with k edges where one side of the cut is the subgraph γ. Thus, having
subdivergences corresponds to having non-trivial cuts of size at most 4. In §5 of [BSY14], Brown,
Schnetz and Yeats were able to prove that if a graph has a non-trivial cut of size at most 4, then its c2 is
trivial!

Note that after completing G (see Section 2.1.3), the same argument still holds for any subdivergence
γ. This shows why we need the completed primitive condition (being internally 6-edge connected) for
4-regular graphs to ensure we get primitive divergent decompletions.

(2.5.2) Double triangle reduction.

Now that we know when graphs have c2 = 0, we switch our focus to a graph transformation called the
double triangle reduction (DTR). While double triangle reduction does not preserve the period, it
does preserve the c2-invariant. Thus, having this transformation allows us to reduce our problems to
smaller graphs and so we only need to look at the c2’s of those without double triangles.

Suppose a graph G has an edge that is shared by exactly two triangles. Call this edge (A,B) with
triangles (A,B ,C ) and (A,B ,D). The double triangle reduced graph of G is G with one of the vertices
of (A,B), say B , replaced with the edge (C ,D). If B has a neighbour not in the triangles, then it is now
adjacent to the remaining vertex A. This is illustrated in Figure 2.2. We note that in fact A,B ,C and D
do not need to be 4-valent.
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C

A

B

D
 

C

A

D

F I G U R E 2 . 2 : Double triangle reduction from left to right.
Note: A,B ,C and D do not need to be 4-valent.

Theorem 2.5.2 — (Theorem 3.5 of [Hu+18] using Corollary 34 in [BS12], Theorem 35 in [BY11])
Let G be a connected 4-regular graph and G ′ be the double triangle reduction of G. Then, decompleting
at any (same) vertex v, we get

c2(G − v) = c2(G ′− v).

In particular, when G1 is a primitive divergent graph in φ4 and G ′
1 is its double triangle reduction, then

c2(G1) = c2(G ′
1).

(2.5.3) K5 and its descendants.

Now, assuming the completion conjecture for the c2-invariant allows us to only look at completed
primitive graphs. The results in Section 2.5.1 says that we can then disregard those graphs with vertex
connectivity < 4 and with non-trivial 4-edge cuts since they yield trivial c2’s. Finally, double triangle
reduction further reduces our graphs to those without double triangles. Combining all three reductions,
we are led to the following type of graphs.

Definition 2.5.3 — (Definition 22 of [Sch19]) A graph with ≥ 5 vertices is a prime ancestor if all of the
following properties hold:

(i) it is 4-regular,
(ii) it is internally 6-edge connected,

(iii) it has vertex connectivity 4, and
(iv) it has no edge which is shared by exactly two triangles.

Thus, we only need to investigate the c2-invariant for decompletions of prime ancestors as each prime
ancestor defines an equivalence class of graphs all with the same c2. In each such class, the graphs are
related by double triangle reductions and thus we call these graphs descendants of the ancestor. There
is one prime ancestor of particular interest which is conjectured to exactly correspond to the class of
graphs with c2 =−1.

Conjecture 2.5.4 — (Conjecture 25 of [BS13]) The only φ4 prime ancestor with c(q)
2 ≡−1 mod q for all

q is the complete graph K5.
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2. ON THE C2-INVARIANT

In [LMY19] Laradji, Mishna and Yeats studied the structure of K5 descendants and gave some partial
results on properties of these graphs. One interesting result is that the minimum number of triangles
in a K5 descendant is four.

We verify here that decompletions of K5 indeed have a c2 of −1, giving an example of a c2 calculation.

Example 2.5.5 — (A c2 calculation) Consider the complete graph K4 on four vertices whose completion
is K5, with the edges labelled as follows:

5

3

1

4

2
6

To compute it’s c2-invariant, we use Equation (2.4.1). First we compute the two Dodgsons in the equation
with respect to K4 using Theorem 2.3.5 and the discussion thereafter. ForΨ12,13 notice that K4 \ 12/3 is
isomorphic to K4 \ 13/2 which is the triangle with edges 4,5,6 and thus

Ψ12,13 =Ψ


5

4
6

=α4 +α5 +α6.

ForΨ2,3
1 we compute the common spanning trees of K4 \ 2/13 and K4 \ 3/12, which is just the edge 5,

Ψ2,3
1 =Ψ

 4

5
6 ∩ 6

5
4

=α4α6.

Putting everything together we get

c(q)
2 (K4) ≡−[αq−1

4 α
q−1
5 α

q−1
6 ] (Ψ12,13Ψ2,3

1 )q−1 mod q

≡−[αq−1
4 α

q−1
5 α

q−1
6 ] (α4α6(α4 +α5 +α6))q−1 mod q

≡−[αq−1
5 ] (α4 +α5 +α6)q−1 mod q

≡−1 mod q.

So the c2 of K4 is the constant sequence −1!

In fact all zig-zag graphs Z` with ` ≥ 3, which includes K4 = Z3, have c2(Z`) = −1 (see Corollary 54
of [BS12]). This makes zig-zag graphs particularly special as they are an infinite family of graphs for
which both the period (Theorem 2.1.6) and the c2 are completely known!

(2.5.4) Hourglass chains.

After double triangle reduction, up until recently, there hasn’t been much progress in the direction
of new graph transforms giving families of graphs with the same c2. A breakthrough came after
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Schnetz [Sch19] introduced quadratic denominator reduction (see Section 2.4.3) as a new technique to
compute the c2-invariant. The potential of this new technique was illustrated in [SY21] where Schnetz
and Yeats were able to determine a formula (using both cases in Definition 2.4.6) for the c2 of special
infinite families of graphs.

The interesting part is that these graphs, which are formed from attaching hourglass chains to a kernel
graph, were able to be reduced to their kernels (which then may be further reduced). That is, the c2 of
such graphs only depends on said kernel, thus creating infinite families of graphs (of all loop orders)
with the same c2 and for which the c2 is completely determined. Furthermore, for suitable kernels
these hourglass chain graphs actually form infinite families of prime ancestors!

This is exciting as we have previously only seen families of graphs for which the c2 is trivial or c2 =−1
(like zig-zag graphs), or we have double-triangle families, some of which the c2 is unknown. With
hourglass chains, we now have families with a variety of interesting c2s, including sequences that have
never been found before!

(2.5.5) Legendre symbols and modular forms.

Finally we very briefly mention some of the (other) sequences that appear as c2-invariants ofφ4 graphs.
Of the identified sequences, these c2s currently fall into two types. The first type corresponds to
constant and quasi-constant c2s, more generally those that are Legendre symbols. The second type are
what we call modular, where the c2 arises as the Fourier coefficients of certain modular forms. We refer
the reader to [BS13; Sch19] and the references therein for complete details.
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3 | C O M P L E T I N G T H E c2 C O M P L E T I O N C O N J E C T U R E F O R p = 2

One of the motivating reasons to study the c2-invariant (Definition 2.2.1) is its close relation to the
Feynman period of a graph, as given in Equation (2.1.1), where these are primitive divergent graphs in
φ4-theory. Recall from Section 2.1 that these particular graphs can be described as connected 4-regular
graphs with one vertex removed and with the property that |E | = 2`, where ` is the loop order, and
|E(λ)| > 2`(λ) for any non-empty proper subgraph λ.

Not only is the c2-invariant essentially capturing the behaviour of the zeros of the denominators of
the period, but the connection is further strengthened by Conjecture 2.2.2, which says that the c2

should be a period invariant. For this conjecture to hold, we would need the c2-invariant to have all
the symmetries of the period as described in Section 2.1.3. In particular, it should be invariant under
the period symmetry called completion.

Schnetz proved in [Sch10] that the period could be defined for the graphs created by adding back the
vertex that was "removed" from primitive divergent graphs, and thus "completing" them to become
4-regular. We call this 4-regular graph G the completion and call the original primitive divergent graph
G −v for some vertex v a decompletion of G . Note that decompletions of 4-regular graphs could be
non-isomorphic. To utilize this, Schnetz further proved that if two primitive divergent graphs have
the same completion, then their periods are also the same (see Theorem 2.1.5). Thus the power of
completion is that it allows us to lift the problem of calculating periods on primitive divergent graphs
to one on 4-regular graphs, in the process cutting down the number of graphs to compute periods for.

For the c2-invariant, whether or not the completion symmetry holds is still an open conjecture.

The c2 Completion Conjecture — (Conjecture 4,35 of [BS12])
Let G be a connected 4-regular graph, and let v and w be vertices of G. Then,

c2(G − v) = c2(G −w).

While the c2-invariant is defined for all prime powers q and more general connected graphs, we
will restrict to when q = p is a prime (see also Conjecture 2.5.1) and to decompletions of connected
4-regular graphs G . Note that for any vertex v , by Euler’s formula, the decompletion G − v indeed
satisfies |E(G − v)| = 2` where ` is the loop order of G − v .

Yeats in [Yea18b] first made progress in the special case of p = 2 by reducing the conjecture to a
combinatorial counting problem; one involving enumerating certain edge bipartitions. Using two
different constructions, Yeats was able to partially prove the p = 2 case. However, the obstruction to a
full proof lay in the second construction, which required restricting the argument to completed graphs
with an odd number of vertices.

In this chapter, inspired by the first construction in [Yea18b], we present this argument and show how
by using the same ideas we can get rid of the mysterious parity condition on the vertices, thereby
completing the c2 completion conjecture for this special case.
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PART I. THE C2-INVARIANT

3.1. T H E C O N J E C T U R E A N D T H E p = 2 C A S E

Let G be a connected 4-regular graph, and let v and w be vertices of G . Before even approaching the
conjecture, we notice that it suffices to prove the equation holds when v and w are adjacent. This is
because as G is connected, there is a path between any two vertices, and successively applying the
equation to each pair of neighbours along the path gives the more general result.

As we will see shortly, the neighbours of v and w play an important role, and thus we split the conjecture
into cases based on the number of neighbours that v and w have in common. Since G is a 4-regular
graph and v and w are adjacent, there are four possibilities: they share all three neighbours, or exactly
two or one neighbour, or they have no neighbours in common. In the first case, when v and w share
all neighbours, G − v and G −w are isomorphic, and thus the conjecture holds trivially. For the others,
we will deal with each case separately and label them with T , S, and R, respectively. The T -case is
when v and w share exactly two neighbours, the S-case is when they share only one neighbour, and
the R-case is when they do not share any neighbours. The three cases are depicted in Figure 3.1 where
the grey blobs are the graphs G − {v, w} in each case, and will be addressed in Sections 3.2, 3.3, and 3.4,
respectively.

v

w

a b

cd

T

v

w

a b

c

d e

S

v

w

a
b c

d
e f

R

F I G U R E 3 . 1 : The graph G , and the three cases T , S, and R.

With the set-up complete, the first step in tackling the c2 completion conjecture is the question of how
to reduce it into an approachable combinatorial counting problem. Recall that in Section 2.4.2, we
were able to transform the c2-invariant for primes p into the following (2.4.1) for a graph G − v

c(p)
2 (G − v) ≡−[αp−1

4 · · ·αp−1
|E | ]

(
Ψ13,23Ψ1,2

3

)p−1
mod p,

where 1,2,3 are the labels of any three distinct edges of G − v , and the Dodgson polynomials in the
equation are with respect to G − v .

Now suppose u is a 3-valent vertex in G − v . Let the edges 1,2,3 be the three edges incident to u, and
let u1,u2,u3 be the respective vertices adjacent to these edges as below:

u2

u1 u3

u

2
1 3
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3. COMPLETING THE C2 COMPLETION CONJECTURE FOR P = 2

Looking at the termΨ1,2
3 , as discussed in Section 2.3.2 we can view this Dodgson polynomial as coming

from the following intersection of spanning trees

u1 u = u2 = u3 ⋂
u2

u = u1 = u3

where the first blob depicts spanning trees on (G−v)\1/{2,3}, and the second blob is on (G−v)\2/{1,3}.

To translate this into spanning forests on (G−v)\{1,2,3} using Theorem 2.3.8, we just need to determine
the partitions P of {u,u1,u2,u3} (as these are the vertices of edges {1,2,3}) such that all the spanning
forests compatible with P are spanning trees in the above intersection. First, spanning trees on the
first blob correspond to spanning forests such that u, u2, and u3 are in different trees, and u1 can be in
any of the three trees. Similarily, spanning trees on the second blob correspond to spanning forests
such that u, u1, and u3 are in different trees, and there is no restriction for which tree u2 is in. As these
spanning forests have exactly three parts, the intersection of these blobs are spanning forests such that
u is in one tree, u3 is in another tree, and u1 and u2 are in the last tree. Furthermore, this is the only
possible partition of {u,u1,u2,u3} that satisfies the required condition.

In particular, there is only one spanning forest polynomial in the sum, which isΦ{u},{u3},{u1,u2}
(G−v)\{1,2,3} . However,

notice that u is an isolated vertex in (G − v) \ {1,2,3} since edges 1,2,3 are exactly the edges incident to
u. This means we can remove the vertex u, giving the equation

Ψ1,2
3 =Φ{u3},{u1,u2}

G−{u,v} .

Thus we are left with spanning forests with exactly two parts, which we call spanning 2-forests, such
that they are compatible with the vertex partition {u3}, {u1,u2}.

Following the same process forΨ13,23, in either case we want spanning trees on the graph G − {u, v}

u2u1 u3

where for (G − v) \ {1,3}/2, we have u = u2, and for (G − v) \ {2,3}/1, we have u = u1. Once again, we
can translate these to spanning forests on (G − v) \ {1,2,3}, this time with exactly two parts, giving the
polynomialΦ{u},{u1,u2,u3}

(G−v)\{1,2,3} . Noticing that u is an isolated vertex in this graph, removing vertex u gives

Ψ13,23 =Φ{u1,u2,u3}
G−{u,v} =ΨG−{u,v}.

Putting everything together, we have reformulated the c2-invariant to

c(p)
2 (G − v) ≡−[αp−1

4 · · ·αp−1
|E | ]

(
Φ

{u3},{u1,u2}
G−{u,v} ΨG−{u,v}

)p−1
mod p,

which we call reducing with respect to vertex u. Note that the ordering of the vertices u1, u2, and u3

was completely arbitrary, and this formulation of the c2 does not depend on this choice.

Finally, by working with the c2 in this form, there’s a particularly nice interpretation of what this
equation is counting. From the coefficient extraction, the monomial we are looking for can be viewed
as distributing p −1 copies of each edge in G − {u, v} across 2p −2 polynomials, where now G − {u, v}
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is the underlying graph for the polynomials. Of these 2p −2 polynomials, p −1 of them arise from
spanning 2-forests compatible with the vertex partition {u3}, {u1,u2} and the other p −1 come from
spanning trees. Then, since all the monomials in Ψ and Φ appear with a coefficient of 1, we are
enumerating all the ways to do such a distribution.

Now, recalling that the terms inΨ andΦ correspond to the edges not in the respective trees or forests,
we need to shift our view slightly to make sense of what this coefficient is counting. Given p − 1
spanning trees of G − {u, v}, the corresponding monomial in

(
ΨG−{u,v}

)p−1 comes from combining all
the edges of the graph not in each spanning tree. Thus the edges left over to be distributed to the p −1
Φ polynomials are exactly the edges of the p −1 spanning trees. Furthermore, these edges must be
grouped in a such a way that removing them gives p −1 spanning 2-forests.

Similarily, given p −1 spanning 2-forests the corresponding monomial in
(
Φ

{u3},{u1,u2}
G−{u,v}

)p−1
combines

all the edges of the graph not in each forest. Notice this monomial must then match the edges left
over from the monomial given by the p −1 spanning trees above, which are exactly the edges of the
spanning trees. By the same logic, the monomial arising from the p−1 spanning trees must then match
the edges of the p −1 spanning 2-forests. Thus, we can swap the roles of the spanning trees and forests,
and equivalently express the enumeration as counting the number of ways to partition p −1 copies of
each edge into p −1 spanning trees and p −1 spanning 2-forests compatible with {u3}, {u1,u2}!

When p = 2, this interpretation is much simpler as the equation simplifies to

c(2)
2 (G − v) ≡ [α4 · · ·α|E |]Φ{u3},{u1,u2}

G−{u,v} ΨG−{u,v} mod 2. (3.1.1)

Now we only have one copy of each edge, and we are counting the number of edge bipartitions where
one part is a spanning tree and the other is a spanning 2-forest compatible with {u3}, {u1,u2}. We will
usually denote these edge partitions as (ψ,φ). Additionally, as we are counting modulo 2, we really
only care about the parity of this count. Thus one strategy to tackling the c2 completion conjecture
when p = 2 is to find fixed-point free involutions on the appropriate sets of edge bipartitions!

3.2. T H E T - C A S E

The first case we will look at is the T -case, which is also special in and of itself. It is the starting point
for many of the arguments needed later on. Let G be a connected 4-regular graph, and let v and w
be two adjacent vertices of G such that they share two common neighbours. Let T = G − {v, w} be
the graph obtained by removing vertices v and w from G , the first grey blob in Figure 3.1, with the
neighbours of v and w labelled {a,b,c,d} as in the figure. Here w has neighbours {a,b,c, v}, and v has
neighbours {b,c,d , w}.

What’s special about this case is when v and w share two common neighbours, these four vertices
form a double triangle as defined in Section 2.5.2. From the results in Section 2.5.2, we know that
double triangles are important since the c2 is invariant under double triangle reductions. Now adding
in decompleting at a double triangle vertex, as proved in [Hu+18] (see also Theorem 2.5.2), we can
resolve the c2 completion conjecture in the T -case for all values of p as a consequence of double
triangle reduction. This proof uses a different argument, namely via proving an equivalence of certain
graph polynomials. Even though we do have this alternative proof, it is still worthwhile to present the
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enumerative argument from [Yea18b] in this section, as it showcases the proof techniques and overall
framework that the S and R cases build upon.

Furthermore, another reason for the specialness of the T -case is that by using the same counting
methods as for the p = 2 case, these results can be extended to all values of p [Yea18a]. While the S and
R cases are not as simple, this extension gives some hope for generalizing the arguments needed in
those cases for higher values of p.

(3.2.1) Set-up.

To start off, we define the particular sets of edge partitions that we are counting using the vertex
bipartition that the spanning 2-forests are compatible with (see Definition 2.3.6). We will use similar
definitions for the S and R cases.

Definition 3.2.1 — (Definition 3.1 of [Yea18b]) Suppose P is a bipartition of {a,b,c,d}.
Let TP be the set of bipartitions (ψ,φ) of the edges of T such thatψ is a spanning tree andφ is a spanning
2-forest compatible with P. Let tP = |TP |.

Now, since we can choose the order of the edges adjacent to the 3-valent vertex we are reducing by
in Equation (3.1.1), and thus choose the partition of its neighbours into a 1-part and 2-part for the
2-forest, in the T -case we can do so in such a way that exploits the property that v and w share two
common neighbours.

Proposition 3.2.2 — (Proposition 3.2, 3.3 of [Yea18b]) When v and w have common neighbours b,c,

c(2)
2 (G − v) = t{a},{b,c} mod 2,

c(2)
2 (G −w) = t{d},{b,c} mod 2,

and thus we have
c(2)

2 (G − v)− c(2)
2 (G −w) = t{a},{b,c,d} + t{d},{a,b,c} mod 2.

P R O O F . In the G − v case, from Equation (3.1.1) we can reduce with respect to vertex w , since now
w is a 3-valent vertex, and choose the order of its adjacent edges such that we get vertex partition
{a}, {b,c} for the spanning 2-forest. Then, by the discussion in Section 3.1, this is equivalent to counting
the number of ways to partition the edges of G−{v, w} = T into a spanning tree and a spanning 2-forest
compatible with {a}, {b,c}, which gives

c(2)
2 (G − v) ≡ [α4 · · ·α|E(G−v)|]Φ{a},{b,c}

G−{v,w}ΨG−{v,w} ≡ t{a},{b,c} mod 2.

Similarily, in the G −w case, v is now a 3-valent vertex, and we choose vertex partition {d}, {b,c} to get

c(2)
2 (G −w) ≡ t{d},{b,c} mod 2.

Finally, enumerating over all possibilities for the vertex set {a,b,c,d} in the spanning 2-forests

t{a},{b,c} = t{a},{b,c,d} + t{a,d},{b,c},

t{d},{b,c} = t{d},{a,b,c} + t{a,d},{b,c},
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and thus since t{a,d},{b,c} appears in both equations and we are working modulo 2

c(2)
2 (G − v)− c(2)

2 (G −w) = t{a},{b,c} − t{d},{b,c} ≡ t{a},{b,c,d} + t{d},{a,b,c} mod 2.

■

(3.2.2) Swapping around a two-valent vertex.

The main property of the T -case, that makes it much simplier to deal with, is that since v and w share
two common neighbours, after removing both v and w we are left with two 2-valent vertices. As we are
dealing with edge bipartitions involving spanning trees and forests of a particular form, these 2-valent
vertices cannot be isolated in said forests, and thus we know exactly how the two edges of a 2-valent
vertex must be distributed across the edge partition. Furthermore, we can swap these edges to obtain
another valid edge partition.

Lemma 3.2.3 — (Lemma 4.1 of [Yea18b]) Let V be a set of marked vertices of a connected graph G, and
suppose c ∈V is a 2-valent vertex. Let (ψ,φ) be an edge partition of G whereψ is a spanning tree and φ is
a spanning 2-forest that is compatible with a bipartition of V where each part (and thus forest) contains
at least one of the vertices in V \ {c}.

Then, of the the two edges incident to c, exactly one edge is in each part of (ψ,φ), and swapping
which edge is in which part yields a new edge partition (ψ′,φ′) with the same properties, except possibly
the bipartition of V that φ′ is compatible with.

P R O O F . Looking at the edge partition (ψ,φ), first, since ψ is a spanning tree of G there must be at
least one edge in ψ that is adjacent to the vertex c. Now since φ is a spanning 2-forest in which each
forest contains at least one of the vertices in V \ {c}, we have that in particular, c is not an isolated
vertex in φ and must be connected to the rest of its forest via at least one edge. As c is a 2-valent vertex
adjacent to at least one edge in part of the edge partition, exactly one edge incident to c must be in
each of (ψ,φ).

Because c is a leaf in both ψ and φ, removing the edges incident to c disconnects and furthermore,
isolates c from the rest of the tree and the 2-forest, respectively. Since both ψ and φ are spanning, they
must contain both neighbours of c, and thus we can reconnect c via the opposite edges incident to c
as in ψ and φ. This gives a new edge partition (ψ′,φ′) where ψ′ is a spanning tree and φ′ is a spanning
2-forest, the only difference between the two edge partitions being the swapping of the edges incident
to c. However, in φ′, c could be reconnected to a different tree than in φ thus changing the bipartition
of V that φ′ is compatible with. Specifically, either the bipartition of V remains the same as for φ or c
swaps between the parts of the bipartition. ■

With this observation that we can swap the edges around any 2-valent vertex to get two different edge
partitions (ψ,φ) and (ψ′,φ′), we can obtain fixed-point free involutions on TP for some particular
bipartitions P of {a,b,c,d}.

Theorem 3.2.4 — (from §6 of [Yea18b]) There is a fixed-point free involution on

T{a},{b,c,d} ∪T{a,b},{c,d},
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3. COMPLETING THE C2 COMPLETION CONJECTURE FOR P = 2

and on
T{d},{a,b,c,} ∪T{a,b},{c,d}.

Thus we have
t{a},{b,c,d} + t{a,b},{c,d} ≡ 0 mod 2,

t{d},{a,b,c} + t{a,b},{c,d} ≡ 0 mod 2,

which together gives
t{a},{b,c,d} + t{d},{a,b,c} ≡ 0 mod 2.

P R O O F . Consider the edge partitions in T{a},{b,c,d} ∪T{a,b},{c,d}. Since b is a 2-valent vertex in T , and
both {a}, {b,c,d} and {a,b}, {c,d} are bipartitions of {a,b,c,d} in which each part contains at least one
of {a,c,d}, these edge partitions satisfy the conditions of Lemma 3.2.3.

Take any edge partition (ψ,φ) ∈T{a},{b,c,d} and swap the edges incident to b between the two parts to
get a new edge partition (ψ′,φ′). Looking at the new spanning 2-forest φ′, either both neighbours of b
were in the same tree in φ, and thus b was reconnected to that same tree corresponding to the part
{b,c,d} in the vertex bipartition. Or the neighbours of b were in different trees in φ, and thus b was
reconnected but to the tree coresponding to the part {a}. In the first case, (ψ′,φ′) is once again an edge
partition in T{a},{b,c,d}. In the second case, (ψ′,φ′) in now an edge partition in T{a,b},{c,d}. Similarily, for
edge partitions in T{a,b},{c,d}, swapping around b either gives a new edge partition in the same set (first
case) or in T{a},{b,c,d} (second case).

In either case, since we are swapping the edges incident to b in each part, (ψ′,φ′) must be different
from (ψ,φ), and swapping around b once again returns us to (ψ,φ). Thus, this action of swapping
around b gives a fixed-point free involution on T{a},{b,c,d} ∪T{a,b},{c,d}, and so the size of this set must
be even, giving the equation

t{a},{b,c,d} + t{a,b},{c,d} ≡ 0 mod 2.

Now since c is also 2-valent in T , using the exact same argument on T{d},{a,b,c} ∪T{a,b},{c,d} with c as
the vertex we are swapping around, we obtain a fixed-point free involution on these edge partitions,
and thus

t{d},{a,b,c} + t{a,b},{c,d} ≡ 0 mod 2.

Finally, notice that t{a,b},{c,d} appears in both equations, and since we are working modulo 2, adding
the two equations gives

t{a},{b,c,d} +2t{a,b},{c,d} + t{d},{a,b,c} ≡ t{a},{b,c,d} + t{d},{a,b,c} ≡ 0 mod 2.

■

From Proposition 3.2.2, the final equation in Theorem 3.2.4 is exactly what we need to prove the c2

completion conjecture for p = 2 in the T -case.

Corollary 3.2.5 — Let G be a connected 4-regular graph. Let v and w be adjacent vertices of G such
that they share two common neighbours. Then,

c(2)
2 (G − v) = c(2)

2 (G −w).
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3.3. T H E S - C A S E

With the T -case complete, we move to the slightly more complicated S-case. Let G be a connected
4-regular graph, and let v and w be two adjacent vertices of G such that they share one neighbour. Let
S = G − {v, w} be the graph obtained by removing vertices v and w from G , the middle grey blob in
Figure 3.1, with the neighbours of v and w labelled {a,b,c,d ,e} as in the figure. Here w has neighbours
{a,b,c, v}, and v has neighbours {c,d ,e, w}.

While the S-case is more complicated, it does use ideas that stem from the T -case. Firstly, as v and w
still share a neighbour, after removing both vertices S will have a 2-valent vertex, and thus we can use
the same swapping around a 2-valent vertex argument as in the T -case. In fact, originally in [Yea18b]
this argument was first used for the S-case! However, it was not enough to complete the proof of the
conjecture for p = 2. A different type of argument involving compatible cycles (see §5 of [Yea18b]) was
given for the rest of the sets not covered by swapping around a 2-valent vertex, but under the condition
that G had an odd number of vertices.

Secondly, this idea of swapping around a 2-valent vertex can be generalized to swapping around a
particular vertex called the control vertex, under certain conditions. While first used in [Yea18b] for the
R-case, we prove that this argument can be modified to apply in the S-case as well. This modification
was able to cover all the sets from the compatible cycle argument without the odd vertex condition on
G , and thus complete the proof of the c2 completion conjecture for p = 2 in the S-case.

Being not as simple as the T -case but also perhaps not as hard as the R-case due to the presence of a
2-valent vertex, the S-case seems to be the perfect playground and stepping stone for trying to further
extend these ideas for higher values of p.

To give a complete, self-contained proof of the S-case, we begin by presenting the set-up and some of
the results from [Yea18b] with proof, and in Section 3.3.3 we introduce our new results which allows us
to finish the S-case for p = 2!

(3.3.1) Set-up.

As with the T -case, we start with defining the particular sets of edge partitions that we are counting.

Definition 3.3.1 — (Definition 3.1 of [Yea18b]) Suppose P is a bipartition of {a,b,c,d ,e}.
Let SP be the set of bipartitions (ψ,φ) of the edges of S such thatψ is a spanning tree and φ is a spanning
2-forest compatible with P. Let sP = |SP |.

Once again, we can pick the vertex bipartitions for the spanning 2-forests to exploit the property that v
and w share a neighbour.

Proposition 3.3.2 — (Proposition 3.2, 3.3 of [Yea18b]) When v and w have one common neighbour c

c(2)
2 (G − v) = s{c},{a,b} mod 2,

c(2)
2 (G −w) = s{c},{d ,e} mod 2,
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and thus we have

c(2)
2 (G − v)− c(2)

2 (G −w) = s{c,d},{a,b,e} + s{c,e},{a,b,d} + s{a,b},{c,d ,e} (3.3.1)

+ s{a,c},{b,d ,e} + s{b,c},{a,d ,e} + s{d ,e},{a,b,c} mod 2.

P R O O F . Using the same argument as in the proof of Proposition 3.2.2, we can pick the vertex partition
{c}, {a,b} for the G − v case and {c}, {d ,e} for the G − w case to equivalently determine each c2 via
counting edge partitions into a spanning tree and a spanning 2-forest compatible with the respective
vertex partition.

Then, enumerating over all possibilities for the vertex set {a,b,c,d ,e} in the spanning 2-forests, and
noticing that s{c},{a,b,d ,e} appears for both G − v and G −w , we obtain the final equation by subtracting
the expanded counts for G − v and G −w , and simplifying modulo 2. ■

Here is a nice visual representation of Equation (3.3.1) from [Yea18b] where we depict the vertex
bipartition for the spanning 2-forest using different shapes:

c(2)
2 (G − v)− c(2)

2 (G −w) = + + + + + mod 2

(3.3.2) Swapping around c.

The main property of the S-case is that v and w share a neighbour, and in particular, after removing
both v and w from G , we are left with a 2-valent vertex. Since we already know how to deal with
2-valent vertices, we immediately obtain the following theorem.

Theorem 3.3.3 — (Lemma 4.2 of [Yea18b]) There is a fixed-point free involution on

S{a,b,c},{d ,e} ∪S{a,b},{c,d ,e},

and thus we have
s{a,b,c},{d ,e} + s{a,b},{c,d ,e} ≡ 0 mod 2.

P R O O F . Consider the edge partitions in S{a,b,c},{d ,e} ∪S{a,b},{c,d ,e}. Since c is a 2-valent vertex in S,
and both {a,b,c}, {d ,e} and {a,b}, {c,d ,e} are bipartitions of {a,b,c,d ,e} in which each part contains at
least one of {a,b,d ,e}, these edge partitions satisfy the conditions of Lemma 3.2.3.

Then, using the same argument as in the proof of Theorem 3.2.4, swapping the edges incident to c
between the two parts of the edge partitions of interest gives a new edge partition with a spanning
2-forest either compatible with the same vertex bipartition as we started with or the vertex bipartition
where c swaps between the parts of the original vertex bipartition. Once again we have a fixed-point
free involution, this time on S{a,b,c},{d ,e} ∪S{a,b},{c,d ,e}, and so the size of this set must also be even

s{a,b,c},{d ,e} + s{a,b},{c,d ,e} ≡ 0 mod 2.

■
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v

x

(a) x is in the 2-part after removing v

v

x

(b) x = v or x is in one of the singletons after removing v

F I G U R E 3 . 2 : The two possible control vertices v depending on the specification
for special vertex x for Lemma 3.3.4. The three unlabelled leaves are the vertices in
p \{x}. The dashed lines indicate the edges we will be picking for one of the involutions
in the S-case and in the R-case, respectively. Some of the leaf edges are possibly
contracted, with the exception that two leaf edges incident to the same vertex cannot
simultaneously both be contracted.

Swapping around c takes care of two specific vertex bipartitions on the right-hand side of Equa-
tion (3.3.1), and what we are left with are sets of the form S{c,∗},{∗,∗,∗}. However, when we try to swap
around c for these sets we obtain vertex bipartitions not in the equation nor ones that coincide with
each other, like in the T -case with t{a,b},{c,d}. For example, for {a,c}, {b,d ,e}, we would get the equation
s{a,c},{b,d ,e} + s{a},{b,c,d ,e} ≡ 0 mod 2 and similarly for the rest. To tackle this problem, we generalize the
idea of swapping around a 2-valent vertex!

(3.3.3) Swapping around a control vertex.

For the remaining sets in Equation (3.3.1), we generalize the swapping argument to one using a vertex
that is not 2-valent in S. While this idea of using control vertices is not new, we adapt it to be able to
apply it to the S-case. In the process we develop a new swapping method involving multiple vertices,
starting with using a control vertex in conjunction with a 2-valent vertex. Generalizing once again, the
notion of using multiple control vertices will then be used for the R-case.

Recall that in the 2-valent vertex case, we are swapping the edges incident to this vertex between the
two parts of the edge partition (ψ,φ). We can do so uniquely since under some requirements for (ψ,φ),
this vertex is a leaf in both parts.

As we no longer have an appropriate 2-valent vertex, we need to define a different vertex to swap edges
around. We do so under certain conditions such that the same vertex can be recovered after swapping
an incident edge in both ψ and φ, and such that we can get a new 2-forest compatible with a vertex
bipartition that we care about!

Lemma 3.3.4 — (generalizing Lemma 4.3 of [Yea18b]) Let G be a connected 4-regular graph with two
adjacent vertices removed, and let V be the set of neighbours of those vertices. Fix a vertex x ∈V , which
we call the special vertex. Suppose we have a bipartition P of V such that each part contains at least
one of the vertices in V and one part is of the form p = {x,∗,∗,∗}.

Let (ψ,φ) be an edge partition of G where ψ is a spanning tree and φ is a spanning 2-forest com-
patible with P. Let t be the tree corresponding to p in the 2-forest φ. Then, there are two distinct vertices
v such that removing v from t partitions {x,∗,∗,∗} into a 2-part, a singleton, and possibly a third part
which is also a singleton.
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3. COMPLETING THE C2 COMPLETION CONJECTURE FOR P = 2

If we further specify that x must satisfy one of the following properties, either

(i) x is in the 2-part, or
(ii) x = v or x is in one of the singleton components,

then there is a unique vertex v, which we call the control vertex, that satisfies all the required properties.
Figure 3.2 depicts the control vertex in each case. Furthermore, in t this control vertex v will either be
2-valent with v ∈ p or 3-valent and v 6∈ p. In both cases v is a leaf in the spanning tree ψ.

P R O O F . Looking at the tree t and the subtree created by taking the union of all the paths in t between
any two vertices in p, since p has four vertices this subtree will be of the form

x

in which the leaves are vertices in p, the edges are paths in t , and some paths are possibly contracted.

First, we argue that this is indeed the correct form for the subtree. Since ψ is a spanning tree and we
are partitioning the edges of G , the vertices in φ, and thus the non-leaves in the subtree, are at most
3-valent. Furthermore, in φ the vertices in P , and thus in p, are at most 2-valent. This immediately
implies that we have the subtree form above, where some of the paths may be contracted. The valency
constraints also mean that the path between the two non-leaf vertices cannot be contracted. Note
trivially, the paths between two leaves adjacent to the same closest non-leaf vertex cannot both be
contracted simultaneously. All possible configurations are drawn in Figure 6 of [Yea18b].

Now, because of the restrictions on the subtree configurations, removing any one of the two non-leaf
vertices in the subtree above from t creates components that partitions p into a 2-part, a singleton, and
possibly a third singleton. By the valency of the vertices in φ, these two vertices can only be 2-valent if
they are in p or otherwise 3-valent. In either case, by the properties of G , they will be leaves in ψ.

Let v be one of the two non-leaf vertices in the subtree above. Finally, to get uniqueness of v we need
to fix where one vertex x ∈ p must be after removing v from t . In the first case, fixing x to be in the
2-part component, we get the control vertex v as pictured in Figure 3.2a. Notice here x could never
be the control vertex v . In the second case, if we want x to be in a singleton component we choose
the other non-leaf vertex to be v as in Figure 3.2b. However, with this choice of v , we could also have
that x = v (the path between x and v is contracted in t ). Thus in this case, the property we are fixing is
either x = v or x is in one of the singleton components. ■

Now we are ready to tackle the remaining sets in the Equation (3.3.1), which all are of the form
S{c,∗},{∗,∗,∗}. Instead of dealing with these sets directly, since we know there is a fixed-point free
involution via swapping around c (as it is a 2-valent vertex), we can equivalently show that there is a
fixed-point free inovlution on sets of the form S{∗},{c,∗,∗,∗} (the "swapped" version).

The involution uses a two-phase process, where we utilize that we can swap around c for certain edge
bipartitions. For the others, we modify the involution used in Theorem 3.4.3, which uses the same idea
of swapping edges incident to the control vertex between the two parts of (ψ,φ).
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Theorem 3.3.5 — There is a fixed-point free involution on

S{a},{b,c,d ,e} ∪S{b},{a,c,d ,e} ∪S{d},{a,b,c,e} ∪S{e},{a,b,c,d},

and thus we have

s{a},{b,c,d ,e} + s{b},{a,c,d ,e} + s{d},{a,b,c,e} + s{e},{a,b,c,d} ≡ 0 mod 2.

P R O O F . Consider the edge partitions in the union of sets of the form S{∗},{c,∗,∗,∗} where the ∗’s are
the vertices {a,b,d ,e} in any order. Since partitioning {a,b,c,d ,e} (the neighbours of the two adjacent
vertices removed to obtain the graph S) into the form {∗}, {c,∗,∗,∗} leaves each part containing at
least one of {a,b,c,d ,e} and a 4-part containing c, these edge partitions satisfy the conditions of both
Lemma 3.2.3 and Lemma 3.3.4. For Lemma 3.3.4, we are taking c to be the special vertex and specifying
that c be in the 2-part after removing the control vertex from the approriate tree in the spanning
2-forest (the first property).

Let (ψ,φ) be an edge partition in any set of the form S{x},{c,∗,∗,∗}, and let v be its control vertex. Let t
be the tree in φ corresponding to part {c,∗,∗,∗} which also contains v . Since v is a leaf in the spanning
tree ψ, there is exactly one edge incident to v in ψ, which we will call ηv , and let nv be the neighbour
of v in ψ. Since c is a 2-valent vertex, and thus also a leaf in ψ, let ηc be the edge incident to c in ψ and
nc its neighbour.

Now to describe the involution giving a new edge partition:

(1) Swapping c stays in – If nc ∈ t , then swap the edges incident to c between ψ and φ.
(2) Swapping c goes out – Otherwise:

(i) Swapping v stays in – If nv ∈ t , so the control vertex and its neighbour in ψ are in the
same tree of φ, let η be the edge incident to v in t in the path to nv .
Then, swap the edges ηv and η between ψ and φ.

(ii) Swapping v goes out – If nv 6∈ t , so the control vertex and its neighbour in ψ are in
different trees of φ, let η be the edge incident to v in t in the path to c ; in Figure 3.2a this
is the edge towards the 2-part indicated by the dashed line.
Then swap the edges ηv and η between ψ and φ, and finally swap the edges incident to c .

First, we show that we get a valid edge partition in a set of the form S{∗},{c,∗,∗,∗}. For (1), this is just
a specific case of the swapping around a 2-valent vertex argument. As in Lemma 3.2.3, since c is a
2-valent vertex and is a leaf in both ψ and φ, we can swap the edges incident to c between the two
parts to get (ψ′,φ′) where ψ′ is still a spanning tree and φ′ is still a spanning 2-forest. Looking at φ′, as
nc ∈ t and thus both neighbours of c were in the same tree in φ, c gets reconnected to t after the swap.
Thus φ′ is compatible with the same vertex bipartition as φ, and (ψ′,φ′) is in the same set S{x},{c,∗,∗,∗}

as before.

For (2), we can use a similar argument to swapping around a 2-valent vertex, except replacing the
2-valent vertex with the control vertex v . From Lemma 3.3.4, we know that v is the unique vertex such
that removing v from t partitions the vertices in part {c,∗,∗,∗} into a 2-part containing c, a singleton,
and possibly a third singleton. Unlike the 2-valent argument, as v is no longer a leaf in t and we now
have a choice of which edge incident to v in t we are swapping, we need to be careful of creating cycles
when reconnecting v to the rest of t and make sure that we can recover the edge swapped and the
same control vertex to indeed get an involution.
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To deal with the possibility of creating cycles, we notice that the only way to get a cycle after swapping
edges incident to v between ψ and φ is if the neighbour of v in ψ was in the same tree as v in φ and
the edge picked to be swapped in φ was not on the cycle created by adding the edge incident to v
in ψ to φ. Thus for (2i), if nv ∈ t , then we pick the edge η to be the edge incident to v on the path to
nv in t . In this case all the neighbours of v are in the same tree in φ. Removing η from t breaks the
tree t into two components, one with v and one containing nv , splitting φ into three components.
Adding ηv reconnects the two components from t via v and nv to create a new spanning 2-forest φ′.
As nv and v were both in t , φ′ is compatible with the same vertex bipartition as φ. Since v is a leaf in ψ,
removing ηv from ψ and adding η to create ψ′ maintains the spanning tree structure. Thus swapping
the edges ηv and η between ψ and φ creates a new edge partition (ψ′,φ′) in the same set S{x},{c,∗,∗,∗} as
we started with.

For (2ii) when nv 6∈ t , we pick η to be the edge incident to v on the path to c in t . Removing η from t
splits the tree into a component with v and a component which contains c and another vertex in part
{c,∗,∗,∗}, call it y , breakingφ into three components. Since nv 6∈ t , adding ηv connects the component
with v to the other tree inφ (corresponding to part {x}) creating a new spanning 2-forestψ′. Once again
as v is a leaf in ψ, removing ηv from ψ and adding η to create ψ′ maintains the spanning tree structure.
Thus swapping the edges ηv and η between ψ and φ creates a new edge partition (ψ′,φ′), However,
now ψ′ is compatible with the vertex bipartition {c, y}, {x,∗,∗}. To get back to a vertex bipartition of
the form {∗}, {c,∗,∗,∗}, we notice that we are in the case where nc 6∈ t , and in particular, nc was in the
other tree of φ which is now connected to x. Since c can never be the control vertex, swapping the
edges incident to c between ψ′ and φ′ gives a new edge partition (ψ′′,φ′′) now in the set S{y},{c,x,∗,∗},
which is of the correct form. Note that y 6= x could be any of {a,b,d ,e}.

In all three cases, as we are always changing the edges incident to c and/or v in ψ and φ, the new edge
partitions can never be identical to (ψ,φ). Thus this transformation is fixed-point free.

Lastly, we prove that this transformation is indeed an involution by showing that the control vertex
and the two edges being swapped remains the same in the new edge partition. Let (ψ′,φ′) be the
transformed edge partition. For (1), since c is a 2-valent vertex, there is no choice of which edge is to be
swapped and as both nc and c are in the same tree in φ′, we are in the same case of the transformation.
Thus applying the transformation again returns us to (ψ,φ).

For (2), it will be easier to first formulate the control vertex in another way. We can define the control
vertex v to be the first common vertex in t in the paths from exactly two of the vertices in part
{c,∗,∗,∗} \ {c} to c. Under this formulation, we immediately see that any reconnecting of v via ηv

does not change this property, and thus the control vertex remains the same after the swapping of
edges incident to v . Additionally for (2ii), the swapping of edges incident to c afterwards also does not
affect this property of v since nc was in the tree connected to x, and thus once again the control vertex
remains the same in ψ′.

For the edges, notice that (2i) occurs when all neighbours of v are in the same tree of φ, and thus by
the choice of η, all the neighbours of v are still in the same tree of φ′. Additionally in ψ′, ηv is exactly
the edge incident to v on the cycle created by adding η, which is now the edge incident to v in ψ′.
For (2ii), since we are reconnecting v to the other tree of φ via ηv , the new neighbour of v in ψ′ is now
in a different tree than v in φ′. Additionally in ψ′, because nc was in the tree connected to x in φ, after
the two swaps η is exactly the edge incident to v on the path to c. In both cases (ψ′,φ′) remain in the
same case of (2) as before with η′v = η, as v is a leaf in ψ′ and so there is only one choice of edge, and
η′ = ηv as shown above. Thus, applying the transformation again returns us to (ψ,φ).
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Putting everything together, we indeed have a fixed-point free involution in all cases. Finally, this
holds for any edge partition in sets of the form S{x},{c,∗,∗,∗} where we are either staying in the same set
S{x},{c,∗,∗,∗} or swappping to a different set S{y},{c,∗,∗,∗} where y 6= x could be any of {a,b,d ,e}. Thus our
involution is on the union of sets of the form S{∗},{c,∗,∗,∗},

S{a},{b,c,d ,e} ∪S{b},{a,c,d ,e} ∪S{d},{a,b,c,e} ∪S{e},{a,b,c,d},

and therefore, the size of this set must be even, giving the equation

s{a},{b,c,d ,e} + s{b},{a,c,d ,e} + s{d},{a,b,c,e} + s{e},{a,b,c,d} ≡ 0 mod 2.

■

As in our discussion before Theorem 3.3.5, since swapping around c gives fixed-point free involutions
S{x},{c,∗,∗,∗} ∪S{c,x},{∗,∗,∗} for x ∈ {a,b,d ,e}, we immediately get

s{a,c},{b,d ,e} + s{b,c},{a,d ,e} + s{c,d},{a,b,e} + s{c,e},{a,b,d} ≡ 0 mod 2

by adding all the equations together and using the result from Theorem 3.3.5.

Alternatively, notice that we could use the same fixed-point free involution on the union of sets of the
form S{c,∗},{∗,∗,∗} except with a slight modification. In (2) where the two neighbours of c are in different
trees in the spanning 2-forest, we first swap around the edges of c, giving a new spanning 2-forest
compatible with {∗}, {c,∗,∗,∗}, and proceed as before with finding the control vertex and edges to
swap. Instead of swapping around c again in (2ii), we do so in (2i) to ensure we get edge partitions in
sets of the form S{c,∗},{∗,∗,∗}. As everything else remains the same, we obtain the following result.

Corollary 3.3.6 — There is a fixed-point free involution on

S{a,c},{b,d ,e} ∪S{b,c},{a,d ,e} ∪S{c,d},{a,b,e} ∪S{c,e},{a,b,d},

and thus we have

s{a,c},{b,d ,e} + s{b,c},{a,d ,e} + s{c,d},{a,b,e} + s{c,e},{a,b,d} ≡ 0 mod 2.

(3.3.4) Completing the S-case.

With the two swapping arguments, first with swapping around c and then with swapping around a
control vertex, we have covered all the S sets in Equation (3.3.1)! In fact they are really the same
argument as we can think of the 2-valent vertex c as acting as a special type of control vertex. Thus we
have everything we need to prove the c2 completion conjecture for p = 2 in the S-case.

Theorem 3.3.7 — Let G be a connected 4-regular graph. Let v and w be adjacent vertices of G such that
they share one common neighbour. Then,

c(2)
2 (G − v) = c(2)

2 (G −w).

P R O O F . Combining Proposition 3.3.2, Theorem 3.3.3 and Corollary 3.3.6 gives the result. ■
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3.4. T H E R - C A S E

The last case we need to deal with is the R-case. Let G be a connected 4-regular graph, and let v and
w be two adjacent vertices of G such that they do not share any neighbours. Let R = G − {v, w} be
the graph obtained by removing vertices v and w from G , the last grey blob in Figure 3.1, with the
neighbours of v and w labelled {a,b,c,d ,e, f } as in the figure. Here w has neighbours {a,b,c, v}, and v
has neighbours {d ,e, f , w}.

The difficulty of the R-case stems from the fact that v and w no longer share any neighbours, and thus
there is no distinguishing feature of R that we can readily exploit. However, the lack of specialness
of the vertices {a,b,c,d ,e, f } is what lends itself to the symmetric nature of the R-case. To prove the
conjecture for p = 2, we needed to use this symmetry to our advantage.

As we no longer have any 2-valent vertex to swap around, we look towards the more general control-
vertex argument. Notice in the swapping around a control vertex argument for the S-case there was a
symmetric flavour in how the new edge partitions that we ended up with could have been from any S

set of a similar form to the original, but we didn’t need to know exactly which one. Using a simplified
version of the involution in the S-case, which was actually first discovered for the R-case, we use this
symmetry to partially deal with the R-case.

However, like in the S-case, this particular control vertex argument was not enough. Once again an
argument involving compatible cycles (see §5 of [Yea18b]) was used for the remaining sets when G had
an odd number of vertices. To get rid of this parity requirement, a more complicated control vertex
argument is necessary this time involving multiple control vertices.

Once again, to give a complete, self-contained proof of the R-case, we begin with the same set-up and
partial results as from [Yea18b], and in Section 3.4.3 we present our new results, with allows us to finish
the R-case for p = 2!

(3.4.1) Set-up.

As with the previous cases, we start with defining the sets of edge partitions that we are counting.

Definition 3.4.1 — (Definition 3.1 of [Yea18b]) Suppose P is a bipartition of {a,b,c,d ,e, f }.
Let RP be the set of bipartitions (ψ,φ) of the edges of R such thatψ is a spanning tree andφ is a spanning
2-forest compatible with P. Let rP = |RP |.

This time because of the symmetry of the neighbours of v and w , and since we are counting modulo 2,
instead of picking specific vertex bipartitions for the spanning 2-forests we can add them all together.

Proposition 3.4.2 — (Proposition 3.2, 3.3 of [Yea18b]) When v and w have no common neighbours

c(2)
2 (G − v) = r{a},{b,c} + r{b},{a,c} + r{c},{a,b} mod 2,

c(2)
2 (G −w) = r{d},{e, f } + r{e},{d , f } + r{ f },{d ,e} mod 2,
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and thus we have

c(2)
2 (G − v)− c(2)

2 (G −w) = r{a},{b,c,d ,e, f } + r{b,c},{a,d ,e, f } (3.4.1)

+ r{b},{a,c,d ,e, f } + r{a,c},{b,d ,e, f }

+ r{c},{a,b,d ,e, f } + r{a,b},{c,d ,e, f }

+ r{d},{a,b,c,e, f } + r{e, f },{a,b,c,d}

+ r{e},{a,b,c,d , f } + r{d , f },{a,b,c,e}

+ r{ f },{a,b,c,d ,e} + r{d ,e},{a,b,c, f } mod 2.

P R O O F . Like in the proof of Proposition 3.2.2, we can pick specific vertex partitions for the G −v and
G −w cases to equivalently determine each c2 via counting edge partitions into a spanning tree and a
spanning 2-forest compatible with the respective vertex partition. However, since the same argument
holds for all vertex partitions of {a,b,c} and {d ,e, f } into the form {∗}, {∗,∗}, we have that

c(2)
2 (G − v) ≡ r{a},{b,c} ≡ r{b},{a,c} ≡ r{c},{a,b} mod 2,

c(2)
2 (G −w) ≡ r{d},{e, f } ≡ r{e},{d , f } ≡ r{ f },{d ,e} mod 2.

Since we are working modulo 2, we can add each of the three choices together

c(2)
2 (G − v) ≡ r{a},{b,c} + r{b},{a,c} + r{c},{a,b} mod 2,

c(2)
2 (G −w) ≡ r{d},{e, f } + r{e},{d , f } + r{ f },{d ,e} mod 2.

Then, enumerating over all possibilities for the vertex set {a,b,c,d ,e, f } in the spanning 2-forests, we
obtain the final equation by subtracting the expanded counts for G − v and G −w and simplifying
modulo 2. To illustrate this, expanding the counts for r{a},{b,c} gives

r{a},{b,c} = r{a},{b,c,d ,e, f }

+ r{a,d},{b,c,e, f } + r{a,e},{b,c,d , f } + r{a, f },{b,c,d ,e}

+ r{a,d ,e},{b,c, f } + r{a,d , f },{b,c,e} + r{a,e, f },{b,c,d}

+ r{a,d ,e, f },{b,c}.

Now notice that the terms in the middle two lines appear in the expanded counts for the terms in the
G −w case, for example, r{a,d},{b,c,e, f } and r{a,e, f },{b,c,d} both appear in the expansion of r{d},{e, f } and
similarily for the other four terms. Thus we would be left with r{a},{b,c,d ,e, f } and r{b,c},{a,d ,e, f } after the
subtraction.

As this holds for all r{∗},{∗,∗}, where the ∗’s are partitioning either {a,b,c} or {d ,e, f }, after subtracting
the G − v and G −w counts we are left with terms of the form r{∗},{∗,∗,∗,∗,∗} and r{y,z},{x,∗,∗,∗}, where
{x, y, z} is either {a,b,c} or {d ,e, f }. ■

(3.4.2) Swapping around a control vertex.

Immediately from Equation (3.4.1) we see that there are 6 terms corresponding to sets of the form
R{y,z},{x,∗,∗,∗} where {x, y, z} is either {a,b,c} or {d ,e, f }. The thing to note is that these vertex biparti-
tions for the 2-forests are exactly in the form where we can apply Lemma 3.3.4, this time using the
other specification for the special vertex x. As we already have an idea of how to deal with a control
vertex from this lemma, we can use a simplified version of the involution in Theorem 3.3.5.
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Theorem 3.4.3 — (Lemma 4.4 of [Yea18b]) There is a fixed-point free involution on

R{a,b},{c,d ,e, f } ∪R{a,c},{b,d ,e, f } ∪R{b,c},{b,d ,e, f }

∪R{d ,e},{a,b,c, f } ∪R{d , f },{a,b,c,e} ∪R{e, f },{a,b,c,d},

and thus we have

r{a,b},{c,d ,e, f } + r{a,c},{b,d ,e, f } + r{b,c},{b,d ,e, f }

+ r{d ,e},{a,b,c, f } + r{d , f },{a,b,c,e} + r{e, f },{a,b,c,d} ≡ 0 mod 2.

P R O O F . Consider the edge partitions in the union of sets of the form R{y,z},{x,∗,∗,∗} where {x, y, z}
is either the trio {a,b,c} or {d ,e, f }, and the ∗’s are the other three vertices in {a,b,c,d ,e, f } \ {x, y, z}.
Since we can always distinguish the vertex x that is alone from its trio, we can choose x uniquely to be
the special vertex. Thus these edge partitions satisfy the conditions of Lemma 3.3.4. This time because
of the special form of the vertex bipartitions, we will specify for x the second property from the lemma,
that x is either the control vertex or x is in one of the singleton components after removing the control
vertex from its tree in the spanning 2-forest.

Let (ψ,φ) be an edge partition in any set of the form R{y,z},{x,∗,∗,∗}, and let v be its control vertex. Let t
be the tree in φ corresponding to {x,∗,∗,∗}, which also contains v . Since v is a leaf in ψ, let ηv be the
edge incident to v and nv the neighbour of v in ψ.

Now to describe the involution which gives a new edge partition (ψ′,φ′):

(i) Swapping stays in – If nv ∈ t , so the control vertex and its neighbour in ψ are in the same tree
of φ, let η be the edge incident to v in t in the path to nv .
Then, swap the edges ηv and η between ψ and φ.

(ii) Swapping goes out – Otherwise if nv 6∈ t , so the control vertex and its neighbour in ψ are in
different trees of φ, let η be the edge incident to v in t in the path to the component of t − v
that contains exactly two vertices of {x,∗,∗,∗}; in Figure 3.2b this is the edge towards the
2-part indicated by the dashed line.
Then, swap the edges ηv and η between ψ and φ.

Notice that this is essentially phase (2) in Theorem 3.3.5, just without the extra swapping of edges
in (2ii), and thus most of the proof still holds for this simplified involution. Firstly, as we are always
changing which edge is incident to v in ψ and φ, (ψ′,φ′) 6= (ψ,φ), and so this transformation is fixed-
point free.

Now for (i), we can argue exactly as we did for (2i) in Theorem 3.3.5 to show that (ψ′,φ′) stays a valid
edge partition in the same set R{y,z},{x,∗,∗,∗} as (ψ,φ). Furthermore, it was shown that if v is still the
control vertex after the transformation, which we will prove shortly, then (ψ′,φ′) remains in case (i)
and applying the transformation again brings us back to (ψ,φ).

For (ii), a little more work is needed to show that (ψ′,φ′) is in a valid R set but the general framework is
the same. By the choice of η, removing η from t splits the tree into two components that partitions
{x,∗,∗,∗} into the form {x, x ′}, {∗,∗} for some x ′ ∈ {a,b,c,d ,e, f }\{x, y, z}. Since nv 6∈ t , adding the edge
ηv connects the component from t containing v to the other tree of φ (corresponding to part {y, z}), to
create a new spanning 2-forest φ′. In particular, as v is in the component corresponding to {x, x ′}, φ′ is
now compatible with the vertex bipartition {∗,∗}, {x ′, x, y, z}. As v is a leaf in ψ, removing ηv from ψ
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v

x ′

w

F I G U R E 3 . 3 : The two control vertices v and w for Lemma 3.4.4. The unlabelled
leaves and x ′ are all vertices in p. The dashed lines indicate the edges we will be
picking for one of the involutions in the R-case. Some of the leaf edges are possibly
contracted, with the exception that the edges of two leaves adjacent to the same vertex
cannot simultaneously both be contracted.

and adding η to create ψ′ maintains the spanning tree structure. Thus we have that (ψ′,φ′) is a valid
edge partition in the set R{∗,∗},{x ′,x,y,z}. Notice that as {x, y, z} is either {a,b,c} or {d ,e, f }, the other trio
must be {x ′,∗,∗} in any order, and so {∗,∗}, {x ′, x, y, z} is in the form we want.

Once again if v is remains the control vertex, v and its neighbour in ψ′ are in different trees of φ′, and
thus we stay in case (ii). As x ′ is now the special vertex, ηv is exactly the edge incident to v connecting
the component with {x ′, x} and the component with {y, z} in φ′, that is η′ = ηv . Thus applying the
transformation again returns us to (ψ,φ).

Finally what’s left to prove is that the control vertex v stays the same across the transformation. As in
the proof of Theorem 3.3.5, we can formulate the control vertex in an alternate way. This time v is the
first common vertex in t in all three paths from x to the other vertices in part {x,∗,∗,∗}. Under this
formulation, we immediately see that this property does not change after the transformation, where
now v is the first common vertex in the tree corresponding to part {x ′, x, y, z} in φ′ from x ′ to the other
three vertices. Thus v remains the control vertex in (ψ′,φ′).

Putting everything together, we indeed have a fixed-point free involution on the union of sets of the
form R{y,z},{x,∗,∗,∗} where {x, y, z} is either {a,b,c} or {d ,e, f },

R{a,b},{c,d ,e, f } ∪R{a,c},{b,d ,e, f } ∪R{b,c},{b,d ,e, f }

∪R{d ,e},{a,b,c, f } ∪R{d , f },{a,b,c,e} ∪R{e, f },{a,b,c,d},

and therefore, the size of this set must be even, giving the equation

r{a,b},{c,d ,e, f } + r{a,c},{b,d ,e, f } + r{b,c},{b,d ,e, f }

+ r{d ,e},{a,b,c, f } + r{d , f },{a,b,c,e} + r{e, f },{a,b,c,d} ≡ 0 mod 2.

■

(3.4.3) Two control vertices.

For the remaining 6 sets in Equation (3.4.1), we are no longer in a situation where we can apply
Lemma 3.3.4 since these sets are of the form R{x},{∗,∗,∗,∗,∗} for x ∈ {a,b,c,d ,e, f }. What we need is a
new notion of "control vertex", this time for a tree with five marked vertices instead of four. However,
as we no longer have any distinguishable vertices in this 5-part, we could not appropriately define one
unique vertex as the control vertex. Rather two control vertices are necessary to get an involution on
the correct sets.
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Lemma 3.4.4 — Suppose we have a bipartition of {a,b,c,d ,e, f } of the form {x}, {∗,∗,∗,∗,∗}. Let (ψ,φ)
be an edge partition in R{x},{∗,∗,∗,∗,∗} where ψ is a spanning tree and φ is a spanning 2-forest compatible
with {x}, {∗,∗,∗,∗,∗}. Let t be the tree corresponding to part p = {∗,∗,∗,∗,∗} in the 2-forest φ.

Then, there is a unique pair of non-adjacent vertices v and w called the control vertices, such that
removing v and w from t partitions p into all singletons. Figure 3.3 depicts the two control vertices.
Furthermore, in t each control vertex will either be

– 2-valent and in {a,b,c,d ,e, f } \ {x}, or
– 3-valent and not a vertex in {a,b,c,d ,e, f }.

In all cases, the control vertices are leaves in the spanning tree ψ.

P R O O F . In a similar fashion to the proof of Lemma 3.3.4, we start by looking at the tree t and the
subtree created by taking the union of all the paths in t between any two vertices in p. Since p has five
vertices this subtree will be of the form

v w

where the leaves are vertices in p, the edges are paths in t , and some of the paths may be contracted.

Since ψ is a spanning tree, the vertices in φ, and thus t , are at most 3-valent, and the vertices in
{a,b,c,d ,e, f }, and thus p, are at most 2-valent. In particular, we have that the above is the only
possible form for the subtree, where some of the paths may be contracted. Note trivially, the paths
between two leaves adjacent to the same non-leaf vertex cannot be contracted simultaneously. Now,
the valency restrictions also mean that in the subtree form above, the paths from v and w to the middle
non-leaf vertex cannot be contracted. Thus v 6= w , and furthermore, they are not adjacent in φ i.e.
there must be at least two edges in the path from v to w . By the valency of the vertices in φ, v and
w can only be 2-valent if they are in the set {a,b,c,d ,e, f } or otherwise 3-valent, making them both
leaves in the spanning tree ψ. As R has more than two vertices, v and w are also not adjacent in ψ, and
thus in R the control vertices are non-adjacent.

Finally, removing v and w from t clearly partitions p into all singletons and these are the unique pair
of vertices which do so. The number of components of t − {v, w} will depend on whether v or w are in
the set {a,b,c,d ,e, f }. ■

Now that we’ve established the notion of control vertices, we can use a swapping argument once more
for one final fixed-point free involution to cover the remaining sets in Equation (3.4.1). As there are two
vertices to swap around, like in Theorem 3.3.5, we need a more complicated involution than previously.

Theorem 3.4.5 — There is a fixed-point free involution on

R{a},{b,c,d ,e, f } ∪R{b},{a,c,d ,e, f } ∪R{c},{a,b,d ,e, f }

∪R{d},{a,b,c,e, f } ∪R{e},{a,b,c,d , f } ∪R{ f },{a,b,c,d ,e},
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and thus we have

r{a},{b,c,d ,e, f } + r{b},{a,c,d ,e, f } + r{c},{a,b,d ,e, f }

+ r{d},{a,b,c,e, f } + r{e},{a,b,c,d , f } + r{ f },{a,b,c,d ,e} ≡ 0 mod 2.

P R O O F . By construction the edge partitions in the union of sets of the form R{x},{∗,∗,∗,∗,∗}, where
x ∈ {a,b,c,d ,e, f }, and the ∗’s are the rest of the vertices {a,b,c,d ,e, f } \ {x}, satisfy the conditions of
Lemma 3.4.4. Let (ψ,φ) be an edge partition in any set of the form R{x},{∗,∗,∗,∗,∗}, and let v, w be its
control vertices. Let t be the tree inφ corresponding to part {∗,∗,∗,∗,∗} which contains v and w . Since
the control vertices are leaves in ψ, let ηv and ηw be the edges incident to v and w in ψ, respectively,
and let nv and nw be their neighbours.

Consider the following involution giving a new edge partition (ψ′,φ′):

(1) Swapping either stays in – If nv ∈ t or nw ∈ t :
(i) v stays in – If nv ∈ t , so control vertex v and its neighbour in ψ are in the same tree of φ,

let η1 be the edge incident to v in t in the path to nv .
Then, swap the edges ηv and η1 between ψ and φ.

(ii) w stays in – If nw ∈ t , so control vertex w and its neighbour in ψ are in the same tree of φ,
let η2 be the edge incident to w in t in the path to nw .
Then, swap the edges ηw and η2 between ψ and φ.

Here we are using non-exclusive or, so if nv ,nw ∈ t , then swap around both v and w as above.
(2) Swapping both goes out – Otherwise we have nv ,nw 6∈ t , where the control vertices and their

neighbours in ψ are in different trees of φ. Let η1 be the edge incident to v in t in the path to
w , and let η2 be the edge incident to w in t in the path to v ; in Figure 3.3 these are the edges
indicated by the dashed lines.
Then, swap edges ηv and ηw with η1 and η2 between ψ and φ.

Firstly, as we are always changing which edges are incident to v and/or w , (ψ′,φ′) must be different
from (ψ,φ). Thus this transformation is fixed-point free.

For (1), both cases are symmetric so without loss of generality assume nv ∈ t . Then, removing edge
η1 from φ breaks t into two components and because of how η1 was chosen, nv is now in a different
component than v . As v and its neighbour inψ, nv , are in the same tree ofφ, adding edge ηv reconnects
the two components from t . By the choice of η1, we cannot create any cycles by adding ηv , and thus φ′
is a spanning 2-forest which is compatible with the same vertex bipartition as φ. Since v is a leaf in ψ,
removing edge ηv and adding edge η1 to create ψ′ maintains the spanning tree structure. Thus (ψ′,φ′)
is a valid edge partition in the same R set as (ψ,φ). We also have if the control vertices stay the same,
(ψ′,φ′) will still have the property that v and its neighbour in ψ′ are in the same tree of φ′, and thus
applying the transformation again returns to (ψ,φ).

When both nv ,nw ∈ t , since v 6= w and they are not adjacent, the four edges in the swap are all distinct;
η1 6= η2 and ηv 6= ηw . Thus we can simultaneously swap edges ηv and ηw with edges η1 and η2,
respectively. Note that we need to swap around both control vertices as there is no way to distinguish
v from w , and thus no way to ensure we get an involution if we arbitrarily picked one to swap edges
around. Applying the above swapping argument twice, we have that (ψ′,φ′) is a valid edge partition in
the same R set as before and applying the transformation again returns to (ψ,φ).
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For (2) when nv ,nw 6∈ t , once again we know that the four edges in the swap are all distinct by the
same reasoning as when nv ,nw ∈ t . Then, removing edges η1 and η2 breaks t into three subtrees (thus
breaking φ into four components); one with v , one with w , and one with the vertex x ′ ∈ {a,b,c,d ,e, f }\
{x} as in Figure 3.3. Now since v and nv are in different trees of φ, adding ηv connects the subtree from
t − {η1,η2} with v to the tree in φ corresponding to part {x}. Similarily, as w and nw are in different
trees of φ, adding ηw connects the subtree with w also to the tree with x in φ.

As the last subtree, which contains x ′, never gets connected to any other component, this transforma-
tion creates a new spanning 2-forestφ′ which is compatible with the vertex bipartition {x ′}, {x,∗,∗,∗,∗}.
Since v, w are leaves in ψ, removing edges ηv and ηw from ψ disconnects the control vertices and
adding edges η1 and η2 reconnects them, creating ψ′ which is once again a spanning tree. Thus (ψ′,φ′)
is a valid edge partition in R{x ′},{x,∗,∗,∗,∗}, which is in the correct form. Once again, if the control vertices
stay the same, then their neighbours in ψ will be in a different tree of φ′ landing us back in (2). Thus
applying the transformation again brings us back to (ψ,φ).

What’s left of the proof is to make sure v and w are still the control vertices in (ψ′,φ′). Notice we can
formulate the control vertices as the two vertices in t such that for a specific x ′ in part {∗,∗,∗,∗,∗},
each vertex is the last common vertex on the paths from x ′ to the exactly two of the other vertices in
the part. The vertex x ′ is as depicted in Figure 3.3. Under this formulation, we immediately see that
in (2) as φ′ is created by connecting subtrees with v and w to the tree corresponding to part {x} in φ,
the vertex x now acts as the x ′ for φ′. Thus v and w remain the control vertices for (ψ′,φ′).

For (1), depending on where nv or nw were in the tree t , the vertex acting as x ′ in φ′ may no longer be
the same x ′ from φ. However, one can check that in all possible situations, the property for the control
vertices is still satisfied by v and w , and thus v and w are still the control vertices.

Finally putting everything together, we indeed get a fixed-point free involution on the union of sets of
the form R{x},{∗,∗,∗,∗,∗},

R{a},{b,c,d ,e, f } ∪R{b},{a,c,d ,e, f } ∪R{c},{a,b,d ,e, f }

∪R{d},{a,b,c,e, f } ∪R{e},{a,b,c,d , f } ∪R{ f },{a,b,c,d ,e},

and therefore, the size of this must be even

r{a},{b,c,d ,e, f } + r{b},{a,c,d ,e, f } + r{c},{a,b,d ,e, f }

+ r{d},{a,b,c,e, f } + r{e},{a,b,c,d , f } + r{ f },{a,b,c,d ,e} ≡ 0 mod 2.

■

As a remark on why two contol vertices were necessary, looking at Figure 3.3 one would first be
tempted to pick the unlabelled non-leaf vertex as the control vertex, call it u, and cut the edge towards
x ′. However, in some edge partitions, this path may be contracted with u being x ′ itself. In this case
there is no obvious way to choose an edge incident to u to remove.

To mitigate this, one would then decide to cut the two edges incident to u that is not towards x ′.
However, in this case by valency arguments, u is a leaf in the corresponding spanning tree, and thus
there is only one edge available to swap two edges with, which is not possible. Thus, we cannot pick u
to be the control vertex.
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Looking to v or w , as there are no special vertices in this 5-part of the vertex bipartition, there would
be no way to distinguish between v and w to pick just one control vertex. Even if there were, only
picking one of v or w to swap edges around would not swap to a spanning 2-forest compatible with a
vertex bipartition that we care about. Therefore, we really did need to pick both vertices v and w to be
control vertices!

Notice that we can think of this involution involving two control vertices as a generalized version of the
involution used in Theorem 3.3.5. For that involution, the 2-valent vertex c acts as a second "control
vertex".

(3.4.4) Completing the R-case.

While there were no special vertices in {a,b,c,d ,e, f } that we could readily use to swap between specific
vertex bipartitions, we were able to take advantage of the symmetric nature of the R-case and use
control vertices to find involutions where we only cared about the form of the vertex bipartition
we may be swapping our edge partitions to. With the two swapping arguments, one involving one
control vertex and the other involving two control vertices, we have everything we need to prove the c2

completion conjecture for p = 2 in the R-case.

Theorem 3.4.6 — Let G be a connected 4-regular graph. Let v and w be adjacent vertices of G such that
they do not share any common neighbours. Then,

c(2)
2 (G − v) = c(2)

2 (G −w).

P R O O F . Together Proposition 3.4.2, Theorem 3.4.3 and Theorem 3.4.5 gives the result. ■

3.5. C O M P L E T I N G T H E p = 2 C A S E

To prove the c2 completion conjecture for p = 2, in all three cases the underlying idea remained the
same: finding a vertex, or vertices, and picking particular edges incident to them to swap between the
two parts of an edge partition, where this action gives a fixed-point free involution on specific sets of
edge partitions.

In the T -case, we found that we could use the two 2-valent vertices to swap edges around. In the
S-case, we reused the 2-valent vertex swapping argument and generalized it to give the notion of
swapping around a particular vertex called the control vertex. We found that for a second involution,
we needed a two-phase swapping process where we used both the control vertex and a 2-valent vertex.
Finally in the R-case, we reused the control vertex argument and found that we needed to extend it to
include two control vertices for a second involution, this extension itself being a generalized version of
the second involution in the S-case.

We note here that the two new bijections, giving Theorems 3.3.5 and 3.4.5 in the S and R cases,
respectively, were implemented in Sage [Sage] to verify our results on some small graphs.
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Assembling everything together, we finally complete the c2 completion conjecture for p = 2!

Theorem 3.5.1 — Let G be a connected 4-regular graph, and let v and w be vertices of G. Then,

c(2)
2 (G − v) = c(2)

2 (G −w).

P R O O F . As in the discussion in Section 3.1, since G is connected there is path between any two
vertices of G , and thus it suffices to prove the conjecture when v and w are adjacent vertices. For
any two non-adjacent vertices, we could then just follow any path between them, getting a chain of
equivalences to obtain the required result.

Then, as G is a 4-regular graph, the four possibilities for the neighbours of v and w are:

– v and w share all neighbours, or
– v and w have exactly two common neighbours – T -case, or
– v and w have only one common neighbour – S-case, or
– v and w do not share any neighbours – R-case.

When v and w share all neighbours, notice that G − v and G −w are isomorphic. Thus, trivially, their
c2’s are equivalent. When v and w share some neighbours or none at all, Corollary 3.2.5, Theorem 3.3.7,
and Theorem 3.4.6 give the result in the T , S, and R cases, respectively. This completes the proof. ■
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4 | O N T H E P O S I T I V E G R A S S M A N N I A N A N D R E L A T E D O B J E C T S

In the second part of this thesis we move to a different story but one which is still very much in the
same flavour as Part I, on the emergence of combinatorics and using combinatorial techniques to
study aspects of scattering amplitudes. This time, instead of looking at an arithmetic invariant related
to Feynman diagrams through enumerating certain edge bipartitions, we are looking at a geometric
story of triangulations through a simple combinatorial map where one side of the map is related to
on-shell diagrams.

We start with introducing the main objects of interest, the positive Grassmannian and some of the
combinatorial objects in bijection with the cells that decompose it. Finishing off this introductory
chapter, in Section 4.3.3 we set-up the motivation for the question we investigate in Chapter 5, which
looks at the map mentioned above through the lens of a different combinatorial object. The exposition
from this chapter follows mainly from [Pos06; LPW20].

4.1. G R A S S M A N N I A

The Grassmannian is one of those classical geometric objects in mathematics that has been extensively
studied due to its nice structure and its many connections to different areas of mathematics, including
(of course) combinatorics, algebraic and differential geometry, and representation theory. For one,
the Grassmannian is at the heart of Schubert calculus, which aims to solve problems in enumerative
geometry via the Grassmannian, Schubert varieties, and flag varieties, and which lies at the intersection
of combinatorics and algebraic geometry. An example of one of the early problems studied via Schubert
calculus is [KL72]: "How many lines in 3-space, in general, intersect four given lines?" (of which the
answer is generically 2). As an added benefit, the Grassmannian can be described very simply.

Definition 4.1.1 — For 0 ≤ k ≤ n, the (real) Grassmannian Grk,n(R) is the space of all k-dimensional
(linear) subspaces of Rn .

We can think of the elements V of the Grassmannian as represented by real k ×n matrices A of rank k
modulo invertible row operations, where V is the subspace spanned by the row vectors of A. That is,

Grk,n(R) ∼= GL(k,R)
∖
Mat∗(k,n) ,

where Mat∗(k,n) is the set of all real k ×n matrices of rank k. The dimension of Grk,n is k(n −k). We
often drop the reference to the field R and just refer to the real Grassmannian as Grk,n . As a geometric
object, we can view the Grassmannian through a couple of different lenses (which we do not go through
here): as a compact smooth manifold, as a projective variety, as a scheme, and as a CW-complex.

Example 4.1.2 — Gr1,n consists of all lines through the origin in Rn , or viewing through matrices all
1×n matrices modulo scaling, which is equivalent to projective space Pn−1.
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For algebraic combinatorialists, the interest in the Grassmannian lies in the various beautiful connec-
tions to combinatorics arising from its decompositions. Through the classic Schubert decomposition
of the Grassmannian into Schubert cells, which can be indexed by partitions, we are led to some
familiar combinatorial machinery such as Young tableaux, Schur functions, and Schubert polynomials.
A standard reference for many of these topics is [Ful97].

From a different decomposition, as first described by Gelfand, Goresky, MacPherson, and Serganova
in [Gel+87], and which we will present here, we are led to matroids and matroid polytopes, opening up
a different connection to combinatorics.

First, let’s fix some notation. Let [n] denote the set {1, . . . ,n} and
([n]

k

)
be the set of all k-element subsets

of [n]. Given a k ×n matrix A of rank k and an I ∈ ([n]
k

)
, let p I (A) ··= det(AI ), where AI is the k ×k

matrix of A restricted to the columns indexed by I . We call this a maximal minor of A. For V ∈ Grk,n

represented by A, the Plücker coordinates of V are then defined to be p I (V ) ··= p I (A) for all I ∈ ([n]
k

)
,

where we note that p I (V ) does not depend on the choice of representative matrix A.

Now, thinking about V ∈ Grk,n as given by the n column vectors of A which together span Rk , since A
is of rank k, we can then look at all the k-subsets of these n column vectors such that they form a basis
for Rk . In particular, each of these subsets I ∈ ([n]

k

)
must have the property that p I (A) 6= 0. Viewing

through the combinatorial lens, in other words we can construct a representable matroid M over the
ground set [n] which has bases

M(A) ··=
{

I ∈
(

[n]

k

)
: p I (A) 6= 0

}
,

and where A represents M over R. For a standard reference on matroids, we refer the reader to [Oxl11].

Going back to the Grassmannian, we can then divide the elements of the Grassmannian based on
which Plücker coordinates are non-zero, into matroid strata, also known as the Gelfand-Serganova
strata. That is, for any M ⊂ ([n]

k

)
we can define

SM ··=
{
V ∈ Grk,n : p I (V ) 6= 0 if and only if I ∈ M

}
.

Equivalently, if A is a k ×n matrix representing V , then the condition reduces to M = M(A) where
M(A) is as defined above. Notice that M defines a representable matroid of rank k, where here we
are taking the convention of defining a matroid by its bases. Thus we get the following (disjoint)
decomposition, called the matroid stratification, also known as the Gelfand-Serganova stratification,
of the Grassmannian,

Grk,n = ⊔
representable matroids M

SM .

However, unfortunately Mnëv’s Universality Theorem [Mnë88] tells us that the structure of these SM

can be very complicated, in fact as complicated as any algebraic variety!

(4.1.1) The positive Grassmannian.

Instead of looking at the full Grassmannian, Postnikov in [Pos06] initiated the study of a certain subset
of the Grassmannian called the positive Grassmannian, through giving a combinatorial description of
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its cells, called positroids, which turned out to have a much nicer geometric structure. This opened
the door to the extensive study of the positive Grassmannian, both combinatorially and through
the multitude of emerging connections with other branches of mathematics and physics. Here we
just define the positive Grassmannian and in the next section, we will delve into some aspects of its
decomposition.

As an analogue to totally positive and totally non-negative matrices, we can extend this notion of
positivity to the matrices underlying the Grassmannian.

Definition 4.1.3 — (Definition 3.1 of [Pos06]) We say that a k ×n matrix A of rank k is totally non-
negative, resp. totally positive, if all of its maximal minors are non-negative i.e. p I (A) ≥ 0, resp. all
positive p I (A) > 0, for all I ∈ ([n]

k

)
. We then say that V ∈ Grk,n(R) is totally non-negative, resp. totally

positive, if V is represented by a k ×n matrix A that is totally non-negative i.e. p I (V ) ≥ 0, resp. totally
positive p I (V ) > 0, for all i ∈ ([n]

k

)
.

The totally non-negative (TNN) Grassmannian, also referred to as the positive Grassmannian, Gr≥0
k,n is

the set of all totally non-negative V ∈ Grk,n(R). The totally positive Grassmannian Gr>0
k,n is the set of all

totally positive V ∈ Grk,n(R).

Note that the positive Grassmannian Gr≥0
k,n is a closed subset of the (full) Grassmannian Grk,n of

dimension k(n −k), which is also the dimension of Grk,n . For the rest of this chapter, we will focus on
the positive Grassmannian.

We end this section with an example of an element in the positive Grassmannian.

Example 4.1.4 — Consider the following 2×4 matrix of rank 2, which represents an element V in Gr2,4:

A =
[

1 0 −1 −2
0 1 2 3

]
.

Then looking at the Plücker coordinates, for the following order on the 2-subsets of [4]:(
[4]

2

)
= {12,13,14,23,24,34},

we have the sequence

p I (A) = 1,2,3,1,2,1,

where as a sample calculation

p34(A) = det

[ −1 −2
2 3

]
= 1.

In particular, p I (A) ≥ 0 for all I ∈ ([4]
2

)
, and thus V is an element in the positive Grassmannian Gr≥0

2,4.

As we actually have p I (A) > 0 for all I , V is also in the totally positive Grassmannian Gr>0
2,4.

Here we have that M(A) = ([4]
2

)
, which is a uniform matroid!
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4.2. P O S I T R O I D S A N D R E L A T E D C O M B I N A T O R I A L O B J E C T S

Like how the Grassmannian could be subdivided into its matroid strata, analogously we can do the
same with the positive Grassmannian, this time based on which maximal minors are positive.

Definition 4.2.1 — (Definition 3.2 of [Pos06]) Let M be a subset of
([n]

k

)
, and define

SM ··=SM ∩Gr≥0
k,n =

{
V ∈ Gr≥0

k,n : p I (V ) > 0 for all I ∈ M and p I (V ) = 0 for all I ∈
(

[n]

k

)
\ M

}
.

If SM 6= ;, we call M a positroid, and SM is its positroid cell.

Note that M is a rank k representable matroid, represented by a k ×n matrix with non-negative
maximal minors, with the term "positroid" arising from abbreviating "positive matroid". However,
the positroid is not invariant under matroid isomorphism but is invariant under cyclic shifts of
elements. Additionally, notice that the totally positive Grassmannian corresponds to the uniform
matroid M = ([n]

k

)
and is the unique top-dimensional cell (of dimension k(n − k)) of the positive

Grassmannian. From Example 4.1.4, we have that the M(A) = ([4]
2

)
is actually a positroid!

In other words, we are partitioning the positive Grassmannian based on the Plücker coordinates that
are strictly positive. We call this (disjoint) decomposition the positroid stratification of the positive
Grassmannian

Gr≥0
k,n = ⊔

M is a positroid
SM .

What’s nice about the geometric structure of these positroid cells is that they are indeed cells.

Theorem 4.2.2 — (Theorem 3.5 of [Pos06], Theorem 5.4 of [PSW09]) Each positroid cell SM is homeo-
morphic to an open ball. The decomposition of Gr≥0

k,n into the union of positroid cells is a CW -complex.

For us the interest in positroid cells lies in its surprisingly rich combinatorial structure, arising from the
numerous families of combinatorial objects that Postnikov in [Pos06] showed index these cells. Other
than positroids, these objects include decorated permutations, Le diagrams, Grassmann necklaces,
and equivalence classes of reduced plabic graphs. We present these objects and one of the bijections
between them, giving us a way to label positroid cells by their associated combinatorial objects.

(4.2.1) Decorated permutations.

We start with the simplest family of combinatorial objects called decorated permutations.

Definition 4.2.3 — A decorated permutation of [n] is a permutation π on [n] where every fixed-point
is designated (coloured) as a loop (black), denoted by π(i ) = i , or a co-loop (white), denoted by π(i ) = i .
An anti-excedance of π is an element i such that either π−1(i ) > i or i is a co-loop. We refer to π−1(i ) as
the position of i .
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Example 4.2.4 — (from [LPW20]) The following is a decorated permutation of [8] in two-line notation:

π=
(

1 2 3 4 5 6 7 8
3 2 5 1 6 8 7 4

)
,

which has 3 anti-excedances, 1,4,7, as these elements when viewed on the bottom line, do not exceed
their corresponding element in the top line and are not loops. Here π has one loop, 2, and one co-loop, 7.

To show that a specific type of decorated permutation is in bijection with the cells of the positive
Grassmannian, Postnikov utilized another object called the Grassmann necklace I which is directly in
bijection with positroids and can be read off from the bases of the positroid. Decorated permutations
can then be seen as expressing the information from Grassmann necklaces in a more compact way.
We refer the reader to §16 of [Pos06] for more details.

Theorem 4.2.5 — (Lemma 16.2 of [Pos06]) There is a bijection between decorated permutations π of [n]
with k anti-excedances and Grassmann necklaces I of type (k,n). Therefore, decorated permutations of
[n] with k anti-excedances index the cells of Gr≥0

k,n , and we denote by Sπ the positroid cell indexed by π.

Going back to Example 4.2.4, this means that π indexes the cell Sπ of Gr≥0
3,8.

(4.2.2) Le diagrams and pipe dreams.

While Grassmann necklaces can directly see the bases of the positroid, and decorated permutations
are simple and succinct objects that encode positroids, one property that both do not easily see is the
dimension of the associated positroid cell. For this, we need the next family of combinatorial objects
called Le diagrams.

Definition 4.2.6 — (Definition 6.1 of [Pos06]) A L-diagram (Le diagram), is a filling D of a Young
diagram of shape λ with 0’s and + ’s such that D avoids the L-configuration:

+
...

+ ·· · 0

That is, no 0 has both a + above and to the left of it, which we refer to as the L-condition.
For 0 ≤ k ≤ n we say that the L-diagram D is of type (k,n) if the shape λ fits inside a k×(n−k) rectangle.

An example of a L-diagram D is given in Figure 4.1a, which we will see shortly is the L-diagram
associated to the decorated permutation in Example 4.2.4. D is indeed a L-diagram as it avoids the

L-configuration, and it is of type (3,8) since the shape of D fits inside a 3×5 = 3× (8−3) rectangle.

In §20 of [Pos06], Postnikov gave two bijections between L-diagrams and decorated permutations,
the first through associating a series of other objects (hook diagrams, networks, and plabic graphs) to

L-diagrams. The second, which we describe here, uses an algorithm from §19 of [Pos06] going through
a slightly different object called pipe dreams.
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Given a L-diagram D of type (k,n), we associate a decorated permutation πD on [n] as follows:

(i) In D , we replace each 0 with a cross and each + with an elbow joint :

0 7−→

+ 7−→
(ii) Notice that we can view the south-east (SE) border of D as a lattice path with n steps, and

thus label the edges with 1, . . . ,n from the top-right corner to the bottom-left corner.

(iii) Then label the edges of the north-west (NW) border of D so that, viewing D as a grid, the rows
and columns have the same labels (the opposite horizontal/vertical edges are labelled the
same). We call this diagram P the pipe dream associated to D .

(iv) To get the decorated permutation π associated to P and D , we follow the "pipes" of P from the
SE border to the NW border. That is, π(i ) = j if the pipe starts at i and ends at j . A horizontal
pipe starting and ending at i , where i labels vertical edges, is denoted a co-loop π(i ) = i .
A vertical pipe starting and ending at i , where i labels horizontal edges, is denoted a loop
π(i ) = i .

To illustrate this algorithm, we use an example.

Example 4.2.7 — Given the L-diagram D of type (3,8) in Figure 4.1a, we label the SE and NW borders
with 1, . . . ,8 as above, and replace the 0’s and + ’s with crosses and elbow-joints. This gives the pipe dream
P in Figure 4.1b, where arrows are added to show the direction to follow the pipes for the permutation.

0 0 + + 0

+ + +
0

5 = 8−3

3

(a) A L-diagram D of type (3,8).

7

4

1

8 6 5 3 2

7

4

1

6 5

3 2

8

(b) The pipe-dream P associated to D in Figure 4.1a.

F I G U R E 4 . 1 : The L-diagram and pipe dream associated to Example 4.2.4. The arrows
on the pipes indicate the direction to follow to read off the decorated permutation.

To read off the decorated permutation, we follow the pipes in the direction of the arrows to get

πD =
(

1 2 3 4 5 6 7 8
3 2 5 1 6 8 7 4

)
,

which is the decorated permutation from Example 4.2.4! Note that πD is a decorated permutation on [8]
with 3 anti-excedances.

From the example, we make a few observations about this map D 7→ πD , where P is the associated
pipe dream to D :

– Rows of all 0’s in D correspond to horizontal pipes in P , and thus these are the co-loops in πD .
In Example 4.2.7 this would be the row labelled 7 in Figure 4.1.
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– Similarly, columns of all 0’s in D correspond to vertical pipes in P , and thus these are the
loops in πD . In Example 4.2.7 this would be the column labelled 2 in Figure 4.1.

– Because of the way the elbow joints are drawn, notice that pipes in P can only ever go to the
left and up from its starting point. Thus, pipes starting from i that end on vertical edges j
must have i ≥ j , with i = j being a horizontal pipe. Whereas pipes starting from i and ending
on horizontal edges j have i < j . That is, the labels of the rows (vertical edges) of P exactly
correspond to the anti-excedances of πD . In Example 4.2.7, this would be the rows labelled
1,4,7 in Figure 4.1, which indeed are the anti-excedances of πD .

– Finally, avoiding the L-configuration in D corresponds to pipes in P crossing at most once,
and furthermore once two pipes cross, they will also no longer touch (via an elbow joint).

In turns out that this map is indeed a bijection, and furthermore one of the reasons to look at L-
diagrams is because of how easily they display the dimension of the positroid cell that they index. In
particular, the dimension of the corresponding positroid cell is determined by counting the number of
+ ’s in the L-diagram.

Theorem 4.2.8 — (Theorem 6.5, Corollary 20.1, Theorem 20.3 of [Pos06]) The map D 7→πD is a bijec-
tion from L-diagrams of type (k,n) to decorated permutations of [n] with k anti-excedances. Therefore,

L-diagrams of type (k,n) index the cells of Gr≥0
k,n . Furthermore, let SD be the positroid cell indexed by the

L-diagram D. Then the dimension of the cell SD is the number of + ’s in D.

Going back to Example 4.2.7, this means that D indexes the cell SD of Gr≥0
3,8, which corresponds to the

cell Sπ from Example 4.2.4, and the dimension of SD is 5 since there are 5 + ’s in D .

(4.2.3) Plabic graphs.

The final family of combinatorial objects that we will define (without going into detail) are plabic
graphs, where the term "plabic" comes from abbreviating "planar bicoloured". These graphs play an
important role in the foundations for the original correspondences of the above objects to positroid
cells as well as the basis of many of the applications and connections from positroids to other fields.

Definition 4.2.9 — (Definition 11.5 of [Pos06]) A plabic graph is an undirected planar graph G drawn
inside a disk with the following properties:

– n boundary vertices on the boundary of the disk labelled clockwise with 1, . . .n,
– some number of internal vertices, which are coloured either black of white, and
– each boundary vertex is incident to a single edge; if this edge is incident to a leaf, the leaf is

called a lollipop.

From associating L-diagrams to plabic graphs, Postinikov showed that what we really want to be looking
at are equivalence classes of reduced plabic graphs, which are specific types of plabic graphs that can
be obtained via certain local moves (transformations) on plabic graphs. That is, these equivalence
classes also index the cells of the positive Grassmannian! In particular, like L-diagrams, reduced plabic
graphs also see the dimension of the cell, via the number of faces of the graph minus one. We refer the
reader to §11–13, 20 of [Pos06] and §14 of [LPW20] for a more thorough treatment of plabic graphs.
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Continuing with our running example in bijection with the same positroid, we present the reduced
plabic graph in bijection with the L-diagram D from Example 4.2.7.

Example 4.2.10 — In Figure 4.2, we draw the reduced plabic graph G associated to Examples 4.2.4, 4.2.7
in two different ways. The top representation hints at the bijection with L-diagrams, and the bottom
representation hints at the connection to on-shell diagrams.

8
7

6 5

4
3 2

1

2
18

7

6
5 4

3

F I G U R E 4 . 2 : A reduced plabic graph G , drawn in two ways.

Very briefly to see that the decorated permutation does indeed line up with the previous examples, follow
the labelled boundary vertices turning (maximally) right at every black vertex and left at every white
vertex. Some of these paths are drawn on G with the arrows indicating the direction to follow. Lollipops
correspond to fixed points and we colour the fixed points accordingly, that is, black lollipops are loops,
and white lollipops are co-loops.

Here G is of type (3,8) as G has 8 boundary vertices, and k = 3 is computed via

k = #edges−#black vertices− ∑
white vertices v

(deg(v)−1) = 11−2−6 = 3.

Thus the equivalence class of G indexes the cell SG of Gr≥0
3,8, which corresponds to Sπ and SD from

Examples 4.2.4, 4.2.7. The dimension of the cell SG indexed by G is then #faces−1 = 5, which lines up
with the dimension of SD .

From our three examples, we have that the decorated permutationπ from Example 4.2.4, the L-diagram
D from Example 4.2.7, and the reduced plabic graph G from Example 4.2.10 (and its equivalence class)
are all in bijection with each other and with the same positroid. Thus they index the same positroid
cell, which we label by Sπ, SD , or SG according to which combinatorial object is of interest!

4.3. T- D U A L I T Y O N D E C O R A T E D P E R M U A T I O N S

Through the recent extensive study of the combinatorial objects related to positroids, the positive
Grassmannian (like its full counterpart) has been shown to have deep connections to many different
areas of mathematics and physics.

To name a few, first purely combinatorially, we can study positroids themselves as a special class
of matroids. We can also study the numerous related combinatorial objects that arise directly from
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positroids and those arising from the many applications. Some examples include oriented matroids,
polytopes and polyhedral subdivisions, non-crossing partitions, and lattice paths. On the more
algebraic and geometric side, there are connections to cluster algebras and quantum algebras, and
naturally we could study the positive Grassmannian in the spirit of Schubert calculus, through varieties,
flags, and symmetric functions. Finally, on the physics side there have been applications to KP solitons,
types of asymmetric exclusion processes, and scattering amplitudes (via the amplituhedron and
Wilson loop diagrams). We refer the reader to [Pos06; Pos18; KW13; CW07; LPW20; PSBW21] and the
references therein for further details.

We will highlight and focus on the combinatorics related to one specific application to physics, namely
to scattering amplitudes in N = 4 SYM theory. In particular, the story from [LPW20] starts with looking
at the images of the positive Grassmannian under two different maps.

(4.3.1) The hypersimplex.

The first map of interest is the classic moment map, which was used in [Gel+87] to study the Grass-
mannian and its decomposition into matroids. Let A be a k ×n matrix representing an element of
Grk,n . The moment map µ from Grk,n to Rn is defined as

µ(A) ··=
∑

I∈([n]
k )|p I (A)|2e I∑

I∈([n]
k )|p I (A)|2 .

Under this moment map, the object that arises as the image of both the Grassmannian and the positive
Grassmannian is the well-known hypersimplex.

Definition 4.3.1 — For I ∈ ([n]
k

)
, let e I ··=∑

i∈I ei ∈Rn where the ei are the standard basis vectors of Rn .
The (k,n)-hypersimplex ∆k,n is the convex hull of all such points e I ,

∆k,n ··= conv

{
e I : I ∈

(
[n]

k

)}
.

Note that ∆k,n lives inside Rn and is of dimension n −1.

As the hypersimplex is a convex polytope, a natural question that arises is how can one triangulate or
subdivide this polytope using the moment map and in relation with the positroid cells that decompose
the positive Grassmannian?

The start to an answer to this question lies in objects called positroid polytopes, which are matroid
polytopes where the matroid is a positroid. Analogous to how hypersimplex is defined, given a matroid
we can naturally define a polytope using its bases. That is, for a positroid M on [n] as defined by its
bases, its positroid polytope ΓM is

ΓM ··= conv{e I : I ∈ M } ⊂Rn .

In particular, why we care about these polytopes is because it turns out that positroid polytopes and
the closure of the image of positroid cells under the moment map coincide!

65



PART II. LE DIAGRAMS

Theorem 4.3.2 — (Proposition 7.10 of [TW15])
Let M be a positroid and SM its associated positroid cell. Then ΓM =µ(SM ).

Now the question becomes, when does a collection of positroid polytopes (with positroid cells) trian-
gulate the hypersimplex? Here we want the positroid polytopes to be generalized triangles of ∆k,n ,
which restricts to positroid cells of dimension n −1 and where µ is injective on the cells. This is one of
the questions that [LPW20] looked at.

(4.3.2) The amplituhedron.

On the other side of the story, as part of an ongoing program on reformulating the Feynman diagram ap-
proach in quantum field theory which culminated in the book [AH+16], a surprising connection arose
between the work of physicists in the context of scattering amplitudes in N = 4 SYM theory and work
on the positive Grassmannian. What the physicists described as on-shell diagrams, which are analogs
to Feynman diagrams, turned out to be exactly the plabic graphs as described by Postnikov [Pos06] (as
defined in Section 4.2.3) and in relation to positroid cells.

Motivated by this connection as well as observations on the BCFW recursion relations in tree-level
amplitudes, Arkani-Hamed and Trnka [AHT14] introduced a new geometric object called the ampli-
tuhedron in hopes of encoding these tree-level N = 4 SYM amplitudes through its "volume".

Definition 4.3.3 — (§9 of [AHT14]) For k +m ≤ n, the (tree) amplituhedron An,k,m(Z ) is defined as the
image of the positive Grassmannian under the map

Z̃ : Gr≥0
k,n −→ Grk,k+m

A 7−→ AZ

where A is a k×n matrix representing an element in Gr≥0
k,n , and Z is a totally positive n× (k+m) matrix.

Note that An,k,m lives inside the Grassmannian Grk,k+m and has full dimension km. We will focus on
the m = 2 case which is considered a toy-model for the more physically relevant m = 4 case. However,
we note that there are other special cases which also have interesting connections to combinatorics. As
an example, when Z is a square n ×n matrix, we recover the positive Grassmannian Gr≥0

k,n . When k = 1

and m = 2, An,1,2 is a polygon in P2, and more generally An,1,m is a cyclic polytope living inside Pm .

While not a polytope, the same question from the hypersimplex can be asked about the amplituhedron:
based on the positroid stratification of the positive Grassmannian, how can one "triangulate" the
amplituhedron? Relating back to scattering amplitudes, these triangulations should then be related to
the different decompositions of the amplitude in the on-shell representation. Some aspects of these
questions were previously looked at in [KWZ20].

For the amplituhedron, the objects of interest are Grasstopes, which are defined to be the closure of
the image of positroid cells under the Z̃ map. The term as used in [PSBW21] is the abbreviation of
"Grassmann polytopes", Then we can analogously define generalized triangles of An,k,m as Grasstopes
restricted to km-dimensional positroid cells and where Z̃ is injective on the cells. Once again, one
could ask: when does a collection of Grasstopes triangulate the amplituhedron?
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(4.3.3) T-duality.

For us, one of the interesting results from [LPW20] was based on a different question, one connecting
the two stories about triangulations. As the positive Grassmannian has this nice positroid cell de-
composition, another natural question to ask is if there is any relationship between the images of the
positroid cells under the previous two maps, the moment map and Z̃ , and how they would relate back
to the full objects. Following these lines of questioning and based on numerical evidence, Lukowski,
Parisi, and Williams [LPW20] found a surprising connection between the hypersimplex and the m = 2
amplituhedron, which was encapsulated by a very simple map directly on positroid cells that they
called T-duality.

The name "T-duality" comes from its correspondence to the T-duality in string theory, which very
simply put is a type of equivalence of theories where as one example momentum in a certain string
theory is interchanged with winding numbers in its T-dual theory. In particular, this map is named as
a nod to being a manifestation of T-duality in the context of the geometry of N = 4 SYM scattering
amplitudes and the m = 2 amplituhedron.

Definition 4.3.4 — (Definition 5.1 of [LPW20]) The T-duality map from loopless decorated permuta-
tions on [n] to co-loopless decorated permutations on [n] is defined as

π 7−→ π̂

(a1, a2, . . . , an) 7−→ (an , a1, . . . , an−1)

where the permutations are written in one-line notation, and any fixed points in π̂ are declared to be
loops. That is, for a given loopless π, we have π̂(i ) =π(i −1) where all fixed points are loops, and we call
π̂ the T-dual decorated permutation.

Lemma 4.3.5 — (Lemma 5.2, Proposition 5.17 of [LPW20]) The T-duality map π 7→ π̂ is a bijection
between loopless decorated permutations on [n] with k +1 anti-excedances and co-loopless decorated
permutations on [n] with k anti-excedances.

Equivalently, the T-duality map is a bjiection between loopless positroid cells Sπ of Gr≥0
k+1,n and co-

loopless positroid cells Sπ̂ of Gr≥0
k,n . Furthermore, we have the following dimensional relationship

dim(Sπ̂)−2k = dim(Sπ)− (n −1),

where in particular, if dim(Sπ) = n −1 then dim(Sπ̂) = 2k.

While this dimensional relationship was proven to exist between T-dual loopless cells of Gr≥0
k+1,n and

co-loopless cells of Gr≥0
k,n , it was not clear where it was coming from. The need to understand this

relationship motivated the question of viewing T-duality as a map on L-diagrams, in which one very
easily sees the dimension of the positroid cells they index. This problem is the focus of Chapter 5.

The magic in this very simple shift map on decorated permuations is that it was exactly what was
needed to go between triangulations of the (n −1)-dimensional hypersimplex ∆k+1,n and of the 2k-
dimensional m = 2 amplituhedron An,k,2! This duality then explained the mysterious appearance of(n−2

k

)
in the number of cells needed to triangulate both these objects. In [LPW20], the connection was

first shown for a specific type of triangulation.
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Proposition 4.3.6 — (Theorem 6.5, Proposition 6.6 of [LPW20]) The T-duality map provides a bijection
between BCFW triangulations (resp. dissection) of the hypersimplex ∆k+1,n and BCFW triangulations
(resp. dissection) of the amplituhedron An,k,2.

More specifically, a collection {Sπ} of cells of Gr≥0
k+1,n , as constructed in [LPW20], gives a triangula-

tion (resp. dissection) of ∆k+1,n if and only if the collection {Sπ̂} of cells of Gr≥0
k,n gives a triangulation

(resp. dissection) of An,k,2.

Furthermore, if Sπ is a generalized triangle of ∆k+1,n , then Sπ̂ is a generalized triangle of An,k,2.

Very recently, Parisi, Sherman-Bennett, and Williams [PSBW21] extended the work done in [LPW20],
building on the theory of generalized triangles, and were able to prove the main conjecture in [LPW20]
which strengthens the above statement to all triangulations and dissections. Their proof utilized
looking at the T-duality map via plabic graphs and plabic tilings.

Theorem 4.3.7 — (Conjecture 6.9 of [LPW20], Theorem 11.6 of [PSBW21]) Let {Sπ} be a collection of
cells of Gr≥0

k+1,n . Then this collection gives a triangulation (resp. dissection) of ∆k+1,n if and only if the

collection {Sπ̂} of cells of Gr≥0
k,n gives a triangulation (resp. dissection) of An,k,2.
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A natural question that arises from T-duality (Definition 4.3.4) is: what does this map look like dia-
grammatically, that is, on the level of L-diagrams? How are the L-diagrams related?

Recall from Section 4.2.2 that given a decorated permutation π on [n] with k anti-excedances, we get
an associated L-diagram D of type (k,n) where:

– D has shape λ which fits in a k × (n −k) rectangle,
– co-loops are rows of all 0’s, while loops are columns of all 0’s,
– dim(SD ) is the number of + ’s in D , where SD is the positroid cell indexed by D , and
– anti-excedances of π label the rows of the pipe dream associated to D (including empty rows).

The direction of T-duality we will look at is π̂ 7→π, where π̂ is a co-loopless permutation on [n] with k
anti-excedances and π is a loopless permutation on [n] with k +1 anti-excedances. On L-diagrams,
we are looking at the map from D̂ 7→ D, where D̂ is the L-diagram associated to π̂ and D is the L-
diagram associated to π. As cells, recall from Section 4.3.3 that Sπ̂ is a co-loopless cell of Gr≥0

k,n and Sπ
is a loopless cell of Gr≥0

k+1,n where their dimensions relate via dim(Sπ̂)−2k = dim(Sπ)− (n −1). One
advantage of looking at this map on L-diagrams, as we will see, is how simple it becomes to relate the
dimensions through counting the + ’s on either side.

We start with an explicit algorithm for constructing D given a D̂ , with an example given at the end in
Section 5.1.5, and then move to a more visual perspective that showcases the structure of the + ’s of D .
We end with proving that the algorithm does give the correct L-diagram, as given by π.

5.1. T H E B I J E C T I O N O N T H E L E V E L O F L E D I A G R A M S

(5.1.1) Notation.

Throughout this chapter, we will refer to the rows and columns of a L-diagram D by the same labelling
as that which gives the associated decorated permutation (i.e from its pipe dream). Recall, we are
viewing the SE border of the shape λ as a lattice path of n steps from the top-right corner to the
bottom-left corner of the k × (n −k) rectangle. The edges of this path are then labelled from 1 to n.
Boxes in D , and the k × (n −k) rectangle, will then be referred to by their coordinates (i , j ) under this
labelling. A box is considered as "existing" if it is a valid box to be filled within the shape λ. Note that
all such valid boxes have i < j . An example of this notation is given in Example 5.1.1. Finally since
we are dealing with two L-diagrams, one on each side of the map, we refer to the "corresponding"
row/column as the row/column with the same label on the opposite side of the map.

We will also order boxes in columns from top to bottom and in rows from right to left, in accordance
with labels going from smallest to largest. For rows/columns, having i < j would mean i is to the left
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and/or above j . For boxes, "first" refers to right/top-most in a row/column, "last" refers to left/bottom-
most in a row/column and "next" refers to the next box to the left/below in a row/column.

Example 5.1.1 — Going back to Example 4.2.7, we have the following labelling of the L-diagram D:

0 0 + + 0

+ + +
07

4

1

8 6 5 3 2

7

4

1

6 5

3 2

8

where there are + ’s in boxes (1,3), (1,5), (4,5), (4,6), and (4,8). Notice box (4,3) does not exist since it is
outside of the shape λ of D. By the nature of the labelling, we also never have boxes of the form (i , i ). The
arrows indicate the direction of the ordering of boxes, going from first to next to last.

(5.1.2) Preliminaries and shape of D.

We start with a co-loopless decorated permutation π̂ on [n] with k anti-excedances, which we denote
in two-line notation as

π̂=
(

1 2 · · · n
an a1 · · · an−1

)
.

Let {b1, . . . ,bk } be the k anti-excedances of π̂ ordered such that b1 < ·· · < bk (recall that bu is an anti-
excedance if π̂−1(bu) > bu , where note we can’t have π̂(bu) = b̄u since π̂ is co-loopless). In particular,
let iu = π̂−1(bu) be the position of bu . Then we have bu = π̂(iu) = aiu−1 for 1 ≤ u ≤ k.

We denote the associated L-diagram by D̂ with shape λ̂. Since π̂ is co-loopless, we have that every row
in D̂ has ≥ 1 + ’s. In particular,

λ̂= (
λ̂1, · · · , λ̂k

)
, where λ̂u = (n −k)− (bu −u) for 1 ≤ u ≤ k

and every λ̂u ≥ 1.We also have that the rows of D̂ are thus labelled by these bu , as in Figure 5.1.

b1

b2

...

bk

D̂

n −k

k

F I G U R E 5 . 1 : The shape and row labels of L-diagram D̂ associated to π̂. Here we have
illustrated when b1 = 1. When b1 6= 1, there are columns of size 0 labelled 1, . . . ,b1 −1
(these would be loops), indicated by a horizontal line extending the top (north) border
of the diagram. Note that there are no rows of size 0 as π̂ is co-loopless.
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We want to give an algorithm that produces a L-diagram D of type (k +1,n) and dimension
dim(SD̂ )−2k + (n −1) with associated decorated permutation π of [n] given by

π=
(

1 2 · · · n
a1 a2 · · · an

)
,

which has k +1 anti-excedances and is loopless. The loopless condition means that D has to have
≥ 1 + ’s in each of the n − (k +1) columns.

First, by looking at T-duality as a map on permutations, we can already determine the shape λ of D
which only cares about the anti-excedances of π. Consider the following:

– an is not an anti-excedance of π̂ since π̂ is co-loopless, π̂(1) = an and 1 6> an . In particular, an

is the label of a column in D̂ .

– Under T-duality, bu for 1 ≤ u ≤ k stays an anti-excedance as iu > bu = π̂(iu) =π(iu −1). Since
π is loopless, we have either π(iu −1) < iu −1 or π(iu −1) = iu −1 where iu −1 must be a
co-loop. In either case, bu is an anti-excedance of π.

– an is always an anti-excedance of π since π is loopless.

– There are no other anti-excedances of π since π(i ) = π̂(i +1) ≥ i +1 > i for all 1 ≤ i < n with
i +1 6∈ {i1, . . . , ik }.

Based on these observations, we have that {b1, . . . ,bk }∪ {an} are the k +1 anti-excedances of π. In
particular, the labels of the rows of D (including rows of length 0) are thus exactly the same as D̂ , with
the addition of an . Then, the shape of D can be constructed from D̂ by removing the column labelled
an and inserting in a row labelled an in the appropriate position, maintaining the order of the labels of
the new boundary lattice path, see Figure 5.2.

...
b j−1

b j

...

D̂
an

−→

...
b j−1

b j

...

−→

...
b j−1

an

b j

...

D

F I G U R E 5 . 2 : Steps to construct the shape of D from D̂. Remove column an from
D̂ and insert a row labelled an where the dashed line is, making sure that the new
boundary path is in the correct order. Here j is the index such that b j−1 < an < b j .

The shape λ of D is then (including 0 sized parts)

λ= (λ1, · · · ,λk+1) where λu =


λ̂u −1 1 ≤ u ≤ j −1,

n − (k +1)− (an − j ) u = j ,

λu = λ̂u−1 j +1 ≤ u ≤ k +1,

and j is the index such that b j−1 < an < b j . If an > bu for all 1 ≤ u ≤ k, then let j = k +1. Here we have
0 ≤ λu ≤ n − (k +1) for all 1 ≤ u ≤ k +1, and at most k +1 non-zero parts, as needed. Thus the order
of rows (and anti-excedances) of D is {b1, . . . ,b j−1, an ,b j , . . . ,bk }, as in Figure 5.3. Note that we always
have either b1 = 1 or an = 1, and thus the first row of D will always be labelled with 1 and is a full row of
size λ1 = n − (k +1) (which also must hold as π is loopless).
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1
...

an

...

bk

D

n − (k +1)

k +1

F I G U R E 5 . 3 : The shape and row labels of L-diagram D associated to π. Here we have
illustrated when b1 = 1, an 6= 1,n. When an = n, we would have a row of size 0 labelled
by n (and thus is a co-loop) which would be indicated by a vertical line extending the
west border of the diagram. Note that there are no columns of size 0 since π is loopless.

(5.1.3) The algorithm.

Now that we have the shape of D, we give an explicit algorithm for filling in D such that we get the
L-diagram with associated decorated permutation π. We will fill D row by row, from right to left, based

on the corresponding row and rows below in D̂. For row an , since an was a column in D̂, we will
consider its "corresponding row" in D̂ as a row of all 0’s of the same length as in D and placed in
the same position as D (in-between rows b j−1 and b j so that the order of labels of the SE border is
maintained).

Let Lu be the column containing the leftmost + in each row labelled bu of D̂ (which is in box (bu ,Lu))
for 1 ≤ u ≤ k. Let Wu be the row directly below row bu , and let Wn be the row directly below an , if they
exist. Otherwise, for the last row bk , define Wk = n +1, or if an is the last row, then define Wn = n +1.
Concretely we have

Wu =


bu+1 1 ≤ u < k,u 6= j −1

an u = j −1

b j+1 u = n, j 6= k +1

n +1 u = k, j 6= k +1 or u = n, j = k +1

In particular, Wu −1 is the column right before the next row below, or for the last row, Wu −1 = n.
Finally, we say that a 0 is restricted if there is a + in a box to its left, in the same row, and unrestricted
otherwise. In Example 5.1.1, the only restricted 0 is in box (1,2).

There are three different row types to consider for D :

(I) Rows bu such that the box (bu , an) either does not exist, or does not have a + in D̂ .
(II) Rows bu such that the box (bu , an) has a + in D̂ .

Note: These rows will always be above row an .
(III) Row an .

We start by outlining the steps for row type (I); the algorithm for row types (II) and (III) will be slight
modifications based on these steps. Note that row types (I) and (III) actually follow the same steps if
we consider the "leftmost" + in the "corresponding row" to an in D̂ as occurring in column Ln > n.
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Algorithm for filling in rows of D — Main steps, and for row type (I)

Fill boxes in row bu from right to left, if they exist, as follows:

Step 1. For columns bu +1 to Wu −1, fill boxes in row bu with + ’s,
i.e. boxes (bu ,bu +1), . . . , (bu ,Wu −1) are filled with + ’s.

Step 2. For columns Wu +1 to Lu −1, fill boxes in row bu with + ’s under the conditions defined below.
Otherwise, fill the boxes with 0’s.
i.e. fill boxes (bu ,Wu +1), . . . , (bu ,Lu −1) with + ’s if they satisfy the conditions.

Step 3. Starting from column Lu , fill the rest of the boxes in row bu with 0’s,
i.e. fill boxes (bu ,Lu) and leftwards to the end of the row with 0’s.
Note: if Wu > Lu , then Step 1 only fills boxes until column Lu −1 and Step 2 is skipped.

Note that the algorithm can be run in parallel for each row.

Step 2 Conditions — Fill a box in row bu at (bu ,`) with a + if:

(i) In D̂ , there is a + in box (bu ,`).

(ii) In D̂, there is a + in some row below, say at (bm ,`) where m > u, such that there are only
unrestricted 0’s in column ` in-between rows bu and bm . For example, the circled + ’s in
Figure 5.4 satisfy this condition. Note: In the case that m = u +1, the condition holds trivially.
Another way to phrase this condition: Look for + ’s in column ` in rows below bu where all
rows in-between have no + ’s to the left of column ` (their leftmost + is before column `).

(iii) In D̂ , column ` only has unrestricted 0’s below row bu . For example, the shaded columns in
Figure 5.4 satisfy this condition. In other words in column `, all the rows below bu has their
leftmost + before column `, i.e. their last + has already passed.
Note: This is a special case of (ii).

bu

D̂

0 0 +

Lu

0 0 +
0 0 +

+

F I G U R E 5 . 4 : Example of conditions in Step 2(ii) and (iii). For row bu , the columns of
the two circled + ’s in this D̂ satisfy condition (ii) as all boxes above the + (until row
bu) are filled with unrestricted 0’s. Thus in D, a + would be filled in row bu in those
two columns. The column of the non-circled + not in row bu would fail this condition
because of the row directly above it. The shaded columns indicate the columns that
satisfy condition (iii) since all the boxes below row bu are filled with unrestricted 0’s.
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Modifications for row types (II) and (III) —

For row type (II):

Steps 1 & 2. For columns bu +1 until row an , follow Steps 1 & 2 of row type (I),
i.e. fill boxes (bu ,bu +1), . . . , (bu , an −1) as in row type (I).

Step 3. Starting from column an +1, fill the rest of the boxes in row bu following only Step 2(i),
i.e. fill boxes (bu , an +1) and leftwards until the end of the row using Step 2(i).
Note: These boxes have the exact same filling as in the corresponding row in D̂ .

For row type (III):

Steps 1 & 2. Follow Steps 1 & 2 of row type (I) for the whole row an .
Recall, the "corresponding row" to an in D̂ is a row of all 0’s of the same length, in the same
position as in D . Think of the leftmost + in this row as occurring at (an ,Ln) for some Ln > n.
Under this convention, replace all instances of bu with an and Lu with Ln in the main steps.
Note: Step 2(i) never applies for this row.

From these steps, we can already start to see some structure to these diagrams D filled through this
algorithm. Later in Section 5.2, we will give a different perspective on how to build these diagrams that
showcases the structure of the + ’s.

Some first observations are:

– Step 1 tells us that there will always be a string of + ’s at the beginning of a row (until the next
row below) in one of two ways:

bu

cols. `

+ ·· · · · · + bu

cols. `

0

Lu

+ ·· · +

F I G U R E 5 . 5 : The beginning of a row using Step 1. On the left, we have the case when
Lu >Wu and so + ’s are filled in columns bu +1 ≤ `≤Wu −1. On the right, we have the
case when Lu <Wu , in which Step 2 is skipped, and thus bu +1 ≤ `≤ Lu −1.

– In particular, Step 1 also tells us that the bottom-most (non-empty) row of D will be either:

bk0 0

Lk

+ ·· · + an+ ·· · · · · +

F I G U R E 5 . 6 : The last row using Step 1. On the left, we have the case when bk > an is
the last row, and so + ’s are filled until column Lu −1, with 0’s filling the rest from Step
3. On the right, we have the case when an > bk , and Step 1 fills the whole row with + ’s.
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– Step 2(ii) and (iii) tells us that for row type (III), there will always be a string a + ’s at the left
end of this row:

an + ·· · +

– Step 2(iii) also tells us that the string of + ’s filled by satisfying this condition always comes
after (is to the left of) a + that is filled based on Step 2(ii).

– Step 3 of row types (I) and (II) tells us that there will always be a string of 0’s at the left end of
row bu after column Lu :

bu 0 0
Lu

Finally, what’s interesting about this algorithm is that for any particular row, only a part of D̂ is looked
at, namely it looks recursively at the row itself and the first rows below for which the leftmost + has
not yet been passed.

(5.1.4) D is indeed a L-diagram.

To even be able to consider this algorithm, we first verify that under this filling D avoids the L-
configuration and thus is a valid L-diagram.

Theorem 5.1.2 — Under this filling, D is a L-diagram of type (k +1,n).

P R O O F . We show that if a L-configuration occurs in D , then one must occur in D̂ as well!

Without loss of generality, suppose in D we have the following

+ ← row i
...

+ ·· · 0 ← row j

↑ ↑
col. m col. `

where the boxes indicated by the dots are filled with 0’s. There are two cases for row j ,

(i) either there’s a corresponding row j in D̂ , or
(ii) j = an .

First, based on our observations from Steps 1 and 3, the three boxes in this configuration must have
been filled in Step 2 for rows i and j , regardless of row type. In particular, that means row j is not the
last row, and furthermore there must be boxes in columns `, . . . ,m below row j in both D and D̂ .

75



PART II. LE DIAGRAMS

Looking at the + at ( j ,m) in D , since it was filled based on a condition in Step 2, in each case we have:

(i) The last + in the corresponding row in D̂ must be to the left of or at column m, and thus in D̂
there is a + at some ( j ,L) where L ≥ m.

(ii) In this case, the box must have been filled by Step 2(ii), and thus in D̂ , there is some first row
b below j such that its last + is to the left of or at column m, and thus there is a + at (b,L)
where L ≥ m. That is, all rows in-between j and b must have boxes in column m filled with
unrestricted 0’s i.e. their last + is to the right of m.

j0 0 +
↑

col. L ≥ m

D̂
b

j = an
...

0 0 +
↑

col. L ≥ m

F I G U R E 5 . 7 : The two cases for j in D̂ based on a + at ( j ,m) in D . On the left, we have
case (i), and on the right, we have case (ii). Here b is the first row below j = an where
all boxes in column m in-between row b and column j are filled with unrestricted 0’s.

Next, looking at the 0 at ( j ,`), in each case we have:

(i) Because of Step 2(i) and the last + of row j in D̂ is at some column L ≥ m > `, we know that
there is no + in D̂ at ( j ,`), and thus it is filled with 0.

(ii) Since we are assuming boxes ( j ,`+ 1), . . . , ( j ,m − 1) are also filled with 0’s in D, we must
have that all rows in-between j and b in D̂ have unrestricted 0’s filled in those columns. As
otherwise Step 2(ii) would have placed a + in D somewhere in those boxes. But then this also
means that in D̂, (b,`) must be filled with a 0 since otherwise Step 2(ii) would be satisfied,
placing a + at ( j ,`) in D .

Finally we look at the + at (i ,`). The + at ( j ,m) in D tells us that Step 2(iii) could not have been the
reason for this + since in D̂, the last + of row j or row b, for each case respectively, have not passed
yet. Thus this + must have come from satisfying Step 2(i) or (ii) for row i (regardless of type) which
means in D̂ in column `, there must be a + in rows i or below. The 0 at ( j ,`) in D then tells us that in
D̂ , there cannot be any + ’s in rows below j in column ` or else Step 2(ii) would have been satisfied for
( j ,`). Then, regardless of which case we are in, there must be a + in D̂ in column ` above row j .

Putting all these together, notice in either case we have constructed a L-configuration occurring in
D̂ . But this cannot happen as D̂ is a L-diagram! Thus the L-configuration cannot occur in D and D is
indeed a valid L-diagram. Furthermore, from the shape λ of D, we get that D is a L-diagram of type
(k +1,n) as needed. ■

(5.1.5) An example.

To illustrate this algorithm, we work through an example step by step.
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Suppose we had the following L-diagram D̂ of type (4,n) and dimension 2k = 8, where all unmarked
boxes are filled with 0’s. The circled + ’s indicate the last + ’s in each row.

1

i

o

q

D̂

n u t s r

p

m `

+ +
+

+ +
+ + +

First, since in D̂ we have that π̂(1) = an = m, the shape of D is

1

i

m

o

q

D

n u t s r

p

`

Here we have the following variables,

b1 = 1 b2 = i an = m b3 = o b4 = q

L1 = u L2 = ` Ln > n L3 = s L4 = t

W1 = i W2 = an Wn = o W3 = q W4 = n +1

where recall that bu are the rows of D̂ , Lu is the column of the last + in row bu (with the last + for an

thought of as at some Ln > n) and Wu is the next row below bu (or n +1 if its the last row).

To fill D , we follow the algorithm row by row, starting with row 1. As row 1 has a + in column an = m in
D̂ , it is of row type (II) and we obtain the filling:

1

i

0 0+
↑
u

0 0+
↑

m −1

· · ·++
↑
`

0 0+· · ·+

1.2.3.

1. From Step 1, we fill boxes (1,2), . . . , (1, i −1) with + ’s as the last + has not yet passed (L1 = u)
and the next row below is row i .

2. From Step 2, we fill boxes (1, i +1), . . . , (1,m −1) with + ’s according to the conditions, and 0’s
otherwise. We stop at column m −1 since an = m, and we are following row type (II).

(i) Row 1 has no + ’s in these boxes in D̂ so Step 2(i) is not satisfied.

(ii) Step 2(ii) fills a + in box (1,`), as the + at (i ,`) in D̂ satisfies this condition trivially since
there are no rows in-between rows 1 and i .

(iii) Step 2(iii) then fills + ’s in boxes (1,`+1), . . . , (1,m −1), since the + at (i ,`) in D̂ was in
fact the last + of row i .
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3. Finally, Step 3 only fills a + in box (1,u), with the rest filled with 0’s, since in D̂ there is only
one + after column an = m which is in column u.

Next, row i does not have a + in column m in D̂ and thus is of row type (I). As the last (and only) + of
row i is at (i ,`) in D̂, we have that W2 = m > L2 = ` and so Step 2 is skipped. Then, Step 1 fills boxes
(i , i +1), . . . (i ,`−1) with + ’s, and Step 3 fills the rest of the boxes with 0’s, to obtain:

i0 0+· · ·+
`

1.3.

Moving on to row m = an which is of row type (III), recall that we are considering "row" an in D̂ to be a
row of all 0’s with the same length and position as in D , and having its last + at some column Ln > n.

m

o

+·· · · · ·++
↑
t

0 0+
↑
s

0 0+
↑
p

0 0+· · ·+

1.2.

1. From Step 1, we fill boxes (m,m +1), . . . , (m,o −1) with + ’s as the last + has not yet passed
(Ln > n) and the next row below is row o.

2. From Step 2, we fill the rest of the boxes in the row with + ’s according to the conditions and
0’s everywhere else. As we are in row type (III), we skip Step 3.

(i) Step 2(i) never applies for this row.

(ii) Step 2(ii) fills a + in boxes (m, p), (m, s) and (m, t ). These columns correspond to + ’s in
D̂ in rows below m such that all the boxes above are unrestricted 0’s.

(iii) Step 2(iii) then fills + ’s in boxes from (m, t +1) to the end of the row, since the + at (q, t )
in D̂ is the leftmost + of all rows below m and thus all columns after t are filled with
unrestricted 0’s below m.

After row an , all the rows below will be of type (I). For row o we get the filling:

o

q p

0 0 0
↑

s −1

0+
↑
r

0 0+·· · · · ·+

1.2.3.

Here, Step 1 fills the beginning of row o with + ’s until the next row below, which is row q , as the last +
in row o in D̂ is in column L3 = s. Note that we don’t consider the + in box (q, p) in D̂ . Step 2 fills a +
only at box (o,r ) through condition (ii), and 0’s everywhere else until column s. Step 3 then fills the
rest of the row, starting from column s, with 0’s.

Finally, we have row q . As its the last row, we skip Step 2 (recall we are considering W4 = n +1) and
since the last + of row q is in box (q, t ) in D̂ , we have:

q0 0

t

+ ·· · · · · · · · · · · · · · +

1.3.
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Putting everything together, we get the following L-diagram D :

1

i

m

o

q

D

n u t s r

p

`

0 0+0 0+· · ·+0 0+· · ·+
0 0+· · ·+
+ ·· · · · · · · +0 0+0 0+0 0+· · ·+
0 0+0 0+·· · · · ·+
0 0+ ·· · · · · · · · · · · · · · +

To briefly check that this D is indeed the right diagram for the given D̂ :

– D is a L-diagram of type (5,n) = (k+1,n) (notice it avoids the L-configuration and has 5 rows).

– Every column has at exactly one + except columns p,r, s,u, which have two + ’s. Thus D is
loopless and we have dimension (recall this is the number of + ’s)

dim(SD ) = (n −5)+4 = n − (k +1)+k = n −1,

as there are n −5 columns and 4 columns with an extra + . This gives the correct relation
since we wanted dimSD̂ −2k = dim(SD )− (n −1), recalling that dim(SD̂ ) = 8 = 2k.

– One can check that the associated decorated permutation π to D , in two-line notation, is(
1 · · · i −1 · · · `−1 · · · m −1 · · · o −1 · · · p −1 · · · q −1 · · · r −1 · · · s −1 · · · t −1 · · · u −1 · · · n
2 ` i u p s r o t q 1 m

)
,

where the · · · denotes π(a) = a +1 for all a in-between the explicitly written values. Notice π
is loopless and has 5 anti-excedances (circled). Shifting the bottom-line one to the right (and
wrapping around) exactly gives π̂, the decorated permutation associated to D̂ .

To compare with D̂, we redraw D to illustrate the structure of the + ’s (as we will discuss in the next
section). All the unmarked boxes are filled with 0’s.

1

i

m

o

q

D

n u t s r

p

`

+ +·++ +· · ·+
0 0+· · ·+

+· · ·++· · ·++ + + +· · ·+
0 0 + +·++· · ·+
0+· · ·++· · ·++·· ·+

1

i

o

q

D̂

n u t s r

p

m `

+ +
+

+ +
+ + +

F I G U R E 5 . 8 : An example of D vs. D̂ , where D (left) is filled by the algorithm for the
given D̂ (right). In D, the dotted lines outlining shapes of + ’s and 0’s are to illustrate
the structure of the + ’s. Comparing to the original D̂ , notice that there is one of these
shapes per column of + ’s in D̂ , except column an = m.
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5.2. A M O R E V I S U A L P E R S P E C T I V E

While an algorithm is nice to have, it doesn’t illuminate the underlying structure of the + ’s in D , which
we are starting to see (Figure 5.8). Perhaps a more enlightening, and surprising, viewpoint is to look
at how the + ’s in D̂ give rise to certain shapes, which when glued together fully characterize D (see
Theorem 5.2.5). That is, without going through the algorithm, we can reconstruct D using these shapes.
Whereas the algorithm can be seen as viewing D through each row, here we are viewing D through
each column. Under this perspective, it becomes clearer how a reverse map on L-diagrams would work.

(5.2.1) Building blocks.

The first aspect of the surprising structure that arose is that D is composed of 2 distinct shapes; the
main one being what we will call L-shapes and also strings of + ’s. In fact, the strings of + ’s can be
considered as a special type of L-shape where there is only the horizontal part.

We will use the same notation as in Section 5.1 for L-diagrams, see Example 5.1.1. Recall that boxes
in a L-diagram are referred to by their coordinates (i , j ), which denotes row i and column j . We also
interchangeably use "first" to mean top/right-most, "last" to mean bottom/left-most, and "passed"
to mean in some column to the right of the current column in consideration, with "not yet passed"
meaning to the left of or at the current column.

Recall that D̂ is a co-loopless L-diagram of type (k,n), shape λ̂, and with decorated permutation π̂. We
are denoting its rows by b1, . . . ,bk and distinguishing the column an , which is defined by π̂(1) = an .
The algorithm in Section 5.1 is constructing a loopless L-diagram D of type (k +1,n), shape λ, and
with decorated permutation π, as given by T-duality (Definition 4.3.4) for the given π̂. The rows of D
are {b1, . . . ,bk , an}, with row an inserted as in Figure 5.2. From the algorithm, there are three row types
to consider for D : (I) rows with no + ’s in column an , (II) rows with + ’s in column an and (III) row an .

To create these L-shapes, we will look at columns ` 6= an in D̂ with at least one + . As such, there are
some facts we need to know about these columns:

– In D̂ , since every row contains at least one + (as co-loopless) and we have the L-condition, all
0’s below a + in column ` must be unrestricted, i.e. these rows have their last + to the right
of `:

last + ’s here

↑
all 0’s

+

`

or

last + ’s here

↑
all 0’s

+

+
↑
`

– For + ’s in column ` at (b,`):
– If an < b then b is of row type (I) as (b, an) is not a box within the shape λ̂.
– If b < an < ` then b is of row type (II) since there is a + at (1, an) and so the L-condition

forces there to be a + at (b, an).
– If `< an , then b can be of row type (I) or (II).

We refer to + ’s in D̂ that are not a leftmost (last) + in its row as non-last.
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Theorem 5.2.1 — For every column ` 6= an in D̂ with at least one + , in D there is a corresponding shape

+

↑
col. `

+ ·· · +
↑

col. m

← row bB

← row bT

s`+ t`+1
+ ’s

which we call a L-shape, and which has the following properties:

– There is always a + in box (bT ,`), with some sequence of 0’s and + ’s below.

– There is a string of + ’s in boxes (bB ,m), . . . , (bB ,`−1), possibly empty (if m = `).

– In D̂, there are s` non-last + ’s in column `.

– In D̂, there are t` last + ’s in rows of type (II) in column `.

– There is one more + , not counted by s` or t`, that is in row an or in row bT 6= f , an in column `,
where f is the row of the topmost + in column ` in D̂.

– In D̂, m −1 is either the label of the first column with at least one + to the right of `, or the first
row above `, whichever comes first.

Moreover, we can exactly characterize the + ’s in the L’s, and these are the only + ’s in these columns in D.

P R O O F . Let ` 6= an be a column in D̂ with at least one + . Let ( f ,`) be the first (topmost) + in this
column and (g ,`) be the last (bottom-most).

First, to determine the horizontal string of + ’s in the L, we look at D̂ around the + at (g ,`). Using
the first fact from above, if there are boxes below (g ,`), there must be a first column call it m −1, to
the right of ` with at least one + . Furthermore, in this column there must be + ’s in rows g or below.
That is all columns in-between m −1 and ` and in rows g and below, are filled with only 0’s. By the

L-condition, these columns are then actually columns of all 0’s.

←−
all 0’s

+→row g

` m −1

D̂ +’s here in
col. m − 1

If there are no rows below (g ,`), then we let m−1 = g if (g ,`) is the first + in its row, or let m−1 be the
column such that (g ,m −1) is the first + to the right of (g ,`).

g+
`

0 0+
m −1
↑

either + at (g ,m −1) or let m −1 = g

D̂
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If row g is of type (I) or of type (II) with `< an , then the boxes (g ,`−1), . . . , (g ,m) are filled with a string
of + ’s in D by Step 2(iii) if there are rows below (g ,`), or by Step 1 if there are no rows below (recall that
row type (II) follows the same steps as row type (I) until the column an). Thus we let bB = g .

If row g is of type (II) with g < an < `, then notice in D , the row an will be inserted in-between g and `.
In this case, we have that there will always be a first column m −1 to the right of ` with at least one +
in D̂ , as m −1 is at least an . Note that we can have m −1 = an .

g
↓

all 0’s

+

`

←−
+’s here or below

in col. m − 1

m −1

+
↑

col. an

D̂

Now we repeat a similar argument as before, except for boxes (an ,`−1), . . . , (an ,m). These are filled
with a string of + ’s in D by Step 1 for row type (III), if an becomes the row right above `, or by Step
2(iii) otherwise. Thus we let bB = an .

Furthermore, we argue that these are the only + ’s in columns m to `−1 in D. Notice that from the
algorithm, for columns like m in D̂ filled only with 0’s, the only way that a box in this column in D can
be filled with a + is through some Step 1 or Step 2(iii) for any row type. So we just need to show that if
say box (bB ,m) is filled with a + , then no other rows in column m satisfy these two conditions. First
note that Step 1 can only affect the very last box of column m and that to have (bB ,m) filled with a +
means the last + in row bB , say at (bB ,L), must not have passed yet (L > m).

Right away we see that for rows b below bB in column m, if (bB ,m) was filled through Step 1, then
there’s nothing to check as bB was the last row. If (bB ,m) was filled through Step 2(iii), then all rows b
must have their last + to the right of m. But then we cannot be in Step 1 nor Step 2(iii) for (b,m) since
the last + in row b has already passed.

b→all 0’s

+ ← row bB

L m

+D̂

For any rows b above bB , we can never be in Step 1 since these are not the last row in the column. We
also can never satisfy Step 2(iii) for (b,m) since this requires all rows below b to have their last + ’s to
the right of m, which does not hold for row bB , and now we are done.

Thus we get for the horizontal part of the L in D :

– bB = g , or bB = an if row g is of type (II) and g < an < `.

– m, possibly equal to `, corresponds to the column such that all columns in-between ` and
m −1 in D̂ are filled with only 0’s. That is m −1 is either the first column with at least one +
to the right of `, or m −1 is a row.

– For m 6= `, boxes (bB ,`− 1), . . . , (bB ,m) are filled with + ’s, and these are the only + ’s in
columns `−1 to m. Otherwise if m = `, there are no boxes in the horizontal part.
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Next we look at the vertical part of the L, including box (g ,`), which corresponds to the column `. First,
using the first fact from above once again, this time for + ’s in column `, we see that any row b below f
with a 0 filled at box (b,`) in D̂ must have its last + in some column to the right of `. Note here we are
not considering b = an . Thus for these rows, Step 3 for row types (I) and (II) will fill box (b,`) in D with
a 0 as well. For the rows b with a + filled at (b,`) in D̂ , in D box (b,`) is filled with a + through Step 2(i)
for row type (I) if it is a non-last + , and Step 2(i) and Step 3 for row type (II), regardless if it is a last +
or not. Note, if (b,`) is a last + in row b of type (I), then Step 3 fills this box in D with a 0. This gives
s`+ t` + ’s in column ` in D , determined exactly by the + ’s in column ` in D̂ , where s` is the number
of non-last + ’s in column ` of D̂ and t` is the number of last + ’s in rows of type (II) in column ` of D̂ .

To determine row bT , we look at D̂ above the + at ( f ,`). As all boxes directly above ( f ,`) are filled with
0’s in D̂ , from the algorithm, the only way to fill these boxes (b,`) in D with a + is through Step 2(ii).

If row f is type (I) or of type (II) with `< an then we look for the first row above f for which in D̂ its last
+ has not yet passed. Note that such a row must always exist if f is of type (II) with `< an , and this
row will also be of type (II) with `< an . If such a row b exists and it is of type (I) or type (II) with `< an ,
then Step 2(ii) for row b would place a + at (b,`) in D and we let bT = b. All rows in-between b and f
would have had their last + to the right of ` and so these rows are filled with a 0 in column ` in D .

If no such row exists, then either there are no rows above f and thus an = 1 (if f = 1 then f is of row
type (II) with an < `) or all rows above f have their last + to the right of column ` and thus an < `. In
both cases, f must be of row type (I) and with an < f since in the second case, if f < an < `, then by
the L-condition there would be a + at ( f , an) contradicting our assumption of f ’s row type. If a row b
exists but is of type (II) with `> an , in which case an > b, then once again because of the L-condition
we actually have an < f (as f must be of type (I)). In either case, we get that Step 2(ii) for row an will fill
box (an ,`) with a + since all rows in-between an and f would have all their last + ’s already passed
and furthermore all these rows are filled with a 0 in column ` in D . Thus we let bT = an .

If f is of type (II) with `> an , in which case we also have an > f , then by the L-condition any rows b
above f with + ’s to the left of column ` would have to have a + at (b, an) making them of row type (II)
as well. The rest of the rows, would have their last + to the right of `. Then Step 3 for row types (I) and
(II) would fill all the rows b above f with a 0 at (b,`). Since f is of type (II), Step 2(i) would fill ( f ,`)
with a + , and thus we let bT = f .

One detail left over is that for boxes in-between g and bB in column `, by the L-condition all these
rows must have their last + already passed (or else it contradicts g ) in D̂ and thus Step 3 for row types
(I) and (II) would fill these boxes with a 0.

Thus we get for the vertical part of L in D :

– There are three cases for bT . Either bT is the first row above f , and below an if f > an , with a
+ to the left of column ` in D̂ , or bT = f if row f is of type (II) with f < an < `, or bT = an < f .

– There is always a + at (bT ,`).

– There is a + in box (b,`) if there is a non-last + at (b,`) in D̂, or if there is a last + but b
is of row type (II), for rows b from f to g in D̂. Thus there is a total of s`+ t` + ’s in boxes
( f ,`), . . . , (g ,`) in D , not considering row an .

– We always have bT ≤ f and bB ≥ g , and thus these + ’s are all within the vertical part of the L.

– Any rows in-between bT and f in column ` must be filled with 0’s, and similarly for g and bB .
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Finally, we show that there are exactly s`+ t`+1 + ’s in column `, in the vertical part of the L. To do
this, we look at the different cases of bB , bT and how row an affects the L. We will show that in fact
bT < bB and the extra + will be either in an or we have bT 6= f , an . Doing case analysis on an :

– If an < f ≤ g < `, then bB = g , and bT = an or bT is the first row above f , below an with a +
to the left of column `.
In either case the extra + is at (bT ,`) and we have bT < bB .

– If f < an < g < `, then bB = g and bT = f .
In this case, Step 2(ii) for row an fills (an ,`) with a + since there is at least one more + in
rows below an in column ` in D̂ , with all rows in-between filled with unrestricted 0’s by the

L-condition.

– if f ≤ g < an < `, then bB = an and bT = f .
Here the extra + is at (bB ,`) = (an ,`).

– Lastly if f ≤ g < `< an , then bB = g and bT 6= f , an .
Here the extra + is at (bT ,`).

Thus we are done since these are the only cases, and in each we have bT < bB with exactly s`+ t`+1
+ ’s in the vertical part of the Lwith a + at (bT ,`).

One final detail to check is that these are the only + ’s in column `. Since we always have that bT ≤ f
and bT ≥ g with bT < bB , if there was a + at (a,`) in D, for rows a < bT or a > bB , we can show this
contradicts the choice of bT or bB .

For b < bT ≤ f , the + at (b,`) must have been filled through Step 2(ii) for row b which means that row
b’s last + in D̂ has not yet passed. This also means that any rows c below b < c < f must have their last
+ ’s to the right of column `. But this contradicts when bT 6= f since in these cases, bT has their last +
to the left of column ` (for bT = an remember we are thinking of row an as having last + in a column
> n). Thus bT = f , which means that f is of row type (II) with an > f . But because of the L-condition,
all rows above f , in particular b, must also be of type (II) with an > b, in which case the algorithm
would not have filled (b,`) with a + . Thus all rows b above bT must be filled with a 0 at (b,`).

For b > bB ≥ g , the + at (b,`) must have been filled through Step 2(iii) for row b. Note, it could not
have been filled through Step 1 since by the L-condition, that would mean there was a + at (b,`) in
D̂ originally, contradicting g (since row b’s last + in D̂ must have been to the left of column ` and
there’s a + at (g ,`)). Once again, Step 2(iii) means that row b’s last + in D̂ has not yet passed. By the

L-condition for D̂ , this would force b = an or else we would contradict g , and thus bB = g . However, as
there is a box at (b,`), we actually have `> b = an > bB = g . Looking at our case analysis above, this
contradicts the choice of bB , which should have been an . Thus all rows b below bB must be filled with
a 0 at (b,`).

This concludes the proof. ■

Notice these L-shapes cover all columns from D̂ , ignoring an , with at least one + and the columns of
all 0’s to the right of these. What’s left are the (consecutive) columns of all 0’s to the left of a column
with at least one + until the next row below or the end of the diagram, or if in-between two rows there
are only columns of all 0’s. These columns are covered by strings of + ’s, which is actually just the
horizontal part of an L-shape.
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Corollary 5.2.2 — For consecutive columns of all 0’s in D̂, in D there is a corresponding string of + ’s

+ ·· · · · · +

and these are the only + ’s in these columns.

P R O O F . From the proof of Theorem 5.2.1, we saw that this statement holds for consecutive columns
of all 0’s in D̂ in-between two columns with at least one + , or in-between the first column to the left
of a row with a least one + and the beginning of that row. What’s left are consecutive columns of all
0’s in-between two consecutive rows, and there are no columns with at least one + in-between these
rows, and those in-between the next row below or the end of the diagram and a column with at least
one + . Both of these are really special cases of what we proved in Theorem 5.2.1.

Say we are considering columns with last row a and the next row below is row b or if we are at the
end of the diagram we can think of the "next row below" as at n +1. Say m −1 = a for the first case
or m −1 > a is the last column with at least one + in D̂ for the second case, and we are considering
columns c of all 0’s for all m−1 < c < b, or m−1 < c < n+1. Then we can imagine a column associated
to b or n +1, where the last row in the column is a and it extends to the top of the diagram. We place
+ ’s in this "column" in the rows in D̂ where there are + ’s to left of column b −1, that is their last + ’s
have not yet passed and these rows are not of type (II) with an < m −1. Then we can think of this
"column" as the column ` in Theorem 5.2.1.

If there are no + ’s in this "column", i.e. all last + ’s are before m, then we must have an < m in which
case Step 2(iii) for row an would place + ’s at (an ,c) for all c. In particular, this always occurs if we are
at the end of the diagram.

If there are + ’s in this "column", then once again we look at g , the row of the last + i.e. the first row
above b where it’s last + has not yet passed. If g = a, then Step 1 for row a fills (a,c) with + ’s for all c.
If g < a, then Step 2(iii) for row g fills (g ,c) with + ’s for all c.

Once again, we can argue in the same way as Theorem 5.2.1 that these are the only + ’s in columns c . ■

From Theorem 5.2.1 and Corollary 5.2.2, we immediately get the following statement.

Corollary 5.2.3 — There is at least one + in every column of D. More specifically,

(i) there is exactly one + in columns corresponding to those in D̂ with no + ’s, and
(ii) there are s`+ t`+1 + ’s in columns ` corresponding to those in D̂ with at least one + , with s`

and t` as defined in Theorem 5.2.1.

As an example of the different cases for the L-shapes and strings of + ’s, we encourage the reader to
look at and verify the above statements for the example given in Figure 5.8.

Now that we have our building blocks, what’s left is to piece them together.
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(5.2.2) Glueing these shapes together.

The other surprising aspect is the fact that there is even a structure to D and how these shapes glued
together. Furthermore, in different parts of D which we will call sections, these shapes consistently
glued together in the same way.

Definition 5.2.4 — Given a Young diagram D of shape λ= (λ1, · · · ,λk ), we partition D into k rectangles
called sections where each section has dimension j × (λ j −λ j+1) for 1 ≤ j ≤ k, and is bounded by two
rows (one possibly empty). We let λk+1 = 0.

b

...

...

←−
section b

We name each section by its last row.
Here we include empty sections into the count of k (when λ j =λ j+1 for some j ).

Theorem 5.2.5 — D is made up of glueing together these L-shapes and strings of + ’s where in each
(non-empty) section b, we have a chain of shapes in the following form:

b

+

+·· ·+

· · ·

+

+·· ·+
+ ·· · · · · +

More precisely, we have the following properties for each section:

– There is at least one shape, either an L or a string of + ’s, in each section.
– There is either none or exactly one string of + ’s.
– There can be any number of L-shapes, including 0.
– L-shapes are glued on the left to other L-shapes at the last + in the vertical part of a previous
L, except the first L in the chain which is glued to row b.

– The string of + ’s is either glued on the left to the last L-shape in the chain at the last + in the
vertical part, or glued to row b, in which case it fills the whole width of a section as such:

b+ ·· · · · · · · · +

The rest of the boxes in D (the shaded regions) are filled with 0’s.
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P R O O F . Putting together Theorem 5.2.1 and Corollary 5.2.2, D is made up of the following two types
of blocks, one consisting of L-shapes where ` corresponds to a column in with at least one + in D̂ , and
the other consists of strings of + ’s which corresponds to consecutive columns of all 0’s in D̂ .

+

+·· ·+

m`

+ ·· · · · · +

m`

In the blocks, the shaded regions represent boxes filled with all 0’s, which extends to fill the rest of the
rows in columns m to ` in the shape λ. The bolded lines represent the border of λ.

By construction we cannot have a row b occurring in-between columns m to ` for either shape, as that
would violate Step 1 for row b regardless of type since there are no + ’s in columns m to `−1 in D̂ and
thus the last + for row b must be to the left of column `−1. For example, we cannot have:

+

+·· ·+

m

`

In fact, we actually know more about these blocks since they cannot span across multiple rows. That is,
each section of D is made up of a chain of L-shapes and a string of + ’s as such

b

+

+·· ·+

· · ·

+

+·· ·+
+ ·· · · · · +

since we know the following properties:

– L-shapes start from a column with at least one + in D̂ and extend to the right to the previous
column of + ’s or the start of a row. In particular, if there is a column with at least one
+ in section b of D̂, then there will be a first (right-most) L in section b of D which has
m −1 = bB = b:

b

+

+·· ·+
`1

Here `1 is the first column of + ’s in D̂ in section b.
– Strings of + ’s (not in the L-shapes) extend to the left until the start of the next row below, and

to the right until a column from D̂ with at least one + . In the special case that section b in D̂
consists of columns of all 0’s, then the string of + ’s extends to fill the whole bottom row b of
the section (by Step 1 of the algorithm):

b+ ·· · · · · · · · +
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What’s left is to show is where the shapes glue together. Consider a particular section b. First, we
already saw the special case when a section contains only columns of all 0’s, we can assume there is at
least one L in section b. We also saw that the first L in the section will always glue to the beginning of
the row. As we saw in Corollary 5.2.2 that string’s of + ’s can be thought of as special cases of L’s, all we
need to show is how L’s glue on the left to other L’s.

Consider an L-shape with vertical part in column ` (or with no vertical part) and has right-most and
bottom-most box at (bB ,m). And we want to glue to this the previous Lwith vertical part in column
m −1, in rows i to j . We want to see where bB is in relation this previous L:

+ ·· · · · · +
m

bB
or

+

+·· ·+
m`

bB

or
+

`= m

bB

=⇒?
+

+ ·· · +

i

m −1

j

←−bB

If (bB ,m) is filled with a + , since D is a L-diagram and (i ,m −1) is always filled with a + , we either
have bB < i , or i ≤ bB ≤ j and (bB ,m −1) is also filled with a + . We also know that if g is the last + in
column ` in D̂, then bB ≥ g . Since bB is either g or an if g < an < `, all rows c below bB (in section b)
must have their last + to the right of column m and in particular no such c is an . Furthermore, no
such row c is of type (II) since this would mean an is below row c with c < an < m −1. But then this
would contradict what bB is, as this inequality suggests bB = an since g ≤ bB < b and m −1 < `. Thus
all rows b below bB must be of type (I), with last + in a column < m. By Step 3 of the algorithm for
row c, regardless if the last + is in column m −1 or not, this means (b,m −1) is filled with a 0. Since
this holds for all rows c below bB in section b, we must have that bB is the row of the last + in column
m −1 i.e. in the previous L:

+
0

|
0 + ·· · +

m −1

j ≥ bB

0 ←− bB

If (bB ,m) is filled with a 0, we are in the special case where m = `. We also have bB 6= an , since in the
proof of Theorem 5.2.1 we saw that if an was in the vertical part of a L then (an ,`) would be filled with
a + . In particular, this means row bB is of type (I) with its last + in D̂ exactly at (bB ,m). But now we
have the same analysis for the rows c below bB as the + case, since by the L-condition, these rows
must have their last + ’s to the right of column m. Once again, this gives that bB is the row of the last +
in column m −1.

+
0

|
0 + ·· · +

m −1

j ≥ bB

0 ←− bB

Thus we get that L-shapes, and therefore also strings of + ’s, glue to the left of L-shapes at the last
(bottom-most) + in the vertical part of the L.
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Putting everything together, we get that every section b of D looks like one of the following, giving the
properties stated in the statement, making up the whole diagram D !

b

+

+·· ·+

· · ·

+

+·· ·+
+ ·· · · · · + or

b+ ·· · · · · · · · +

b

+

+·· ·+

· · ·

+

+·· ·+

F I G U R E 5 . 9 : The possible chains of shapes in each section of D. Generally (on the
left), we have a chain of L-shapes with a string of + ’s on the very left. In the case
that section b in D̂ consists of columns of all 0’s, we only have a string of + ’s filling
the whole bottom row of the section (top-right figure). In the case that there is a
column of + ’s in D̂ right before the next row below, there is only a chain of L-shapes
(bottom-right figure). The shaded regions are filled with 0’s.

■

(5.2.3) Iterating the algorithm.

If D is co-loopless, that is π has no fixed points, then the algorithm can be applied again, this time
starting with D , to obtain a L-diagram D̄ . Assuming that our algorithm is correct (which will be proven
in Section 5.3), the associated decorated permutation to D̄ would be:

π̄=
(

1 · · · n −1 n
a2 · · · an a1

)
that is from the original π̂, the permutation is shifted to the left twice.

First, we know that the shape of D̄ corresponds to removing the column a1 =π(1) from D and adding
in a row labelled a1 in the appropriate place. For the filling of D̄ , from Theorem 5.2.5 we know that we
really only need to look at what happens the L-shapes. Applying Theorem 5.2.1 to an L-shape gives:

←−

could be + or 0

+

+ ·· · +

+ ·· · · · · +

where now every + in the horizontal string of + ’s turns into its own L, just with no horizontal part.
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5.3. P R O O F O F T H E A L G O R I T H M

Finally, we show that the algorithm in Section 5.1.3 actually gives us the correct L-diagram. We already
have that D is a L-diagram of type (k +1,n) from Theorem 5.1.2, so what’s left is to show that D is
loopless, has the right dimension, and has π as its associated decorated permutation.

(5.3.1) Dimension and looplessness of D.

Other than verifying that the algorithm is correct, using the visual perspective of the algorithm, we
can clearly see how the dimension of D arises in relation to the dimension of D̂. Namely, it comes
from having at least one + in every column of D , with the number of additional + ’s being exactly the
number of non-last + ’s in D̂ .

Theorem 5.3.1 — Under this filling, D is loopless and has dimension dim(SD ) = dim(SD̂ )−2k+(n−1).

P R O O F . For this proof, we only need Corollary 5.2.3 and refer to (i) and (ii) from that statement.

First, it follows automatically from having ≥ 1 + in every column of D that D is loopless. For the
dimension SD , (i) and the +1 in (ii) gives one + in every column of D for a total of n − (k +1) + ’s.

Summing up what’s left over in (ii) gives:∑
`

s`+ t` =
∑
`

s`+
∑
`

t`

= (
# of non-last + ’s in D̂ −# of non-last + ’s in col. an of D̂

)
+ (

# of non-last + ’s in col. an of D̂
)

= # of non-last + ’s in D̂

= dim(SD̂ )−k

where the sums run over columns ` 6= an in D̂ with at least one + . The equalities come from:

– Summing over s` gives the number of non-last + ’s in each column in D̂ excluding column an .

– Summing over t` gives the number of rows of type (II) in D̂ with last + ’s not in column an ,
which in other words is the number of non-last + ’s in column an .

– As D̂ is co-loopless and there are k rows all with at least one + , there are k last + ’s out of a
total of dim(SD̂ ), which gives us the last equality.

Putting the two together gives:

# of + ′s in D = ∑
cols in (i)

1+ ∑
cols in (ii)

s`+ t`+1

= n − (k +1)+dim(SD̂ )−k

= dim(SD̂ )−2k + (n −1)

which verifies that dim(SD ) = dim(SD̂ )−2k + (n −1) as needed. ■
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5. RECONSTRUCTING A BIJECTION ON THE LEVEL OF LE DIAGRAMS

(5.3.2) D corresponds to the correct decorated permutation.

Recall that D̂ is a co-loopless L-diagram of type (k,n) associated to the co-loopless decorated permuta-
tion π̂ with k anti-excedances, where

π̂=
(

1 2 · · · n
an a1 · · · an−1

)
.

Applying the algorithm in Section 5.1 constructs a loopless L-diagram D of type (k + 1,n), with a
particular dimensional relationship to D̂. We finally prove that D, as constructed, is the L-diagram
associated to the decorated permutationπ, as given by the T-duality map from π̂ 7→π (see Section 4.3.3).

Theorem 5.3.2 — Under this filling, the associated decorated permutation to D is

π=
(

1 2 · · · n
a1 a2 · · · an

)
,

where π is loopless and has k +1 anti-excedances.

P R O O F . Since D is loopless and of type (k + 1,n), its associated decorated permutation π is also
loopless and will have k +1 anti-excedances. Now, what we want to prove is thatπ(i ) = π̂(i +1) =

{
ai 6= i +1 for non-fixed points i +1 of π̂

i +1 for fixed points i +1 of π̂
for i 6= n

π(n) = π̂(1) = an

Recall that to get from D to its decorated permutation, we go through its pipe dream (see Section 4.2.2).
Starting from the label i on the SE border, we follow its pipe until it reaches a label j on the NW border
of D, indicating that π(i ) = j . To read off the pipes from D, we start with pipes going leftwards if i is
a row and upwards if i is a column. Then boxes with 0’s correspond to the pipes continuing straight
in the direction it was going, while boxes with + ’s correspond to the pipes turning. The pipes turn
leftwards if it was originally going up, or upwards if originally going to the left. See Figure 5.10 for an
example of this process.

D

j

i

++

+ pipe dream

P (D)

j

i

↑
←

↑
← path/pipe i

i

j

F I G U R E 5 . 1 0 : An example of reading off the decorated permutation π from a L-
diagram D . On the left, we have the portion of D that affects label i , where unmarked
boxes are filled with 0’s. Translating to its pipe dream P (D), we get the middle figure,
where unmarked boxes are filled with crosses and the arrows indicate the direction of
reading the pipe. On the right, we draw the pipe, also referred to as path, corresponding
to i . That is, we have π(i ) = j . Here we have depicted when j < i .

We will also refer to the pipe starting at i as the corresponding path for π(i ), or just i , where the turns
are indicating where the + ’s are. In the following figures, the shaded areas refer to boxes filled with 0’s
and are used to highlight explicit strings of 0’s.
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First, for the easiest case of π(n), we look at the possibilities of what n corresponds to in D :

– If n is a row in D (with no boxes), and in particular π(n) = n:

nn

we must have that an = n since D̂ being co-loopless (no empty rows or rows of all 0’s) means
that n was a column in D̂ with at least one box. Since the only change in rows and columns is
through an , we get π(n) = n = an as needed.

– If n is a column in D, where previously in D̂ n was a column of all 0’s i.e. π̂(n) = n, then
Corollary 5.2.2 and its proof tells us there is a horizontal string of + ’s at the end of the diagram
and in particular they will be in row an . Thus we get n is a column in D with exactly one + at
(an ,n), which gives π(n) = an as needed.

an

n

+

– Finally, if n is a column in D (and thus n 6= an) and previously n was a column in D̂ with at
least one + (i.e. π̂(n) 6= n), then by Theorem 5.2.1 there is an L-shape whose vertical part
is in column n. Since we are at the last column of the diagram, we have that the + ’s in the
vertical part of the L exactly comes from last + ’s in rows of type (II) in D̂ , with an extra + in
row an (since otherwise there needs to be some row whose last + is in some column > n).
However for a row b to be of type (II), i.e. with a + at (b, an) in D̂ , we must have an > b. Thus
the extra + at (an ,n) must be the bottom-most + in column n in D . In particular, this means
π(n) = an as needed.

+

+ ·· · ++an

n

Next, for the case with i +1 is a fixed point of π̂ for i 6= n, that is i +1 6= an is a column of all 0’s in D̂ , we
look at what i corresponds to in D :

– If i is a row in D , regardless of row type for i , Step 1 places a + at (i , i +1) and this is the only
+ in column i +1 in D . This gives π(i ) = i +1 as needed.

i+
i +1

i +1

– If i is a column in D where previously in D̂ i was a column of all 0’s, then Corollary 5.2.2 tells
us there is a horizontal string of + ’s in columns i , i +1 in the same row, and these are the only
+ ’s, which gives π(i ) = i +1 as needed.

+ +

i +1 i

i +1 i
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– Finally, if i is a column in D (and thus i 6= an) where previously in D̂ i was a column with at
least one + , then by Theorem 5.2.1 there is an L-shape with vertical part in column i . Since
i +1 is a column of all 0’s in D̂ , we know that the one + in column i +1 of D corresponds to the
rightmost + of either a horizontal string of + ’s or an L-shape. In either case, by Theorem 5.2.5,
this shape must glue to the left of the L in column i at the last + in column i , say at (bL , i ).
Thus we get + ’s at (bL , i ) and (bL , i +1) with all 0’s below in column i and above in column
i +1, which gives π(i ) = i +1 as needed.

bL +

+ ·· · +0
0

+

i +1 i

i +1 i

Lastly, we have the hardest case of when i +1 is not a fixed point of π̂ for i 6= n, that is in D̂ either i +1
is a column with at least one + or i +1 is a row. Say π̂(i +1) = j for some j 6= i +1 (we also have j 6= an).
We want to show that π(i ) = j . This is trickier as now there can be a complicated path in D̂ to get to j
and it is not immediately clear how this translates in D for i . In the subsequent proofs, Theorem 5.2.1,
Corollary 5.2.2, and Theorem 5.2.5 will be used without explicit citation.

Figure 5.10, when viewed as for L-diagram D̂ with decorated permutation π̂ and for i +1 instead of i ,
gives an example of a path when i +1 is not a fixed point. In general, every path for a non-fixed point
i +1 must start with one + in row/column i +1 and then is built from alternating between two + ’s in
the same row and two in the same column (where they share a + ), or vice versa, until row/column j
where the path ends with one + in row/column j .

Consider the following general path in D̂ which goes through m +1 columns of + ’s,

D̂

j = `m+1

i +1 = `1

+ +

+
·· ·

+

+ +

`2· · ·`m

b1

b2

···

bm−1

bm

path π̂(i +1)

i +1

j

· · ·

where ` j denotes the columns of + ’s and b j denotes the rows of + ’s. Here, note that i+1 > b1 > ·· · > bm

and `1 < ·· · < `m+1. If instead i+1 is a row, there is an additional + in the first column of + ’s at (i+1,`1)
where i +1 > b1. If instead j is a row, there is an additional + in the last column of + ’s at ( j ,`m+1)
where j < bm .

First, notice that by the L-condition for D̂ , there are two areas for + ’s where D̂ must be filled with all
0’s, depicted below by the shaded region around one + .

+ →
+

+
++

93



PART II. LE DIAGRAMS

One area extends below to the next row of + ’s or the border of the diagram, and to the left until the
end of the diagram. The other area extends on the right to the next column of + ’s or the border of the
diagram, and above until the top of the diagram. In particular, the shaded areas in-between two + ’s in
a path must be filled with all 0’s, where for the column of + ’s these 0’s extend to the left until the end of
the diagram, and for the row of + ’s they extend to the top of the diagram.

Now to tackle the problem at hand, we split the paths π̂(i +1) in D̂ based on its relation to an and
consider them separately. As an example of the different types of paths, see Figure 5.11.

(i) i +1 < j < an : the path in D̂ is completely to the right of an and j is a column.

(ii) j < i +1 ≤ an or i +1 ≤ an < j : the path passes through column an and thus either the last +
in the path is before an (and j is a row), or the path contains + ’s in column an .

(iii) j < an < i +1 or an < i +1 < j : the path passes through where row an in D will be.

(iv) an < j < i +1: the path is completely below where row an in D will be and j is a row.

(i)

(i)

(ii)

an

D̂

(iv)

(iii)

(iii)

(iv)

an

F I G U R E 5 . 1 1 : Examples of the four types of paths in D̂ considered in the proof of π.
Each path is labelled by its type. On the left, the rectangle indicates where the column
an is in D̂ . On the right, the rectangle indicates where the row an will be in D .

Note all the paths in (ii) with + ’s to the left of an must contain + ’s in column an because of the
L-condition for D̂ , since we know there is a + at (1, an) if a box exists there. In the special case of an = 1,

paths in (i) and (ii) do not exist.

Starting with (i), we are in the case where:

D̂

an

j = `m+1

i +1 = `1

+ +

+
·· ·

+

+ +

`2· · ·`m

b1

b2

···

bm−1

bm

or

an

j = `m+1

i +1

+ +

+
·· ·

+

+ +

+
`1`2· · ·`m

b1

b2

···

bm−1

bm

Notice that the top + in each column in the path, except possibly j , is not the last + in their respective
rows in D̂. In the figure above, these are the circled + ’s. In particular this means that in the L’s
corresponding to these columns in D, there is also a + in these positions, (b1,`1), . . . (bm ,`m); in the
figures below these are the circled + ’s.

94



5. RECONSTRUCTING A BIJECTION ON THE LEVEL OF LE DIAGRAMS

We also notice that since an > j , all L-shapes corresponding to columns `1, . . . ,`m , j each have their
bT 6= f , an where f is the row of the first + in D̂ in that column. Now let’s look at two consecutive
columns `s ,`s+1, for s 6= m.

D̂

+

+ +

+

`s`s+1

bs−1

bs

bs+1

7−→ D

+ +

+

`s`s+1

bs

bs+1

We know that any + ’s in column `s in-between rows bs ,bs+1 must be last + ’s in their row because
of the L-condition for D̂. Thus, these rows are of type (I) and any last + at (b,`s) for bs > b > bs+1

corresponds to a 0 at (b,`s) in D . If there are + ’s in column `s above bs+1 in D̂ , then by the L-condition
there must be a + at (bs+1,`s) in D̂ . In particular, this is not the last + in row bs+1 and thus there is a +
at (bs+1,`s) in D . If (bs ,`s) is the first + in column `s , since there are no + ’s in rows b for bs > b > bs+1

after column `s by the L-condition, then row bs+1 is the first row above bs that has a + to the left of
column `s . That is, we have that bT = bs+1 for the L in column `s and thus there is a + at (bs+1,`s).
In either case, the L in column `s in D always has a + at (bs+1,`s) and at (bs ,`s), with 0’s in-between.
Since in D the L in column `s+1 glues to the left of the L in column `s at its bottom-most + , there must
be 0’s in row bs+1 in-between columns `s and `s+1. Therefore, we get the above figure on the right.

For column j = `m+1, notice that in D̂, there must be a row b < bm with a + to the left of column j
since we know at the least there’s a + at (1, an). Since we know that (bm , j ) is the first + in column j
and that bT 6= j , an for the L in column j in D , we must have that bT = b and thus there is a + at (b, j )
with 0’s all above in D . For column `m , using the same argument as for `s with row b as bs+1, in the L
in column `m , there must be a + at (b,`m) and at (bm ,`m) with 0’s in-between.

Since we know that L’s glue to the left of previous L’s at the first + from the bottom, we get the following
in D , regardless if i +1 is a column or a row:

D

j = `m+1

+ +

+
·· ·

+

+ +

+

`1`2· · ·`m

b1

b2

b3

···

bm

b

portion of path π(i )

`1

b1

j

· · ·

Finally to look at what happens with i in D .

– If i +1 = `1 and i are both columns, then regardless of how many + ’s there are in column i in
D̂ , we must have in D a + at (b1, i ) and 0’s below in column i −1 since we know how L’s glue.

+ +

`1 = i +1 i

b1

i

`1
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– If i +1 = `1 and i is a row, then we must have b1 = i (since D̂ is co-loopless).

i = b1+
`1 = i +1

i
`1

– If i +1 is a row and i is a row, then similarly we must have b1 = i (since D̂ is co-loopless and
by the L-condition as there are + ’s at (i +1,`1), (b1,`1)).

+
i +1

i = b1

`1

i
`1

– If i +1 is a row and i is a column, then notice b1 < i and is a row in D̂ with its last + to the left
of column i . If i is a column of all 0’s in D̂ , then Step 2(iii) for row b1 would place the only +
in column i in D at (b1, i ). Otherwise, we can use the same argument for i as for `s , taking `1

as `s+1 (and only looking at rows above i ), to show that there must be a + at (b1, i ) and 0’s all
below in D .

+ +

i

i +1

`1

b1

i

`1

In all the cases, we can connect these path starts at the circled point to the rest of the path, and thus
we get that the corresponding path to i in D leads to j , giving us π(i ) = j as needed for paths in (i).

For paths in (iv), the proof is essentially the same as for (i) except now we need to consider when j is a
row. The other difference is we no longer have the fact that bT 6= f , an for columns `s , which was only
used when (bs ,`s) was the first + in its column in D̂ . However for paths in (iv), we have that if (bs ,`s)
is the first + in the column, then bs+1 is the first row above bs and below an with a + to the left of `s

(since an < j ) and so we still have bT = bs+1 for the L in column `s .

When j is a row, we have an additional + at ( j ,`m+1) in column `m+1 above bm in D̂. Now we have
b = j for column `m , and looking at column `m+1, we notice that the + at ( j ,`m+1) is the last + in
row j . We also know that row j is of type (I) since j > an , and thus in the L in column `m+1 in D , there
must be a 0 at ( j ,`m+1).

Thus we have, where the dotted line refers to where row an will be in D :

D̂

an

j +

+ +

+
·· ·

+

+ +

`1`2· · ·`m`m+1

b1

b2

···

bm−1

bm

7−→ D

an

j 0 +

+
·· ·

+

+ +

+

`1`2· · ·`m`m+1

b1

b2

b3

···

bm

b = j
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5. RECONSTRUCTING A BIJECTION ON THE LEVEL OF LE DIAGRAMS

The rest of the analysis is exactly the same for i +1 and i , and thus we also get that π(i ) = j as needed
for paths in (iv).

For paths in (ii), first notice we already have the case when the last + in the path is before an and j is a
row. In this case, all the arguments from paths in (i) stay the same, and we can use the same argument
for column `m+1 as paths in (iv), since if ( j ,`m+1) is the last + in row j with `m+1 < an , then row j is
also of type (I).

When the path contains + ’s in column an , we have (since j 6= an) either:

D̂

j = `m+1

+ +

+
·· ·

+

+
·· ·

+

+ +

`1`2· · ·an = `s· · ·`m

b1

b2

···

bs−1

bs
···

bm−1

bm

···

1

rows of type (II)

or

j +

+ +

+
·· ·

+

+
·· ·

+

+ +

`1`2· · ·an = `s· · ·`m`m+1

b1

b2

···

bs−1

bs

···

bm−1

bm

where the dots are indicating + ’s in column an that are not part of the path.

Then notice for columns `1, . . . ,`s−1, the analysis from paths in (i) stays exactly the same. For columns
`s+1, . . . ,`m+1, we note that all rows bs , . . . ,bm , and j if it is a row, must be of type (II) since by L-
condition, they must have + ’s in column an as there is a + at (1, an). In particular, this means that the
L’s corresponding to columns `s+1, . . . ,`m+1, which are all > an , has + ’s exactly in the same positions
as in D̂. However now we are done as to get D, column an is removed and we know how the L’s are
glued, so we have:

D

j = `m+1

+
·· ·

+

+ +

+
·· ·

+

+

`1· · ·`s−1`s+1· · ·`m+1

original path same as (i), (iv)

b1

b2

···

bs−1

bs

bs+1

···

bm

or

j +

+
·· ·

+

+ +

+
·· ·

+

+

`1· · ·`s−1`s+1· · ·`m+1

original path same as (i), (iv)

b1

b2

···

bs−1

bs

bs+1

···

bm

The analysis on i + 1 and i stays exactly the same as before (since it only depends on D̂), even if
i +1 = `1 = an . In this case, the only difference is that the circled + in the analysis for i in D is now the
+ at (b1,`2), and we consider i +1 to be a row. Thus we get that π(i ) = j as needed for paths in (ii).

97



PART II. LE DIAGRAMS

Lastly for paths in (iii), where the dotted line refers to where row an will be in D , we have:

D̂

j = `m+1

+ +

+
·· ·

+
an

+
·· ·

+

+ +

`1`2· · ·`s· · ·`m

b1

b2

···

bs−1

bs

···

bm−1

bm

rows of type (II)

or

j +

+ +

+
·· ·

+
an

+
·· ·

+

+ +

`1`2· · ·`s· · ·`m`m+1

b1

b2

···

bs−1

bs

···

bm−1

bm

Here we essentially have the same proof as for (ii). Once again for columns `1, . . . ,`s−2, the analysis from
paths in (iv) stays exactly the same. For columns `s+1, . . . ,`m+1, once again the rows bs , . . . ,bm ,bm+1,
must be of type (II) since they are all < an and have + ’s to the left of column an , and thus the L’s
corresponding to these columns have + ’s in the exact same positions as in D̂ .

The only difference is we need to look at what happens to column `s , which row an will pass through,
and column `s−1. For column `s , since row an will occur in-between rows bs and bs−1, there will be a
+ at (an ,`s) in the L corresponding to column `s . Since row bs is of type (II) with `s > an , there is also
a + at (bs ,`s) in the L.

For column `s−1, since the + at (bs−1,`s−1) is not a last + in row bs−1, there is a + in the same po-
sition in D. Now, if this + at (bs−1,`s−1) is the first one in column `s−1 in D̂, then we know that the
corresponding L will have its bT = an , in which case there is a + at (an ,`s−1). Otherwise if there are
+ ’s at (bs−1,`s−1) in D̂, for bs−1 > b > an these must be last + ’s in its row with b of type (I) and thus
corresponds to a 0 at (b,`s−1) in D . For b < an , this means that an is in-between the first and last + ’s
in column `s−1 and thus there must be a + at (an ,`s−1). In either case, the L in column `s −1 always
has + ’s at (an ,`s−1) and (bs−1,`s−1) with 0’s in-between and so we have:

D

j = `m+1

+
·· ·

+

+ +

+ +

+
·· ·

+

+

`1· · ·`s−1`s`s+1· · ·`m+1

original path

same as (i), (iv)

b1

b2

···

bs−1

an

bs

bs+1

···

bm

or

j +

+
·· ·

+

+ +

+ +

+
·· ·

+

+

`1· · ·`s−1`s`s+1· · ·`m+1

an

b1

b2

···

bs−1

an

bs

bs+1

···

bm

In the special case of an < bm where j = `m+1 = `s , then since we know that the + at (bm , j ) is the first
in its column in D̂ , the L in column j in D has its bT = an with a + at (an , j ). Column `m = `s−1 stays
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the same as before with + ’s at (an ,`m) and (bm ,`m), and 0’s in-between, in D :

D̂

j = `m+1

an

+ +

+

`m

bm−1

bm 7−→ D

j = `m+1

+ +

+

`m

bm

an

In the special case of an > b1 where i +1 = `1, now the L in column `1 = `s in D will have a + at (an ,`1),
since `1 > an and thus its bB = an . There is also still a + at (b1,`1), since b1 < an and thus is of type
(II), which aligns with the `s as in the general case.

D̂

i +1 = `1

an

+

+ +

`2

b1

b2

7−→ D

i +1 = `1

an

+

+ +

+

`2

b1

b2

The analysis on i +1 and i stays exactly the same as before, with the slight exception of an > b1. Since
we have i ≥ an with a + at (an ,`1) in D, now an plays the role of b1 and we use the same arguments
as before, even if i = an in which case we consider i to be a row. In all cases, we get that π(i ) = j as
needed for paths in (iv).

Putting (i)–(iv) together, we are now done since for all paths π̂(i +1) = j we get π(i ) = π̂(i +1) = j ! ■

(5.3.3) T-duality on the level of L-diagrams.

With the proof that D gives the correct decorated permutation complete, we finally conclude by
putting everything together. Theorems 5.1.2, 5.3.1 and 5.3.2, tell us that in fact, the algorithm given in
Section 5.1 is telling us what the T-duality map (see Section 4.3.3) looks like on the level of L-diagrams.

Theorem 5.3.3 — Given a co-loopless L-diagram D̂ of type (k,n), the algorithm given in Section 5.1
constructs a loopless L-diagram D of type (k +1,n) such that

– the dimensions of the positroid cells indexed by D and D̂ relate via

dim(SD ) = dim(SD̂ )−2k + (n −1),

– and the associated decorated permutations to D and D̂ relate via T-duality.

That is, the algorithm gives the T-duality map from π̂ 7→π on the level of L-diagrams.
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6 | C O N C L U S I O N

6.1. F U R T H E R D I R E C T I O N S

In Part I, we started with the tale of the c2-invariant as an avatar for the Feynman period and saw
how combinatorial techniques involving enumerating edge bipartitions through swapping arguments
were able to resolve the p = 2 case of the long sought after completion conjecture for the c2-invariant.
However, the story is not over as of course what we would really like is a proof of the full conjecture.

Thus, the pivotal next direction to look at is:
Using this idea of swapping edges around a vertex, or vertices, across the edge bipartition, can we
generalize the counting arguments seen in Chapter 3 for higher primes p?

For p > 2, the combinatorial interpretation of the c2-invariant becomes much more intricate as now
we are enumerating the ways of distributing p−1 copies of each edge across 2p−2 polynomials, where
p −1 of them come from spanning trees and the other p −1 arises from particular spanning 2-forests.
Comparing to the p = 2 case, recall that we were bipartitioning one copy of each edge into a spanning
tree, spanning 2-forest pair. The difficulty in higher p is that now there no longer needs to be a nice
pairing up of trees and forests that exactly partition full sets of edges from the graph. Optimistically,
Yeats [Yea18a] has been able to first answer this question in the T -case where we only needed to swap
around 2-valent vertices. The obstacle, naturally, in the S and R cases is in how to generalize this to
include control vertices or perhaps instead how to circumvent the need for control vertices.

Finally, one could also ask about how much farther these enumerative techniques can take us. Can
they answer other questions about the c2-invariant or compute the c2’s for new families of graphs?

In Part II, we looked at the tale of the combinatorial T-duality map as a bridge between triangulations
of the hypersimplex and triangulations of the amplituhedron and what this map looked like on L-
diagrams. One result, other than the nice structure of the L-diagrams arising from T-duality, was that
we could directly see where the dimensional relationship between the positroid cells on either side of
the map manifests from.

Continuing with this thread, a natural general question to further investigate is what other properties
of positroids or triangulations can be determined through looking at T-duality via L-diagrams? Two
specific directions that could be of interest are:

– The T-duality map turns out to be a special case of the ρA(π) map defined by Benedetti,
Chavez and Tamayo [BCT19] when characterizing quotients of uniform positroids. Thus, can
we extend our algorithm from Chapter 5 to this more general cyclic shift map?

– In [PSBW21], Parisi, Sherman-Bennett, and Williams, were able to prove Theorem 4.3.7
through looking at the T-duality map via plabic graphs. Thus, are there any interesting
connections between the two perspectives on T-duality outside of the canonical bijection
between L-diagrams and plabic graphs from [Pos06]? Furthermore, is there any structure to
the L-diagrams underlying the triangulations on either side of T-duality?
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PART III. FINAL THOUGHTS

6.2. F I N A L T H O U G H T S

Through the underlying theme of emerging combinatorics in the world of scattering amplitudes, one
could see the parallels between the stories of the c2-invariant and the T-duality map. Both branched
off of the need to better understand the scattering amplitude, one through Feynman diagrams in scalar
φ4-theory and one through on-shell diagrams in N = 4 SYM. Both then looked at related but simpler,
and in some sense nicer, objects with interesting connections to many areas of mathematics, one
reducing to the c2-invariant and the other reducing to positroid cells of the positive Grassmannian.
In the end, both then converged to the idea that looking at these objects through a combinatorial
perspective can be a powerful tool in answering questions about them, one being the completion
conjecture for the c2-invariant and the other being the relationship between triangulations of the
amplituhedron and the hypersimplex. At the heart of it all, they showcased a wonderful tale of beautiful
mathematics at the intersection of combinatorics and quantum field theory!
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