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Statement of Contributions

We gratefully acknowledge that the work of Section 4 is the intellectual property of Loïc Foissy. The
content therein has been expressed in the present author’s own words for the purpose of exposition.
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Abstract

In 1998, Connes and Kreimer introduced a combinatorial Hopf algebra HCK on the vector space of
forests of rooted trees that precisely explains the phenomenon of renormalization in quantum field theory.
This Hopf algebra has been of great interest since its inception, as it connects the disciplines of algebra,
combinatorics, and physics, providing interesting questions in each.

In this thesis we introduce the notion of higher-order renormalization group equations, which generalize
the usual renormalization group equation of quantum field theory, and further define a corresponding
notion of order on certain sequences of trees constituting elements of the completion of HCK . We also
give an explication of a result, due to Foissy, that characterizes which sequences of linear combinations of
trees with one generator in each degree generate Hopf subalgebras of HCK . We conclude with some results
towards classifying these sequences by their order (when such an order is admitted), and discuss the place
of the Connes-Moscovici Hopf subalgebra in the context of this new framework.
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1 Introduction
1.1 Overview

Thirty-one years ago, Dick Feynman told
me about his ‘sum over histories’ version
of quantum mechanics. ‘The electron does
anything it likes,’ he said. ‘It goes in any
direction at any speed, forward and back-
ward in time, however it likes, and then
you add up the amplitudes and it gives you
the wavefunction.’ I said to him, ‘You’re
crazy.’ But he wasn’t. [44] (Originally in
[42]).

∼ F.J. Dyson

In 1998, Connes and Kreimer [9] developed a com-
binatorial Hopf algebra on the vector space of
forests of rooted trees that has become influential
in the world of quantum field theory. The idea
for the Hopf algebra was born out of the realiza-
tion that the collection of Feynman diagrams repre-
senting various particle interactions posses a Hopf
algebraic structure, with respect to which the an-
tipode explains the process of renormalization [9,
10, 11]. This interpretation of renormalization as
the antipode of a Hopf algebra has spurred further
progress in both the development of theory and
computational techniques in quantum field theory
[7, 36, 15]. Quite a few surveys on the Connes-
Kreimer Hopf algebra may be found, for example [36, 30, 15], while the object continues to be of interest
physically, algebraically, and combinatorially to present day.

What is renormalization in quantum field theory? While the full presentation of renormalization is
beyond the scope of this text, we will discuss the process in slightly more detail later on (in Section 2.3),
and will start by giving an intuition for the idea here. For a particle physicist performing experiments,
one of the main objectives is to predict the results of an experiment run in a particle accelerator. The
idealized particle accelerator experiment can be pictured in an overly-simplified schematic as follows:

Figure 1: A diagrammatic view of a particle accelerator experiment.

Here we have particles being sent into an accelerator, interactions happening (or not happening), and then
particles coming out (scattering). The probability that the particles coming out will be of a certain form
knowing the particles going in is given by a quantity known as the scattering amplitude, and this is the
quantity we wish to calculate in order to make predictions. The idea here is that we do not know what
happens when the particles are in the accelerator (depicted as the shaded blob in the figure)—anything may
happen with a certain probability. Hence, as stated in the words of F.J. Dyson above, we consider the sum
over all possibilities (“histories”), with each possible event weighted by its own amplitude. Each of these
individual histories is represented by its own schematic—a Feynman diagram—a graph theoretical object
with vertices representing particle interactions and edges representing propagating particles (see Section
2.3.1) [49]. Hence the scattering amplitude that we ultimately desire can be expanded as a weighted
sum over Feynman diagrams, with the weight of each diagram representing the contribution that that
specific history makes to the overall amplitude. This expansion of the scattering amplitude into smaller
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calculations is known as the scattering amplitude’s perturbative expansion [49].
A major problem arising with the above idea, however, is that even after expanding the scattering

amplitude calculation in this way, we still find that the contributing amplitudes corresponding to the
individual Feynman diagrams in the sum are (most often) divergent. This leaves the expressions for these
integrals without meaning (as well as their sum). To solve this problem, physicists have developed a
procedure by which meaningful quantities may still be extracted from the expressions, a procedure known
as renormalization. There are in fact many different ways renormalization is carried out (known as
renormalization schemes), though in this thesis we will think of renormalization as being performed
using the BPHZ subtraction scheme1. One can think of the BPHZ scheme intuitively as follows: for
Feynman diagrams with the simplest divergence structure, the corresponding integrals representing the
amplitude may be convergent or may be made to converge by subtracting off a single term from the
integrand. However, larger Feynman diagrams may contain multiple copies of these smaller, divergent
Feynman diagrams as subgraphs, and in fact these smaller graphs may be further nested inside of each
other as subgraphs. Consequently the corresponding Feynman integral will be divergent, but it will not
be possible to make the integral convergent by a single subtraction—the divergent factors will be nested
in the same way that the subgraphs are nested within a graph. This will call for a recursive subtraction
procedure, the BPHZ scheme. In this way, by saying above that the Connes-Kreimer Hopf algebra models
renormalization, we mean that the rooted tree structures of elements in the Hopf algebra model the
subdivergence structure of Feynman diagrams, and that applying the Hopf algebra’s antipode corresponds
to performing the BPHZ subtraction scheme. Further details pertaining to subtraction schemes and fully
worked-out examples may be found in [49, 40]. Examples of Feynman diagrams and how to obtain rooted
trees from their subdivergence structure are given in Sections 2.3.1 and 2.3.2.

For us, the three most important objects arising from renormalization will be the notion of Green’s
functions (see Section 2.3.3), in addition to the renormalization group and resulting renormalization
group equation (see Section 2.3.4). Colloquially speaking, one can think of the renormalization group
as the mathematical tool enabling physicists to change their frame of reference with respect to particle
interactions, thereby “zooming in” or “zooming out” to obtain more meaningful results. In order to
implement the BPHZ scheme, one first needs to make a choice as to a constant known as the reference
scale of the renormalization process. Elements of the renormalization group then represent transformations
from one reference scale in the renormalization scheme to another, and can be thought of as coming from
evaluations of Hopf algebra characters from the Connes-Kreimer Hopf algebra to the Hopf algebra of
polynomials in some variable L over the underlying field of the Hopf algebra [32]. In other words, changes
in the value of L, the kinematic variable, will cause changes in the Hopf character, and hence changes
in the reference scale being used in the renormalization scheme. We will see in Section 2.3.4 that the
renormalization group equation encodes the group law of the renormalization group, and philosophically
speaking explains how different reference scales within the family of BPHZ prescription relate to one
another; see Appendix A.4 of [32].

One may realize from the above description that this means the renormalization group is in fact
related to the Lie group of convolution from the Connes-Kreimer Hopf algebra over a field K to K[L]; the
explanation of this fact is the content of Section 2.2. What’s more, the renormalization group equation in
this setting becomes a simple algebraic statement to the effect of [32]:

φL1
∗ φL2

= φL1+L2
(1)

1 BPHZ is the concatenation of the initials of Bogoliubov, Parasiuk, Hepp, and Zimmerman, who developed the scheme
[49].
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with φL an element of the renormalization group, ∗ the convolution product, and L1 and L2 representing
two values of L. This Hopf-algebraic equation translates into the following analytic equation (see Appendix
A.5. of [32]): (

∂

∂L
+ β(x)

∂

∂x
− γ(x)

)
G(x, L) = 0 (2)

Here, L is the same kinematic variable as before, x is a coupling constant (see Section 2.3), G is a
Green’s function in x and L, and with β(x) and γ(x) series in the given theory; see Section 2.3 for a
brief overview and [27] for a more thorough treatment.

Now to the discrete mathematician, a differential equation of the form (2) probably seems out of place.
Nevertheless, it turns out equation (2) is very significant combinatorially, as it translates (in the setting
of the Connes-Kreimer Hopf algebra of trees) to a statement in terms of formal power series: namely, we
can think of x as a formal counting variable, β(x) and γ(x) as two formal power series, and G(x, L) as a
generating function weighted by linear combinations of forests homogeneous of a given size, and obtained
by applying an element of the renormalization group—known as Feynman rules—to a particular element
of the completion of the Connes-Kreimer Hopf algebra of trees. Said another way, G(x, L) is a generating
function obtained by applying Feynman rules to certain kinds of series of linear combinations of forests,
such that the elements of the series generate a Hopf subalgebra of the Connes-Kreimer Hopf algebra.
Moreover, throughout the course of this thesis we will restrict our attention somewhat further and assume
that

1. the linear combinations only consist of trees (and not forests), and

2. there is exactly one generator in each degree.

This leads naturally to the following question: Is there a characterization of what sequences of linear
combinations of trees with one generator in each degree generate a Hopf subalgebra of HCK? In Section
3.2 we demonstrate the nuances and main hurdles of this problem, and in Section 4 we give an explication
of the problem’s solution, due to Foissy [24]. While we will give a more formal definition in Section 4, we
will refer to the set of all sequences of linear combinations of trees satisfying 1. and 2. above, and also
generating Hopf subalgebras of HCK , as Seq.

We remark, however, that not all sequences in Seq satisfy an equation of the form (2), possibly the
most famous example of which is the usual sequence of generators of the Connes-Moscovici Hopf subalgebra
of HCK (see Section 5 of [20] and also Section 3.1 of the present text). This leads to the introduction
of a generalization of equation (2), which we call a higher-order renormalization group equation.
Namely, we consider equations of the form:(

∂

∂L
+ β(x,

∂

∂x
)

)
G(x, L) = 0 (3)

where now β is polynomial in the partial derivative ∂
∂x . If this polynomial is of degree n in ∂

∂x , we say
that the generalized renormalization group equation is of order n. By allowing for higher-derivatives of
the variable x, sequences of trees that may not have satisfied (2) may be able to satisfy (3) (including, in
particular, the Connes-Moscovici Hopf subalgebra), at least with certain choices of Feynman rules. This
generalization is discussed in further detail in Section 3, and ultimately leads to the main focus of this
project:

Q1: Is it possible to characterize the elements of Seq which satisfy (3) for arbitrary Feynman
rules by the order of the generalized renormalization group equation which they satisfy?

3



We will call such sequences kth-order sequences if the Green’s functions they give rise to satisfy a
renormalization group equation of order k . A restatement of this problem and accompanying discussion
can be found in Section 3. Moreover, while we are only interested in elements of Seq that satisfy an
equation of the form (3) of some order, for completeness we will also give examples of sequences which do
not admit an order in Section 4.2.

Finally, a followup to Q1 above is the following:

Q2: Is it possible to characterize the elements of Seq which satisfy (2) for at least one
(nontrivial) choice of Feynman rules by the order of the generalized renormalization
group equation which they satisfy?

We present a near-complete solution to Q1 in Sections 5.1 and 5.2, and report on partial progress made
on Q2 in Section 5.3.

1.2 Organization
While we have already given some indication of the structure of this document in the preceding discussion,
we will now state a more consolidated overview of what is to follow:

We will begin in Section 1.3 with a brief overview of the pertinent literature and key results in the
field. From here, we will commence the mathematical narrative in Section 2, attempting to cover all
relevant background material. This section is further broken down into three parts: an introduction to
Hopf algebras in general and Hopf algebras over the vector spaces of forests of rooted trees specifically
(Section 2.1); a discussion about the relation of our Hopf algebras to Lie theory (Section 2.2); and finally a
formal treatment of renormalization and the renormalization group with accompanying examples (Section
2.3). We continue the story with further background material in Section 3 that is less common and more
specific to our problem. In particular, this will include the development of higher-order renormalization
group equations (Section 3.1), and a formal statement of the main objectives of this work (Section 3.2).
In Section 4, we present an overview of the solution, due to Foissy, to the question about which sequences
of linear combinations of trees are in Seq. We then move on to the main question, Q1, and present a
near-complete solution in Sections 5.1 and 5.2. We also present partial progress on question Q2 in Section
5.3 and then discuss the Connes-Moscovici Hopf subalgebra and how it fits into this framework. Finally,
we conclude in Section 6 with a short recapitulation of topics discussed, a presentation of some interesting
open problems (Section 6.1), and some final remarks.

Appendices follow after the conclusion of the thesis. Appendix A presents our implementation of the
Connes-Kreimer Hopf algebra as a SageMath class, while Appendix B contains miscellaneous code, also in
SageMath, that was helpful throughout the project. Meanwhile, Appendix C provides a list of all known
elements of Seq that have an order, by their order (up to scaling).

1.3 Related Work
The literature surrounding the Connes-Kreimer Hopf algebra HCK is vast, and in this section we give an
overview of some of the most related works.

The inaugural paper relating Hopf algebras to renormalization in quantum field theory is “On the Hopf
algebra structure of perturbative quantum field theories” [33] due to Kreimer in 1998. Further development
of HCK , together with its connections to geometry, were then developed by Connes and Kreimer in [9],[10],
and [11].
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In addition to these foundational works, numerous surveys of various lengths have been written. A few of
these include [15, 36, 18]. While this thesis is intended to be self-contained, the interested reader is directed
to these sources for an excellent overview of the material at hand. We also recommend Hoffman’s paper
“Combinatorics of Rooted Trees and Hopf Algebras” [30] for a similarly-excellent introduction to all aspects
of the algebraic side of this thesis. Indeed, while the connections to physics are left mostly unexplained,
and while the paper fulfills a much greater role than that of an overview, Hoffman’s construction of the
Connes-Kreimer and Grossman-Larson Hopf algebras from the ground up is very organized and insightful.

On the more abstract side of this topic, we recommend [13] for a thorough introduction to the theory
of Hopf algebras. Much of the background material we include in Section 1.1 can ultimately be found
there. We also cite throughout from [4] and for information related to more general combinatorial Hopf
algebras [26].

The central question in this work pertains to sequences of generators of Hopf subalgebras of HCK and
to their corresponding Hopf subalgebras, as discussed above, and much of the prior work in this specified
domain has been pioneered by Foissy. Indeed, in [20, 22], Foissy describes a family of Hopf subalge-
bras coming from combinatorial Dyson-Schwinger equations which, as we will see later on, constitute a
substantial portion of the strong 1st order sequences (Section 5.2). The fact that the generators of the
Connes-Moscovici Hopf subalgebra (first described as a Hopf algebra in [8] and then as a Hopf subalgebra
of HCK in [9]) did not fit into this framework was part of the motivation for pursuing a more general
framework as we are doing here (see the remark at the end of Section 5 in [20]). Moreover in Section 4.2 of
[22], Foissy gives a description of a sequence Y generating a Hopf algebra whose dual is isomorphic to the
third FdB Lie algebra (also defined in that paper)2. The results we present in Theorem 5.5 characterizing
the strong 0th order elements of Seq are in fact a generalization of Foissy’s sequence Y . In particular, Y
arises from Theorem 5.5 in the case when n = 2 and b = 1. Likewise the dual of the corolla Lie algebra
in Section 4.1 of [22] is of course the sequence of corollas, obtained from Theorem 5.5 in the case where
n = b = 1.

It is also possible for Hopf subalgebras generated by a sequence of nonzero linear combinations of trees
to exist that do not have an associated order. Developed for other reasons, one such family of sequences
with this property was also considered by Foissy in [19], in which he develops the notion of Com-PreLie
bialgebras (a commutative bialgebra that contains an additional prelie product that is compatible with
the product and coproduct of the bialgebra in a prescribed way) [19]. In this paper he gives combinatorial
interpretations of various kinds of Com-PreLie bialgebras and explains that these structures are in one
sense more general than Hopf algebras, in that the Connes-Kreimer Hopf algebra may be obtained by a
specific quotient. We will give an example of a sequence arising from this context and not admitting an
order in Section 4.2.

Finally, we remark that the most-specific background material, for example material relating the alge-
braic and analytic renormalization group equations (equations (59) and (60)), can be found in the lecture
notes from Kreimer’s class at Humboldt University in the winter term of 2012/13, and scribed by Lutz
Klaczynski [32]. The general perspective we take on combinatorial quantum field theory may be found in
this source, and especially in [49, 51, 50]

2As explained in [20], the name FdB Lie algebra stems from the fact that—under the correct assumptions—these Lie
algebras are isomorphic to the Faá di Bruno Lie algebra
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2 Background
In this section, we will review some of the background material needed to understand the problem setup
and its solution. This review will begin with an introduction to Hopf algebras in their most general form,
followed by the construction of two instances of Hopf algebras built on the vector space of forests of rooted
trees (the Connes-Kreimer Hopf algebra and the Grossman-Larson Hopf algebra) that turn out to be dual
to one another. We will then introduce the central idea from quantum field theory that will influence the
problem setup—that of renormalization—and will conclude with an explanation of what renormalization
looks like algebraically on our Hopf algebras of rooted trees.

2.1 Hopf Algebras on Trees
2.1.1 Overview of Hopf Algebras

The study of Hopf algebras can be traced back to the respective works of Pierre Cartier and Armand
Borel, the latter of whom first used the term Hopf algebra in honor of Heinz Hopf [1]. The history of
the development of the Hopf algebra is intricate and interesting, however we will not be discussing it here.
The reader is directed to [1] for a thorough overview of this history.

We begin now with definitions. All of the material covered in this section can be found in a standard
textbook on Hopf algebras, for example [13]. Given the specific topic of this work, we also recommend [4]
and [26].

Given a field K of characteristic 0, an algebra over K is a triple (A,m, u), where A is a vector space
over K and m : A ⊗ A → A and u : K → A are linear maps that satisfy the following two commutative
diagrams:

A⊗A⊗A A⊗A

A⊗A A

Id⊗m

m⊗Id m

m

Figure 2: The associative property of A

K⊗A A A⊗K

A⊗A A A⊗A

u⊗Id

1⊗a←[a

Id

a7→a⊗1

Id⊗u

m m

Figure 3: The unital property of A

where Id is the identity map. The map m is called the multiplication in A and the map u is called the
unit map of A. Figure 2 says that m is associative, as if we follow an element a ⊗ b ⊗ c ∈ A ⊗ A ⊗ A
through the diagram in the two possible directions from the top left to the bottom right of the schematic
and write a · b := m(a, b), we obtain:

(a · b) · c = a · (b · c)
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The commutative diagram of Figure 3 is the unital property of the algebra, and can similarly be written
in condensed form:

u(1) · a = a · u(1) = a

If one is not used to commutative diagrams, it is at first not clear why we would formalize the familiar
associative and unital properties to the formal language of tensor products and maps. However, the
usefulness of this construction becomes very clear in the following definition.

A coalgebra is a triple (C,∆, ε), where C is a vector space over K, and ∆ : C → C ⊗ C and ε : C → K
are linear maps that satisfy the following two commutative diagrams:

C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

Id⊗∆

∆⊗Id

∆

∆

Figure 4: The coassociative property of C

K⊗ C C C ⊗K

C ⊗ C C C ⊗ C

k⊗c7→ck ckc⊗k

ε⊗Id Id

∆∆

Id⊗ε

Figure 5: The counital property of C

In other words, a coalgebra over K is colloquially speaking like an algebra over K but with the arrows in the
respective commutative diagrams reversed. As may be guessed, we refer to the map ∆ as the coproduct
(or comultiplication) of C and the map ε as the counit of C.

Remark. Note that by the universal property of tensor products, the statement that m and ∆ are linear
maps is the same as defining m : A × A → A and ∆ : A → A × A that are bilinear maps. A map
f : A × B → C is bilinear if for every a0 ∈ A f(a0, b) : {a0} × B → C is linear and for every b0 ∈ B
f(a, b0) : A× {b0} → C is linear [2].

Examples of algebras and coalgebras are everywhere in the mathematical world. Some examples follow.

Example 2.1 (Group Algebras and Coalgebras). Let G be a group with binary operation ?. Then there is
a canonical way to make G into an algebra over K. Namely, take V = SpanKG, the linear span of elements
of G with coefficients in K, m defined as the group product ? extended linearly over K, and u given by
u(1K) = 1G. Then (V,m, u) is an algebra [13]. We can similarly define a coalgebra structure with the same
V by defining ∆(g) = g ⊗ g for every g ∈ G (again extending linearly over K) and ε(g) = δg,1G , where δ
is the Kronecker delta function. Then (V,∆, ε) is a coalgebra. Because of the way group coalgebras relate
two algebraic structures (coalgebras and groups), any element a of an arbitrary Hopf algebra with the
property that ∆(a) = a⊗ a is called a group-like element. As such, we reintroduce them in Section 2.2
and provide a more thorough treatment of their properties.

Definition 2.2. In any coalgebra C, we define the set of group-like elements as:

Grp(C) := {a ∈ C : ∆(a) = a⊗ a} (4)
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With this new appreciation for algebras and coalgebras, we may think about how to combine the
structures together in a compatible way. This combined structure is referred to in the literature as a
bialgebra. Constructing a bialgebra is not quite as simple as just pairing an algebra structure and a
coalgebra structure over the same underlying vector space, however; as alluded to above, we also need the
structures to be “compatible” with one another. To explain more rigorously what we mean by compatible,
we first need to introduce the notion of an algebra homomorphism.

Definition 2.3 (Algebra Homomorphism). Let A and A′ be arbitrary algebras over K, andmA andmA′ be
the multiplications of A and A′ respectively. Then f : A → A′ is said to be an algebra homomorphism
if the following diagrams involving f commute:

A⊗A A′ ⊗A′

A A′

f⊗f

mA mA′

f

A A′

K

f

uA uA′

Figure 6: An algebra homomorphism

As before, if one is not used to working with tensor products, it might not at first be clear that
this commutative diagram is exactly what we would expect of a homomorphism of algebras: it says that
applying f and then mA′ is the same as applying mA and then f . In other words, f preserves the algebraic
structure between A and A′.

An analogous notion is likely anticipated at this point: that of a coalgebra homomorphism.

Definition 2.4 (Coalgebra Homomorphism). Let C and C′ be arbitrary coalgebras, and ∆C and ∆C′ be
the comultiplications of C and C′ respectively. Then g : C′ → C is said to be a coalgebra homomorphism
if the following commutative diagram involving g commutes:

C ⊗ C C′ ⊗ C′

C C′

g⊗g

∆A ∆A′

g

A A′

K
εA

g

εA′

Figure 7: A coalgebra homomorphism

Once again we see that a coalgebra homomorphism preserves coalgebra structure, as expected.
With all of these definitions established, we can now define a bialgebra. A bialgebra over K is a

quintuplet (B,m, u,∆, ε) such that (B,m, u) is an algebra over K, (B,∆, ε) is a coalgebra over K, and
either:

1. ∆ and ε are algebra homomorphisms, or

2. m and u are coalgebra homomorphisms

It is important to note that one need to check only that 1. or 2. are satisfied and not both, as they
are equivalent statements. To see why this is so, one merely translates the statements into commutative
diagrams and observes that the resulting diagrams are the same. For example:

8



B ⊗ B B ⊗ B ⊗ B ⊗ B

B B ⊗ B′

∆⊗∆

m (m⊗m)◦(Id⊗τ⊗Id)

∆

B B ⊗B

K

∆

u uB⊗B

Figure 8: ∆ as an algebra homomorphism

B ⊗ B B ⊗ B ⊗ B ⊗ B

B B ⊗ B

m⊗m

∆ (Id⊗τ⊗Id)◦(∆⊗∆)

m

B B ⊗ B

K
ε

m

εB⊗B

Figure 9: m as a coalgebra homomorphism

where τ is the “twist map” [2, 49]; that is: τ(a⊗b) = b⊗a. The only nontrivial observation in constructing
the diagrams is that (m ⊗m) ◦ (Id ⊗ τ ⊗ Id) is the canonical way to define multiplication in a tensor of
two algebras, while (Id ⊗ τ ⊗ Id) ◦ (∆ ⊗∆) is the canonical way of defining the coproduct of the tensor
of two coalgebras. This multiplication and comultiplication respectively represent mA′ and ∆C′ in Figures
6 and 7 above. Following the two possible paths in the left diagram of each figure, we obtain the same
equation:

∆ ◦m = (m⊗m) ◦ (Id⊗ τ ⊗ Id) ◦ (∆⊗∆) (5)
Similarly, the map uB⊗B is given canonically by 1K 7→ 1B⊗1B, so the right diagram in Figure 8 gives that:

∆(1B) = 1B ⊗ 1B (6)
whereas the right diagram in Figure 9 gives:

ε(m(b1 ⊗ b2)) =

{
1 if b1 = b2 = 1B

0 otherwise
(7)

both of which are equivalent.
An analogous argument can be made for u and ε as coalgebra and algebra homomorphisms, respectively.

For a further exhibition, see [13, 26, 49].
Finally, given all this setup we can finish with the definition of a Hopf algebra. A Hopf algebra over

the field K is a 6-tuple (H,m, u,∆, ε, S), where (H,m, u,∆, ε) is a bialgebra, and S is the antipode map,
satisfying the following commutative diagram:

H⊗H H⊗H

H K H

H⊗H H⊗H

Id⊗S

m

ε

∆

∆

u

S⊗Id

m

Figure 10: The antipodal property of H.
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What is this commutative diagram telling us about the relationship between S, m, and ∆? It turns
out the relationship becomes much more apparent with the introduction of a new operation, called the
convolution product. This operation will be very important for us in the course of this thesis.

Definition 2.5 (Convolution Product). Let Hom(C,A) be the set of algebra homomorphisms from an
arbitrary coalgebra C to an arbitrary algebra A. Then for f, g ∈ Hom(C,A), the convolution product,
∗ of f and g is defined by:

f ∗ g = mA ◦ (f ⊗ g) ◦∆C (8)

A classic result in the theory of coalgebras is that (Hom(C,A), ∗, uA ◦ εC) is itself an algebra [2, 13].
Of course for a given Hopf algebra H, H is in particular an algebra and a coalgebra. This means that
∗ : H → H is also defined, and in particular it makes (End(H), ∗, u ◦ ε) into an algebra! This algebra will
be another object of fundamental importance to us throughout this thesis. We see its first application in
the following proposition which explains the relationship of S, m, and ∆ given in Figure 10:

Proposition 2.6. For any Hopf algebra H with antipode S, S is the inverse of Id ∈ (End(H), ∗, u ◦ ε).
That is:

S ∗ Id = Id ∗ S = u ◦ ε (9)

Equation (9) is obtained immediately from reading off the three possible paths in Figure 10.
Note that, as is standard in algebra, we often simply refer to a Hopf algebra by the vector space H and

not by the full 6-tuple (H,m, u,∆, ε, S). The same remark applies to algebras, coalgebras, and bialgebras
throughout this thesis.

Some examples of Hopf algebras follow.

Example 2.1 (Continued). Given a group (G, ?) and the vector space V = SpanKG, we saw that
(V, ?, u) and (V,∆, ε) constitute an algebra and a coalgebra, respectively. Is there a way to combine these
to obtain a Hopf algebra? The answer is yes, and in a unique way. One merely checks that (V, ?, u,∆, ε) is
a bialgebra. Then the unique antipode is given by S(g) = g−1 and then extended linearly, where by g−1
we mean the group inverse of g in G.

Example 2.7 (Universal enveloping algebra of a Lie algebra). Another example is one of primary impor-
tance, both for us and more generally in the theory of Hopf algebras. Let g be a Lie algebra over K, and let
U(g) be the universal enveloping algebra of g. We will now give an overview of the standard construction
of U(g); the reader is also referred to [13]. Let [·, ·] be the bracket of g. Intuitively, the point of U(g) is to
construct the largest possible associative algebra such that [a, b] = a⊗ b− b⊗a, for a and b in the algebra.
We do this as follows.

First, begin by constructing the tensor algebra of g , denoted T (g). This is a free algebra with all
possible tensors products of elements of g. In other words:

T (g) = K⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ ... (10)

where ⊕ represents the direct sum of the pieces (g ⊗ ... ⊗ g) as vector spaces [13]. Then the universal
enveloping algebra of g is simply obtained by modding out by the ideal generated by all elements of the
form a⊗ b− b⊗ a− [a, b] for a, b ∈ g:

U(g) = T (g)/〈a⊗ b− b⊗ a− [a, b] : a, b ∈ g〉

where the brackets 〈 〉 above mean “ideal generated by” as is customary.
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Now U(g) has an algebra structure, and there is also canonically the structure of a Hopf algebra: For
any a ∈ g, define ∆(a) = a⊗ 1+ 1⊗ a, ε(a) = 0, and S(a) = −a. These maps are then extended uniquely
to all elements b ∈ U(g).

While hopefully serving as a good example of all the preceding definitions of Hopf algebras, U(g) is
more than an example alone: it is both the primary connection between Lie algebras and Hopf algebras,
and also the primary player in the famous Milnor-Moore Theorem, which is useful in determining which
subalgebras of a Hopf algebra are Hopf. Hence we will see the construction U(g) come up many times in
this work, particularly in Section 4. For completeness, we include this theorem here [35]:

Theorem 2.8 (Milnor-Moore, 1965). Let H be a connected, graded, cocommutative Hopf algebra of finite
type (that is, each graded piece of H is finite-dimensional as a vector space). Then:

H ' U(Prim(H)) (11)

That is, H is isomorphic to the universal enveloping algebra of its primitive elements 3.

These examples inspire the inclusion of a theorem that answers a question the reader may now have;
namely, how many ways are there to turn a bialgebra in a Hopf algebra?

Theorem 2.9. If a bialgebra B admits a Hopf algebra structure, then the antipode S is unique.

In other words, if a bialgebra can be turned into a Hopf algebra, it can only be done in one way [13].

Proposition 2.10. Let A be a graded, connected bialgebra. Let x ∈ A be arbitrary, and set ∆(x) :=∑
i xi,1 ⊗ xi,2. Then A admits a Hopf algebra structure, with its unique antipode (from Theorem 2.9)

determined recursively as follows:

S(x) = −x−
∑
i

S(xi,1)xi,2 (12)

Now we see one of the reasons Hopf algebras built over vector spaces of combinatorial objects are so
special: in Proposition 2.10, the only requirements on the bialgebra A were that it be graded and connected.
Now consider forming a bialgebra over some vector space of combinatorial objects. We typically obtain a
grading of the vector space via the notion of size on the combinatorial objects (think length of permutations,
number of vertices or number of edges in graphs, size of a partition, etc). Moreover, we typically get that
the vector space is connected: this comes from the fact that combinatorial objects tend to have only one
notion of an “empty element” (think the empty graph, the word of length 0, the null set, etc.). Hence, most
bialgebras we could construct out of a combinatorial class satisfy the hypotheses of Proposition 2.10, and
so we know one form of their antipode immediately via the recursive definition. It is exactly this recursive
antipode structure that connects the Connes-Kreimer Hopf algebra of rooted trees to renormalization in
quantum field theory; see [9, 40].

Before we move on, we provide one more example that ties all of these notions together.

Example 2.11 (Hopf Algebra of Polynomials in a Single Variable). Consider the structure of K[L] of
polynomials in a single variable L. K[L] is already an algebra with multiplication defined as regular
polynomial multiplication, and the unit u given by u(1K) = 1K. To define the coalgebra structure, we set:

∆(L) := L⊗ 1K + 1K ⊗ L (13)
3We will define primitive elements formally in Definition 2.12.

11



We remark that in any coalgebra, an element that satisfies equation (13) is said to be a primitive element.
Now in this case, defining ∆ on L in this way determines what ∆ does on every element of K[L]. Indeed,
since ∆ is extended linearly over K[L], we only need to consider what ∆ does on monomials Ln for some
n. But since we also want ∆ to be an algebra homomorphism since we are trying to build a Hopf algebra,
we get that:

∆(L2) = ∆(L)∆(L)

= (L⊗ 1K + 1K ⊗ L)(L⊗ 1K + 1K ⊗ L)

= L2 ⊗ 1K + 2L⊗ L+ 1K ⊗ L2

and:

∆(L3) = ∆(L)∆(L2)

= (L⊗ 1K + 1K ⊗ L)(L2 ⊗ 1K + 2L⊗ L+ 1K ⊗ L2)

= L3 ⊗ 1K + 3L2 ⊗ L++3L⊗ L2 + 1K ⊗ L3

An easy inductive argument shows that for any n:

∆(Ln) =

n∑
j=0

(
n

j

)
Lj ⊗ Ln−j

Finally, what does the antipode S look like in K[L]? Since K[L] is graded and connected, we already know
of one (recursive) form for S, due to Proposition 2.10, though we can also be more explicit. Namely, since
S is an antiautomorphism (see Proposition 2 in Section 4 of [49]), we have that S(ab) = S(b)S(a) for
all a, b ∈ K[L], meaning that S(1K) = 1K. Moreover, we have that S(p) = −p for any primitive element p
(see [50]). Hence S(L) = −L. Using these two properties together, we get that:

S(L2) = S(L)S(L) = L2

S(L3) = S(L2)S(L) = −L3

and in general for any n:
S(Ln) = (−1)nLn (14)

and so S is completely determined over K[L].
The notion of primitive elements that came up in the course of the example will be central to the rest

of this work. In general, we define:
Definition 2.12. For any coalgebra C, the set of primitive elements of C is:

Prim(C) := {p ∈ C : ∆(p) = p⊗ 1C + 1C ⊗ p} (15)

There is an interesting connection between the set of group-like elements given by Definition 4 and the
set of primitive elements we have just defined, which was already foreshadowed by Theorem 2.8. Namely,
for a graded and connected Hopf algebra H (after taking its completion, if necessary), Prim(H) is a Lie
algebra and Grp(H) is its associated Lie group [40]. Hence:
Proposition 2.13. For a graded and connected Hopf algebra H and exp and log as formal power series,
let x ∈ H be a primitive element and let y ∈ H be a group-like element. Then if exp(x) and log(y) are
contained in H, exp(x) is group-like and log(y) is primitive.

For a two-line proof of the proposition, see Appendix B.1 of [32].
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2.1.2 The Connes-Kreimer Hopf Algebra

In this subsection, we will introduce the object of central interest for the rest of our work: the Connes-
Kreimer Hopf algebra of rooted trees. We aim to give ample examples as a means of exposition, which
should lend itself to casual reading.

To begin, define T to be the set of all (isomorphism classes of) rooted trees, and let F be the set of all
disjoint unions of these objects (so F is the set of all forests of rooted trees). By a rooted tree, we mean a
simple, connected, acyclic graph with a distinguished vertex known as the root, and by forests of rooted
trees, we mean disjoint unions of elements of T . We denote the empty forest by the symbol 1.

Though the trees in T are unlabelled, we will sometimes have the need to talk about operations on
them in a way that deals with individual vertices. Whenever we require this, one can take an arbitrary
labelling, perform the necessary operations on the vertices, and then forget the labelling immediately
thereafter. For this reason we will often not make reference to any particular labelling, but by convention
will simply refer to the vertices as though they have labels. One instance of this we rely on frequently will
be to access subtrees: for a tree t ∈ T given one of these arbitrary labellings, define tv to be the subtree
of t rooted at vertex v.

Let’s implement the structure of a combinatorial Hopf algebra as described in the last sections.

Definition 2.14. Take HCK = (V,m, u,∆, ε, S), where:

• V = SpanKF is linear combinations of forests over K.

• m : HCK ⊗HCK → HCK maps two forests to their disjoint union.

• u : K → HCK sends 1K to the empty forest.

• Let t ∈ T . Then ∆ : HCK → HCK ⊗HCK is given by

∆(t) =
∑

C⊆V (t)
C an antichain

( ⋃
v∈C

tv

)
⊗
(
t \

⋃
v∈C

tv

)
(16)

• ε : HCK → K sends the empty forest to 1K and all other forests to 0.

• Let t ∈ T . Then the antipode S : HCK → HCK is given recursively by:

S(t) = −t−
∑

∅(C⊆V (t)
C a non-root antichain

S

( ⋃
v∈C

tv

)(
t \

⋃
v∈C

tv

)
(17)

where in the formulas for ∆ and S we think of the rooted trees as posets. Moreover, for clarity we
also remark that in the corner case of v being the root vertex in t, t \ t = 1.
Note that we have only defined ∆ and S on T , but as T is a basis (via m) for F , ∆ and S are
extended multiplicatively as algebra homomorphisms to all forests F ∈ HCK . Then HCK is the
Connes-Kreimer Hopf algebra of rooted trees.

Remark. Although we have only presented one formula for the antipode above, there are in fact three
distinct forms for calculating S in HCK . See [17], in which the authors present these three formulae and
show that the equivalence of the three is due to the equivalence of three different renormalization schemes
in quantum field theory.
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These formulae are best understood via examples.

Example 2.15. Consider some trees , , , and . When we draw these trees, for

consistency we will adopt the tendency of computer scientists and draw the root vertex at the very top,
and the branches coming down from the root. We refer to vertices below a given vertex v in the poset
structure of the tree as children of v, and conversely we refer to the vertices for which v is a child as the
parents of v. As usual, vertices with no children will be called leaves of the tree.

It is important to note that–while we will consistently draw trees in such a way that respects the poset
structure of the tree–the combinatorial objects we are working with do not come with a planar embedding.

In other words, the tree is for us the same as the tree . In the literature, this is sometimes

referred to as the commutative Connes-Kreimer Hopf algebra, whereas a noncommutative version
works with rooted trees together with their planar embedding (and in which forests become ordered lists of
rooted trees, as opposed to their unordered counterparts). Some interesting results on this noncommutative
version of Connes-Kreimer Hopf algebra, together with some results that compare it to the commutative
version, can be found in [20, 31] for example. In this thesis, we will only work with the commutative
version of the Hopf algebra unless stated explicitly otherwise, and hence there will be no ambiguity when
we simply refer to the Connes-Kreimer Hopf algebra of rooted trees.

Moreover, when referring to the size of a tree t, we will often suppress the graph theory notation and
write |t| for |V (t)|.

Let us now see what arithmetic looks like in HCK . Multiplication is very simple. If we use · to represent
the map m, then the multiplication of trees and , for example, is just:

· =

Moreover, linear combinations of trees follow exactly the principles of multiplying polynomials. In fact,
the structure of HCK as an algebra is exactly K[F ]. For example:

(3 + 2 )2 = 9 + 12 + 4 (18)

Less familiar, perhaps, are computations involving the coproduct and the the antipode, so we will

demonstrate these now. First, consider applying the coproduct to the tree . The calculation for

this is:

∆( ) = ⊗ 1+ 1⊗ + ⊗ + 2 ⊗

+ ⊗ + 2 ⊗ + ⊗ + ⊗ + ⊗

Where, for example, the term ⊗ is coming from the fact that has three leaves

(constituting an antichain). When we prune the three leaves (obtaining the left hand side of the tensor
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product, ), we are left with a tree on two vertices, , which becomes the right hand side of the
tensor product. In addition, this sum appears with coefficient 1, because there was only one way to do

this: namely to prune all three leaves at once. Alternatively, note that the term ⊗ appears with

a coefficient 2. This is due to the fact that there are two distinct ways to remove the forest from

and be left with exactly .

2.1.3 Operators on HCK

Various operators can be defined on the vector space F , and in particular these become operators on HCK .
For the purposes of this thesis, there are seven that will be of fundamental importance. We start with the
notion of tree factorial:

Definition 2.16. Let t ∈ T . Then define the tree factorial, t!, by:

t! =
∏
v∈t

|tv| (19)

where |tv| denotes the number of vertices of the subtree rooted at v.

As an example, we see that:

! = 5 · 2 · 1 · 2 · 1

= 20

We define the rest of the operators we wish to discuss in pairs:

Definition 2.17 (Grafting Operators). Let Hn denote the nth graded piece of HCK , and define B+ :
Hn → Hn+1 to be the operator that assigns to a forest of rooted trees the tree obtained by grafting a new,
common vertex onto the root of each tree in the forest and extended to linear combinations of forests as an
algebra homomorphism. Let B− : KTn+1 → Hn denote the inverse of B+ when it is restricted to KTn+1.

Example 2.18. To illustrate Definition 2.17, we have that:

B+( ) = (20)

and conversely that:

B−( ) = (21)

In particular, note that B+ acts on the space of trees by adding on linear segments:

B+( ) =

15



and also that every rooted tree can be expressed as an appropriate number of applications of B+ and m
recursively, with the base case being B+ applied to the empty forest. For example:

= B+(B+(1)B+(B+(1)B+(1)))

We will typically write B+n to mean the application of B+ n times:

= B+4(1)

Analogous to the way B+ and B− grow and shrink trees from the root upwards, respectively, we can
define operators that grow and shrink trees from the leaves downwards. To stay consistent with other
works in the literature, we follow the notational setup of Hoffman in [30].

First, let us set up the partial order � on the vector space of rooted trees K[T ] as described in [30].
Namely, we say that t1 � t2 if any number of non-root vertices and edges can be removed from t2 to obtain
t1. This means in particular that |V (t1)|≤ |V (t2)|. In this poset, then, the covering relations are exactly:

t1 / t2 ⇐⇒ t1 can be obtained from t2 by removing a leaf

Hence we can define the following [30]:
Definition 2.19 (Growing and Pruning Operators). Define:

n(t1, t2) = the number of vertices of t1 to which a new child can be added to obtain t2

and
m(t1, t2) = the number of leaves of t2 that can be removed to obtain t1

Then for any tree t define N : Hn → Hn+1 by:

N(t) =
∑
t/t2

n(t, t2)t2 (22)

and define P : Hn+1 → Hn by:
P (t) =

∑
t2/t

m(t2, t)t2 (23)

where N and P are both extended as algebra homomorphisms to all linear combinations of forests. We
refer to N as growing operator (or natural growth operator) and to P as the pruning operator.

These definitions are well suited for exposition by example.

Example 2.20. As before, consider the tree . Then since n( , ) = 2 and

n( , ) = n( , ) = n( , ) = 1, we find that:

N( ) = 2 + + +
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and since m( , ) = 1 and m( , ) = 2, it follows that:

P ( ) = + 2

Now one would likely guess that the operators N and P are inverses to one another in the same way
that B+ and B− are inverses, but it turns out that the situation is more subtle, as illustrated by the
following example.

Example 2.21. Let t = . Then we can compute P(N(t)) as follows:

P (N(t)) = P (2 + + )

= 2P ( ) + P ( ) + P ( )

= 2( + ) + ( + 2 ) + (3 )

= 2 + 6 + 2

On the other hand, we can computer N(P(t)):

N(P (t)) = N(2 )

= 2N( )

= 2( + + )

= 2 + 2 + 2

Note that P (N(t)) 6= N(P (t)). Nevertheless, if we take their difference we find that:

P (N(t))−N(P (t)) = 4
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which is exactly |t|t. It turns out that this is not just a special case, but will hold for all forests of any size
(and in fact for all elements of HCK , including linear combinations of forests).

Proposition 2.22 (Proposition 2.2 of [30]). Let D : KT → KT be given by D = PN −NP and extend
D to HCK as an algebra homomorphism. Then for any t ∈ T :

D(t) = |t|t (24)

Proof. See Proposition 2.2 of [30] for a proof.

Proposition 2.22 tells us that D is a differential operator on the space of trees, and in fact that the
poset (T ,�) described above is a differential poset with respect to P and N [30] (see also [47] for more
information on differential posets).

Now that these definitions are in place, a natural question has probably arisen in the reader’s mind:
How do these operators interact with the defining maps of HCK itself, for example the coproduct and the
antipode? We now take the time to discuss this.

To begin, note that N and P are defined explicitly as algebra homomorphisms, so the way they
interact with m is clear. Conversely, note that B+ and B− are not algebra homomorphisms, namely
because B+(t1t2 · · · tn) 6= B+(t1)B

+(t2) · · ·B+(tn), as the latter is a disconnected forest while the former
is a connected tree. Moreover, B−(t1t2 · · · tn) is left undefined. Nevertheless, B+ and B− are still linear
maps.

The way these operators interact with the coproduct is less trivial. For proofs of the following, see
Section 4.4 of [49] for 1 and Proposition 3.5 of [30] for 2 (see also Proposition 6 of [9]).

Proposition 2.23. Let F ∈ HCK . Then:

1. ∆(B+(F )) = B+(F )⊗ 1+ (Id⊗B+) ◦∆(F )

2. ∆(N(F )) = (N ⊗ Id+ Id⊗N +M ⊗D) ◦∆(F )

where M (h) = h for any h ∈ HCK , as in [30]4.

We point out that item 1 in the proposition is a combinatorial identity: it says that if we take the
coproduct of an element B+(F ), then we either prune off the whole tree (resulting in the left term) or
we simply have the coproduct of F with an extra root attached to the tree on the right side of each term
in the tensor product (this is essentially the proof of 1). From a different perspective, the statement 1 is
saying that the map B+ is a 1-cocyle in Hochschild cohomology; see [49, 9] and Section 6 of [15].

Remark. While one can write down the result of composing N and B+ with the antipode of HCK , no
nice identities exist such as in Proposition 2.23 that the author knows of.

Finally, we should note that the operators defined in this section not only interact with the maps of
HCK , but can also interact with one another. This is the substance of Proposition 3.2 in [30], and is the
following:

Proposition 2.24. Let t be a monomial of HCK . Then:

1. B+(P (t)) = P (B+(t)))

4We use this notation so that the equation consists strictly of operators.
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2. B+(N(t)) = N(B+(t))−B+( t)

Our final pair of operators mimic the familiar notions of exp and log from other parts of mathematics,
and we denote them ω and ω−1, respectively. However, we postpone their definition until Section 2.2, as
they will make more sense in that context.

Before we move on, we define two special families of trees in HCK that we will often make reference to
throughout this work. The names for these families of trees are standard in related literature; see [18, 49,
21, 20]:

Definition 2.25. The ladder on i vertices, li, will be defined recursively as:

l0 = 1

li = B+(li−1) for all i ≥ 1

Moreover, we define the corolla on i vertices, ci, recursively by:

c0 = 1

c1 =

ci = B+(B−(ci−1) ) for all i ≥ 2

The first few ladders begin:

1, , , . , , ...

and the first few corollas begin:

1, , , , , , ...

As a further example of Definition 2.16, it is easy to compute that li! = i! and ci! = i for all i.

2.1.4 The Grossman-Larson Hopf Algebra

In this subsection, we present an alternative way to construct a Hopf algebra on the vector space of trees
which will turn out to be isomorphic to the Hopf algebra of the graded dual of HCK [30].

To begin, we will speak often in this section (and in Section 4 to come) of the notion of grafting trees.
We start by making a definition:

Definition 2.26. Let t1, t2 ∈ T , and consider a vertex v ∈ t1. Then we define the grafting of t2 onto
the vertex of v of t1 to be the tree t obtained by making the root of t2 a child of v in t1. This operaton is
represented schematically in Figure 11.

This operation will figure prominently in the following construction:

Definition 2.27. Take HGL = (V,m′, u′,∆′, ε′, S′) where:

• V = SpanKF is linear combinations of forests over K, as before.
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t1

t2

v

Figure 11: Grafting t2 onto t1 at vertex v.

• m′ : HGL ⊗HGL → HGL is given by:

m′(t1, t2) =
∑

v∈V (t1)

t2 grafted onto t1 at vertex v (25)

• u′(1) = 1, mapping 1K to the empty forest.

• ∆′(t1t2 · · · tn) =
∑
I⊆{1,2,...,n}

∏
i∈I ti ⊗

∏
j 6∈I tj

• ε′(F ) = δF,1, sending the empty forest to 1K and all other forests to 0.

• Since all of the previous operations keep HGL graded and connected, we get a recursive formula for
the antipode for free. If we write the reduced coproduct5 ∆̃(F ) =

∑
i Fi,1 ⊗ Fi,2 for F ∈ HGL, then

the antipode S : HGL → HGL is given recursively by:

S(F ) = −F −
∑
i

S(Fi,1)Fi,2 (26)

where above we use t1t2 · · · tn to represent an arbitrary forest, and where as before m is extended as an
algebra homomorphism over F .

Once again, these definitions are well-suited for a demonstration:

Example 2.28. Let F1 = , F2 = , and F3 = . Applying the definitions, we see that:

m′(F1 ⊗ F2) = + 2 +

and

m′(F2 ⊗ F1) = +

5By reduced coproduct, we mean the coproduct minus its primitive part. That is: ∆̃(a) = ∆(a)− [a⊗ 1+ 1⊗ a].
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We also look at some examples involving ∆′:

∆′(F1) = ⊗ 1+ 1⊗

∆′(F2) = ⊗ 1+ 1⊗

∆′(F3) = ⊗ 1+ 1⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗

Note that—colloquially speaking—the coproduct ∆′ of a forest F is simply the sum of all possible ways
to partition the trees of F into two parts (separated by the tensor symbol) without making any cuts. The
example also illustrates some patterns of arithmetic in HGL that end up holding in full generality:

(i) Prim(HGL), the space of primitive elements of HGL, is exactly T .

(ii) HGL is cocommutative, but not in general commutative.

The following result was first credited to Panaite [39], though due to an error in the proof, the first complete
result is due to Hoffman [30].

Theorem 2.29 (Panaite (2000), Hoffman (2003)). The graded dual of HCK , denoted H∗CK , is isomorphic
to HGL.

The proof of the theorem is nontrivial, as the isomorphism claimed does not rely on the standard inner
product one would think to use; rather, one must define an inner product on the vector space of rooted
trees as follows. For any rooted trees t1, t2 ∈ T , define (·, ·) : T → K by [30]:

(t1, t2) = |Sym(t1)|δt1,t2 (27)

for δ the Kronecker delta function and Sym(t1) the symmetry group of t1 . Defining (·, ·) in this way (and
extending it to HCK) makes the pruning and growing operators P and N as defined in the last section
adjoint to one another, a fact which is ultimately what delivers the proof of the theorem. Hoffman then
gives the bijection χ : HGL → H∗CK defined by:

〈χ(t), u〉 = (B−(t), u) = (t, B+(u)) (28)

where 〈·, ·〉 is the usual inner product6 , t is a tree in HGL, and u is a monomial in HCK . See Proposition
4.4 of [30] for the proof of this result.

2.2 Lie Theory
It is well-known that the theory of Hopf algebras is intimately connected with the theory of Lie groups
and Lie algebras. In fact, we already saw one such connection in Example 2.7, and another in Theorem
2.8. In this section we will explore further connections between HCK and Lie theory, and in particular
will show that there multiple Lie groups (and their associated Lie algebras) that are related to HCK .

6That is, 〈a, b〉 := δa,b.
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2.2.1 The Lie Algebra and Lie Group of Convolution

In Section 2.1.1, we noted that AH = (Hom(H,A), ∗, u ◦ ε) is an algebra, where Hom(H,A) is the set of
linear maps from H to A, ∗ is the convolution product, and u and ε are the unit and counit in A and H
respectively. There exist various special subsets of AH which we now consider.

First, consider the subset of AH consisting only of the linear maps φ ∈ Hom(H,A) that map the unit
of H to the unit of A. That is:

GHA := {φ ∈ Hom(H,A) : φ(1) = 1A} (29)

Then GHA has the structure of a Lie group! In the literature, GHA is referred to as the Lie group of
convolution [40, 32].

Next, consider the subset of AH consisting only of the linear maps φ ∈ Hom(H,A) that send the unit
of H to 0 in A. That is:

gHA := {φ ∈ Hom(H,A) : φ(1) = 0A} (30)
As betrayed by the choice of notation, the reader may guess that gHA is a Lie algebra. This is in fact the
case, and in particular the Lie bracket is given by:

[f, g] = f ∗ g − g ∗ f (31)

for f, g ∈ gHA . We refer to gHA as the Lie algebra of convolution.
The reader may now also be expecting to see the relationship between GHA and gHA . We reveal this

relationship in the following definition and upcoming proposition:

Definition 2.30. Let f be an element of GHA and let g be an element of gHA . Then we can define the
maps:

exp∗ : G
H
A → gHA exp∗(g) :=

∞∑
n=0

g∗n

n!
(32)

log ∗ : gHA → GHA log∗(f) :=

∞∑
n=1

(−1)n+1 (f − u ◦ ε)∗n

n
(33)

where by f∗n (respectively g∗n) we mean the convolution product of f (respectively g) with itself n times.

While exp∗ and log∗ are merely formal definitions of maps, the names exp∗ and log∗ are justified by the
similarity in the function definitions for classical exp and log as defined as formal power series. Moreover,
in the case that H is connected (as it will be for all examples we consider throughout this work, since we
will only be considering combinatorial Hopf algebras), the calculations of exp∗ and log∗ become finite for
each h ∈ H, hence there is no concern about convergence [40] (to understand why this is the case, see the
discussion in Example 2.36 in the next subsection). In the setting of this text, then, the maps will also
provide the correspondence between GHA and gHA as the usual exp and log do in other areas of mathematics
(see Section 2.1 of [40]):

Proposition 2.31. For any f ∈ GHA and any g ∈ gHA :

exp∗(log∗(f)) = f (34)

log∗(exp∗(g)) = g (35)
and so gHA is the Lie algebra of GH.
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What is more, exp∗ and log∗ possess many of the other familiar properties of classical exp and log
under certain conditions [40]:

Proposition 2.32. If H is cocommutative, then:

(i) exp∗(f + g) = exp∗(f) exp∗(g)

(ii) log∗(f ∗ g) = log∗(f) + log∗(g)

Proof. The result follows immediately from expanding out the definitions of exp∗ and log∗ as formal power
series.

In particular, exp∗(0 + 0) = exp∗(0) exp∗(0), hence exp∗(0) = 1A, and similarly log∗(1A) = 0.
With this in mind, we remark that the bijection these maps provide between GHA and gHA as mentioned

in Proposition 2.31 is very easy to verify, for the image of exp∗ on the elements of GHA is:

exp∗(G
H
A) = {exp∗(φ) ∈ Hom(H,A) : exp∗(φ(1)) = 1A}

= {ψ ∈ Hom(H,A) : ψ(1) = 0}
= gHA

And conversely:

log∗(g
H
A) = {log∗(φ) ∈ Hom(H,A) : log∗(φ(1)) = 0}

= {ψ ∈ Hom(H,A) : ψ(1) = 1A}
= GHA

Next, consider the subset of GHA consisting only of the linear maps φ ∈ Hom(H,A) that are also algebra
homomorphisms from H to A, and such that A is a commutative algebra. Using the notation of [40], this
is the subset:

G̃HA := {φ ∈ Hom(H,A) : φ ◦mH = mA ◦ (φ⊗ φ)} (36)

It turns out that this is a Lie subgroup of GHA , and one of particular importance to the physics community;
we will see later that if we specify H = HCK and A = K[L], then the elements of GHCK

A that are also
coalgebra homomorphisms are Feynman rules [32, 40]! We will refer toGHA as the Lie group of characters
of H.

Since G̃HA is a Lie subgroup of GHA , it follows from the correspondence theorem of Lie groups and Lie
algebras that the same map ẽxp∗ = exp∗|G̃H

A
applied to G̃HA should yield a Lie subalgebra of gHA , with the

same bracket as before, just restricted [29]. What do the elements of this algebra look like? The answer
to this question is the following proposition (this is Proposition A.3.2 of [32]):

Proposition 2.33. The characters in G̃HA are generated by the linear space of infinitesimal characters
of H. This is the set:

g̃HA = {σ ∈ gHA |σ(xy) = σ(x)ε(y) + ε(x)σ(y), for all x, y ∈ H}

which is a Lie algebra under the bracket [σ1, σ2]∗ := σ1 ∗ σ2 − σ2 ∗ σ1.

An immediate corollary of Proposition 2.33 is the following:
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Corollary 2.34. For every character φ ∈ G̃HA there exists an infinitesimal character σ such that φ =
exp∗(σ).

Example 2.35 (Hopf algebra of polynomials in a single variable). Let us look at an example of the above
definitions, taking as our Hopf algebra H = K[L] of polynomials in a single variable discussed in Example
2.11, and taking our algebra to be A = K, the underlying field. What does the Lie group G̃K[L]

K look like?
Suppose that f ∈ K[L], so that f = knL

n + ...+ k1L+ k0, and suppose φ ∈ G̃
K[L]
K is a character. Then by

the property of algebra homomorphisms we have that:

φ(f) = φ(knL
n + ...+ k1L+ k0)

= φ(knL
n) + ...+ φ(k1L) + φ(k0)

= knφ(L
n) + ...+ k1φ(L) + k0φ(1K)

= knφ(L)
n + ...+ k1φ(L) + k0φ(1K)

Hence the character φ is completely determined by the value in K chosen for L, hence it is just an evaluation
of f . In other words, we have just discovered that, as sets:

G̃
K[L]
K = {eva : a ∈ K} (37)

where eva is the evaluation function eva(f) := f(a). So to understand the full structure of G̃K[L]
K we only

need to understand what the operation ∗ looks like. Let us apply the convolution of two characters to a
monomial in K[L]: for a, b ∈ K we have:

(eva ∗ evb)(Ln) = [(eva ∗ evb)(L)]n

= [mK ◦ (eva ⊗ evb) ◦∆K[L](L)]
n

= [mK ◦ (eva ⊗ evb) ◦ (L⊗ 1K + 1K ⊗ L)]n

= [mK ◦ (a⊗ 1K + 1K ⊗ b)]n

= [a+ b]n

= eva+b[L]
n

And hence the group law of G̃K[L]
K is just:

eva ∗ evb = eva+b (38)

giving that the neutral element of the group is e0 and the inverse of any eva is just ev−a [32].
Now let us look at the corresponding Lie algebra g̃

K[L]
K . We claim that for σa = log∗(eva) ∈ g̃

K[L]
K :

σa = a∂0 (39)

where we use ∂0 as shorthand for the function defined by ∂0(f) := ∂
∂Lf(L)|L=0. We will prove this claim

by following the proof strategy discussed in [32]. To begin, we know that σa is a homomorphism, so we
only have to show exp∗(σa)(L

n) = eva(L
n) for some monomial Ln.

First, we claim that ∂∗m0 , the mth convolution power of ∂0, simply takes the mth derivative of Ln and
set the remaining monomial equal to 0. We can prove this by induction on m. For m = 1, the result
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follows trivially from the definition of ∂0. Now suppose that the result holds true for m, and consider the
operator ∂∗(m+1)

0 . We calculate that:

∂
(m+1)
0 (Ln) = ∂0 ∗ ∂m0 (Ln)

= mK ◦ (∂0 ⊗ ∂m0 ) ◦∆K[L](L
n)

= mK ◦ (∂0 ⊗ ∂m0 )

( n∑
j=0

(
n

j

)
Lj ⊗ Ln−j

)

= mK ◦
( n∑
j=0

(
n

j

)
jLj−1|L=0⊗∂m0 Ln−j

)
The only nonzero term in the sum above will be when j = 1, hence we get that:

= mK ◦
((

n

1

)
(1)⊗ ∂m0 L

n−1|L=0

)
= mK ◦

((
n

1

)
(1)⊗ (n− 1)(n− 2) · · · (n− 1−m+ 1)Ln−1−m|L=0

)
= (n)(n− 1) · · · (n−m)Ln−m−1|L=0

=
dm+1

dLm+1
Ln|L=0

as claimed.
Now it is a simple matter to verify that the elements σa are in fact the elements of the Lie algebra

g̃
K[L]
K by calculating exp∗(σa). Doing this, we find that (for a monomial Lk ∈ K[L]):

exp∗(σa)(L
k) =

( ∞∑
n=0

1

n!
σ∗na

)
Lk

=

( ∞∑
n=0

1

n!
(a∂0)

∗n
)
Lk

=

( ∞∑
n=0

1

n!
an(∂0)

∗n
)
Lk

=

∞∑
n=0

1

n!
an(∂0)

∗nLk

Now from the previous claim we know that every term in the above sum is equal to 0 except for the term
in which n = k. So the above is equal to:

= k!ak∂∗k0 Lk

= k!akk! (1)

= ak

= eva(L
k)
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as claimed. Hence:
g̃
K[L]
K = {σa : a ∈ K} (40)

2.2.2 Further Operators on HCK

A particularly interesting special case of the maps exp∗ and log∗ occur when we set H = HCK ,A = HCK ,
and define the following map:

ζ(F ) =

{
F if F is a nontrivial tree, and
0 if F is a forest (including F = 1)

(41)

which we extend as an infinitesimal character. The reason for extending in this way is that we want ζ to
be an element of gHCK

HCK
. Then the map

ω := exp∗(ζ) (42)

will be an element of GHCK

HCK
. Essentially, ω is now the exponential function of rooted graph objects; that

is, in analogy to exp taking the exponential generating function of some combinatorial class and returning
the exponential generating function of forests of these objects, so ω takes a rooted tree T and returns
all forests of rooted trees obtained from T , with weights given by the number of ways this forest can be
obtained over the factorial of (one more than) the number of cut edges. In other words, for t ∈ T we have:

ω(t) =
∑

c⊆E(t)

1

(nc + 1)!
P c(t)Rc(t) (43)

where nc denotes the number of edges in the cut c. We have only written this expression for ω on trees,
but note that since it is exp∗ applied to an infinitesimal character, we know to extend ω as an algebra
homomorphism, again by Corollary 2.34.

Remark. We comment that this entire construction could also have been performed the other way around:
namely, instead of defining exp∗ and then defining ω, it would have been possible to define ω and then
derive the definition of exp∗. This is the approach of [41] (though we point out that in that context ω is
denoted by exp∗). The approach we have taken can be read about in more detail in both [40] and [32].

Example 2.36. Let us see an example of ω. Fix a tree t = . Then:

∆(t) = ⊗ 1+ 1⊗ + ⊗ + ⊗

and:

∆2(t) = (Id⊗∆) ◦∆(t) = ⊗ 1⊗ 1+ 1⊗ ⊗ 1+ 1⊗ 1⊗ + ⊗ ⊗ 1+ ⊗ ⊗ 1

+ ⊗ 1⊗ + 1+ ⊗ + ⊗ ⊗ + ⊗ 1⊗ + 1⊗ ⊗

Now note that when we apply the map ζ to each term in each tensor product, every term having a 1 in
its tensor product will go to 0. Indeed, ζ is an infinitesimal character, meaning it is log∗ of some algebra
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homomorphism φ (by Corollary 2.34), and hence log∗(φ(1)) = log∗(u ◦ ε) = 0. Moreover, by the (n− 1)st
power of ∆ (for n the number of vertices in F ), all terms will contain a 1. Hence we can conclude that
computations of ω are locally finite: that is, ω applied to any forest will always be a finite computation
[40].

Finally, observe that every term in the expansion of ω(t) with a forest in the tensor product will also
go to 0, again since ζ is infinitesimal (though there are no such terms in this example).

To finish the example, then, we have that:

ω(t) = exp∗(ζ)(t)

= ζ(t) +
1

2
(ζ ∗ ζ)(t) + 1

6
(ζ ∗ ζ ∗ ζ)(t) + 0

= +
1

2
(2 ) +

1

6
( )

= + +
1

6

Finally, we remark that the compositional inverse of ω also has interesting properties. Most notably:

Lemma 2.37. Let li be the ladder with i vertices. The ω−1(li) is a primitive element of HCK .

Proof Sketch: The proof follows quickly from simple definition pushing. Solving recursively for ω−1 from
equation (43), we find that on the space of ladders the following formula holds for ω−1:

ω−1(li) =
∑

c⊆E(li)

(−1)nc+1

(nc + 1)
P c(li)R

c(li) (44)

But then this is just the ith coefficient in the series log

(∑∞
n=0 li

)
. From [21], we know that this is Pi,

the ith basis element for the space of primitive elements of the Hopf algebra of ladders.

Throughout the rest of this text, Pi will be reserved for the primitive element ω−1(li) as it is used here.
We will see these elements return later on in an important way (see Section 5.1).

Remark. We make a brief aside to mention an insightful alternative way to construct HCK . Rather than
constructing the Hopf algebra out of combinatorial operations over the vector space of forests of rooted
trees, it is noted on page 41 of [9] that another way to think about HCK is as the algebra of coordinates
over the Lie group GHCK

K ; in this way we are constructing the Lie group first and viewing HCK as being
produced from it. This is also the perspective taken in [7] in order to apply techniques of differential
geometry to speed up computations of Feynman integrals.

2.2.3 Prelie Algebras

So far we have discussed ways of obtaining various Lie algebras and groups from HCK . To conclude this
subsection we present the definition of a related algebraic object [34]:
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Definition 2.38. A left prelie algebra is an algebra AL = (V, ., u) where the product . satisfies the
following relation for all a, b, c ∈ AL:

(a . b) . c− a . (b . c) = (b . a) . c− b . (a . c) (45)

Additionally, a right prelie algebra is an algebra AR = (V, /, u) such that all a, b, c ∈ AR satisfy:

(a / b) / c− a / (b / c) = (a / c) / b− a / (c / b) (46)

We call equation (45) the left prelie relation and equation (46) the right prelie relation).

It is valid, however, to reference both (45) and (46) as simply the prelie relation (as we will do later),
as every left prelie algebra AL = (V, ., u) is also a right prelie algebra AR = (V, /, u) by defining a/b := b.a
for all a, b ∈ AL [34].

While prelie algebras are likely less well-known than their Lie algebra counterparts, the “Lie” in prelie
heralds that there exists a relationship between the two objects. Namely, every left prelie algebra AL may
be turned into a Lie algebra by imposing the bracket [a, b] := a . b − b . a for all a, b ∈ AL. In the same
way, a right prelie algebra AR may be turned into a Lie algebra with the bracket [a, b] := a/b− b /a for all
a, b ∈ AR. This claim may be verified easily by writing out the standard Jacobi identity for Lie algebras
and using the prelie relations above.

The biggest reason prelie algebras are of interest to us is the following:

Proposition 2.39. The set of primitive elements of the Grossman-Larson Hopf algebra, Prim(HGL), is
a left prelie algebra.

Finally, in addition to discussing the enveloping algebra of a Lie algebra as we did in Section 2, a key
theorem for us later on will be a description of the universal enveloping algebra of a prelie algebra, due to
Oudom and Guin (this is Proposition 2.7 of [38]):

Theorem 2.40. Let (L, ◦) be a prelie algebra, and let S(L) be the symmetric algebra of L with the usual
shuffle coproduct ∆. Further set ∆(C) =

∑
i Ci,1 ⊗ Ci,2. Then there is a unique way to extend ◦ to S(L)

such that:

i A ◦ 1 = A

ii T ◦BX = (T ◦B) ◦X − T ◦ (B ◦X)

iii AB ◦ C = (A ◦
∑
i Ci,1)(B ◦

∑
i Ci,2)

where A,B,C are in S(L) and X,T are in L.

Remark. As an interesting historical aside, the underlying notion of prelie algebras on trees was first
considered by Cayley [5], before the notion of Lie algebras was even established [34].7

7Thanks to Nick Olson-Harris for first bringing this to the author’s attention.
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2.3 Renormalization
Up until now, we have made the claim several times that this work is motivated by the physics of quantum
field theory, but so far have not given any credence to this claim. In this subsection, we will give an
overview of the physics which is the motivation for this work and also for the original construction of
the Connes-Kreimer Hopf algebra. This motivation is the concept of renormalization in quantum field
theory.

The use of renormalization is widespread in physics and not isolated to quantum field theory alone. In
fact, its first use was in classical particle physics in the 1950’s, and similar ideas of changing the scale of a
physical system can be traced back as far as ancient Greece with attempts at solving the Delian problem.

In its greatest generality, the “pipeline” of quantum field theory is as follows: physicists at large
particle accelerators perform experiments involving particle interactions, which we model with graphs
(in the graph theoretical sense), called Feynman diagrams. We then use the data encoded by these
graphs to write down corresponding Feynman integrals, which are determined up to a choice of Feynman
rules (see Section 2.3 for a formal introduction of Feynman rules). Now these integrals are the objects
that physicists actually care about (we typically think of the Feynman graph as just “standing in” for
the integral), however the integrals are very often divergent (especially in the cases that physicists wish
to study) [49]. Hence to get around this issue, we must change the scope at which we are viewing the
objects; we do this by recursively subtracting out the integrands of divergent integrals coming from proper
subgraphs of our original Feynman diagram (we call these subgraphs subdivergences) in a prescribed way,
called a renormalization prescription. The new, renormalized Feynman integral is now convergent,
and gives information from which physicists are able to make predictions.

We remark that this process has been highly refined, and that quantum field theory has been dubbed
by some “the most precisely tested theory in the history of science”8 [37]. It was not until the work of
Connes and Kreimer, however, that this process of renormalization was given the insightful mathematical
paradigm that we have for it today: that is, renormalization ultimately works because there exists a Hopf
algebra structure on the set of Feynman diagrams, whose antipode corresponds to renormalization!

The aim of this subsection is to give some more details of this process. First, we give a short overview
of combinatorial quantum field theories and their associated Feynman diagrams. Following this, we will
give renormalization a rigorous definition in the context of Hopf algebras (though not in the context of any
involved physics), and will demonstrate the definitions with a worked-out example. Finally, we conclude
with a discussion of the renormalization group and the renormalization group equation, from which our
central questions emanate.

2.3.1 An Aside on Feynman Diagrams

In graph theory, a labelled graph object G is usually defined in terms of two sets—a vertex set V (G) which
is a subset of the natural numbers, or some other labelling set, and an edge set E(G) which consists of
(unordered) pairs of elements of V (G). However, it is possible to start with a different paradigm and build
similar objects from sets of half edges (and pairs of half edges) instead. This definition is as follows (see
page 35 of [49] and also [51]):

Definition 2.41. A graph G is a set of half edges along with:
8In predicting the anomalous magnetic moment of the electron in quantum electrodynamics, experiments and theoretical

predictions agree up to 14 significant digits. [37]
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Figure 12: An unlabelled graph with half edges

• A set V (G) of disjoint subsets of half edges known as vertices which partition the set of half edges,
and

• A set E(G) of disjoint pairs of half edges known as internal edges

The only difference between this way of defining graphs and the usual way of defining graphs is that
graphs constructed from half edges will come with a set of external edges, which are half edges that
are left unpaired (and hence do not appear in graphs in the usual sense), and internal edges, which are
pairs of half edges constituting the edges we usually think of as belonging to a graph. One will observe
that—for a given fixed number of vertices as a ground set—there are actually more graphs constructed
in terms of half edges than there are in the normal graph theoretic model, since we can append different
numbers of half edges to what is otherwise the same graph. However, we tend to think of the main part of
the graph as that defined by the internal edges, with the external edges being extra information relevant
to the underlying physics.

We also remark that in the same way that unlabelled graphs are normally defined from labelled graphs,
we define unlabelled graphs with half edges to be the equivalence classes of labelled graphs having half
edges with respect to the equivalence relation of graph isomorphism. See Figure 12. All graphs with half
edges, including Feynman diagrams, are drawn with the tikz-feynman package created by Joshua Ellis [16].

We will also include here the notion of a combinatorial physical theory, as found in [49] pp.37-38. With
this definition, we are able to work with a version of quantum field theory abstracted to a combinatorial
setting.

Definition 2.42 (Yeats). A combinatorial physical theory is a set of half edge types along with:

1. a set of pairs of not necessarily distinct half edge types defining the permissible edge types,

2. a set of multisets of half edge types defining the permissible vertex types,

3. an integer associated to each edge type and each vertex type, known as a power counting weight,
and

4. a nonnegative integer representing the dimension of spacetime.

Let us look at an example of a combinatorial physical theory. For brevity, we will only include one:
that of quantum electrodynamics (QED); see [49] for a discussion of many others.

To define QED as a combinatorial physical theory, we will run through each of the items of 2.42. In
QED, the set of half edges we consider is S = { , , }; that is, S consists of a left fermion half
edge, a right fermion half edge, and a photon half edge. Then:
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1. The possible half-edge pairings to form internal edges is with and with . Hence
the set of possible internal edges is { , }.

2. The only possible multiset of half edges giving an allowed vertex is when all three half edge types

meet together. Therefore the set of possible vertices is { }.

3. The power counting weights associated to each internal edge type and each vertex type are:

Edge/Vertex Type Power Counting Weight
1
2

0

Table 1: QED power counting weights

4. Finally, the dimension of spacetime is D = 4.

And that is all. With the four-point “recipe” given above, we have an abstract version of quantum
electrodynamics relying solely on combinatorics. Graphs in the theory can be any combination of allowed
vertices with allowed internal edge types (with parallel edges also allowed). For example, we can use the
rules above to construct a C4 and a K4 with the following vertex pairings:

Figure 13: A C4 and a K4 in QED.

As we remarked above, the external edges of graphs built from half edges are thought of as extra
information pertaining to the graph. Note in particular that the two graphs in Figure 13 have different
multisets of external edges. This ends up being a very important feature to graphs in a combinatorial
physical theory; we refer to the multiset of external edges of a graph in such a theory as the external leg
structure of the graph. To this end, the C4 in 13 has external leg structure { , , , },
while the K4 has external leg structure {}.

To continue, we require the following notion from graph theory:

Definition 2.43. The loop number (or first Betti number, cyclomatic number) of a graph is the
dimension of the cycle space of the graph.
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An equivalent way to calculate the loop number is to simply count the number of edges of a graph not
in any one of its spanning trees [49]. For more on cycle space, see Section 1.9 of [14]. For more on the loop
number of a graph and its importance in quantum field theory, see Section 5.5 of [49]

One may be wondering at this point what kind of freedom there is in coming up with a combinatorial
physical theory? That is, should it be possible to fill out the items in Definition 2.42 in an arbitrary way?
At this point, the answer is yes, that should in fact be possible. However, many combinatorial physical
theories one may envision end up being unrealistic in the world of applied physics, and this phenomenon
is captured in part by the following notion (see [49], p.39):

Definition 2.44. For a Feynman graph G in a combinatorial physical theory T , let w(a) be the power
counting weight of a, where a is an internal edge of a vertex of G and let D be the dimension of spacetime.
The superficial degree of divergence is the quantity:

D`−
∑

e∈E(G)

w(e)−
∑

v∈V (G)

w(v) (47)

where ` is the loop number of the graph.

The following translation of renormalizablity into this combinatorial language is due to Yeats [49, 53]:

Definition 2.45. A combinatorial physical theory T is said to be renormalizable if the superficial degree
of divergence of every graph in the theory depends only on the external leg structure of each graph.

Hence the physical theories one may construct arbitrarily are likely not to be renormalizable, and as
such will not be useful theories in the realm of physics. In fact, one can even view this as one reason there
is not yet a useful theory of quantum gravity: if one constructs a combinatorial physical theory according
to Definition 2.42, using the graviton as a particle and the correct internal edge structures, one will find
that the resulting theory is not renormalizable in the sense of Definition 2.45 [50].

In the next subsection, we will briefly explain the connection between Feynman graphs and the rooted
trees which are of central interest to us, and will demonstrate what renormalization looks like in the context
of HCK .

2.3.2 From Feynman Diagrams to Trees

As discussed in the introduction, to each Feynman graph in a combinatorial physical theory we associate
an integral (sometimes called a Feynman integral) which gives this particular graph’s contribution to
the total scattering amplitude. However, these integrals very often diverge [49, 9, 18]. One of the great
advantages of the setup in the previous section is that—given a graph in a combinatorial physical theory—
it is possible to tell whether or not the Feynman integral associated to the graph in the theory will diverge
or not based solely on combinatorial methods9:

Definition 2.46 (pp. 12 and 42 of [49]). A graph G in a given combinatorial physical theory T is said to
be divergent if its associated Feynman integral is divergent, and convergent if the integral is convergent.
Furthermore, if G contains a bridgeless, proper (not necessarily connected) subgraph H whose associated
integral is divergent, we say that H is a subdivergence of G.

9There are also some additional physical assumptions to make; namely, in what follows we use divergence to mean the
ultraviolet divergence of the associated integrals. A discussion to this end goes beyond the scope of this work, but see
Section 5.2 of [49] for the complete details.
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Proposition 2.47. LetG be a graph in a combinatorial physical theory T , and let sdd(G) be the superficial
degree of divergence of G. If sdd(G) ≥ 0, then G is divergent. Otherwise, G is convergent.10

The proof of this proposition is only a matter of translating the usual method of power counting in
physics into the combinatorial framework of the previous section; see [49]. Let us consider an example of
some divergent graphs.

Example 2.48. Consider the combinatorial physical theory of unlabelled 3-regular graphs. That is, we
have one half edge type ( ), one internal edge type from the pairing of the one half edge type with

itself ( ), one vertex formed by the pairing of three half edges ( ) , with the power
counting weights of edges equal to 2, the power counting weight of vertices equal to 0, and the dimension
of spacetime equal to 6 (this makes the theory renormalizable) [49]. This theory is known in the physics
community as φ3-theory.

Consider the graph G in equation (48):

G = (48)

As G belongs to φ3-theory, we can calculate its superficial degree of divergence according to equation (47).
G has one loop, so ` = 1. Moreover, in φ3-theory we have that D = 6 and w(e) = 2 and w(v) = 0 for
every e ∈ E(G) and v ∈ V (G). So we calculate:

sdd(G) = (6)(1)− [2 + 2]− [0 + 0]

= 2

hence G is divergent according to Proposition 2.47. On the other hand, consider the graph H:

H = (49)

Then H is not divergent, as we calculate:

sdd(H) = (6)(0)− 2

= −2

As one final example, consider the graph K having the form:

K = (50)
10The situation where sdd(G) = 0 leads to the corresponding integral being divergent by a factor of a logarithm, so in this

case we that that G is logarithmically divergent[49, 50].
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Graph in φ3 Element in HCK

1

Table 2: Some graphs in φ3 and their corresponding subdivergence structure.

Here ` = 3 and |E(K)|= 8, so we find that:

sdd(K) = (6)(3)− (8)(2)

= 2

and so K is also divergent.
We can now finally lend some intuition to the remarks made in Sections 1.1 and 1.1 that HCK models

renormalization according to the BPHZ renormalization scheme. If we wanted to renormalize by subtract-
ing off divergent factors in Feynman integrals, it would be possible to renormalize the integral associated
to G with a single subtraction, signalled by the fact that G contains no divergent subgraphs. However this
is not the case with K. Using Proposition 2.47, we found that K is divergent in φ3-theory, but the fact
that is has two copies of G as subdivergences means that a single subtraction will no longer suffice; the
two copies of G nested inside of K correspond to the fact that—in the Feynman integral corresponding to
K—there are divergent factors (of the kind making the integral of G divergent) that are nested inside of a
third. Hence the forests of rooted tree structures that make up the elements of HCK are simply modelling
the nested subdivergence structure of Feynman graphs in a given theory; see Table 2.

We may ask ourselves if the subdivergences of every graph in a combinatorial physical theory have
the structure of a forest of rooted trees? That is to say, what if a graph G in a given theory contains
subdivergences that are not nested in a clean way as they are in in Table 2, but rather share at least
one vertex or internal edge? In fact this is possible, and the graph in Figure 14 is one such example [49].
Indeed, one can compute that the superficial degree of the graph

L =

is positive, and hence L is divergent. Yet the graph in Figure 14 has two copies L that share two vertices (the
top and bottom corners of the square) and an edge (the edge splitting the square into two triangles). These
kinds of subdivergences are called overlapping subdivergences and the renormalization procedure in
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Figure 14: A graph with overlapping subdivergences

this situation calls for a separate treatment. Ultimately, however, this separate treatment is still modelled
by the Hopf structure of HCK ; instead of mapping the subdivergence structure to a forest of rooted trees,
one takes an appropriate linear combination of forests [49, 9]. For the sake of brevity we will not discuss
this case of overlapping subdivergences here, but the interested reader is directed to see the appendix of
[9]. There, the authors explain the full procedure by which one resolves overlapping subdivergences, and
also prove that HCK (possibly with decorations on trees) is the only Hopf algebra needed to model this
procedure [9].

2.3.3 Green’s Functions

At the very center of our research problem is the notion of a Green’s function. Indeed, it is these objects
from which our particular interest in sequences of trees emanates. In this section, we will define Green’s
functions in a way that might at first seem nonstandard, and will proceed to motivate the definition by
summarizing the underlying physics. As a result, this section’s main goal will be to form the link between
our current problem and the quantum field theory that motivates it.

We start with some definitions:
In the study of differential equations, the method of Green’s functions is a procedure for transform-

ing a given differential equation having a particular form into one that is simpler to solve. The solution
of the modified equation, called a Green’s function is then related to the original, desired solution via
applying function convolution in a prescribed way.

More specifically:

Definition 2.49. [48] Let L be a linear differential operator satisfying:

Ly(t) = g(t)

Then a Green’s function G(s, t) is any solution of the corresponding differential equation:

LG(s, t) = δ(t− s)

where δ is the Dirac delta function.

In applied fields of physics and engineering, Green’s functions are often used as a method by which to
solve ordinary and partial differential equations.

While the previous definition will still hold true, for us a Green’s function will mean something even
more specific:

Definition 2.50. Let (tn)n≥1 be a sequence with tn ∈ KTn that generates a Hopf subalgebra of HCK and
such that tn 6= 0 for all n, and define X = 1+

∑∞
n=1 tn to be the corresponding series of these elements.

Further define Feynman rules φ ∈ G = G̃HCK

K[L] . Then a Green’s function G(x, L) is:

G(x, L) := φ(X) (51)
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The former definition is clear in the sense that the Green’s functions we will be working with are going
to be solutions to the renormalization group equation (60). However the latter definition is in need of
some more rationale.

Let us begin with a very broad scope of quantum field theory. Recall the quote from F.J. Dyson
included at the beginning of this work (in Section 1.1). For convenience, we include it again here:

Thirty-one years ago, Dick Feynman told me about his ‘sum over histories’ version of quantum
mechanics. ‘The electron does anything it likes,’ he said. ‘It goes in any direction at any speed,
forward and backward in time, however it likes, and then you add up the amplitudes and it
gives you the wavefunction.’ I said to him, ‘You’re crazy.’ But he wasn’t. ([44], originally
quoted from [42])

This notion of “sum over histories” is precisely what Green’s functions will be encapsulating for us. A
sum over an infinite sequence of trees after applying Feynman rules is really representing an infinite sum
of Feynman graphs after applying Feynman rules, which still further is representing an infinite sum of
possible particle interactions, with Feynman rules giving the corresponding amplitude that particular
history contributes to the whole amplitude.

We will now try to make this statement precise.
Unlike quantum mechanics in which we are interested in the movement of individual particles through

time and space, in quantum field theory we are interested in taking into account large quantities (often
of an infinite number) of particles all at once. To this end, instead of considering the kinds of models
for particles arising in the quantum mechanical setting, we consider a field φ (not in the abstract algebra
sense, but in the vector field sense) and model particles as disturbances in the field [50]. We mention the
field may be a vector field, but we also remark that it may be some other type of field as well; we simply
use field to mean a function returning some value for every point in spacetime (that is, Rn). If the values
returned are vectors, then the field is a vector field, while if the values returned are scalars, then the field
is a scalar field. Other types of fields include tensor fields, spinor fields, and supersymmetric fields [46].

Hence if particles are represented by changes in the field (call it φ), then we need some simple way of
modeling how the field changes. This is accomplished mathematically by something called a Lagrangian
density, which generalizes the notion of a Lagrangian from calculus [46]. In the calculus setting, a
Lagrangian is (in its simplest sense) an equation packaging up all of the components of the method of
Lagrange multipliers in optimization. For example, if we are trying to optimize a two-variable function
f(x, y) over the constraint equation g(x, y) = c, then the Lagrangian is given by the equation:

L(x, y, λ) = f(x, y)− λ(g(x, y)− c) (52)

for λ a constant. (One can see that the equation ∇L = 0 then gives the system of equations sought in the
method of Lagrange multipliers, as we would expect).

Analogously, a Lagrangian density11 is the generalization of equation (52) to describe the dynamics of
a whole field—that is, to represent how the field changes with changes in both space and time. To this end,
(using common notation) the Lagrangian density L will be a function L(Φ(~x), ∂µΦ(~x)) where ~x = (xµ),
µ = (0, 1, 2, ..., D − 1), Φ represents a field parameterized by the time-space coordinates x0, x1, ..., xD−1,
and D is the dimension of spacetime [46]. Here, we are using index notation as is standard practice in
physics. Namely, we mean that µ varies over all values in the tuple above, where ∂µ := ∂

∂xµ
, and where

repeated indices represent summation ranging over the index set [12]. For more on index notation, see [12].
11By abuse of terminology, this is often just referred to in the literature as a Lagrangian, too. However, as we are

explaining its relation to the Lagrangian in the classical sense, we will stick with referring to it as a Lagrangian density.
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The relationship between L and L is that L is the integral of L over all spatial coordinates (but excluding
time). Namely:

L =

∫
Ldx1dx2...dxD−1 (53)

(In this setting, it is customary to have x0 representing the time coordinate) [46].
The central idea here is that integrating the Lagrangian (in the classical mechanical setting) with

respect to position and the Lagrangian density (in the field theory setting) over all spacetime yields a
quantity known as the action (denoted by S)12, which yields many of the most important properties of
the field. For example, in the classical field theory setting, S will encode both the field laws (think laws of
electromagnetism or laws of motion) and the symmetries giving rise to the field’s laws of conservation [46]!
In our setting of quantum field theory, the action determines the transition amplitude between quantum
states [46]. The formula for the action looks like this13:

S =

∫
dDxL(Φ(~x), ∂µΦ(~x)) (54)

where by dD we mean dx0dx1...dxD−1. Now how does this determine the aforementioned transition
amplitude, which is the key piece of information we desire? The formula for the amplitude is as follows
[50]:

A =

∫
Dφ exp(iS) (55)

where by Dφ we mean we are integrating over all possible values of the field φ [50]. This is very much
ill-defined, but as discussed in [50], setting up the calculations in this way give a good heuristic for what
is to follow.

If we add a term Jφ in addition to the terms of the Lagrangian density to allow for the creation and
annihilation of particles, the equation (55) becomes:

Z[J ] =

∫
Dφ exp(iS +

∫
Jφ) (56)

the quantity Z[J ] is called the generating functional of the field theory; one can think of this almost
like a generating function of functionals (where by functionals, we mean a function that returns another
function). In another words, we have broken up the computation for the desired transition amplitude
into infinitely many sub-computations, where the nth term (that is, the nth functional in the generating
functional) is called the n-point correlation function, 〈φ(x1)φ(x2)...φ(xn)〉, obtained by taking n partial
derivatives of Z[J ] [25]:

〈φ(x1)φ(x2)...φ(xn)〉 =
hn

(2π)nZ[J ]

∂nZ[J ]

∂J(x1)...∂J(xn)
|J=0

where h is the Plank constant, h = 6.62607004× 10−34J · s. Performing the indicated operations on Z[J ]
yields [25, 50]:

〈φ(x1)φ(x2)...φ(xn)〉 =
∫
Dφφ(x1)φ(x2)...φ(xn) exp(iS)∫

Dφ exp(iS)
(57)

12We realize that this notation is confusing in light of the fact that in the rest of this thesis we use S to mean the antipode
of a Hopf algebra. However, we wish to avoid deviating too much from the standard notation of the physics literature, and
believe this will not be too much of an inconvenience, as the use of S in this way will be isolated to this section alone.

13Note that we are following the convention of physics as used in our sources, wherein the differential elements dD corre-
sponding to an integral appear on the left side of the integrand rather than on the right.
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Finally, this expression is a Green’s function in the analytic sense of Definition 2.49. However, it also has
a combinatorial description; namely, we can apply a theorem due to Wick (proved in a different setting)
that informs us that the n-point correlation functions 〈φ(x1)φ(x2)...φ(xn)〉 may be computed as certain
sums over 2-point correlation functions 〈φ(xi)φ(xj)〉 [50, 54]. Using this, together with a specific protocol
developed by the physics community (particularly Feynman) known as Feynman rules, we can assemble
Feynman graphs from the terms of 〈φ(x1)φ(x2)...φ(xn)〉; namely the sum over the 2-point correlation
functions given by Wick’s Theorem give the edges of the Feynman diagram. The end result will be
that 〈φ(x1)φ(x2)...φ(xn)〉 is an expansion in Feynman graphs of the theory having n external legs. The
methods referenced and briefly summarized in Section 2.3.2 then take us from Feynman graphs to rooted
trees, finally yielding our Definition 2.50.

We have left out many details for the sake of brevity, but will refer the reader to [25, 44, 40] for immedi-
ately accessible examples of extracting the combinatorics of 〈φ(x1)φ(x2)...φ(xn)〉. We further recommend
Chapter 1 of [54] for an excellent and accessible development of this whole topic. Namely, see Section
1.2 of [54] for a development of the path integral formulation of quantum field theory from scratch, and
Sections 1.1 through 1.7 for how Feynman diagrams emerge from this perspective.

Remark. When they were first developed by Feynman, the notion Feynman rules was used to mean the
rules of encoding a path integral measuring an amplitude as a Feynman diagram in order to organize the
complicated computation. Nowadays, however, this notion almost universally refers to the inverse of this
map that takes a Feynman diagram to its associated integral, as we have described it elsewhere in this
document [32].

2.3.4 The Renormalization Group and General Tree Feynman Rules

We now have all the background knowledge we need in order to present the central mathematical tool
working behind the scenes throughout this work and related works. Our running examples concerning the
Hopf algebra of polynomials K[L] might have seemed arbitrary up until now, but now we see that they
are actually an integral part of the story:

Definition 2.51. As in the last section, let G = G̃HCK

K[L] , the Lie group of characters of HCK with tar-
get algebra the Hopf algebra of polynomials in a single indeterminate L (See Section 2.2 and Example
2.11). The indeterminate L is called a kinematic variable, and elements φ ∈ G that are also coalgebra
homomorphisms are called Feynman rules14.

In other words, Feynman rules are the elements of the Lie group of characters from Section 2.2 when A
is the Hopf algebra K[L] and when the algebra homomorphism are additionally coalgebra homomorphisms.

We mentioned in the introduction to the previous section that the process of renormalization demon-
strated therein is dependant on the choice of Feynman rules, and hope that this statement has now been
made clear: renormalization is the recursive subtraction of the integrands of Feynman integrals according
to the terms obtained from the antipode S of HCK applied to the rooted tree-structure of subdivergences
of a Feynman graph in a given theory. However the integrands themselves are obtained by applying a map
φ : HCK → K[L], where we now know that φ must be an element of the character group G̃HCK

K[L] .
But now there is something really special about this situation: not only do we have the ability to

change the value of Feynman integrals by taking different φ ∈ G, we also have the ability to vary L over
different value of K, since L is just an indeterminate! These changes in the kinematic variable L describe

14In the literature, Feynman rules are sometimes defined merely as algebra homomorphisms, but then a distinction is made
between Feynman rules in full generality versus Feynman rules that show up in physics. See Section 3.1 of [40]
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the result of changing the energy scale at which we choose to observe the underlying physical processes,
and ultimately are a factor that help determine what the value of the final integral will be [32]. If we
let φL denote the map from HCK × K → K obtained by evaluating φ ∈ G at L (in other words, for all
F ∈ HCK , we have φL(F ) = φ(F )(L)), then:

Definition 2.52. The renormalization group RG is:

RG = {φL|L ∈ K, φ ∈ G} (58)

where the group operation is convolution.

What kind of structure does RG have? The answer to this question lies in the following lemma:

Lemma 2.53. Let φ ∈ G be valid Feynman rules (i.e. a Hopf algebra homomorphism). Then φ = exp∗(Lσ)
for σ : HCK → K an infinitesimal character.

Proof. We will closely follow the proof given in [32]. To begin, let φ ∈ G, but rather than considering
log∗(φ) to obtain the desired result, consider taking an evaluation of log∗(φ) at some value a ∈ K. If we
do this we can calculate:

eva(log∗(φ)) = eva

( ∞∑
i=1

(−1)i+1φ
∗i

i

)

=

∞∑
i=1

(−1)i+1

i
eva(φ

∗i)

=

∞∑
i=1

(−1)i+1

i
eva(m

i
K[L] ◦ (φ⊗ ...⊗ φ︸ ︷︷ ︸

n copies

) ◦∆i−1
HCK

) (Since eva is an algebra homomorphism.)

=
∞∑
i=1

(−1)i+1

i
(mi

K ◦ (eva ◦ φ⊗ ...⊗ eva ◦ φ︸ ︷︷ ︸
n copies

) ◦∆i−1
HCK

) (Since eva is an algebra homomorphism.)

=

∞∑
i=1

(−1)i+1

i
(mi

K ◦ (eva ⊗ ...⊗ eva︸ ︷︷ ︸
n copies

) ◦ (φ⊗ ...⊗ φ︸ ︷︷ ︸
n copies

)∆i−1
HCK

)

=

∞∑
i=1

(−1)i+1

i
mi

K ◦ (eva ⊗ ...⊗ eva︸ ︷︷ ︸
n copies

) ◦∆i−1
K[L](φ) (Since φ is a coalgebra homomorphism.)

=

( ∞∑
i=1

(−1)i+1

i
mi

K ◦ (eva ⊗ ...⊗ eva) ◦∆i−1
K[L]

)
(φ)

= log∗(eva) ◦ (φ)
= σa ◦ φ (By Example 2.35.)
= a∂0φ

= eva(L∂0φ)

(Note that we have used the convolution sign ∗ in two different ways as in [32], though we have made these
ways explicit by the intermediate steps).
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Hence we have that for any a, eva(log∗(φ)) = eva(L∂0φ). Thus log∗(φ) = L∂0φ, and as σ = ∂0φ is an
infinitesimal character from HCK → K, we have log∗(φ) = Lσ and hence φ = exp∗(Lσ), as claimed.

We can use the fact that the elements φ ∈ G are Hopf algebra homomorphisms and the above lemma to
show that the φL obey a special property, known as the renormalization group equation (c.f. Section
A.4 of [32]):

Lemma 2.54 (The Renormalization Group Equation, Algebraic Version).

φL1
∗ φL2

= φL1+L2
(59)

The analytic version of this equation is:(
∂

∂L
+ β(x)

∂

∂x
− γ(x)

)
G(x, L) = 0 (60)

We will extensively use equation (60) in the rest of this thesis, particularly in Sections 3.1 and 3.2, when
we motivate the questions at the center of this work. Nevertheless, we will not prove here the relationship
between equations (59) and (60), as this has already been done to fantastic detail in Appendix A.5 in [32].
The proof is a carried out using computations and manipulations of formal power series. Hence we will
use the result without proof, and direct the reader to [32] for the particular details.

Now in place of HCK in the proof of Lemma 2.53 above, we could have worked instead with an arbitrary
(graded, connected) Hopf algebra. However, as our interests lie with HCK , we can obtain an even more
explicit form for what Feynman rules φ ∈ G look like in terms of trees and forests. In what follows, we use
/ to represent edge contraction in the usual graph theoretical sense:

Theorem 2.55 (Yeats). Let φ ∈ G be our Feynman rules such that φ = exp∗(Lσ), and let F be a forest
of rooted trees. Then:

φ(L)(F ) =
∑

S⊆E(F )

( ∏
t∈(F\S)

σ(t)

)
L|F/(F\S)|

(F/(F \ S))!
(61)

where E(F ) is the edge set of F , F \ S is the forest whose vertices are those of F simply with the edges in
S removed, and (F/(F \ S))! means the tree factorial of the forest F/(F \ S).

Proof. This result follows from an application of Lemma 2.53 and some additional observations. Indeed, we
already have that φ = exp∗(Lσ) for σ an infinitesimal character, so we just need to expand this expression
out and interpret what it means combinatorially. We have:

φ(L)(F ) =

(
exp∗(Lσ)

)
(F )

=

∞∑
n=0

(Lσ)∗n(F )

n!

=

∞∑
n=0

(L)n

n!
σ∗n(F )

=

∞∑
n=0

(L)n

n!
mn ◦ (σ ⊗ ...⊗ σ︸ ︷︷ ︸

n times

) ◦∆n−1(F )
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where we are using the convention that σ∗0 = id, σ1∗ = σ, and hence implicitly ∆−1∗ := id. Now let us
consider how the terms of ∆n(F ) interact with σ ⊗ ...⊗ σ︸ ︷︷ ︸

n times

for fixed n. Since σ is an infinitesimal character,

σ(1) = 0 (since in particular it is an element of the convolution algebra) and σ also vanishes on nontrivial
products (by virtue of the defining equation σ(ab) = σ(a)ε(b) + ε(a)σ(b)). Hence the only terms that will
be nonzero in the composition (σ ⊗ ...⊗ σ︸ ︷︷ ︸

n times

) ◦ ∆n(F ) are those corresponding to the terms of ∆n(F ) in

which every element in the tensor product is a tree; this will happen precisely when a subset S of edges of
cardinality |S|= n −m has been removed, where we use m to mean the number of trees in the forest F .
Hence so far we have that the nth term of the series φ(L)(F ) will be:

Ln

n!

∑
S⊆E(F )
|S|=n−m

( ∏
t∈(F\S)

σ(t)

)
NF\S

for some integer NF\S counting how many times the term
∏
t∈(F\S) σ(t) appears in φ(L)(F ). We claim

that NF\S counts the number of increasing labellings of F/(F \ S)—that is, the number of increasing
labellings of the forest F ′ obtained from F by contracting the edges not in the set S. Indeed, this follows
immediately from the definition of the coproduct in terms of admissible cuts, and interpreting what these
cuts mean as we apply the coproduct iteratively (see Section 2.1.2 for more on admissible cuts).

Finally, all that remains is to recognize that if |S|= n −m, then the forest F/(F \ S) has |S| edges.
Hence n = |S|+m is the number of vertices in the forest F/(F \ S), giving us:

φ(L)(F ) =
∑

S⊆E(F )

L|F/(F\S)|

|F/(F \ S)|!

( ∏
t∈(F\S)

σ(t)

)
NF\S

Moreover, the number of increasing labellings of a forest H is equal to |H|!H! , where H! is the tree factorial,
as discussed in Section 2.1.3 [49]. Consequently NF\S = |F/(F\S)|!

(F/(F\S))! , and so:

φ(L)(F ) =
∑

S⊆E(F )

L|F/(F\S)|

|F/(F \ S)|!

( ∏
t∈(F\S)

σ(t)

)
|F/(F \ S)|!
(F/(F \ S))!

=
∑

S⊆E(F )

( ∏
t∈(F\S)

σ(t)

)
L|F/(F\S)|

(F/(F \ S))!

as desired.

Remark. The result above is from [52], which are some notes written during a visit of Karen Yeats and
Dirk Kreimer to Spencer Bloch in Chicago in the fall of 2014. There, the result was proved inductively
using Lemma 2.54, though it also had a slightly different form. Namely, if we define a map θ : HCK → K[L]
that agrees with σ on trees, but extends as an algebra homomorphism to the rest of HCK , then we can
rewrite equation (61) as:

φ(L)(F ) =
∑

S⊆E(F )

θ(F \ S) L|F/(F\S)|

(F/(F \ S))!
(62)
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Rosen [41] showed us the connection that (62) is simply a form of the exponential map, and proved that
such a map exists on arbitrary (graded, connected) Hopf algebras, which he then showed gives the result
above. In particular, this explains why σ—an infinitesimal character—is more natural than θ—an algebra
homomorphism. The approach we have taken here using the convolution exponential is based chiefly on
the content of Appendix A.4 of [32].

Let us look at an example.

Example 2.56. Consider the tree T = . We use the regular formula for exp∗ and see how it gives

the same result as that obtained from the formula in the theorem statement. We only need to calculate
the iterated reduced coproduct as the primitive part will always vanish after applying σ. We have that:

∆̃(T ) = 2 ⊗ + ⊗ + ⊗

∆̃2(T ) = 2 ⊗ ⊗ + 2 ⊗ ⊗ + ⊗ ⊗

∆̃3(T ) = 2 ⊗ ⊗ ⊗

Hence we use the formula of exp∗ to calculate:

φ(L)(T ) = σ(1) + Lσ( ) +
1

2
L2[2σ( )σ( ) + σ( )σ( ) + σ( )σ( )]

+
1

6
L3[2σ( )σ( )σ( ) + 2σ( )σ( )σ( ) + σ( )σ( )σ( )]

+
1

24
L4[2σ( )σ( )σ( )σ( )]

= σ(1) + Lσ( ) +
1

2
L2[2σ( )σ( ) + σ( )σ( )]

+
1

6
L3[2σ( )σ( )σ( ) + 2σ( )σ( )σ( )]

+
1

24
L4[2σ( )σ( )σ( )σ( )]

Which agrees with Theorem 2.55.

3 Problem Setup
This section will be devoted to presenting details of the central problem. We will first start by relating
more background material. However, unlike the material from Section 2, this will be information more
specific to the problem at hand, some of which is unpublished elsewhere. The contents of Section 3.1 are
due to Spencer Bloch, Dirk Kreimer, and Karen Yeats, and arose out of discussions at the University of
Chicago in the fall of 2014. The author is indebted to these scholars for allowing the inclusion of their
work in the present thesis for the purpose of telling a complete mathematical story.
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3.1 Higher Order Renormalization Group Equations
We saw in Section 2.3.3 that the Green’s function G(x, L) in the renormalization group equation (equation
(60)) is in fact a series whose terms consist of Feynman rules φ ∈ G applied to a series X = 1+

∑∞
n=1 tn

whose terms are nonzero linear combination of trees. What does it mean practically speaking for G(x, L)
to satisfy (60)? In this section, we will answer this question and will find that doing so leads to a natural
generalization of the renormalization group equation itself.

To begin let φ ∈ G be our Feynman rules and let X = 1+
∑∞
n=1 tn be our series of linear combinations

of trees. Further define β(x) and γ(x) to be two formal power series in x:

β(x) :=

∞∑
n=1

(−βn)xn+1

γ(x) :=

∞∑
n=0

γnx
n

Note that we have chosen a nonstandard way to index the coefficients in β(x), as ultimately the coefficients
are arbitrary and this convention will simplify the indexing in the final result.

We will denote by Qn(L) the polynomial in L obtained by applying φ to the term tn (the natural choice
of symbol would be Pn for “polynomial,” but we already have P representing the pruning operator; see
Section 2.1.3). This will simplify our notation, as instead of defining our Green’s function as:

G(x, L) = 1 +

∞∑
n=1

φ(tn)(L)x
n

we may simply write the Green’s function as:

G(x, L) = 1 +

∞∑
n=1

Qn(L)x
n (63)

As mentioned previously, x is the coupling constant, but for our purposes it is also the formal counting
variable as it normally is in the method of generating functions.

Now the objective is to compute what each term of the renormalization group equation (60) looks
like in terms of formal power series. It will turn out that the most useful way to do this is to break the
equation up into two pieces: those that contain partial derivatives with respect to L on one side, and then
everything else on the other side:

∂

∂L
G(x, L) =

(
γ(x)− β(x)

∂

∂x

)
G(x, L) (64)

We will compute what each side of the equation looks like in terms of formal power series separately, and
then compare the coefficients on each side. This will give us a condition describing when G(x, L) satisfies
(60).

Let’s compute the left-hand side first. Note that the left-hand side of (64) is just:

∂

∂L
G(x, L) =

∞∑
n=1

∂

∂L
Qn(L)x

n (65)
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by definition of G(x, L) from (63). Hence the only unknown piece of information are the factors ∂
∂LQn(L),

which we now compute.
To do this, we will use what we referred to earlier as the algebraic version of the renormalization group

equation (equation (59)). This is simply the property that φ is a Hopf algebra homomorphism. However,
if we write the coproduct of tn out explicitly, we can write equation (59) out in a more explicit form, too.
Namely, start by writing the coproduct of tn for n arbitrary as:

∆(tn) = tn ⊗ 1+ 1⊗ tn +

n−1∑
i=1

τn,n−i ⊗ ti

which we will write as:

∆(tn) =

n∑
i=0

τn,n−i ⊗ ti

using the convention that t0 = τn,0 = 1 and τn,n = tn.
Now since the sequence (tn)n≥1 generates a Hopf subalgebra of HCK by hypothesis, we know that the

τn,n−i are polynomials in the tj for j < n. Hence equation (59) applied to this situation becomes:

φL1+L2
(tn) = (φL1

∗ φL2
)(tn)

=⇒ Qn(L1 + L2) = m ◦ (φL1
⊗ φL2

) ◦∆(tn)

= m ◦ (φL1
⊗ φL2

)(

n∑
i=0

τn,n−i ⊗ ti)

= m(

n∑
i=0

φ(τn,n−i)(L1)⊗ φ(ti)(L2))

= m(

n∑
i=0

φ(τn,n−i)(L1)⊗Qi(L2))

=

n∑
i=0

φ(τn,n−i)(L1)Qi(L2)

where above, we are forced again to use the confusing notation φ(τn,n−i)(L1). Since φ(τn,n−i) returns a
function in L, we use φ(τn,n−i)(L1) to mean substituting L with L1 (where L1 is still a variable).

Now ultimately what we want is the derivative of these terms with respect to L, in order to calculate
∂G
∂L , so we calculate this derivative using standard undergraduate calculus. The only “trick” we will use is
the fact that ∂

∂xf(x+ y) = ∂
∂yf(x+ y) for any function f . So instead of differentiating with respect to L,

we differentiate with respect to L1 to get that:

∂

∂L1
Qn(L1 + L2) =

n∑
i=0

(
∂

∂L1
φ(τn,n−i)(L1)Qi(L2)

)
Now if we make the substitution L1 = 0 and use the identity regarding functions of sums of variables
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discussed above, this is equal to:

∂

∂L2
Qn(L1 + L2)|L1=0 =

n∑
i=0

∂

∂L1
φ(τn,n−i)(L1)|L1=0Qi(L2)

=⇒ ∂

∂L2
Qn(L2) =

n∑
i=0

∂

∂L1
φ(τn,n−i)(L1)|L1=0Qi(L2)

The factor ∂
∂L1

φ(τn,n−i)(L1)|L1=0 will simply be some element of the underlying field K, so we can represent
it by some constant indexed by n and i. Let’s call it cn,i:

cn,i :=
∂

∂L1
φ(τn,n−i)(L1)|L1=0 (66)

Then the above equation for ∂
∂L2

Qn(L2) is just:

∂

∂L2
Qn(L2) =

n∑
i=0

cn,iQi(L2)

And finally, there is no longer any need to continue using L2 now, seeing as we have removed all appearances
of L1. Hence we set L2 = L:

∂

∂L
Qn(L) =

n∑
i=0

cn.iQi(L))

Since we finally have an expression for ∂
∂LQn(L), we can conclude that the left-hand side of (64) is just:

∂

∂L
G(x, L) =

∞∑
n=0

( n∑
i=0

cn,iQi(L)

)
xn (67)

where we have substituted the values of ∂
∂LQn(L) we have just found into (65).

Now all that remains is to compute the right hand side of (64), which we will do one term at a time.
Firstly, we have by our definition of β(x) that:

−β(x) ∂
∂x
G(x, L) =

( ∞∑
n=1

βnx
n+1

)
· ∂
∂x

(
1 +

∞∑
n=0

Qn(L)x
n

)

=

( ∞∑
n=0

βnx
n

)
·
( ∞∑
n=0

nQn(L)x
n−1

)

=

∞∑
n=1

( n∑
i=1

iβn−iQi(L)

)
xn

For the other term of the right-hand side of equation (64), we have:

γ(x)G(x, L) =

( ∞∑
n=0

γnx
n

)
·
(
1 +

∞∑
n=0

Qn(L)x
n

)

=

∞∑
n=0

( n∑
i=0

γn−iQi(L)

)
xn
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where we have transitioned to the notational convention that Q0(L) = 1 (Note that we know that Q0(L) =
1 from the previous section, since φ is an algebra homomorphism). Finally, then, the renormalization group
equation (64) translates as a statement about formal power series in the following way:

∞∑
n=0

( n∑
i=0

cn,iQi(L))

)
xn =

∞∑
n=0

( n∑
i=0

γn−iQi(L)

)
xn +

∞∑
n=1

( n∑
i=1

iβn−iQi(L)

)
xn (68)

By comparing coefficients of xn on both sides, we recover the following identity for any fixed n ≥ 1:
n∑
i=0

cn,iQi(L)) =

n∑
i=0

γn−iQi(L) +

n∑
i=1

iβn−iQi(L) (69)

Now we would further like to extract coefficients of the Qi(L) for each i, but this will only be a valid
operation if the Qi(L) are linearly independent. Thankfully this is the case: since φ are nonzero Feynman
rules, at least one term of Qi(L) will be nonzero for each i. Moreover by Theorem 2.55, Qi(L) will have
distinct leading terms for each i, giving that the Qi(L) are linearly independent. Hence if we fix i = 0 and
vary n we obtain the defining relationship between the γi and cn,k. Namely:

γn = cn,0 for all n ≥ 1

If we instead fix n ≥ 1 and vary i, we obtain the following relationship for all i ≤ n:

cn,i = cn−i,0 + iβn−i (70)

At long last, we can use this defining relationship to recursively solve for the cn,i to impose some conditions
on which sequences G(x, L) satisfy (64). This recursive procedure produces the following array:

c1,0
c2,1 c2,0

c3,2 c3,1 c3,0
c4,3 c4,2 c4,1 c4,0

c5,4 c5,3 c5,2 c5,1 c5,0
...

where using the relationship (70) we obtain:

c1,0
β1 + c1,0 c2,0

2β1 + c1,0 β2 + c2,0 c3,0
3β1 + c1,0 2β2 + c2,0 β3 + c3,0 c4,0

4β1 + c1,0 3β2 + c2,0 2β3 + c3,0 β4 + c4,0 c5,0
...

and where cn,i = 0 for all pairs of n and i where i ≥ n.
Hence, we have found a necessary condition for G(x, L) to satisfy a renormalization group equation!

That is, the array of numbers cn,i must be equal to first-order polynomials in i for fixed n − i. That is,
for all n ≥ 1 we need to have:

cn,n−i = ai+ b (71)
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Now at first this might seem like a lot of work for little reward, as so far we only know of the cn,i from
their abstract definition as coefficients in the generating function ∂

∂LG(x, L). However, let us return to
equation (66) and try to understand if they have any combinatorial meaning. The result in this direction
will be the following:

Proposition 3.1. Let λn,n−i denote the coefficient of tn−i ⊗ ti in ∆(tn). Then cn,i = λn,n−iφ(tn−i).

Proof. First, we have that τn,n−i will be a polynomial in variables t1, ..., tn−i. But by the grading of HCK

and the fact that ∆ preserves grading, we know that this polynomial will also be homogeneous of degree
n− i in the tk.

By definition of Feynman rules, φ is a Hopf algebra homomorphism from HCK to K[L], meaning that
it is enough to define φ on the basis (tn)n≥1, since our sequence generates a Hopf subalgebra of HCK by
hypothesis. The result φ(τn,n−i) will be a polynomial in L over K, where every tk in the polynomial τn,n−i
contributes one factor of L by Theorem 2.55. But by definition, cn,i is formed by taking the derivative
with respect to L and then setting L = 0. Hence every term in the original polynomial having a factor of
L2 or any higher power of L vanishes and we are left with φ(λn,n−itn,n−i) from which the desired result
follows.

We remark that we have actually seen these coefficients λi,j before—they are the m(t1, t2) from equation
(2.19) in Definition 2.19 (generalized now so that ti is a linear combination of trees instead of a single tree
as it was in Section 2.1.3)

Hence we now have a reformulation of the test for whether or not a Green’s function G(x, L) satisfies a
renormalization group equation. We believe this statement is important enough to reiterate as a corollary:

Corollary 3.2. Let s = (tn)n≥1 be a sequence of nonzero linear combinations of trees that generates
a Hopf subalgebra of HCK , and let Xs = 1 +

∑∞
n=1 tn be the corresponding series. Let φ ∈ G be our

Feynman rules. Then the Green’s function G(x, L) = φ(X) satisfies a renormalization group equation only
if cn,n−i = ai+ b for n fixed, i varying, and a, b ∈ K.

These sequences of linear polynomials in i are precisely the leftward diagonals depicted in the arrays
of the previous discussion.

We can take the abstraction to combinatorics one step further by making one more observation: now
that we have a combinatorial expression for the cn,i, we can rewrite the array containing them, setting
cn,i = λn,n−iφ(tn−i) once again for arbitrary φ ∈ G. This leads to:

λ1,1φ(t1)
λ2,1φ(t1) λ1,2φ(t2)

λ3,1φ(t1) λ2,2φ(t2) λ1,3φ(t3)
λ4,1φ(t1) λ3,2φ(t2) λ2,3φ(t3) λ1,4φ(t4)

λ5,1φ(t1) λ4,2φ(t2) λ3,3φ(t3) λ2,4φ(t4) λ1,5φ(t5)
...

Figure 15: An array of coefficients.

Notice that every term along the leftward-pointing diagonals (the ones that must be first-order polynomials
in i ) contains a constant factor of φ(tj) for some j. In other words, a Green’s function G(x, L) can satisfy
a renormalization group equation only when the left diagonals depicted above (the sequences (λi,j0)i≥1)
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are linear. This is independent of φ, unless φ(tj) = 0 for some j, but this would only make it easier for
G(x, L) to satisfy a renormalization group equation by making faster-growing diagonals vanish.

Unfortunately, not every sequence of nonzero linear combinations of trees generating a Hopf subalgebra
of HCK satisfies a renormalization group equation. This is the essence of the following lemma:

Lemma 3.3. Let s = (tn)n≥1 be the standard sequence of generators for the Connes-Moscovici Hopf
subalgebra of HCK , and let Xs be the corresponding series: Xs = 1+

∑∞
n=1 tn. Then the Green’s function

G(x, L) = φ(X) does not satisfy a renormalization group equation for any (nonzero) choice of Feynman
rules φ.

We remark that the Feynman rules φ(tn) = 0 for all n ≥ 1 should always lead to a Green’s function
which will satisfy a renormalization group equation. As these rules are not very useful, however, we will
not consider them in any future deliberations (unless otherwise mentioned).

Proof Sketch of Lemma 3.3. In light of the discussion above, we only need to check that—for fixed and
arbitrary j—λi,j 6= ai + b for any a, b ∈ K. We can do this by direct computation. The sequence of
generators described begins:

t1 =

t2 =

t3 = +

t4 = + 3 + +

t5 = + + 3 + + 4 + 4 + 3 + 6 +

...

Let us compute the left-most diagonal of the array of λi,j—these will be the coefficients of ⊗ tn−1 in
∆(tn). We get that:

∆(t2) = ...+ ⊗ + ...

∆(t3) = ...+ 3 ⊗ + ...

∆(t4) = ...+ 6 ⊗
(

+

)
+ ...

∆(t5) = ...+ 10 ⊗
(

+ 3 + +

)
...
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and a pattern has emerged. Indeed, it is not hard to show that the coefficients we seek form the sequence
(λi,1)i≥1 = (

(
i+1
2

)
)i≥1, hence as a polynomial in i we have λi,1 = 1

2 i
2 + 1

2 i. Note that this is a polynomial
in i of order 2. More generally, we find that (for j fixed arbitrarily) (λi,j)i≥1 = (

(
i+j
j+1

)
)i≥1, which for all

j forms a sequence of i of order at least 2. Hence there is no choice of (nonzero) Feynman rules φ that
will make the array of cn,i’s have linear left diagonals, and consequently G(x, L) = φ(X) will not satisfy a
renormalization group equation for any choice of Feynman rules φ.

In some sense, the results of Lemma 3.3 might seem rather dissatisfying. Indeed, the Connes-Moscovici
Hopf subalgebra is one of the most natural combinatorial examples appearing the literature (in fact, one
can define the sequence in terms of the natural growth operator of Section 2.1.3). Moreover, the array
of coefficients λi,j arising in relation to computations with a Green’s function we would form from the
sequence also seem nice; while they are second (and greater) order polynomials in i, the sequence of
binomial coefficients is ubiquitous in combinatorics.

Hence, rather than restricting our focus to the Green’s functions which satisfy the renormalization
group equation in the standard sense, we can think of these inconsistencies as motivation for a generalized
form of equation (60), which is the central definition of this text:

Definition 3.4 (Generalized Renormalization Group Equations). For a Green’s function G(x, L), define
a generalized renormalization group equation by:

∂G

∂L
= β(x,

∂

∂x
)G (72)

where β is polynomial in its second argument. If the polynomial β is of degree n in ∂
∂x , we say that the

generalized renormalization group equation is of order n.

We remark that the standard definition of the renormalization group equation can be seen as a gen-
eralized renormalization group equation of order 1. Indeed, we simply take β(x, ∂∂x ) = γ(x) + β(x) ∂∂x .
We also note that this definition is informed by quantum field theory, as the case of β ≡ 0 is already a
known special case in physics. Such an equation is said to have a pure scaling solution and is usually
integrable [27]. In the language we are introducing with Definition 3.4 these are 0th-order renormalization
group equations. We will give special attention to these in Sections 5.1 and 5.3.

We can ask ourselves the same question about (72) that we did at the beginning of this section regarding
the usual renormalization group equation: namely, what does it mean for a Green’s function to satisfy
(72)? Are we able to come up with some necessary conditions? Let us approach the question using the
same method as before; we will turn equation (72) into a statement about formal power series, and then
compare coefficients across the equals sign.

To fix notation again, let φ ∈ G be our Feynman rules, (tn)n≥1 be a sequence of linear combinations of
trees generating a Hopf subalgebra of HCK , and let X = 1+

∑∞
n=1 tn be the corresponding series. Then

G(x, L) = φ(X) as before. Now β is allowed to be more general than β was before, so we will set it up in
the following way:

β(x,
∂

∂x
) :=

m∑
j=0

β(j)(x)
∂j

∂xj
(73)

with each β(i)(x) a formal power series in x:

β(j)(x) :=

∞∑
k=0

β
(j)
k xk (74)
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with β
(j)
k ∈ K.

At the risk of being repetitive, we remark that with this notational setup, the usual renormalization
group equation is recovered by setting β(0)(x) = γ(x), β(1)(x) = β(x), and β(k)(x) ≡ 0 for k ≥ 2.

Now we proceed. Since our Green’s function G(x, L) looks exactly as it did before, the left-hand side
of (72) is also precisely the same. We write it again for convenience:

∂

∂L
G(x, L) =

∞∑
n=0

( n∑
i=0

cn,iQi(L))

)
xn (67)

So all that remains is to find what the right-hand side of equation (72) looks like. Let us calculate:

βG =

( m∑
j=0

β(j)(x)
∂j

∂xj

)( ∞∑
n=0

Qn(L)x
n

)

= β(0)

( ∞∑
n=0

Qn(L)x
n

)
+ β(1) ∂

∂x

( ∞∑
n=0

Qn(L)x
n

)
+ ...+ β(m) ∂

m

∂xm

( ∞∑
n=0

Qn(L)x
n

)

= β(0)

( ∞∑
n=0

Qn(L)x
n

)
+ β(1)

( ∞∑
n=0

nQn(L)x
n−1

)
+ ...+ β(m)

( ∞∑
n=0

n(n− 1) · · · (n−m+ 1)Qn(L)x
n−m

)

=

m∑
j=0

∞∑
n=0

β(j)n(n− 1) · · · (n− j + 1)Qn(L)x
n−j

=

∞∑
n=0

m∑
j=0

β(j)n(n− 1) · · · (n− j + 1)Qn(L)x
n−j

=

∞∑
n=0

m∑
j=0

β(j) n!

(n− j)!
Qn(L)x

n−j

But now the β(j) are just power series, with coefficients as defined in (74), so we need to substitute these
in to be able to accurately compare powers of x to the left-hand side of the equation. When we do this
we get:

βG =

∞∑
n=0

m∑
j=0

( ∞∑
k=0

β
(j)
k xk

)
n!

(n− j)!
Qn(L)x

n−j

=

∞∑
n=0

m∑
j=0

∞∑
k=0

β
(j)
k

n!

(n− j)!
Qn(L)x

n−j+k

Now we want the sum to be indexed by powers of x, so we make a substitution on the indices: t = n−j+k.
This yields:

=

∞∑
t=0

m∑
j=0

∑
n−j+k=t

β
(j)
k

n!

(n− j)!
Qn(L)x

t
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Finally we can simplify the indices of the third summation as well. If n− j + k = t, and j is already fixed
by the second summation, it follows that n and k are partitioning t+ j and hence we can rewrite this as:

=

∞∑
t=0

m∑
j=0

t+j∑
n=0

β
(j)
t+j−n

n!

(n− j)!
Qn(L)x

t

and we are finished. We can now relate the left- and right-hand sides of equation (72) to obtain a form of
the generalized renormalization group equation solely in terms of formal power series:

∞∑
n=0

( n∑
i=0

cn,iQi(L))

)
xn =

∞∑
n=0

m∑
j=0

n+j∑
i=0

β
(j)
t+j−i

i!

(i− j)!
Qi(L)x

n (75)

(Note that we have changed the letters of some of the indices to avoid confusion). By comparing the
coefficients of powers of x on each side, we conclude that the following identity holds for all n ≥ 0:

n∑
i=0

cn,iQi(L) =

m∑
j=0

t+j∑
i=0

β
(j)
n+j−i

i!

(i− j)!
Qi(L) (76)

and using as before that the Qi(L) are linearly independent, we can compare their coefficients across the
equals sign as well to get that:

cn,i =

m∑
j=0

β
(j)
n+j−i

i!

(i− j)!

= β
(0)
n−i + iβ

(1)
n−i+1 + ...+ i(i− 1) · · · (i−m+ 1)β

(m)
n−i+m

In other words, when n is fixed we have that cn,i is a polynomial in i of degree m. Hence we have found
a necessary condition for which G(x, L) satisfy an mth-order generalized renormalization group equation,
as we desired.

Corollary 3.5. A Green’s function G(x, L) satisfies an mth order generalized renormalization group
equation only if—for fixed n—cn,n−i is a polynomial of degree m in i.

3.2 Statement of the Main Problem
As in the last section, let s = (tn)n≥1 be a sequence of nonzero linear combinations of trees, and let
Xs = 1 +

∑∞
n=1 tn be the corresponding sequence. We can always use the elements of s to generate a

subalgebra of HCK , however it is not always the case that this subalgebra will also be Hopf.
For example, we know that the sequence of ladders from Definition 2.25 l0 = 1, l1 = , l2 = , l3 =

, l4 = , ... will generate a Hopf subalgebra of HCK . To see this, let Al be the algebra generated by

this sequence. Then we only need to check that ∆(ln) ∈ Al ⊗Al. But this is true, since:

∆ln =

n∑
i=0

li ⊗ ln−i
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Moreover, it is also easy to check that the sequence of corollas r0 = 1, r1 = , r2 = , r3 = , r4 =

, ... generates a Hopf subalgebra as well, since:

∆(rn) =

n∑
i=0

(
n

i

)
n−i ⊗ ri ∈ Ar ⊗Ar

where we are letting Ar be the algebra generated by (rn)n≥0.
Now by Proposition 1.4.2 of [13] and the definition of a Hopf subalgebra, Al+Ar := {a+ b|a ∈ Al, b ∈

Ar} is also a Hopf subalgebra of HCK . However the algebra At generated by:

t0 = l0 + r0 = 2

t1 = l1 + r1 = 2

t2 = l2 + r2 = 2

t3 = l3 + r3 = +

t4 = l4 + r4 = +

...
tn = ln + rn

...

is not Hopf, since:

∆(t4) = ∆( + )

= t4 ⊗ 1+ 1⊗ t4 + ⊗ ( + 3 ) + ( + 3 )⊗ + ( + )⊗

However ⊗ ( + 3 ) 6∈ At ⊗At, since for ( + 3 ) to be in At we would need to be able to

write it as some linear combination of products of basis elements, but this simply cannot be done. In other
words, despite the fact that Al +Ar is a Hopf subalgebra, it is not the same algebra as that generated by
(ln + rn)n≥1, which is not Hopf.

Hence if the subalgebra generated by a sequence s as defined above is also a Hopf subalgebra, then we
will refer to s as a Hopf sequence (or we will say that the sequence is Hopf). The following definition
packages up all of this information in a nice way (this notation was first used by [24]):

Definition 3.6. Define Seq to be the set of all sequences s = (tn)n≥1 such that:
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1. tn is a nonzero linear combinations of trees, with tn ∈ K[Tn],

2. the elements of (tn)n ≥ 1 generates a Hopf subalgebra of HCK , and

3. t1 =

Note that we include this last stipulation to avoid redundancy. Indeed, as discussed in [24], if X ′ =∑∞
n=1 t

′
n generates a Hopf subalgebra and t′1 = c for c a nonzero element of K, then X = +

∑∞
n=2 t

′
n is

also Hopf. In other words, if we let Seq′ be the set of all sequences (tn)n≥1 that generate a Hopf subalgebra
without any condition on t1, then there is a bijection from K \ 0 × Seq → Seq′ mapping (c, (tn)n≥1) to
(ct1, t2, t3, ...) [24].

Now suppose that s = (tn)n≥1 is in Seq. Then we can define Feynman rules φ as discussed in Sections
2.3.4 and 3.1 to turn Xs into a Green’s function to see if it is in fact the solution of a generalized
renormalization group equation. If the series Xs satisfies a generalized renormalization group equation
of order k for some choice of φ, then we say that s is a kth order sequence (or just kth order) with
respect to φ (sometimes we will not make mention to φ when it is understood from context).

This idea of being able to choose Feynman rules leads to the following two very important notions:

Definition 3.7. If a sequence s ∈ Seq satisfies a kth order renormalization group equation for any choice
of Feynman rules and for β(k)

1 6= 0, then we say s is a strong kth order sequence.

Definition 3.8. If a sequence s ∈ Seq satisfies a kth order renormalization group equation but is not
strong, we say that it is a weak kth order sequence. This is possible in two different ways. Either

• G(x, L) = φ(Xs) satisfies a kth-order renormalization group equation for some (but not all) choices
of Feynman rules, and/or

• G(x, L) = φ(Xs) satisfies a kth-order renormalization group equation such that β(k)
1 = 0.

We will see examples of both of these definitions in later chapters.
Now that everything has been set up, we can restate the central goals of this work, which we already

alluded to in Section 1.1:

Q1: Is it possible to characterize all strong elements of Seq according to their order?

Q2: Is it possible to characterize all weak elements of Seq according to their order?

Note that in one sense we already know that the answer to Q2 is no, this is not possible, as a given
element s of Seq may satisfy generalized renormalization group equations of differing orders by making
changes to the Feynman rules φ and by considering different β-functions. Nevertheless, we will see in
Section 5.3 that the question can be solved in certain settings, and in fact leads to interesting combinatorial
answers.

On the other hand, sequences s ∈ Seq that lead to strong kth order sequences have a unique order
by which to be classified, as the conditions imposed on them mean that their order can be read off of the
left-diagonal in the array depicted in Figure 15; this order is given by the order of the sequence (λi,1)i≥1.
In Sections 5.1 and 5.3, we present a near-complete solution to this problem.

Before we present these solutions, we will first take a brief detour in the next section by presenting a
result due to Foissy characterizing which s belong in Seq. Doing so will aid in the solutions to Q1 and Q2
in Section 5.
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4 Bijection to Prelie Algebra of Formal Series
This section reports on the new results of Foissy [24], and we will closely follow the presentation therein.

4.1 Main Result
To begin, let Seq be the set of sequences of linear combinations of trees as defined in Definition 3.6. The
following is the main result of this section:

Theorem 4.1 (Foissy, 2018). Let Λ be the set of all doubly-indexed sequences (λi,j)i,j≥1 that satisfy the
following two properties:

1. (Non degeneracy) For every n ≥ 2, there exist i, j ≥ 1 such that i+ j = n and λi,j 6= 0.

2. (Prelie) For every i, j, k ≥ 1, the following identity holds true:

λi,jλi+j,k − λj,kλi,j+k = λi,kλi+k,j − λk,jλi,j+k (77)

Then there is a bijection Θ : Seq → Λ.

To illustrate, the theorem states that every sequence we desire in Seq has a corresponding array15:

λ1,1
λ2,1 λ1,2

λ3,1 λ2,2 λ1,3
λ4,1 λ3,2 λ2,3 λ1,4

...

Figure 16: A generic element of Λ.

in which the elements of the array satisfy the prelie relation (77) and in which every row has at least one
nonzero entry. As in [24], we will first show the existence of the desired map Θ, and then after the proof
of the theorem we will describe the map’s explicit form.

Before we prove the main result we require the following lemma, which explains that the elements in
the Λ-arrays above are the structure coefficients of a prelie algebra of formal variables:

Lemma 4.2. Let (λi,j)i,j≥1 ∈ Λ, and define a prelie structure on the space V = V ect(Xi, i ≥ 1) of formal
variables Xi by:

Xi . Xj = λi,jXi+j (78)

Then (V, .) is graded, with Xi homogeneous of degree i for any i, and is generated by X1.

Proof. First, observe that the prelie relation in (V, .) is equivalent to (77). To see this, note that the
standard prelie relation in any prelie algebra has the form (see Definition 2.38) :

(a ∗ b) ∗ c− a ∗ (b ∗ c) = (a ∗ c) ∗ b− a ∗ (c ∗ b)
15As we can always write down the doubly-indexed sequence (λi,j)i,j≥1 in this way, we will often refer to an element of Λ

simply as a Λ-array. Moreover, if we are computing the Λ-array for a specific sequence of trees σ = (tn)n≥1 ∈ Seq, we will
most often use the convention of writing Λσ to refer to the element Θ(σ) ∈ Λ
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for elements a, b, and c. Hence in (V, .), this looks like:

(Xi . Xj) . Xk −Xi . (Xj . Xk) = (Xi . Xk) . Xj −Xi . (Xk . Xj)

Then applying (78), the above equation becomes:

(λi,jXi+j) . Xk −Xi . (λj,kXj+k) = (λi,kXi+k) . Xj −Xi . (λk,jXj+k)

=⇒ λi,jλi+j,kXi+j+k − λj,kλi,j+kXi+j+k = λi,kλi+k,jXi+j+k − λk,jλi,j+kXi+j+k

which is equivalent to (77).
Now we can prove by induction that (V, .) is generated by X1. Let V ′ be the subalgebra of V generated

by X1. Hence as a base case, X1 ∈ V ′ trivially. Now assume that Xi is in V ′ for all integer values from 1
up to k, for some k, and consider Xk+1. By the non degeneracy condition of the λi,j ’s, there exist i, j ≥ 1
such that i+ j = k + 1 with λi,j 6= 0. Hence Xi . Xj = λi,jXk+1, which implies that Xk+1 = 1

λi,j
Xi . Xj

(since λi,j 6= 0), hence Xk+1 ∈ V ′ as well. Thus, V = V ′.

We now proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1: We will start by defining the main algebraic objects:

• Let (tn)n≥1 be an element of Seq, and define A to be the algebra they generate.

• Define the prelie algebra g = (Prim(HGL), .), where . is the prelie product inherited from HGL by
restricting mHGL

to trees (since Prim(HGL) consists only of trees. See 2.1.4 ). In particular, if we
use ∗ to denote the product in HGL, then we may define . as x. y = x ∗ y−xy, for x, y ∈ HGL (that
is, we obtain x . y simply by subtracting off the term of x ∗ y corresponding to the forest xy).

• Define I := A⊥, the orthogonal complement of A with respect to the inner product defined in Section
2.1.4 (see equation (27)).

• Let A∗ be the graded dual of A.

To prove this result, we will construct Θ by first finding a nice description of A∗, and then building Θ via
a comparison between the elements of a basis for A∗ with our chosen basis for A (the sequence (tn)n≥1).
Hence the strategy of the proof is to show the existence of the following claimed bijection:

Claim 1:
A∗ ↔ U(g/(g ∩ I)) (79)

where we use ↔ to mean bijective correspondance and as before we use U to mean the universal enveloping
algebra of g/(g ∩ I). Proving this claim will tell us what A∗ looks like, and will consequently allow us to
define the map Θ by taking (tn)n≥1 as a basis for A and comparing it to its dual basis, which will define
the values λi,j .

Proof of Claim 1: To begin, note that I is a biideal of HGL since A is a graded Hopf subalgebra of HCK .
Moreover, we get that A∗ ' HGL/I by virtue of the fact that I is the orthogonal complement of A.
Next, recall from Section 2.1.4 that HGL is the enveloping algebra of g; this comes from the Milnor-
Moore Theorem (Theorem 2.8) and the fact that HGL is connected, graded, and cocommutative. Since
we identified A∗ with HGL/I, it then follows that A∗ is the enveloping algebra of g/(g ∩ I) as claimed.
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The only thing left to do is prove that g ∩ I is in fact a prelie ideal16 of g. We were able to quotient
g by g ∩ I since we knew g ∩ I was an algebra ideal, but if we show that it is a prelie ideal as well then
g/(g ∩ I) will inherit a prelie product. To do this, let x ∈ g and y ∈ I. Membership in I is determined
by the orthogonality with respect to our inner product, hence we want to show that for any k and any
ta1ta2ta3 · · · tak (with ai ≥ 1 arbitrary):

〈x . y, ta1ta2ta3 · · · tak〉 = 0

By definition of the prelie product ., x . y is a linear combination of trees (since x and y are trees—see
section 2.1.4), and for k ≥ 2, ta1ta2ta3 · · · tak is a forest, hence 〈x . y, ta1ta2ta3 · · · tak〉 = 0. If k = 1, then
we have:

〈x . y, ta1ta2ta3 · · · tak〉 = 〈x . y, ta1〉+ 〈xy, ta1〉 (Since 〈xy, ta1〉 = 0)
= 〈x . y + xy, ta1〉 (By bilinearity)
= 〈x ∗ y, ta1〉 (By definition of .)
= 〈x⊗ y,∆(ta1)〉

where in the second to last line we again use ∗ to mean the multiplication mHGL
. Now since ∆(ta1) ∈ A⊗A

〈x ⊗ y,∆(ta1)〉 = 0, since y ∈ I, the orthogonal complement of A. Hence x . y ∈ g ∩ I and g ∩ I is in
fact a prelie ideal of g. This validates our claim that g/(g ∩ I) is a valid quotient, and it inherits a prelie
structure as well (the operation of which is canonical, and will also be denoted by .).

Now that we have proven the claim, we may continue by comparing the basis elements of A to the basis
elements of A∗. We will compute the canonical basis of A∗, which we denote (ek)k≥1. These are obtained
via the relation:

〈ek, tl〉 = δk,l (80)
where δk,l is the Kronecker delta function.

This means that, as t1 = , e1 = + I. Moreover, as g is freely generated by (see [6]), it follows
that g/(g∩ I) is generated by e1. Hence ek is homogeneous of degree k for any k ≥ 1, and since the prelie
product . is homogeneous as well, we get that for any i, j ≥ 1, there exists an element λi,j ∈ K such that:

ei . ej = λi,jei+j

Claim 2: The λi,j satisfy the prelie relation in the theorem statement.

Proof of Claim 2: This follows immediately from the calculation showed in the proof of Lemma 4.2.

Claim 3: The λi,j satisfy the non degeneracy condition of the theorem statement.

Proof of Claim 3: We assume towards a contradiction that there exists n ≥ 2 such that for every i, j with
i + j = n, λi,j = 0. Define the prelie algebra g′ = V ect(ek, k 6= n). It then follows that for any indices i
and j such that i+ j = n, ei . ej = λi,jei+j = 0 · ei+j ∈ (0). Otherwise if i+ j 6= n, ei . ej = λi,jei+j ∈ g′,
since λi,j is not 0 in this case. Consequently, g′ is a strict prelie subalgebra of g/(g∩I), yet it still contains
e1 (since we stipulated n ≥ 2 above). But this is impossible, as we have already noted that e1 generates
g/(g ∩ I) so that g′ must not be strict, but rather all of g/(g ∩ I). Therefore we conclude that for every
n ≥ 2, there exist i, j with i+ j = n such that λi,j 6= 0, as desired.

16By prelie ideal, we mean exactly what the reader likely expects: That for a prelie subalgebra I of a prelie algebra L, for
every a ∈ I and b ∈ L, a . b ∈ I. In this case I is a prelie ideal of L.
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This shows the existence of the map Θ : Seq → Λ. Now all that we need to do is show that Θ is a
bijection.

Claim 4: The map Θ is injective.

Proof of Claim 4: In both the proof of this claim and the next, the key is to use that g is the unique prelie
algebra freely generated by . To begin, assume that Θ((tn)n≥1) = (λi,j)i,j≥1 = Θ((t′n)n≥1). We desire
to show that (tn)n≥1 = (t′n)n≥1.

To fix notation, let (V, .) be the prelie algebra of Lemma 4.2, and let I and I ′ be the orthogonal
complements of A and A′ (the algebras generated by(tn)n≥1 and (t′n)n≥1 respectively). Further, define
maps φ : g/(g ∩ I) → V sending ei to Xi, and φ′ : g/(g ∩ I ′) → V sending e′i to Xi. These maps extend
to Hopf algebra morphisms Φ : HGL/I → U(V ) and Φ′ : HGL/I

′ → U(V ′), by virtue of properties of the
universal enveloping algebra. Finally, we can dualize the maps to get injective morphisms Φ∗ : U(V )∗ →
HCK sending X∗i to ti and Φ′

∗
: U(V )∗ → HCK sending X∗i to t′i.

But as discussed above, g is the unique prelie algebra freely generated by , consequently there is a
unique map ψ that sends to X1, as all other values of ψ are then determined. Moreover there is a
unique canonical (and surjective) map from g to g/(g∩I) (respectively from g to g/(g∩I ′)) by property of
quotients, which we will call π (respectively π′)17. This means that the following diagrams must commute:

g g/(g ∩ I)

V

π

ψ
φ

g g/(g ∩ I ′)

V

π′

ψ
φ′

Figure 17: The maps described in the proof of claim 4.

Hence ψ = φ ◦ π and ψ = φ′ ◦ π′ and so φ ◦ π = φ′ ◦ π′. However the map ψ is unique, hence it must
be that I = I ′ and φ = φ′, and this further implies by construction of Φ,Φ′ as canonical extensions, and
Φ∗, Φ′∗ as dual maps that Φ = Φ′ and Φ∗ = Φ′

∗. Hence we also get that (tn)n≥1 = (t′n)n≥1, and so Θ is
injective as claimed.

Claim 5: The map Θ is surjective.

Proof of Claim 5: The proof of this claim makes use of similar maps as in the proof of Claim 4. As before,
define (V, .) to be the prelie algebra on formal variables as defined in Lemma 4.2. To show surjectivity,
we take (λi,j)i,j≥1 ∈ Λ arbitrarily and want to show that there exists a sequence (tn)n≥1 ∈ Seq such that
Θ((tn)n≥1) = (λi,j)i,j≥1. Again, since V is generated freely by X1, there must be a unique, surjective prelie
morphism φ : g → V such that φ( ) = X1. As before, we can extend this to a Hopf algebra morphism
Φ : HGL → U(V ) that preserves surjectivity, and then take the dual of this map to get Φ∗ : U(V )∗ → HCK ,
which must be injective (by properties of duality). Now for each n ≥ 1 set tn = Φ∗(X∗n). This shows the
existence of (tn)n≥1 such that Θ((tn)n≥1) = (λi,j)i,j≥1. We know further that (tn≥1) is in fact an element
of Seq, as the fact that φ( +I) = X1 ensures that t1 = , and Φ∗ being injective ensures that the kernel
of Φ∗ is trivial, and hence that tn is a nonzero linear combination of trees.

We have shown that Θ : Seq → Λ exists and is a bijection. This completes the proof of the theorem.
17These canonical maps are given by π(a) = a+ I and π′(b) = b+ I′ [43].
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Now the details of the proof of Theorem 4.1 might leave the reader without a clear sense of how to
apply Θ in practical applications (as well as how to apply Θ−1, which we have not yet described). However,
it is straightforward to describe how to do this, which we do now.

Given (tn)n≥1 ∈ Seq, the coproduct of tn for a given n will look like:

∆(tn) = tn ⊗ 1+ 1⊗ tn +

( n−1∑
i=1

[λi,n−itn−i + Pi,n−i]⊗ ti

)
where Pi,n−i is a polynomial in t1, ..., tn−i−1 homogeneous of degree (n − i). In other words, in the
coproduct of tn, there will be exactly n− 1 terms (possibly with coefficient 0) with a tree tensor another
tree, and the λi,j are found as the coefficients of such. We will see an example in the next section, and
further examples in Appendix C.

Now how do we apply Θ−1 : Λ → Seq? Since Θ−1 is actually the map Φ∗ (see proof of Claim 5 in
Theorem 4.1), we need to understand the structure of the universal enveloping algebra of a prelie algebra.
Thankfully, this is the contents of Theorem 2.40 (Proposition 2.7 of [38]). If we denote once again by (V, .)
the prelie algebra described in Lemma 4.2, then the aforementioned theorem tells us how . extends to the
Hopf algebra S(V ); namely, for X1 ∈ V and Xi1 ...Xik ∈ S(V ), the recurrences in the theorem give that
X1 . Xi1 ...Xik ∈ V (not S(V )). Hence there must exist a scalar λ(i1, ..., ik) depending only on i1, ..., ik
such that:

X1 . Xi1 ...Xik = λ(i1, ..., ik)X1+i1+...+ik

where we are also using that the prelie product . is homogeneous (even after being extended to S(V ).
Note also that this means that the coefficients λ(i1, ..., ik) are symmetric in their arguments). While the
use of the letter λ both for the coefficients λi,j and for the coefficients λ(i1, ..., ik) might at first seem
confusing, this choice is intentional in order to stress their fundamental connection: namely, λi,j are
structure coefficients in V , and λ(i1, ..., ik) are structure coefficients in S(V ).

Moreover, we can use Theorem 2.40 to compute the coefficients λ(i1, ..., ik) by induction on k, and get
that [24]:

λ(i1, ..., ik) =


1 if k = 0,
λ1,i1 if k = 1,
λ(i1, ..., ik−1)λ1+i1+...+ik−1,ik −

∑k−1
j=1 λ(i1, ..., ij + ik, ..., ik−1)λij ,ik otherwise.

(81)

Finally, we again rely on the map φ : g → V that is the unique prelie morphism such that φ( ) = X1.
Lemma 4.3. Let t ∈ T , and set φ(t) = µ(t)X|t|. Then:

µ(t) =
∏

s∈V (t)

λ(|α(s)
1 |, · · · , |α(s)

k(s)|) (82)

where V (t) denotes the vertex set of t, k(s) is the number of subtrees of ts, and the α(s)
i are the subtrees

of ts.
Proof. Suppose that t = B+(α1 · · ·αk). By definition of ., this means that t = . α1...αk. Hence:

φ(t) = φ( . α1...αk)

= X1 . φ(α1) · · ·φ(αk)
= µ(α1) · · ·µ(αk)λ(|α1|, ..., |αk|)X|t|

58



This proves the result by recursing on the µ(αi).

Hence, putting everything together:

tn =
∑
t∈Tn

µ(t)

|Sym(t)|
t (83)

where the factor of 1
|Sym(t)| is coming from the fact that the λ(i1, ..., ik) are symmetric with respect to

their arguments.

4.2 Examples
Our intention now is to tie together the material of Section 3 with that of the previous subsection via
some examples. To start, let us demonstrate the method of computing Θ((tn)n≥1) using the procedure
described in the last section.

Example 4.4. We will give an example of the bijection by applying Θ to the sequence of generators of
the Hopf subalgebra of binary trees. Denote this sequence by (xn)n≥1, and let X = 1 +

∑∞
n=1 xn. Then

one way we can describe the series X is by the functional equation:

X = 1+B+(X2) (84)

where, due to the graded nature of HCK , we can leave out the instance of any formal counting variables.
We also remark that this is an instance of a series coming from a combinatorial Dyson-Schwinger equation.
These are written about in detail in [20]. One can also find the family of these sequences in Table 5 in
Appendix C.

The functional equation (84) determines the sequence (xn)n≥1 recursively as follows:

x1 =

xk = 2xk−1 +B+

( k−2∑
i=1

xixk−i

)
for k ≥ 2

We call the sequence (xn)n≥1 the sequence of binary rooted trees as each xn will be a linear combination
of trees having the structure of a binary tree (in the classical sense of every vertex in the tree having either
0, 1, or 2 children), and the coefficient of each tree T in the sum xn will be the number of planar embeddings
of T that distinguish between left and right children for every vertex. To demonstrate, the first few xn
look like:
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Figure 19: Planar embeddings of a tree that distinguish between left and right children at each vertex.

x1 =

x2 = 2

x3 = 4 +

x4 = 8 + 4 + 2

x5 = 16 + 4 + 8 + 8 + 2 + 4

Figure 18: The first few elements in the sequence of rooted binary trees.

Hence the tree has coefficient 4, for example, since there are 4 different planar embeddings of with

left- and right-children distinguished. These are depicted in Figure 19.
Let us compute the coproduct of each xn in order to find what Θ((xn)n≥1) looks like in Λ, keeping
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track of the λi,j with red text and a box. We have:

∆(x1) = x1 ⊗ 1+ 1⊗ x1

∆(x2) = x2 ⊗ 1++1⊗ x2 + 2 x1 ⊗ x1

∆(x3) = x3 ⊗ 1+ 1⊗ x3 + ⊗ 6 + [4 + ]⊗

= x3 ⊗ 1+ 1⊗ x3 + 3 x1 ⊗ x2 + [ 2 x2 + x21]⊗ x1

∆(x4) = x4 ⊗ 1+ 1⊗ x4 + ⊗ [8 + 4 + 4 + 2 · 2 ]

+ [8 + 4 + 4 + 2 ]⊗ + [8 + 4 + 2 ]⊗

= x4 ⊗ 1+ 1⊗ x4 + 4 x1 ⊗ x3 + [ 3 x2 + 3x21]⊗ x2 + [ 2 x2 + 2x2x1]⊗ x1

...

Hence the beginning of the corresponding Λ-array will look like:

2
3 2

4 3 2
...

Indeed, it is not hard to show that for the sequence of binary trees, λi,j = i+1. We will defer proof of this
fact, as it is actually a special case of Foissy’s parameterization of sequences coming from Dyson-Schwinger
equations, as mentioned above (with the specialization a = b = 1). See Appendix C.

Now suppose we were in the opposite scenario, having (λi,j)i,j≥1 ∈ Λ given by λi,j = i + 1, and
wanted to compute the corresponding element of Seq. Then we simply apply equations (83) and (81)
algorithmically, splitting up the computation according to the size of the trees under consideration. For
trees of size 1:

x′1 =
∑
t∈T1

µ(t)

|Sym(t)|
t

= µ( )

=
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For trees of size 2:

x′2 =
∑
t∈T2

µ(t)

|Sym(t)|
t

= µ( )

= λ(1)

= λ1,1

= 2

For trees of size 3:

x′3 =
∑
t∈T3

µ(t)

|Sym(t)|
t

= µ( ) +
µ( )

2

= λ(2)λ(1) +
λ(1, 1)

2

= λ1,2λ1,1 +
λ(1)λ2,1 − λ(2)λ1,1

2

= (2)(2) +
λ1,1λ2,1 − λ1,2λ1,1

2

= 4 +
(2)(3)− (2)(2)

2

= 4 +

We could continue in this way to compute all x′n, and indeed would find that x′n = xn for all n.

Remark. We remark that the doubly-indexed sequences of elements λi,j appearing in this section are
exactly those that appeared in Section 3.1. It was not clear in Section 3.1 that the λi,j as presented in that
section had the same prelie relationship that the λi,j here do, but the fact that the two doubly-indexed
sequences are the same is clear from the fact that they are precisely the same combinatorially: both are
the coefficients of the tree-tensor-tree terms in the sequence (∆(tn))n≥1 for (tn)n≥1 ∈ Seq.
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5 Main Results
5.1 0th Order Strong
In this section, we present the full characterization of elements of Seq that are strong 0th-order sequences
(see Definition 3.7). We build up to this result with a few lemmata.

Lemma 5.1. Let ω = (λi,j)i,j≥1 be an element of Λ and s1 = (λi,1)i≥1 and s2 = (λ1,i)i≥1 such that
λi,1 6= 0 for all i. Then for every i, j ≥ 1, λi,j can be expressed in terms of the elements of s1 and s2.

Pictorially, this means that the following infinite array of λi,j ’s is completely filled in after we know
the array is prelie and the values on the outer two edges (and such that the left edge does not contain any
zeroes):

λ1,1
λ2,1 λ1,2

λ3,1 λ2,2 λ1,3
λ4,1 λ3,2 λ2,3 λ1,4

...

Proof. Let ω ∈ Λ be given as in the statement of the lemma. We will use induction on the first index of
the λi,j ’s to show that (λi,j)i,j≥1 is completely determined by s1 and s2.

To begin, recall the prelie axiom (equation (77)) for elements (λi,j)i,j≥1 ∈ Λ. For convenience, we write
it again here. It says that, for all i, j, k ≥ 1:

λi,jλi+j,k − λj,kλi,j+k = λi,kλi+k,j − λk,jλi,k+j (77)

As a base case, let k ≥ 1 be arbitrary and consider the element λ2,k in (λi,j)i,j≥1. If we set i = j = 1
in the prelie relation above, then we obtain:

λ1,1λ2,k − λ1,kλ1,1+k = λ1,kλ1+k,1 − λk,1λ1,k+1

=⇒ λ2,k =
λ1,kλ1+k,1 − λk,1λ1,k+1 + λ1,kλ1,1+k

λ1,1

In particular, note that λ1,k, λ1,k+1, λ1,1 ∈ (λ1,i)i≥1 and λk,1, λ1+k,1 ∈ (λi,1)i≥1, hence λ2,k is determined
by (λ1,i)i≥1 and (λi,1)i≥1 for all k ≥ 1.

Now suppose that λi,k can be expressed in terms of (λ1,i)i≥1 and (λi,1)i≥1 for all positive integers
1, 2, ..., i and for all k ≥ 1. Let l ≥ 1 be arbitrary and consider the element λi+1,l. In the prelie relation
above, set i = i, j = 1, k = l. Then we obtain:

λi,1λi+1,l − λ1,lλi,l+1 = λi,lλi+l,1 − λl,1λi,l+1

=⇒ λi+1,l =
λi,lλi+l,1 − λl,1λi,l+1 + λ1,lλi,l+1

λi,1

In particular, note that λ1,l ∈ (λ1,i)i≥1 and λl,1, λi,1, λi+l,1 ∈ (λi,1)i≥1. Moreover, λi,l, λi,l+1 can be
expressed in terms of (λ1,i)i≥1 and (λi,1)i≥1 by the inductive hypothesis. Hence λi+1,l can be expressed
solely in terms of (λ1,i)i≥1 and (λi,1)i≥1.

This proves the desired result.
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We get for free the following consequence:

Corollary 5.2. Every strong 0th order sequence in Seq is completely determined by the single sequence
(λ1,i)i≥1.

Proof. By the non-degeneracy condition of Theorem 4.1, every element of Λ has λ1,1 = k 6= 0. Moreover,
every strong 0th order sequence has that (λi,j0)i≥0 is a constant sequence. Consequently λi,1 = k for all i
and so by the lemma, (λ1,i)i≥1 is all that is left to describe the interior of the Λ-array.

Since Lemma 5.1 says that each λi,j in a prelie array can be expressed in terms of the outer two edges
s1 and s2 when s1 contains no zeros, perhaps the next most natural question is what this expression looks
like. This is the contents of the following:

Lemma 5.3. For a prelie array ω = (λi,j)i,j≥1, with s1 and s2 the outer sequences as in Lemma 5.1 (and
such that s1 contains no zeros), put s1 = (yn)n∈N and s2 = (xn)n∈N. Then for all i, j ≥ 1:

λi,j =

∑i+j−1
n=j

(
i−1
n−j

)
xn

∏i+j−1
m=n+1 ym

∏n−1
l=j (xl − yl)∏i−1

p=2 yp
(85)

Proof. The proof proceeds by a simple induction on the index i of the λi,j ’s. To begin, recall the rearranged
prelie relation of the Lemma 5.1. It gives that for all i, j, k ≥ 1:

λi+1,j =
λi,jλi+j,1 − λj,1λi,j+1 + λ1,jλi,j+1

λi,1
(86)

Then for i = 1 and j arbitrary, we have:

λ2,j =
λ1,jλ1+j,1 − λj,1λ1,j+1 + λ1,jλ1,j+1

λ1,1

= xjyj+1 − yjxj+1 + xjyj+1

= xj+1(xj − yj) + xjyj+1

which is equivalent to equation (85) for i = 2 and j arbitrary.
Now we induct: Suppose the statement is true for all positive integer values of the first index from 1

up to some arbitrary i. Consider the case of i+ 1:

λi+1,j =
λi,jλi+j,1 − λj,1λi,j+1 + λ1,jλi,j+1

λi,1

=
1

yi
[yi+jλi,j − yjλi,j+1 + xjλi,j+1]

=
1

yi
[yi+jλi,j + (xj − yj)λi,j+1]

=
1

yi

[
yi+j

∑i+j−1
n=j

(
i−1
n−j

)
xn

∏i+j−1
m=n+1 ym

∏n−1
l=j+1(xl − yl)∏i−1

p=2 yp

]

+
1

yi

[
(xj − yj)

∑i+j
n=j+1

(
i−1

n−j−1
)
xn

∏i+j
m=n+1 ym

∏n−1
l=j+1(xl − yl)∏i−1

p=2 yp

]
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Now we can gather all the denominators and release n = j from the first summation and n = i + j from
the second summation in order to write the rest with just a single sigma:

=
1∏i

p=2 yp

[[
yi+j

(
i− 1

0

)
xj

i+j−1∏
m=j+1

ym

]
+

[
(xj − yj)

(
i− 1

i− 1

)
xi+j

i+j−1∏
l=j

(xl − yl)

]

+

i+j−1∑
n=j+1

[
yi+j

(
i− 1

n− j

)
xn

i+j−1∏
m=n+1

ym

n−1∏
l=j+1

(xl − yl) + (xj − yj)

(
i− 1

n− j − 1

)
xn

i+j−1∏
m=n+1

ym

n−1∏
l=j+1

(xl − yl)

]]

Factoring, we get:

=
1∏i

p=2 yp

[[
xj

i+j∏
m=j+1

ym

]
+

[
xi+j

i+j−1∏
l=j

(xl − yl)

]

+

i+j−1∑
n=j+1

xn

i+j∏
m=n+1

ym

n−1∏
l=j+1

(xl − yl)

[(
i− 1

n− j

)
+

(
i− 1

n− j − 1

)]]

Which due to the binomial identity
(
i−1
n−j

)
+

(
i−1

n−j−1
)
=

(
i

n−j
)

gives us:

λi,j =

∑i+j−1
n=j

(
i−1
n−j

)
xn

∏i+j−1
m=n+1 ym

∏n−1
l=j (xl − yl)∏i−1

p=2 yp

which is equation 85

Corollary 5.4. Under the same conditions as Lemma 5.1:

(i) All zeroeth order elements of Seq have Λ-sequences such that:

λi,j =

i+j−1∑
k=j

(
i− 1

k − j

)
xk

∑
I⊆{j,j+1,...,k−1}

(−1)|I|−ixI (87)

With these lemmas in place, we can now present the central theorem of this subsection:

Theorem 5.5 (Classification of Strong 0th Order Sequences). Let b ∈ K. Then the only elements of Seq
satisfying a 0th order generalized renormalization group equation for every choice of θ in the general tree
Feynman rules are of the form:

X = B+(exp([

n−1∑
i=1

Pi] + bPn)) (88)

or

X = B+(exp(

∞∑
i=1

Pi)) (89)

where the Pi are the basis elements for the Hopf algebra of ladders, as defined in Lemma 2.37 (see also
[21]).
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Proof. To fix notation, set s = (xn)n≥0 and let X =
∑∞
n=0 xn be the corresponding series. Further define

As to be the algebra generated by the elements in s.
The proof will be broken up into three parts. First, we will show that the algebra As is a Hopf

subalgebra of HCK . We will then show that the corresponding Λ-array, which we denote Λs, has the form

1
1 1

1 1
...

1 1
... 1

1 1
... 1 b

1 1
... 1 b 0

1 1
... 1 b 0 0

1 1
... 1 b 0 0 0

(where b is the nth element of the sequence (λ1,i)i≥1), and consequently satisfies a 0th order generalized
renormalization group equation for all choices of θ in the generalized tree Feynman rules (equation (62)).
Finally, we will conclude by showing that all other choices of (λ1,i)i≥1 result in a Λ-array that has non-
constant diagonals, thereby demonstrating that equations (88) and (89) give all 0th order strong sequences.

To begin, we show that ∆(X) ⊆ As ⊗ As, which is sufficient to show that As is Hopf since the xn
generate As. Let n be fixed and let Z = [

∑n−1
i=1 Pi] + bPn. Then:

∆(X) = ∆(B+(exp(Z)))

= (B+(exp(Z)))⊗ 1+ (id⊗B+)(∆(exp(Z))) (By the Hochschild cocycle property of B+)
= X ⊗ 1+ (id⊗B+)(exp(Z)⊗ exp(Z)) (exp(Z) is group-like since Z is primitive)
= X ⊗ 1+ exp(Z)⊗B+(exp(Z))

= X ⊗ 1+ exp(Z)⊗X

= X ⊗ 1+ exp([

n−1∑
i=1

Pi] + bPn)⊗X

= X ⊗ 1+ (

∞∑
m=0

1

m!
(P1 + P2 + ...+ bPn)

m)⊗X

What does the graded piece of ∆(X) of degree ` look like? In analogy with coefficient extraction when
working with power series, we will denote this term by [`]∆(X):

[`]∆(X) = x` ⊗ 1+
∑̀
i=1

[i](

∞∑
m=0

1

m!
(P1 + P2 + ...+ bPn)

m)⊗ x`−i (90)

Hence the problem really boils down to extracting the ith piece of the power series
∑∞
m=0

1
m! (P1 + P2 +

... + bPn)
m (notice that this is just B−(X)). In the next two steps we expand the expression using the

66



multinomial theorem and then apply coefficient extraction:

[i](

∞∑
m=0

1

m!
(P1 + P2 + ...+ bPn)

m) = [i]

∞∑
m=0

1

m!

∑
k1+k2+...+kn=m

(
m

k1, k2, ..., kn

) m∏
t=1

bknP ktt

=

i∑
j=1

1

j!

∑
k1+k2+...+kn=j
k1+2k2+...nkn=i

(
j

k1, k2, ..., kn

) m∏
t=1

bknP ktt

But using the condition k1 + k2 + ... + kn = j, we can combine the two sums under one sigma, so the
previous equation is equal to:

=
∑

k1+2k2+...nkn=i

1

(k1 + k2 + ...+ kn)!

(
k1 + k2 + ...+ kn
k1, k2, ..., kn

) m∏
t=1

bknP ktt

=
∑

k1+2k2+...nkn=i

1

(k1 + k2 + ...+ kn)!

(k1 + k2 + ...+ kn)!

k1! k2! · · · kn!

m∏
t=1

bknP ktt

=
∑

k1+2k2+...nkn=i

1

k1! k2! · · · kn!
P k11 P k22 · · · (bPn)kn

What this means is that the terms of X are exactly:

[i]X = B+(
∑

k1+2k2+...nkn=i−1

1

k1! k2! · · · kn!
P k11 P k22 · · · (bPn)kn) (91)

and the desired quantity from equation (90) is:

[`]∆(X) = x` ⊗ 1+
∑̀
i=1

( ∑
k1+2k2+...nkn=i−1

1

k1! k2! · · · kn!
P k11 P k22 · · · bknP knn

)
⊗ x`−i (92)

We claim that equation (92) implies that As is Hopf. To see why, recall the definition of our map
ω = exp∗(ζ) from equation (43) in Section 2.2.2. In that section we saw that Pi = ω−1(li) for li the ladder
on i vertices (Definition 2.25). Note that for i at most n, the right hand side of equation 91 is exactly ω(Pi)
(or ω(bPn)) , which is ω(ω−1(li)) = li (respectively ω(ω−1(bln)) = bln), so the first n+1 terms of X agree
with the sequence of ladders. (The reason it is n + 1 and not n is because we are applying B+). Hence
we know that ∆(X) ⊆ As ⊗As for the first n+1 terms of X. But then for j greater than n+1, equation
(90) tells us that the left side of every tensor product in ∆̃(xj) is just a product of l1, l2, ..., ln, bln+1.
Since we already knew that the right side of every tensor product was an element of X, it follows that
∆(X) ⊆ As ⊗As as desired. Examples of the first few sequences X of this form follow the proof.

Next we want to show that Λs is of the form claimed. This is a straightforward computation. Firstly,
for any ` ≥ 1, λ`,1 is the coefficient of the term in equation (90) when i = 1. But this term is just P1⊗x`−1,
hence λ`,1 = 1 for all `. On the other hand, by the analysis in the previous paragraph we know that for
` > n+ 1, x` is B+ applied to a specific sum of products of the l1, l2..., bln+1. Since λ1,` is the coefficient
of B−(x`), this means that λ1,` = 0 for all ` > n + 1 whereas λ1,` = 1 for ` < n and λ1,n = b (since the
first n + 1 terms are the first n + 1 ladders). Finally, since As is Hopf by the first part of the proof and
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we know the two outer edges of the array, it follows that the inside of the array is filled in according to
Lemma 5.3. It is easy to verify that this is of the form claimed.

Finally, we show that the only 0th-order strong elements are of the form described in the theorem
statement. Suppose we have some other 0th order element ΛY of Λ, so λi,j ∈ ΛY are such that λi,1 = 1
for all i and (λ1,i) = (1, 1, 1, ...1, an, an+1, an+2, ...) for (n − 1) 1’s followed by some an different from 1
and am any element of K, for m > n. Observe that this setup accounts for all Λ-arrays not of the form
described above.

Now since this new array is an element of Λ and is 0th order, it follows that its members must satisfy
the form given in Corollary 5.4 item (i). Let us look at the sequence λi,n for n fixed and i varying over N.
Using the corollary, the elements of this sequence start:

λ1,n = an

λ2,n =

n+1∑
k=n

(
1

k − n

)
ak

∑
I⊆{n−1,n,...,k−1}

(−1)|I|−iaI

=

(
1

0

)
an · (1) +

(
1

1

)
an+1(−1 + an)

= anan+1 + an − an+1

λ3,n = anan+1an+2 + 2anan+1 − anan+2 − an+1an+2 + an − 2an+1 + an+2

...

Now for ΛY to satisfy a 0th order generalized renormalization group equation for all choices of θ, we need
the sequence (λi,n−1)i≥1 to be constant. In other words, we need λ2,n = an, so:

an = anan+1 + an − an+1

which implies that anan+1 = an+1. Since an 6= 1, it follows that an+1 = 0. Additionally, we need
λ3,n = an, which gives:

an = anan+1an+2 + 2anan+1 − anan+2 − an+1an+2 + an − 2an+1 + an+2

=⇒ an = −anan+2 + an + an+2

which as before implies that an+2 = 0. By induction on i, we find that:

λi,n =

i+n−1∑
k=n

(
i− 1

k − n

)
ak

∑
I⊆{j,j+1,...,k−1}

(−1)|I|−iaI

=⇒ an = anan+i + an − an+i

so an+i = 0 for all i ≥ 1.
This completes the proof.

Example 5.6. We conclude this subsection with some examples of the first few sequences of the form
described in Theorem 5.5.
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Λ-array Element of Seq Generated by:

1
1 0

1 0 0
1 0 0 0

1 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

t1 =

t2 =

t3 =
1

2

t4 =
1

6

t5 =
1

24

t6 =
1

120

B+(exp(P1))

1
1 1

1 1 0
1 1 0 0

1 1 0 0 0
1 1 0 0 0 0

1 1 0 0 0 0 0
1 1 0 0 0 0 0 0

t1 =

t2 =

t3 =

t4 = − 1

3

t5 =
1

2
− 1

12

B+(exp(P1 + P2))

1
1 1

1 1 1
1 1 1 0

1 1 1 0 0
1 1 1 0 0 0

1 1 1 0 0 0 0
1 1 1 0 0 0 0 0

t1 =

t2 =

t3 =

t4 =

t5 = +
1

2
− +

1

4

t6 = − 1

2
+

1

20

B+(exp(P1 + P2 + P3))
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1
1 1

1 1 b
1 1 b 0

1 1 b 0 0
1 1 b 0 0 0

1 1 b 0 0 0 0
1 1 b 0 0 0 0 0

t1 =

t2 =

t3 =

t4 = b − (b− 1) +
1

3
(b− 1)

t5 = b +
1

2
− b +

1

3
(b− 1

4
)

B+(exp(P1 + P2 + bP3))

Table 3: A few sequences X from Theorem 5.5.

5.2 kth Order Strong
In light of the classification of strong 0th order elements of Seq given in the last section, a natural question
arises: Namely, is there a similar classification for strong kth order sequences for arbitrary k? This question
is the central theme of the present section. Then in Section 5.3 we discuss the alternative next question,
being: Given the results of Section 5.1, is there a similar classification for all weak 0th order sequences?

To begin, we start with first-order sequences and a few lemmas pertaining to them:

Lemma 5.7. Let a and b be arbitrary elements of K such that a 6= −nb for any positive integer n ∈ N,
and let d ∈ K be any element. Consider the first-order element of Seq generated by λi,1 = ai+ b for i ≥ 1
and λ1,j = d for j ≥ 2. Then d can take on exactly four values: d ∈ {0,−a, b, a+ b}

Hence the lemma claims that there are only four families of Hopf subalgebra for any first-order sequence
with right-diagonal of its Λ-array constant from the second index on. The general Λ-array described in
the lemma has the following form:

a+ b
2a+ b d

3a+ b • d
4a+ b • • d

5a+ b • • • d
6a+ b • • • • d

7a+ b • • • • • d
8a+ b • • • • • • d

Figure 20: A Λ-array.

where the • symbol is simply standing in to reduce the visual clutter of the array (recall that—under the
assumption that this sequence is prelie—these elements are determined by Lemma 5.3). Moreover, the
four families of sequences have Λ-arrays corresponding to one of the four families of Λ-arrays depicted in
Figure 21, which we denote by A(a, b), B(a, b), C(a, b), and D(a, b).

70



a+ b
2a+ b 0

3a+ b 0 0
4a+ b 0 0 0

5a+ b 0 0 0 0
6a+ b 0 0 0 0 0

7a+ b 0 0 0 0 0 0
8a+ b 0 0 0 0 0 0 0

(a) A(a, b)—Case for d = 0.
a+ b

2a+ b a+ b
3a+ b 2a+ b a+ b

4a+ b 3a+ b 2a+ b a+ b
5a+ b 4a+ b 3a+ b 2a+ b a+ b

6a+ b 5a+ b 4a+ b 3a+ b 2a+ b a+ b
7a+ b 6a+ b 5a+ b 4a+ b 3a+ b 2a+ b a+ b

8a+ b 7a+ b 6a+ b 5a+ b 4a+ b 3a+ b 2a+ b a+ b

(b) B(a, b)—Case for d = a+ b.
a+ b

2a+ b b
3a+ b b b

4a+ b b b b
5a+ b b b b b

6a+ b b b b b b
7a+ b b b b b b b

8a+ b b b b b b b b

(c) C(a, b)—Case for d = b.
a+ b

2a+ b −a
3a+ b 0 −a

4a+ b 0 0 −a
5a+ b 0 0 0 −a

6a+ b 0 0 0 0 −a
7a+ b 0 0 0 0 0 −a

8a+ b 0 0 0 0 0 0 −a

(d) D(a, b)—Case for d = −a.

Figure 21: The Λ-arrays of four families of sequences
.
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Remark. 1. The cases A(a, b) and B(a, b) constitute precisely the family of sequences coming from
Dyson-Schwinger type equations and characterized by Foissy [20, 24]. On the other hand, we believe
that this is the first instance of C(a, b) and D(a, b) appearing in the literature. See Figure 22 and
Figure 23 to see what the elements look like on the level of trees.

2. We remark that various choices of a and b degenerate either to 0th order sequences or to other
familiar first order sequences. For example, D(0, b) is the sequence of 0th order corollas (where
term i is scaled by bi), and C(0, b) is the 0th order sequence of ladders, similarly scaled. Moreover,
C(a, 0) = A(a, 0).

We now provide a proof of the result.

Proof of Lemma 5.7. This proof will be broken up into two sections. First, we show that C(a, b) and
D(a, b) are elements of Λ for any a and b with a 6= −nb (We already know A(a, b) and B(a, b) are in Λ.
See [20] and Appendix C), then we will show that A(a, b), B(a, b), C(a, b), and D(a, b) are the only valid
prelie arrays under our hypotheses.

First, consider C(a, b). Given the array depicted in Figure 21, there are only four cases to consider:
Case 1 (j 6= 1, k 6= 1): This case is trivial, since equation (77) becomes:

(b)(b)− (b)(b) = (b)(b)− (b)(b)

Case 2 (j = 1, k 6= 1): We start with the left hand side of equation (77) and manipulate it to find:

λi,jλi+j,k − λj,kλi,j+k = (ai+ b)(b)− (b)(b)

= (ai+ b)(b)− (b)(b) + akb− akb

= (ai+ ak + b)(b)− (ak + b)(b)

= (a[i+ k] + b)(b)− (ak + b)(b)

= λi,kλi+k,j − λk,jλi,k+j

Case 3 (j 6= 1, k = 1): As discussed in Section 4.1, the prelie relation is symmetric in j and k, so this
case is the same as Case 2.
Case 4 (j = 1, k = 1): By symmetry of j and k again, this will also be true (though in a different way as
the previous case). We can verify the computation this first time as follows:

λi,jλi+j,k − λj,kλi,j+k = (ai+ b)(a[i+ j] + b)− (aj + b)(b)

= (ai+ b)(a[i+ 1] + b)− (a+ b)(b)

= (ai+ b)(a[i+ k] + b)− (ak + b)(b)

= λi,kλi+k,j − λk,jλi,k+j

where the middle two equalities follow from the fact that j = k = 1.
As these four cases cover all possible values of λi,j , it follows that C(a, b) is a valid prelie array.

Moreover, it satisfies the non-degeneracy condition of Theorem 4.1 only when a 6= −b, which one can
verify easily from Figure 20.

Now consider D(a, b). Proving that this is a valid prelie array requires the inspection of eight cases
total.
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Case 1 (i 6= 1, j 6= 1, k 6= 1): As before, this case is trivial, since λm,n with m and n not equal to 1 will
be never be along the outer two diagonals of the array, which are the only entries that are nonzero. Hence
equation (77) in this case looks like:

(0)(0)− (0)(0) = (0)(0)− (0)(0)

the ultimate triviality.
Case 2 (i = 1, j 6= 1, k 6= 1): In this situation, equation (77) becomes:

− a(0)− (0)(−a) = −a(0)− (0)(−a)
⇐⇒ 0 = 0

Case 3 (i = 1, j = 1, k 6= 1): Starting with the righthand side, we have:

λi,kλi+k,j − λk,jλi,k+j = (−a)(a[i+ k] + b)− (ak + b)(−a)
= −a2[i+ k]− ab+ a2k + ab

= −a2i− a2k + a2k

= −a2i
= −a2

= −a2 + (a+ b)(0)

= λi,jλi+j,k − λj,kλi,j+k

Case 4 (i = 1, j 6= 1, k = 1): This is the same as Case 3.
Case 5 (i = 1, j = 1, k = 1): This is true by the symmetry of j and k, as discussed above.
Case 6 (i 6= 1, j = 1, k 6= 1): In this case, the prelie relation becomes:

(ai+ b)(0)− (−a)(0) = (0)(a[i+ k] + b)− (ak + b)(0)

⇐⇒ 0 = 0

Case 7 (i 6= 1, j 6= 1, k = 1): This is the same as Case 6.
Case 8 (i 6= 1, j = 1, k = 1): This is true by the symmetry of j and k, as before.

Hence we conclude that C(a, b) and D(a, b) are valid elements of Λ for all a, b ∈ K such that a 6= −nb.
All that remains is to show that no other value of d will suffice for all a and b with a 6= −nb. For a

given Λ-array ξ, define:

PLξ(i, j, k) = λi,jλi+j,k − λj,kλi,j+k − λi,kλi+k,j + λk,jλi,k+j (93)

Note that this is just the prelie relation of equation (77) after all terms have been moved to one side.
Since we are assuming ξ must be prelie, the inner terms of the array are determined by the outer diagonals
according to Lemma 5.1. We use the computer algebra system SageMath to compute the first few values
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of PL(i, j, k) when given the array in Figure 20:

PL(1, 2, 1) = 0

PL(1, 3, 1) = 0

PL(1, 3, 2) =
(a+ b− d)(a+ d)(b− d)d2

(3 a+ b)(2 a+ b)(a+ b)

PL(2, 2, 1) = 0

PL(2, 3, 1) = 0

PL(2, 3, 2) =
(6 a+ b+ d)(a+ b− d)(a+ d)(b− d)d2

(4 a+ b)(3 a+ b)(2 a+ b)(a+ b)

...

In particular, the denominators are nonzero by our condition that a 6= −nb and any value of d other
than the ones specified will leave the third value nonzero for some choices of a and b. This completes the
proof.

One may be wondering what the sequences resulting from A(a, b), B(a, b), C(a, b, ), and D(a, b) look
like in terms of trees. As mentioned above, A(a, b) is precisely the sequence of first-order corollas, and
B(a, b) is the sequence coming from Foissy’s Dyson-Schwinger type equations, depicted in the top row of
Table 5 in Appendix C. We can compute what C(a, b) and D(a, b) look like as well:
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t0 = 1

t1 =

t2 = (a+ b)

t3 = (a+ b)b + (a+ b)a

t4 = (a+ b)b2 + (a+ b)ab + (a+ b)ab + (a+ b)a2

t5 = (a+ b)b3 + (a+ b)ab2 + (a+ b)ab2 + (a+ b)a2b + (a+ b)ab2

+ (a+ b)a2b + (a+ b)a2b + (a+ b)a3

t6 = (a+ b)b4 + (a+ b)ab3 + (a+ b)ab3 + (a+ b)a2b2 + (a+ b)ab3

+ (a+ b)a2b2 + (a+ b)a2b2 + (a+ b)a3b + (a+ b)ab3

+ (a+ b)a2b2 + (a+ b)a2b2 + (a+ b)a3b + (a+ b)a2b2

+ (a+ b)a3b + (a+ b)a3b + (a+ b)a4

...

Figure 22: The element of Seq corresponding to C(a, b).
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t0 = 1

t1 =

t2 = (a+ b)

t3 = −(a+ b)a +
(a+ b)(3a+ b)

2

t4 = (a+ b)a2 − (a+ b)a2 − (a+ b)(3a+ b)a

2
+

(a+ b)(11a2 + 6ab+ b2)

6

t5 = −(a+ b)a3 +
(a+ b)(3a+ b)a2

2
+ (a+ b)a3 − (a+ b)(11a2 + 6ab+ b2)a

6

+ (a+ b)a3 − (a+ b)(3a+ b)a2

2
− (a+ b)a3 +

(a+ b)(50a3 + 30a2b+ 10ab2 + b3)

24

t6 = (a+ b)a4 − (3 a+ b)(a+ b)a3

2
− (a+ b)a4 +

(
11 a2 + 6 ab+ b2

)
(a+ b)a2

6
− (a+ b)a4

+
(3 a+ b)(a+ b)a3

2
+ (a+ b)a4 − (50 a3 + 35 a2b+ 10 ab2 + b3)(a+ b)a

24

− (a+ b)a4 +
(3 a+ b)(a+ b)a3

2
+ (a+ b)a4

−
(
11 a2 + 6 ab+ b2

)
(a+ b)a2

6
+ (a+ b)a4 − (3 a+ b)(a+ b)a3

2

− (a+ b)a4 +

(
274 a4 + 225 a3b+ 85 a2b2 + 15 ab3 + b4

)
(a+ b)

120

...

Figure 23: The element of Seq corresponding to D(a, b).

Based on the data of Figure 22 and Figure 23, some ideas arise as to how we may describe their
structure combinatorially. We begin with a definition:
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1

2

3

4

5

6

7

8

9
10

Figure 24: A caterpillar tree

Definition 5.8. A caterpillar rooted tree is a rooted tree such that each vertex has at most one subtree
of size ≥ 2.

The name caterpillar rooted tree is in analogy with the caterpillar trees from graph theory. We
emphasize that in this case the order of words in our terminology matters a lot: these trees are rooted
trees first, and then are also caterpillar trees, but not every rooted caterpillar tree is a caterpillar rooted
tree. For example, the graph in Figure 24 is a labelled caterpillar tree, but if we root it at vertex 2, the
result will not be a caterpillar rooted tree. This distinction ultimately stems from the fact that a path
graph is only a ladder when it is rooted at one of its two endpoint vertices. Hence another way to define
the set of caterpillar rooted trees is to say that they are exactly the set of rooted caterpillar trees when
the root is chosen to be a vertex v such that v only has at most one non-leaf neighbor.

With this distinction in mind, we present:

Lemma 5.9. Let X =
∑∞
i=0 ti be the sum of all terms in the element of Seq corresponding to C(a, b).

Then if T is a tree appearing as a term in X, T is a caterpillar rooted tree. Moreover, the coefficient of
T is (a+ b)am−1bn−1 where m is the depth of T and n is the number of leaves of T .

Proof. First, we will show that every tree in X is a caterpillar rooted tree. To do this, consider λ(m,n)
for m,n ≥ 2. According to equation (81), this value is equal to:

λ(m,n) = λ(m)λ1+m,n − λ(m+ n)λm,n

= λ1,mλ1+m,n − λ1,m+nλm,n

= (b)(b)− (b)(b)

= 0

where the second equality comes from the second case of equation (81) and the second equality comes from
Figure 21 and the fact that m and n are both at least 2.

Now the coefficient of a tree in X is given by equation (83):

coef(T ) = µ(T )

|Sym(T )|
=

1

|Sym(T )|
∏

s∈V (T )

λ(t
(s)
1 , ..., t

(s)
k(s))
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Now let l1, ..., lk ≥ 2 be arbitrary and consider λ(m,n, l1, ..., lk). For k = 1 we have:

λm,n,l1 = λ(m,n)λ1+m+n,l1 − λm+l1,nλm,l1 − λ(m,n+ l1)λn,l1

= (0)λ1+m+n,l1 − (0)λm,l1 − (0)λn,l1

= 0

where now the second equality comes from the fact that m,n ≥ 2.
We proceed by induction on k: suppose that λ(m,n, l1, ..., lk−1) = 0, and consider λ(m,n, l1, ..., lk−1, lk).

We get that:

λ(m,n, l1, ..., lk−1, lk) = λ(m,n, l1, ..., lk−1)λ1+m+n+l1+...+lk−1,lk −
k+1∑
j=1

λ(n,m, ..., lj + lk, ...lk−1)λlj ,lk

By the inductive hypothesis, λ(m,n, l1, ..., lk−1) is 0 and each factor λ(n,m, ..., lj + lk, ...lk−1) in the sum
above is also 0. Hence the entire sum is 0. This computation, together with equation (81), implies that
every tree in X is a caterpillar rooted tree, since if T has a vertex with more than one subtree of size at
least 2, it will have a factor of 0 in equation (81).

Now we show that every tree T in X has the coefficient claimed. The proof of this will follow from
three cases:

Case 1: T = B+(T ′) for some tree T ′. In this case, we have that:

coef(T ) = 1

|Sym(T )|
λ(|T ′|)

∏
s∈V (T ′)

λ(t
(s)
1 , ..., t

(s)
k(s))

= λ(|T ′|)coef(T ′)
= λ1,|T ′|coef(T ′)
= b · coef(T ′)

where the second equality comes from the fact that Sym(B+(T )) = Sym(T ).
Case 2: Now consider the situation in which T = B+( kT ′), for some tree T ′ of size n ≥ 2. Then:

coef(T ) = 1

|Sym(T )|
λ(1, 1, ..., 1︸ ︷︷ ︸

k

, n)
∏

s∈V (T ′)

λ(t
(s)
1 , ..., t

(s)
k(s))

=
1

k!
λ(1, 1, ..., 1︸ ︷︷ ︸

k

, n)coef(T ′)

Hence we only need to find the value of λ(1, 1, ..., 1︸ ︷︷ ︸
k

, n), which we claim is equal to k! akb. We will prove

this claim by induction on k. The base case is trivial, since when k = 0 we recover Case 1. So suppose
that λ(1, 1, ..., 1︸ ︷︷ ︸

k − 1

, n) = k! ak−1b and consider the value of λ(1, 1, ..., 1︸ ︷︷ ︸
k

, n). Then:

λ(1, 1, ..., 1︸ ︷︷ ︸
k

, n) = λ(n, 1, 1, ..., 1︸ ︷︷ ︸
k

)

= λ(n, 1, 1, ..., 1︸ ︷︷ ︸
k − 1

)λn+k,1 − λ(n+ 1, 1, 1, ..., 1︸ ︷︷ ︸
k − 1

)λn,1 −
k−1∑
j=2

λ(n, 1..., 1, 2, 1, ...1)λ1,1
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where the 2 in the sum above is in the jth index of the tuple. By symmetry of the arguments of
λ(i1, i2, ..., im), the above line is equal to:

= λ(n, 1, 1, ..., 1︸ ︷︷ ︸
k − 1

)λn+k,1 − λ(n+ 1, 1, 1, ..., 1︸ ︷︷ ︸
k − 1

)λn,1 − (k − 1)λ(n, 2, 1, ...1︸ ︷︷ ︸
k − 1

)λ1,1

But by the analysis in the first part of this proof, this last term is just 0, since there are two indices of
size at least 2 in the argument of the λ. We can then apply the inductive hypothesis in each term that
remains:

= (k − 1)! ak−1bλn+k,1 − (k − 1)! ak−1bλn,1

= (k − 1)! ak−1b[(n+ k)a+ b]− (k − 1)! ak−1b[an+ b]

= (k − 1)! ak−1b[��an+ ak + �b−��an− �b]

= k! akb

as claimed.
Finally, then, the coefficient of the tree T above is just:

T =
1

k!
λ(1, 1, ..., 1︸ ︷︷ ︸

k

, n)coef(T ′)

=
1

k!
k! akbcoef(T ′)

= akbcoef(T ′)

Case 3: Finally, we consider the case in which T = B+( k+1) for some positive integer k. We
claim that coef(T ) = (a + b)ak. We handle this case with induction. For the base case we have that
coef( ) = a+ b and also that:

coef( ) =
1

2
λ(1, 1)

=
1

2
[λ(1)λ2,1 − λ(2)λ1,1]

=
1

2
[λ1,1λ2,1 − λ1,2λ1,1]

=
1

2
[(a+ b)(2a+ b)− (b)(a+ b)]

=
1

2
(a+ b)(2a)

= (a+ b)(a)

as claimed. Now we can induct on k. We assume the hypothesis is true up to k and consider the case of
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T = B+( k+1)

coef(T ) = 1

|Sym(T )|
λ(1, 1, ..., 1︸ ︷︷ ︸

k + 1

)

=
1

(k + 1)!
λ(1, 1, ..., 1︸ ︷︷ ︸

k + 1

)

=
1

(k + 1)!
[λ(1, 1, ..., 1︸ ︷︷ ︸

k

)λk+1,1 −
k∑
j=1

λ(1, ..., 1 + 1, ..., 1)λ1,1]

But by symmetry of the arguments of λ(i1, ..., ik), the previous line is equivalent to:

=
1

(k + 1)!
[λ(1, 1, ..., 1︸ ︷︷ ︸

k

)λk+1,1 − kλ(1, 1, ..., 1︸ ︷︷ ︸
k − 1

, 2)λ1,1)]

Now by Case 2 we have that λ(1, 1, ..., 1︸ ︷︷ ︸
k − 1

, 2) = (k− 1)! ak−1b and by the inductive hypothesis, we have that

coef(B+( k)) = (a+b)ak−1, which implies that λ(1, 1, ..., 1︸ ︷︷ ︸
k

) = k! (a+b)ak−1. Making these substitutions,

we find:

=
1

(k + 1)!
[k! (a+ b)ak−1λk+1,1 − k(k − 1)! ak−1bλ1,1)]

=
1

(k + 1)!
[k! (a+ b)ak−1[a(k + 1) + b]− k(k − 1)! ak−1b(a+ b))]

=
1

(k + 1)!
[k! (a+ b)ak−1a(k + 1) +(((((((

k! (a+ b)ak−1b−((((((((
k! ak−1b(a+ b))]

= (a+ b)ak

exactly as desired.
The three cases show that the coefficient of t2 is (a+ b) and that every larger tree is constructed from

this by multiplying by b for every application of B+ and by multiplying by ak whenever adding in k more
leaves. Hence the coefficients of the trees is exactly as claimed. This completes the proof.

As discussed in Section 2.1.2, every tree can be constructed uniquely as applications of B+ on the
empty forest. Hence the procedure for finding the coefficients in the preceding proof gives us for free a
generating function for the sequence of trees corresponding to C(a, b). This is the content in the following:

Corollary 5.10. Let X =
∑∞
i=0 ti be the sum of all terms in the element of Seq corresponding to C(a, b).

Then:
X = B+

(
1 + bX

1− a

)
(94)

where is the single-vertex tree.
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5.2.1 Second Order and Higher

Given the large number of examples of strong first-order sequences given in the last subsection, the results
of this section may come as a surprise. The main result of this section is the following:

Theorem 5.11 (Classification of Strong `th Order Sequences). For ` ≥ 2, the only family of strong `th
order sequences is the family of scaled corollas.

Corollary 5.12. The only family of strong second-order sequence is the sequences of scaled corollas, with
prelie array:

a+ b+ c
4a+ 2b+ c 0

9a+ 3b+ c 0 0
16a+ 4b+ c 0 0 0

25a+ 5b+ c 0 0 0 0
...

for a, b, c ∈ K and a nonzero.

While Corollary 5.12 is an immediate consequence of the theorem and would not normally need separate
consideration, we include it here as we believe it (together with its proof) is a concrete exhibition of the
proof method developed in the proof of Theorem 5.11, which may otherwise seem slightly abstract.

We begin with the proof of Corollary 5.12, which we present via a sequence of lemmas.

Lemma 5.13. Let ΛX be the Λ-array of a second-order strong sequence, and let Λ̃X be the Λ-array obtained
from ΛX by removing the left diagonal (that is, Λ̃X = ΛX \ {λk,1 : k ≥ 1}). Then Λ̃X must be a strong
first-order sequence.

Proof. To begin, consider an arbitrary strong second-order sequence with prelie array given by λi,j = fj(i):

f1(1)
f1(2) f2(1)

f1(3) f2(2) f3(1)
f1(4) f2(3) f3(2) f4(1)

f1(5) f2(4) f3(3) f4(2) f5(1)
...

where we define:
fj(i) = aj,1i

2 + aj,2i+ aj,3

With this setup, the statement of the lemma can be reworded as: a1,1 6= 0 =⇒ a2,1 = a3,1 = ... = ak,1 =
... = 0.

Let k ≥ 2 be fixed and arbitrary, and consider the four prelie relations PL(1, 1, k) = 0, PL(2, 1, k) =
0, PL(3, 1, k) = 0, and PL(4, 1, k) = 0 as follows:(

a1,1k
2 + a1,2k + a1,3

)
(ak+1,1 + ak+1,2 + ak+1,3) + (a1,1 + a1,2 + a1,3)(4 ak,1 + 2 ak,2 + ak,3)

−
(
a1,1(k + 1)

2
+ a1,2(k + 1) + a1,3

)
(ak,1 + ak,2 + ak,3)

− (ak+1,1 + ak+1,2 + ak+1,3)(ak,1 + ak,2 + ak,3) = 0 (95)
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(
a1,1k

2 + a1,2k + a1,3
)
(4 ak+1,1 + 2 ak+1,2 + ak+1,3) + (4 a1,1 + 2 a1,2 + a1,3)(9 ak,1 + 3 ak,2 + ak,3)

−
(
a1,1(k + 2)

2
+ a1,2(k + 2) + a1,3

)
(4 ak,1 + 2 ak,2 + ak,3)

− (4 ak+1,1 + 2 ak+1,2 + ak+1,3)(ak,1 + ak,2 + ak,3) = 0 (96)

(
a1,1k

2 + a1,2k + a1,3
)
(9 ak+1,1 + 3 ak+1,2 + ak+1,3) + (9 a1,1 + 3 a1,2 + a1,3)(16 ak,1 + 4 ak,2 + ak,3)

−
(
a1,1(k + 3)

2
+ a1,2(k + 3) + a1,3

)
(9 ak,1 + 3 ak,2 + ak,3)

− (9 ak+1,1 + 3 ak+1,2 + ak+1,3)(ak,1 + ak,2 + ak,3) = 0 (97)

(
a1,1k

2 + a1,2k + a1,3
)
(16 ak+1,1 + 4 ak+1,2 + ak+1,3) + (16 a1,1 + 4 a1,2 + a1,3)(25 ak,1 + 5 ak,2 + ak,3)

−
(
a1,1(k + 4)

2
+ a1,2(k + 4) + a1,3

)
(16 ak,1 + 4 ak,2 + ak,3)

− (16 ak+1,1 + 4 ak+1,2 + ak+1,3)(ak,1 + ak,2 + ak,3) = 0 (98)

The goal now is to isolate the highest degree terms (with respect to index i when thought of as a variable).
We will do this by leveraging the fact that—as these equations are degree-2 polynomials in terms of an
index i, we can use successive differences of the equations to eventually isolate the highest degree term
(with respect to the index i). Taking equation (96) minus equation (95) and expanding, we get:

3 a1,1k
2ak+1,1+a1,1k

2ak+1,2−3 a1,1k
2ak,1−a1,1k2ak,2+3 a1,2kak+1,1+a1,2kak+1,2−14 a1,1kak,1−3 a1,2kak,1

−6 a1,1kak,2−a1,2kak,2−2 a1,1kak,3+3 a1,3ak+1,1+a1,3ak+1,2+17 a1,1ak,1+7 a1,2ak,1+2 a1,3ak,1−3 ak+1,1ak,1

− ak+1,2ak,1 + 3 a1,1ak,2 + a1,2ak,2 − 3 ak+1,1ak,2 − ak+1,2ak,2 − 3 ak+1,1ak,3 − ak+1,2ak,3 = 0 (99)

Taking equation (97) minus equation (96):

5 a1,1k
2ak+1,1+a1,1k

2ak+1,2−5 a1,1k
2ak,1−a1,1k2ak,2+5 a1,2kak+1,1+a1,2kak+1,2−38 a1,1kak,1−5 a1,2kak,1

−10 a1,1kak,2−a1,2kak,2−2 a1,1kak,3+5 a1,3ak+1,1+a1,3ak+1,2+43 a1,1ak,1+11 a1,2ak,1+2 a1,3ak,1−5 ak+1,1ak,1

− ak+1,2ak,1 + 5 a1,1ak,2 + a1,2ak,2 − 5 ak+1,1ak,2 − ak+1,2ak,2 − 5 ak+1,1ak,3 − ak+1,2ak,3 = 0 (100)

Taking equation (98) minus equation (97):

7 a1,1k
2ak+1,1+a1,1k

2ak+1,2−7 a1,1k
2ak,1−a1,1k2ak,2+7 a1,2kak+1,1+a1,2kak+1,2−74 a1,1kak,1−7 a1,2kak,1

−14 a1,1kak,2−a1,2kak,2−2 a1,1kak,3+7 a1,3ak+1,1+a1,3ak+1,2+81 a1,1ak,1+15 a1,2ak,1+2 a1,3ak,1−7 ak+1,1ak,1

− ak+1,2ak,1 + 7 a1,1ak,2 + a1,2ak,2 − 7 ak+1,1ak,2 − ak+1,2ak,2 − 7 ak+1,1ak,3 − ak+1,2ak,3 = 0 (101)

Now taking equation (100) minus equation (99):

2 a1,1k
2ak+1,1−2 a1,1k

2ak,1+2 a1,2kak+1,1−24 a1,1kak,1−2 a1,2kak,1−4 a1,1kak,2+2 a1,3ak+1,1+26 a1,1ak,1

+ 4 a1,2ak,1 − 2 ak+1,1ak,1 + 2 a1,1ak,2 − 2 ak+1,1ak,2 − 2 ak+1,1ak,3 = 0 (102)

and equation (101) minus equation (100):

2 a1,1k
2ak+1,1−2 a1,1k

2ak,1+2 a1,2kak+1,1−36 a1,1kak,1−2 a1,2kak,1−4 a1,1kak,2+2 a1,3ak+1,1+38 a1,1ak,1

+ 4 a1,2ak,1 − 2 ak+1,1ak,1 + 2 a1,1ak,2 − 2 ak+1,1ak,2 − 2 ak+1,1ak,3 = 0 (103)
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Finally, we take the difference of equation (103) and equation (102) we get:

12a1,1ak,1(1− k) = 0 (104)

Hence if k = 1 the statement is true and a1,1 is left as a free variable. We cannot have a1,1 = 0, because
then the sequence was actually a first-order sequence. Hence it must be that ak,1 = 0. Since k was
arbitrary, it follows that ak,1 = 0 for all k ≥ 2, proving the desired result.

Lemma 5.14. Let ΛX be the Λ-array of a second-order strong sequence, and let Λ̃X be the Λ-array obtained
from ΛX by removing the left diagonal (that is, Λ̃X = ΛX \ {λk,1 : k ≥ 1}). Then Λ̃X must consist of only
constant leftward-diagonals (i.e. each sequence (λi,j)i≥1 with j fixed, must be constant).

Proof. We can take the exact same approach as the proof of Lemma 5.13. Since ΛX is a strong second-
order array, it follows from the previous lemma that fj = aj,2i+ aj,3 for all j ≥ 2. As before, we let k ≥ 2
be arbitrary. This time is suffices to take only three equations PL(1, 1, k), PL(2, 1, k) and PL(3, 1, k),
which appear as follows:(

a1,1k
2 + a1,2k + a1,3

)
(ak+1,2 + ak+1,3) + (a1,1 + a1,2 + a1,3)(2 ak,2 + ak,3)

−
(
a1,1(k + 1)

2
+ a1,2(k + 1) + a1,3

)
(ak,2 + ak,3)− (ak+1,2 + ak+1,3)(ak,2 + ak,3) = 0 (105)

(
a1,1k

2 + a1,2k + a1,3
)
(2 ak+1,2 + ak+1,3) + (4 a1,1 + 2 a1,2 + a1,3)(3 ak,2 + ak,3)

−
(
a1,1(k + 2)

2
+ a1,2(k + 2) + a1,3

)
(2 ak,2 + ak,3)− (2 ak+1,2 + ak+1,3)(ak,2 + ak,3) = 0 (106)

(
a1,1k

2 + a1,2k + a1,3
)
(3 ak+1,2 + ak+1,3) + (9 a1,1 + 3 a1,2 + a1,3)(4 ak,2 + ak,3)

−
(
a1,1(k + 3)

2
+ a1,2(k + 3) + a1,3

)
(3 ak,2 + ak,3)− (3 ak+1,2 + ak+1,3)(ak,2 + ak,3) = 0 (107)

Subtracting equation (105) from equation (106) and expanding:

a1,1k
2ak+1,2 − a1,1k

2ak,2 + a1,2kak+1,2 − 6 a1,1kak,2 − a1,2kak,2 − 2 a1,1kak,3 + a1,3ak+1,2 + 3 a1,1ak,2

+ a1,2ak,2 − ak+1,2ak,2 − ak+1,2ak,3 = 0 (108)

Similarly for equation (106) and equation (107):

a1,1k
2ak+1,2 − a1,1k

2ak,2 + a1,2kak+1,2 − 10 a1,1kak,2 − a1,2kak,2 − 2 a1,1kak,3 + a1,3ak+1,2 + 5 a1,1ak,2

+ a1,2ak,2 − ak+1,2ak,2 − ak+1,2ak,3 = 0 (109)

Finally, we take equation (109) minus equation (108) and obtain:

−2 a1,1(2 k − 1)ak,2 = 0 (110)

As before, we get that a1,1 6= 0 for ΛX to be second order, and (2 k − 1) 6= 0 since k must be a positive
integer. Hence it follows that ak,2 = 0 for all k ≥ 2 as claimed.
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Proof of Corollary 5.12: Given a strong second order prelie array ΛX , Lemma 5.13 and Lemma 5.14 imply
that λi,j = fj(i) where f1(i) = a1,1i

2 + a1,3 and for j ≥ 2, fj(i) = aj,3. Given k ≥ 2 arbitrary, we examine
equations PL(1, 1, k) and PL(2, 1, k):(

a1,1k
2 + a1,2k + a1,3

)
ak+1,3−

(
a1,1(k + 1)

2
+ a1,2(k + 1) + a1,3

)
ak,3+(a1,1 + a1,2 + a1,3)ak,3−ak+1,3ak,3 = 0

(111)

(
a1,1k

2 + a1,2k + a1,3
)
ak+1,3−

(
a1,1(k + 2)

2
+ a1,2(k + 2) + a1,3

)
ak,3+(4 a1,1 + 2 a1,2 + a1,3)ak,3−ak+1,3ak,3 = 0

(112)

The difference of these two equations yields:

−2 a1,1kak,3 = 0 (113)

giving that ak,3 = 0 for all k ≥ 2. Hence the only strong second order array is given by

λi,j =

{
a1,1i

2 if j = 1

0 otherwise

exactly as desired.

Remark. We remark that the need to take k ≥ 2 in the above proof is due to the fact that the prelie
relations are symmetric in their last two arguments. Indeed, as we are working with prelie relations of the
form PL(i, 1, k) for some arbitrary k and varying i, we need k ≥ 2 to avoid the relations PL(i, 1, 1), which
are tautologies.

Proof of Theorem 5.11. We begin with the same kind of setup we had in the proof of Lemma 5.13; as
mentioned previously, this proof is in fact the exact same proof, only generalized to account for more
arbitrary order.

Let ` ≥ 2 be given, and consider the prelie array ΛX given by λi,j = fj(i) where we define

fj(i) = aj,1i
` + aj,2i

`−1 + ...+ aj,`i+ aj,`+1

As before, consider an arbitrary (and fixed) k ≥ 2, and form the sequence of relations C = {PL(i, 1, k) :
i ∈ N}. Now we can ask ourselves what an arbitrary member of this set looks like? We simply evaluate
equation (77) at the appropriate indices and find that for arbitrary i:

PL(i, 1, k) : fj(i)fk(i+ j)− fk(j)fj+k(i)− fk(i)fj(i+ k) + fj(k)fk+j(i) = 0 (114)

We remark that the collection C has infinitely many relations, but only 3(k + 1) variables since k is fixed.
Ultimately it is this over-saturation of equations that will enable us to prove the result.

Evaluating the fj in (114) above with the indicated arguments yields:

(a1,1i
` + a1,2i

`−1 + ...+ a1,`i+ a1,`+1)(ak,1(i+ 1)` + ak,2(i+ 1)`−1 + ...+ ak,`(i+ 1) + ak,`+1)

− (ak,1 + ak,2 + ...+ ak,` + ak,`+1)(ak+1,1i
` + ak+1,2i

`−1 + ...+ ako+1,`i+ ak+1,`+1)

− (ak,1i
` + ak,2i

`−1 + ...+ ak,`i+ ak,`+1)(a1,1(k + i)` + a1,2(k + i)`−1 + ...+ a1,`(k + i) + ak,`+1)

+ (a1,1k
` + a1,2k

`−1 + ...+ a1,`k + a1,`+1)(ak+1,1i
` + ak+1,2i

`−1 + ...+ ak+1,`i+ ak+1,`+1) = 0 (115)
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Now the expression on the left hand side of (115) is a sum of products of polynomials in the variable i,
and as a consequence is also a polynomial in i. Let us examine what the highest-degree term of (115)
looks like. The highest power of i appearing in (115) will be 2`, with the first term contributing a term
of a1,1ak,1i2`, and the third term contributing a term of −a1,1ak,1i2`, so taken together the coefficient of
i2` is zero; the second and fourth terms will only contribute to the highest power of the polynomial when
2` = `—that is, when ` = 0 and ΛX is 0th-order.

Hence we look instead at the next highest power of i, which is 2`− 1. From the first term of (115), we
obtain a factor of (a1,1ak,1` + a1,1ak,2 + a1,2ak,1)i

2`−1. From the third term of (115) we obtain a factor
−(a1,1ak,1k`+ a1,2ak,1 + a1,1ak,2)i

2`−1. Note that the second and fourth term of (115) will contribute to
the highest power of i only when 2` − 1 = `—that is, when ` = 1 and the sequence is consequently first
order! Hence since ` ≥ 2 we have that the coefficient of the highest power of i is equal to:

(a1,1ak,1`+ a1,1ak,2 + a1,2ak,1)i
2`−1 − (a1,1ak,1k`+ a1,2ak,1 + a1,1ak,2)i

2`−1

which simplifies to:
a1,1ak,1`(1− k) (116)

Now the power of this setup comes down to the fact that i is an index ranging over the positive integers.
This means that—by definition—the sequence of relations C is in fact a (2` − 1)th-order sequence in the
variable i. But in turn, this means that taking the (2` − 1)st consecutive differences of the sequence will
be constant, and hence that taking the (2`)th consecutive differences of C will be equal to 0. Now taking
the first difference will cause the i0 (that is, constant) terms to cancel, the second difference will cause the
i terms to cancel, and so on. Hence by taking the (2`)th consecutive differences, every term up through
the terms containing i2`−1 will cancel. This means that we are left with the equation:

Na1,1ak,1`(1− k) = 0 (117)

for N a nonzero element of K18. If a1,1 = 0, it follows that the sequence ΛX is not actually `th order.
Moreover, we know that ` ≥ 2 by hypothesis, and k 6= 1 (as otherwise the prelie relations are a tautology).
Hence the only solution is that ak,1 = 0 for all k ≥ 2.

We now perform induction on the second index of the ak,m, taking as our base case the analysis above
wherein m = 1. Suppose that ak,t = 0 for all t from 1 up to m− 1, and consider the case of t = m. (We
are making the assumption that m ≤ ` + 1, as otherwise ak,m = 0 already). Evaluating the fj in (114)
with the correct values as we did before yields:

(a1,1i
` + a1,2i

`−1 + ...+ a1,`i+ a1,`+1)(ak,m(i+ 1)`−m+1 + ak,m+1(i+ 1)`−m + ...+ ak,`(i+ 1) + ak,`+1)

− (ak,m + ak,m+1 + ...+ ak,` + ak,`+1)(ak+1,mi
`−m+1 + ak+1,m+1i

`−m + ...+ ak+1,`i+ ak+1,`+1)

− (ak,mi
`−m+1 + ak,m+1i

`−m + ...+ ak,`i+ ak,`+1)(a1,1(k+ i)` + a1,2(k+ i)`−1 + ...+ a1,`(k+ i) + ak,`+1)

+ (a1,1k
` + a1,2k

`−1 + ...+ a1,`k+ a1,`+1)(ak+1,mi
`−m+1 + ak+1,m+1i

`−m + ...+ ak+1,`i+ ak+1,`+1) = 0
(118)

Now this time, the highest power of i appearing is 2`−m+1. However, we find that the first term contributes
a term of a1,1ak,mi2`−m+1 and the third term contributes −a1,1ak,mi2`−m+1. Exactly as before, we get
that the second and fourth terms contribute to the highest power of i only when 2`−m+ 1 = `−m+ 1;
that is, exactly when ` = 0 and ΛX is a 0th-order array.

18More precisely, N =
∑`

j=0

(`
j

)
(i− j)`. A standard combinatorial exercise can be used to show that this is equal to `!.
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Hence we look at the second highest power of i, namely i2`−m. From the first term of (118) we get a
contribution of (a1,1ak,m(`−m+1)+a1,1ak,m+1+a1,2ak,m)i2`−m where we get (`−m+1) from the binomial
theorem. From the third term of (118), we get a contribution of −(a1,1ak,mk`+a1,2ak,m+a1,1ak,m+1)i

2`−m.
We note once again that the second and fourth terms of (118) contribute only when 2`−m = `−m+ 1;
that is, when ` = 1. Hence the i2`−m term of (118) has a coefficient of

(a1,1ak,m(`−m+ 1) + a1,1ak,m+1 + a1,2ak,m)− (a1,1ak,mk`+ a1,2ak,m + a1,1ak,m+1)

which simplifies to:
a1,1ak,m(`−m+ 1− k`)

We take the (2`−m+ 1)th consecutive differences of the sequence C to get an equation:

Na1,1ak,m(`−m+ 1− k`) = 0 (119)

for N a nonzero constant; see the footnote included in the argument for the base case above. As before,
a1,1 6= 0, as otherwise ΛX is not of order `. Now suppose that ` −m + 1 − k` = 0. This would mean in
particular that ` = m − 1 + k`, but since k ≥ 2, and ` ≥ 2, we must then have that m < 0. But this
violates the inductive hypothesis! Hence we achieve that `−m+1− k` 6= 0, and so the only possibility in
equation (119) is that ak,m = 0. Since k ≥ 2 was chosen arbitrarily, it follows that ak,m = 0 for all k ≥ 2.

This completes the proof.

5.3 0th Order Weak
In Section 5.2, we talked about a generalization of the problem solved in Section 5.1 by looking at higher-
order strong sequences. In this section, we present some results on the generalization of the problem in
the other direction: that is, considering 0th order sequences that are weak.

5.3.1 Seq{0,1}
The first family of sequences we consider in this direction are those arising from 0th-order weak Λ-arrays
such that λ1,j ∈ {0, 1} for all j ≥ 1. We denote this family by Λ{0,1}. Put another way, Λ{0,1} is defined to
be the set of all 0th-order Λ-arrays where the right diagonal is a sequence of only 0’s and 1’s. We denote
by Seq{0,1} the subset of Seq corresponding to the Λ-arrays in Λ{0,1}

Theorem 5.15 (Foissy, 2018 [24]). There are only four families of arrays in Λ{0,1}:

• For any i, j ≥ 1, λi,j = 1.

• Case A(m): there exists m ≥ 2 such that λi,j =

{
1 if j ≤ m

0 otherwise.

• Case B(m): there exists m ≥ 2 such that λi,j =

{
1− i if m|j
1 otherwise.

• Case C(m): there exists m ≥ 2 such that λi,j− =

{
1− i if j = m

1 otherwise.
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1
1 1

1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

(a) The Λ-array corresponding to ladders.
1

1 1
1 1 0

1 1 0 0
1 1 0 0 0

1 1 0 0 0 0
1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

(b) A(3).
1

1 1
1 1 0

1 1 −1 1
1 1 −2 1 1

1 1 −3 1 1 0
1 1 −4 1 1 −1 1

1 1 −5 1 1 −2 1 1

(c) B(3).
1

1 1
1 1 0

1 1 −1 1
1 1 −2 1 1

1 1 −3 1 1 1
1 1 −4 1 1 1 1

1 1 −5 1 1 1 1 1

(d) C(3).

Figure 25: The four cases of Theorem 5.15 when m = 3.
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We will not provide a proof of this statement here, but it may be found in [24].
Note that the case of the all-1’s array and case A(m) taken together are a subset of those sequences

considered in Theorem 5.5. Hence the only two additional sequences in Λ{0,1} that arise by allowing for
weak sequences are B(m) and C(m).

5.4 Comments on kth Order Weak
As discussed previously, not a lot is known about sequences that are kth-order weak. In this section, we
give a brief overview of what is known, first by discussing the notion of scaled sequences, and then by
exhibiting a new second-order weak family with some nice properties.

5.4.1 Scaled Sequences

Lemma 5.16. Let s = (tn)n≥1 be an element of Seq, and let k = (kn)n≥1 be a sequence with k1 = 1K and
kn ∈ K \ {0} for all n. Then s′ := (t′n)n≥1 = (kntn)n≥1 is an element of Seq.

Proof. Let As be the algebra generated by s and As′ be the algebra generated by s′. To prove the result,
we only need to show that As′ is Hopf, given that As is Hopf. For n fixed but arbitrary, set

∆(tn) =

n∑
i=0

Qn,i ⊗ tn−i

where as before we use Qn,i to be the polynomials in t1, ...ti in the pruned part of the coproduct, and
where we set t0 = Qn,0 = 1 and Qn,n = tn. With this notation in place, we can calculate:

∆(t′n) = ∆(kntn)

= kn∆(tn)

= kn

( n∑
i=0

Qn,i ⊗ tn−i

)
But substituting tn−i = 1

kn−i
t′n−i for each tn−i in the sum (including those appearing in the polynomials

Qn,i) gives us that ∆(t′n) ⊆ As′ ⊗ As′ , since we can pull all coefficients out of the tensor product. By
virtue of the t′n being a basis for As′ , the desired result follows.

Lemma 5.16 indicates that the notion of order on sequences is flexible; namely, by the correct choice of
(ki)i≥1, we may transform a sequence that does not have an order into one that does, or we may transform
a sequence that has an order into a sequence with a different order. We refer to this process as scaling a
sequence.

Example 5.17 (Scaled Corollas). Consider the sequence of corollas defined in Definition 2.25. We define
a new sequence as c′n = 1

n!cn. Hence the sequence begins:

1, ,
1

2
,
1

6
,
1

24
,

1

120
, ...

Whereas the original sequence (cn)n≥1 is 1st-order, one may easily verify that this new sequence c′n is
0th-order.
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While we may obtain a sequence of any order from an arbitrary element s of Seq, the properties of s
are not in general inherited by the scaled sequences. In particular:

Lemma 5.18. Let s = (tn)n≥1 be an element of Seq that is `th order strong, and let s′ = (t′n)n≥1 =
(kntn)n≥1 be a sequence obtained from scaling s to an order `′ 6= `. Then if λi,1 and λ1,i are nonzero for
all i, s′ is not strong.

Proof. We begin with the same setup as in the last section. Since the sequence s is `th order strong, we
can represent the corresponding Λ-array by λi,j := fj(i) = aj,`i

` + aj,`−1i
`−1 + ...+ aj,1i+ aj,0. Note that

scaling the sequence s to s′ = (kntn)n≥1 scales (λi,1)i≥1 to ( ki
ki−1

λi,1)i≥1 and (λ1,i)i≥1 to ( ki
ki−1

λ1,i)i≥1.
Since the statement of the Lemma indicates that these two diagonals do not contain any zeros, we can then
use Lemma 5.3 to compute the inside of the scaled array. In particular, the same algebraic manipulations
from the proof of Lemma 5.1 give the condition:

λi+1,l =
λi,lλi+l,1 − λl,1λi,l+1 + λ1,lλi,l+1

λi,1

which translates into our notational setup as:

f`(i+ 1) =
f`(i)f1(i+ `)− f1(`)f`+1(i) + f`(1)f`+1(i)

f1(i)
(120)

Let us consider the scaled array in the case that ` = 2. If we let the polynomials of the scaled array be
represented by f̃i, then equation (120) for the scaled array is:

f̃2(i+ 1) =
f̃2(i)

ki+2

ki+1
f1(i+ 2)− k2

k1
f1(2)f̃3(i) + k1f2(1)f̃3(i)

ki
ki−1

f1(i)
(121)

For the sequence (kn)n≥1 to change the order of s, the factors ki
ki−1

must be at least linear in i (or i−1),
but then from equation (121) it follows that f̃2(i) is scaled by a factor of at least i2 (respectively i−2).
Hence s′ is not a strong sequence.

5.4.2 A Family of Second-Order Weak Sequences

We start with the following:

Lemma 5.19. Let ξ = (λi,j)i,j≥1 be given by

λi,j =

{
i
∏i−1

t=1[(j+i−t)a+b]∏i−2
s=1[(i−s)a+b]

if i 6= 1

a+ b if i = 1
(122)

such that b 6= −ka for any k ∈ N. Then ξ is an element of Λ.

Proof. To be a member of Λ, ξ must satisfy the nondegeneracy condition and prelie condition of Theorem
4.1. However, the nondegeneracy condition follows immediately from the definition of Λ, so we only focus
on showing that the prelie property (77) holds for all values of i, j, k ≥ 1. There are only eight distinct
cases to consider, one case for each possibility of i, j, k being equal to 1 and not being equal to 1. However
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a+ b
4a+ 2b a+ b

9a+ 3b 6a+ 2b a+ b

16a+ 4b 3(4a+b)(3a+b)
(2a+b) 8a+ 2b a+ b

25a+ 5b 4(5a+b)(4a+b)
2a+b

3(5a+b)(4a+b)
2a+b 10a+ 2b a+ b

36a+ 6b 5(6a+b)(5a+b)
2a+b

4(6a+b)(5a+b)(4a+b)
(3a+b)(2a+b)

3(6a+b)(5a+b)
(2a+b) 12a+ 2b a+ b

...

Figure 26: The array described in Lemma 5.19.

we can cut the casework down somewhat further, first by realizing the cases j = k = 1 for any i is a
tautology since equation (77) is symmetric in j and k, and hence the relation is already satisfied. For
the same reason, we can assume without loss of generality that j < k. The remaining cases under these
assumptions are as follows:
Case 1: i = 1, j = 1, k ≥ 2. We have:

λi,jλi+j,k − λj,kλi,j+k = λi,kλi+k,j − λk,jλi,j+k

⇐⇒ (a+ b)λ2,k − (a+ b)(a+ b) = (a+ b)λk+1,1 − λk,1(a+ b)

⇐⇒ λ2,k − (a+ b) = λk+1,1 − λk,1

⇐⇒ (2)[(k + 1)a+ b]− (a+ b) =
(k + 1)[(k + 1)a+ b] · · · [2a+ b]

[ka+ b] · · · [2a+ b]
− (k)[ka+ b] · · · [2a+ b]

[(k − 1)a+ b] · · · [2a+ b]

⇐⇒ (2k + 2)a+ 2b− a− b = (k + 1)[(k + 1)a+ b]− (k)[ka+ b]

⇐⇒ (2k + 1)a+ b = (k2 + 2k + 1)a+ (k + 1)b− k2a− kb

⇐⇒ (2k + 1)a+ b = (2k + 1)a+ b

Case 2: i = 1, j ≥ 2, k ≥ 2. We start with the right-hand side of equation (77):

λi,kλi+k,j − λk,jλi,j+k = (a+ b)

(
(k + 1)[(j + k)a+ b] · · · [(j + 1)a+ b]

[ka+ b] · · · [2a+ b]

)
−
(
(k)[(j + k − 1)a+ b] · · · [(j + 1)a+ b]

[(k − 1)a+ b] · · · [2a+ b]

)
(a+ b)

Since j is strictly less than k, some factors in the numerator and denominator of each fraction cancel to
yield:19

λi,kλi+k,j − λk,jλi,j+k = (a+ b)

(
(k + 1)[(j + k)a+ b] · · · [(k + 1)a+ b]

[ja+ b] · · · [2a+ b]

)
−

(
(k)[(j + k − 1)a+ b] · · · [ka+ b]

[ja+ b] · · · [2a+ b]

)
(a+ b)

19Note that in the corner case that factors do not cancel in second term, then j + 1 = k, and hence the new form is still
valid.
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Next, we take out all common factors the two terms share in common:

λi,kλi+k,j − λk,jλi,j+k = (a+ b)

(
[(j + k − 1)a+ b] · · · [(k + 1)a+ b]

[ja+ b] · · · [2a+ b]

)
((k + 1)[(j + k)a+ b]− (k)[ka+ b])

= (a+ b)

(
[(j + k − 1)a+ b] · · · [(k + 1)a+ b]

[ja+ b] · · · [2a+ b]

)
((k2 + jk + j + k)a+ (k + 1)b− k2a− kb)

= (a+ b)

(
[(j + k − 1)a+ b] · · · [(k + 1)a+ b]

[ja+ b] · · · [2a+ b]

)
((jk + j + k)a+ b)

= (a+ b)

(
[(j + k − 1)a+ b] · · · [(k + 1)a+ b]

[ja+ b] · · · [2a+ b]

)
((j2 + jk + j + k)a+ b− j2a+ jb− jb)

= (a+ b)

(
[(j + k − 1)a+ b] · · · [(k + 1)a+ b]

[ja+ b] · · · [2a+ b]

)
((j + 1)[(j + k)a+ b]− (j)[ja+ b])

Finally, we distribute across the difference once again to obtain:

λi,kλi+k,j − λk,jλi,j+k = (a+ b)

(
(j + 1)[(j + k)a+ b][(j + k − 1)a+ b] · · · [(k + 1)a+ b]

[ja+ b] · · · [2a+ b]

)
−

(
(j)����[ja+ b][(j + k − 1)a+ b] · · · [(k + 1)a+ b]

����[ja+ b] · · · [2a+ b]

)
(a+ b)

= λi,kλi+k,j − λk,jλi,j+k

Case 3: i ≥ 2, j = 1, k ≥ 2. This case proceed in a similar fashion to the previous case. Starting with the
right-hand side:

λi,kλi+k,j − λk,jλi,j+k =

(
(i)[(i+ k − 1)a+ b] · · · [(k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)(
(i+ k)[(i+ k)a+ b] · · · [2a+ b]

[(i+ k − 1)a+ b] · · · [2a+ b]

)
−
(

(k)[(k)a+ b] · · · [2a+ b]

[(k − 1)a+ b] · · · [2a+ b]

)(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
=

(
(i)[(i+ k − 1)a+ b] · · · [(k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
(i+ k)[(i+ k)a+ b]

− (k)[ka+ b]

(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
=

(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
([(k + 1)a+ b](i+ k)− (k)[ka+ b])

=

(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
((k2 + k + ik + i)a+ (i+ k)b− k2a− kb)

=

(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
((k + ik + i)a+ ib)

=

(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
((k + ik + i)a+ ib+ a+ b− a− b)

=

(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
((k + ik + i)a+ ib+ a+ b)
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− (a+ b)

(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
=

(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
(i+ 1)(a(k + 1) + b)

ia+ b

ia+ b

− (a+ b)

(
(i)[(i+ k)a+ b] · · · [(k + 2)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
= λi,jλi+j,k − λj,kλi,j+k

Case 4: i ≥ 2, j ≥ 2, k ≥ 2. The verification is just another computation:

λi,kλi+k,j − λk,jλi,j+k =

(
[i][(i+ k − 1)a+ b] · · · [(k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)(
[i+ k][(i+ j + k − 1)a+ b] · · · [(j + 1)a+ b]

[(i+ k − 1)a+ b] · · · [2a+ b]

)
−
(
[k][(k + j − 1)a+ b] · · · [(j + 1)a+ b]

[(k − 1)a+ b] · · · [2a+ b]

)(
[i][(i+ j + k − 1)a+ b] · · · [(j + k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
=

(
[i][(i+ k − 1)a+ b] · · · [(k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)(
[i+ k][(i+ j + k − 1)a+ b] · · ·((((((

[(j + 1)a+ b]

((((((((
[(i+ k − 1)a+ b] · · · [2a+ b]

)
−
(
[k][(k + j − 1)a+ b] · · ·((((((

[(j + 1)a+ b]

((((((
[(k − 1)a+ b] · · · [2a+ b]

)(
[i][(i+ j + k − 1)a+ b] · · · [(j + k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
=

(
[i][(i+ k − 1)a+ b] · · · [(k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)(
[i+ k][(i+ j + k − 1)a+ b] · · · [(i+ k)a+ b]

[ja+ b] · · · [2a+ b]

)
−
(
[k][(k + j − 1)a+ b] · · · [ka+ b]

[ja+ b] · · · [2a+ b]

)(
[i][(i+ j + k − 1)a+ b] · · · [(j + k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
As before, we factor out as many common factors between terms as we can to obtain:

λi,kλi+k,j−λk,jλi,j+k =

(
[i][(i+ j + k − 1)a+ b] · · · [(j + k + 1)a+ b][(j + k − 1)a+ b] · · · [(k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b][ja+ b] · · · [2a+ b]

)
·
(
[i+ k][(j + k)a+ b]− [k][ka+ b]

)
Now the rightmost factor can be algebraically manipulated as follows:

[i+ k][(j + k)a+ b]− [k][ka+ b] = (ij + ik + jk + k2)a+ (i+ k)b− k2a− kb

= (ij + ik + jk)a+ ib

= (ij + ik + jk)a+ ib− j2a+ j2a− jb+ jb

= (ij + ik + jk + j2)a+ (i+ j)b− (j)(ja+ b)

= (i+ j)(j + k)a+ (i+ j)b− (j)(ja+ b)

= (i+ j)[(j + k)a+ b]− (j)[ja+ b]

Hence:

λi,kλi+k,j−λk,jλi,j+k =

(
[i][(i+ j + k − 1)a+ b] · · · [(j + k + 1)a+ b][(j + k − 1)a+ b] · · · [(k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b][ja+ b] · · · [2a+ b]

)
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·
(
(i+ j)[(j + k)a+ b]− (j)[ja+ b]

)
And finally redistributing:

λi,kλi+k,j − λk,jλi,j+k =

(
[i]

[(i− 1)a+ b] · · · [2a+ b]

)(
[i+ j][(i+ j + k − 1)a+ b] · · · [(k + 1)a+ b]

[ja+ b] · · · [2a+ b]

)

−
(
[j][(j + k − 1)a+ b] · · · [(k + 1)a+ b] ·����[ja+ b]

����[ja+ b][(j − 1)a+ b] · · · [2a+ b]

)(
[i][(i+ j + k − 1)a+ b] · · · [(j + k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
=

(
[i][(j + i− 1)a+ b] · · · [(j + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)(
[i+ j][(j + i+ k − 1)a+ b] · · · [(k + 1)a+ b]

[(i+ j − 1)a+ b] · · · [2a+ b]

)
−
(
[j][(j + k − 1)a+ b] · · · [(k + 1)a+ b]

[(j − 1)a+ b] · · · [2a+ b]

)(
[i][(i+ j + k − 1)a+ b] · · · [(j + k + 1)a+ b]

[(i− 1)a+ b] · · · [2a+ b]

)
=λi,jλi+j,k − λj,kλi,j+k

This calculation finishes the proof.

Remark. We take a moment to note some of the more salient features of the family of sequences introduced
in Lemma 5.19. Firstly, note that the sequence of generators of the Connes-Moscovici subalgebra belong
to this family, and can be recovered by setting a = b = 1

2 . Secondly, we remark that this family provides
the only known examples of second-order sequences that are not scaled versions of zeroth- or first-order
sequences.

Besides the sequence of generators of the Connes-Moscovici subalgebra, another sequence of the family
that appears to be combinatorial in nature can be obtained by setting a = 1 and b = 0. The first few
elements of this sequence begin:

t1 =

t2 =

t3 = +
3

2

t4 = +
3

2
+ 5 +

17

6

...

While we do not yet have a complete combinatorial description of the sequence, it is interesting to note
that its Λ-array is given by λi,j = i

(
i+j−1
i−1

)
and that the coefficient sequences describing the corollas appear

to be A177208 (numerators) and A177209 (denominators) in OEIS [45].
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6 Conclusion
6.1 Open Problems
Here we present some tantalizing questions for further research. In the following list, some questions may be
as in-depth as whole research problems, while others may be completely intractable, while still others may
be simple exercises appropriate for graduate or even undergraduate students in combinatorics. We make
no attempt to classify these questions according to their potential or difficulty, hence this classification is
left to the discernment of the reader.

1. In [28], Grossman and Larson introduce the Hopf algebra on rooted trees which ends up being
isomorphic to the graded dual of HCK , as discussed in Section 2.1.4. However, the Hopf algebra
HGL is just one of a few Hopf algebras Grossman and Larson introduce in [28]. In particular, another
Hopf algebra they introduce is the family of rooted heap-ordered trees HOT . Is it known if this
family has any relation to HCK? Is it possible it constitutes a Hopf subalgebra?

2. In this work, we have given a complete characterization of strong 0th-order sequences and strong `th
order sequences for ` ≥ 2 (Sections 5.1 and 5.2). What is the complete characterization of strong
first-order sequences? We conjecture that those we have described in this thesis constitute all possible
strong first-order sequences.

3. Do there exist weak kth-order sequences for any k ≥ 3 other than scaled 0th-, 1st-, and 2nd-order
sequences? If so, what is their underlying combinatorial structure? If not, then why not? What does
this say about the underlying physical systems?

4. In Section 5.3, we discuss a new family of Hopf subalgebras of HCK whose generators are an ap-
plication of the exponential map to a series of ladder primitives, X =

∑n
i=0 li. However, Foissy

(See section 7.6.3 of [23]) gives some primitive elements not related to the primitive elements com-
ing from ladders. Are there any nice Hopf subalgebras coming from exponentiating series involving
these elements? Moreover, are there any nice Hopf subalgebras arising from exponentiating series
of k-primitive elements (in either the sense of [7] or [3]) for some k? Primitive elements correspond
to 0-primitive elements in both sources, and as the elements we get in Seq from exponentiating
primitive elements are 0th-order, is it possible there is any connection between one of the notions of
k-primitiveness and our notion of kth order sequences?

6.2 Final Remarks
In this thesis, we have explored various properties of sequences of linear combinations of trees in the setting
of the Connes-Kreimer Hopf algebra, and have categorized the majority of sequences that are strong. The
fact that the only strong sequences of order ` for ` ≥ 2 are scaled corollas (Theorem 5.11) emphasizes the
importance of the sequence of corollas, as well as the importance of first- and zeroth-order sequences, all
of which have been singled out previously for their importance from a purely-physics perspective. Future
investigation into the possible orders of sequences having a combinatorial description (and without scaling)
is a very interesting question for further research, as mentioned in the previous section.

We have also introduced in this work a new family of second-order sequences relating to the sequence
of generators of the Connes-Moscovici subalgebra. We hope these sequences will be of interest to others
in the combinatorics community in the future.
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Appendices
The following appendices contain information which is integral to (but tangential to) the work done
throughout this text. In Appendix A, we present our SageMath implementation of a class modelling
the Connes-Kreimer Hopf algebra of forests of rooted trees. Since K[Fn] ' K[Tn+1] via B+, forests are
represented as rooted trees with an extra parent vertex. Hence the forest will be modeled in the code

as . The underlying class for our implementation is that of OrderedRootedTrees which is already

built in to Sage.
In Appendix B, we then present code which does not belong in the class definition of the Connes-

Kreimer Hopf algebra, but which was still helpful throughout this work for various computational purposes.
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Examples of applications of this code are in computing the maps S and S∗ on trees, and in computing
elements of Seq from their corresponding Λ-arrays using the bijection described in Section 4.

The last appendix is a dictionary of elements of Seq, sorted according to their order. One will find
familiar examples such as those sequences coming from Dyson-Schwinger equations, in addition to the new
sequences presented earlier in this text.

A SageMath Implementation of the Connes-Kreimer Hopf Alge-
bra of Rooted Trees

#This f i l e w i l l model the Connes Kreimer Hopf a l g e b ra o f rooted t r e e s by
#implementing i t as an ins tance o f the HopfAlgebrasWithBasis c l a s s a l r eady
#in ex tan t . Implementing i t t h i s way shou ld make i t e a s i e r in the f u t u r e
#to implement Michael Hoffman ’ s b i j e c t i o n to the Grossman Larson Hopf
#a l g e b ra . C. f . the Grossman Larson Hopf a l g e b ra in SageMath authored by
#Fr\ ’ ed \ ’ e r i c Chapoton .

#Author : @wtdugan
#Contact : wtdugan@uwaterloo . ca

import copy

class Hck( CombinatorialFreeModule ) :
def __init__( s e l f ) :

CombinatorialFreeModule . __init__( s e l f , QQ, RootedTrees ( ) , category =
HopfAlgebrasWithBasis (QQ) )

def _repr_ ( s e l f ) :
return ”The␣Connes Kreimer␣Hopf␣ Algebra ␣ o f ␣ rooted ␣ t r e e s ␣ over ␣ r a t i o n a l ␣

f i e l d ”

@cached_method
def one_basis ( s e l f ) :

return ( RootedTree ( [ ] ) )

def product_on_basis ( s e l f , h1 , h2 ) :
x = copy . deepcopy ( h1 )
y = copy . deepcopy ( h2 )
for i in y :

x = x . graft_on_root ( i )
return ( s e l f . b a s i s ( ) [ x ] )

@cached_method
def a lgebra_generator s ( s e l f ) :
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return ( Family ( RootedTrees ( ) ) )

#def coproduct_on_basis ( s e l f , h ) :
# h = s e l f . monomial ( h )
# return ( t ensor ( [ h , h ] ) )

def coproduct_on_basis ( s e l f , h ) :
h = h . c a n o n i c a l _ l a b e l l i n g ( )
P = Label ledOrderedTree (h) . to_poset ( ) # < Make a pose t to f i n d

an t i c ha in s .
a n t i c h a i n s _ l i s t = [ [ get_tv (h , j ) for j in i ] for i in l i s t (P. a n t i c h a in s

( ) ) [ : 1 ] ] # < Form an t i cha in s l i s t . Get r i d o f an t i cha in
corresponding to top v e r t e x ( as t h i s v e r t e x i s j u s t a v e s t i g e due
to our model o f the Hopf a l g e b ra as t r e s i n s t ead o f f o r e s t s ) .

f inal_sum = 0 # < I n i t i a l i z e sum fo r coproduct .
for i in a n t i c h a i n s _ l i s t : # < Loop over an t i c ha in s .

R = copy . deepcopy (h)
P = s e l f . one ( )
for j in i :

R = recurs ive_remove (R, j ) # < Component con ta in ing roo t .
P = P∗ s e l f . monomial ( RootedTree ( [ j ] ) ) #Pruned par t . Need

to add a new fake v e r t e x .
f inal_sum = final_sum + tenso r ( [ P, s e l f . monomial ( RootedTree (R) ) ] )

return ( f inal_sum )

def counit_on_basis ( s e l f , h ) :
return s e l f . base_ring ( ) . one ( )

def antipode_on_basis ( s e l f , h ) :
i f (h == RootedTree ( [ ] ) ) :

return ( s e l f . one ( ) )
e l i f (h == RootedTree ( [ [ ] ] ) ) :

return ( s e l f . monomial (h) )
#Else i f a t r e e :
e l i f ( len (h) == 1) :

h = h . c a n o n i c a l _ l a b e l l i n g ( )
an t i pode_ l i s t = cons t ruc t_ant ipode_l i s t (h)
final_sum = sum( prod ( ( ( 1 ) ^ len ( j ) ) ∗ s e l f . monomial ( RootedTree ( [ i ] ) )

for i in j ) for j in an t ipode_ l i s t ) # < Put a l i s t around
each i to add back in fake v e r t e x f o r each t r e e .

return ( f inal_sum ) # < Note t h a t l en ( j ) in the prev ious l i n e
i s e x a c t l y (n_c + 1) in ant ipode formula .

#Else i t must be a f o r e s t wi th more than one component :
else :

l i s t_o f_t r e e s_ in_fo r e s t = [ s e l f . monomial ( RootedTree ( [ i ] ) ) for i in
h ]
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return ( prod ( j . ant ipode ( ) for j in l i s t_o f_t r e e s_ in_fo r e s t ) ) # <
Add an ex t ra fake v e r t e x to each roo t wi th [ ] wrapper .

####################################################################
# Helper Functions :
####################################################################

#Takes a rooted t r e e T and removes a sub t r e e a :

def recurs ive_remove (T, a ) :
with T. c l one ( ) as W:

i f a in W:
W. remove ( a )
return (W)

e l i f len (W) == 0 :
return (W)

else :
r oo t_labe l = W. l a b e l ( ) # < Obtains l a b e l o f roo t so t h a t

r e c u r s i v e l y r e b u i l t t r e e maintains the same l a b e l l i n g as the o ld
t r e e .

s u b t r e e _ l i s t = [ recurs ive_remove ( i , a ) for i in T]
U = Label ledRootedTree ( [ ] , l a b e l = root_labe l ) # < Creates a new

root on which to g r a f t a l t e r e d s u b t r e e s .
for j in s u b t r e e _ l i s t :

U = U. graft_on_root ( j )
return (U)

#Define a he l p e r func t i on to ge t t_v t r e e rooted at v e r t e x v in t :
def get_tv ( t , v ) :

for i in t . sub t r e e s ( ) :
i f i . l a b e l ( ) == v :

return ( i )

#Takes a rooted t r e e and c o n s t r u c t s a l l p o s s i b l e cu t s .
def cons t ruc t_ant ipode_l i s t (T) :

#Sta r t wi th an empty l i s t :
my_list = [ ]
for i in Subsets ( range (3 ,T. node_number ( ) + 1) ) :

my_sublist = [ ]
J = copy . deepcopy (T)
for j in reversed ( i ) :
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W = get_tv (J , j )
my_sublist . append (W)
J = recurs ive_remove (J ,W)

my_sublist . append ( J [ 0 ] ) # < Take f i r s t index o f J to ge t r i d
o f f ake roo t .

my_list . append ( my_sublist )
return ( my_list )

B Other Code

#Return f i r s t few va l u e s o f $\ l o g (X) $ :
def sequence_log (X) :

One = H( RootedTree ( [ ] ) )
return ( (X One) + (1/2) ∗(X One) ^2 (1/3) ∗(X One) ^3 + (1/4) ∗(X One)

^4 (1/5) ∗(X One) ^5 )

#Return f i r s t few va l u e s o f $\ exp (X) $ :
def sequence_exp (X) :

One = H( RootedTree ( [ ] ) )
return (One + X + (1/2) ∗X^2 + (1/6) ∗X^3 + (1/24) ∗X^4 + (1/120) ∗X^5 +

(1/720) ∗X^6 + (1/5040) ∗X^7)

#Return the component homogeneous o f degree $n$ :
def homogeneous_component (U, n) :

t r e e _ l i s t = [ ( i . c o e f f i c i e n t s ( ) [ 0 ] , l i s t ( i . monomials ( ) [ 0 ] ) [ 0 ] [ 0 ] ) for i
in U. terms ( ) ]

return (sum( i [ 0 ] ∗H( RootedTree ( i [ 1 ] ) ) for i in t r e e _ l i s t i f RootedTree ( i
[ 1 ] ) . node_number ( ) == n + 1) )

def B_minus(X) :
t r e e _ l i s t = [ ( i . c o e f f i c i e n t s ( ) [ 0 ] , l i s t ( i . monomials ( ) [ 0 ] ) [ 0 ] [ 0 ] ) for i

in X. terms ( ) i f i . monomials ( ) [ 0 ] != H( RootedTree ( [ ] ) ) ]
Y = sum( i [ 0 ] ∗H( RootedTree ( i [ 1 ] [ 0 ] ) ) for i in t r e e _ l i s t ) # < i [ 1 ] [ 0 ]

t a k e s the second element o f the t u p l e and then removes the roo t
v e r t e x o f the t r e e ( accessed as a l i s t ) .

return (Y)

def B_plus (X) :
t r e e _ l i s t = [ ( i . c o e f f i c i e n t s ( ) [ 0 ] , l i s t ( i . monomials ( ) [ 0 ] ) [ 0 ] [ 0 ] ) for i

in X. terms ( ) i f i . monomials ( ) [ 0 ] != H( RootedTree ( [ ] ) ) ]
Y = sum( i [ 0 ] ∗H( RootedTree ( [ i [ 1 ] ] ) ) for i in t r e e _ l i s t ) # < l i s t ( i [ 1 ] )

t a k e s the second element o f the t u p l e and then adds a new root
v e r t e x o f the t r e e ( by wrapping a new l i s t around the o ld one ) .

return (Y)
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#######################################################################
Code r e l a t e d to the computation o f $\ o v e r l i n e {S}$ and $S^∗$ :
#######################################################################

#Write s i z e ( ) f unc t i on . Takes t , an element o f Hck . TODO: add t h i s to the
Hck . e lement c l a s s .

def e lement_size ( t ) :
h = l i s t ( t ) [ 0 ] [ 0 ] # < Extrac t s under l y ing rooted t r e e o b j e c t .
return (h . node_number ( ) 1) # < Sub t rac t one to account f o r f ake

v e r t e x .

#Function to e x t r a c t under l y ing rooted t r e e . TODO: add to Hck . e lement c l a s s .
def get_element ( t ) :

return ( l i s t ( t ) [ 0 ] [ 0 ] )

#Takes a f o r e s t t ( as an element o f Hck) and outpu t s $\ o v e l i n e {S}$ o f t .
Only works on a s i n g l e t r e e or f o r e s t ( not a l i n e a r combination ye t ) :

def S_log_monomial ( t ) :
i f ( e lement_size ( t ) == 0) :

return ( t )
e l i f ( e lement_size ( t ) == 1) :

return ( t )
e l i f ( len ( get_element ( t ) ) == 1) :

h = get_element ( t )
h = h . c a n o n i c a l _ l a b e l l i n g ( )
an t i pode_ l i s t = cons t ruc t_ant ipode_l i s t (h)
final_sum = sum( prod ( ( ( 1 ) ^ len ( j ) ) ∗H( RootedTree ( [ i ] ) ) for i in j )

∗(1/ len ( j ) ) for j in an t ipode_ l i s t ) # < Put a l i s t around each
i to add back in fake v e r t e x f o r each t r e e .

return ( f inal_sum ) # < Note t h a t l en ( j ) in the prev ious l i n e
i s e x a c t l y (n_c + 1) in ant ipode formula .

#Else t must be a f o r e s t wi th more than one component :
else :

h = get_element ( t )
l i s t_o f_t r e e s_ in_fo r e s t = [H( RootedTree ( [ i ] ) ) for i in h ]
return ( prod ( S_log ( j ) for j in l i s t_o f_t r e e s_ in_fo r e s t ) ) # < Add

an ex t ra fake v e r t e x to each roo t wi th [ ] wrapper .

#Takes a f o r e s t t ( as an element o f Hck) and outpu t s $S^∗$ o f t . Only works
on a s i n g l e t r e e or f o r e s t ( not a l i n e a r combination ye t ) :

def S_exp_monomial ( t ) :
i f ( e lement_size ( t ) == 0) :

return ( t )
e l i f ( e lement_size ( t ) == 1) :

return ( t )
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e l i f ( len ( get_element ( t ) ) == 1) :
h = get_element ( t )
h = h . c a n o n i c a l _ l a b e l l i n g ( )
an t i pode_ l i s t = cons t ruc t_ant ipode_l i s t (h)
final_sum = sum( prod ( ( ( 1 ) ^ len ( j ) ) ∗H( RootedTree ( [ i ] ) ) for i in j )

∗(1/ f a c t o r i a l ( len ( j ) ) ) for j in an t ipode_ l i s t ) # < Put a l i s t
around each i to add back in fake v e r t e x f o r each t r e e .

return ( f inal_sum ) # < Note t h a t l en ( j ) in the prev ious l i n e
i s e x a c t l y (n_c + 1) in ant ipode formula .

#Else t must be a f o r e s t wi th more than one component :
else :

h = get_element ( t )
l i s t_o f_t r e e s_ in_fo r e s t = [H( RootedTree ( [ i ] ) ) for i in h ]
return ( prod ( S_log ( j ) for j in l i s t_o f_t r e e s_ in_fo r e s t ) ) # < Add

an ex t ra fake v e r t e x to each roo t wi th [ ] wrapper .

S_log = H. module_morphism (lambda i : S_log_monomial (H. monomial ( i ) ) , codomain
= H)

S_exp = H. module_morphism (lambda i : S_exp_monomial (H. monomial ( i ) ) , codomain
= H)

C Examples of Sequences of Trees
Here we present a dictionary of the known elements of Seq that admit an order, sorted according to their
order. We first present those that are strong sequences, and then those that are weak. In the case of
strong sequences, we will indicate at each order whether the sequences presented constitute all possible
strong sequences of that order (in which case we will say “complete”), or whether it is not known if there
exist any more strong sequences of that order (in which case we will say “not complete”).
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C.1 Strong Sequences

Λ-array Element of Seq Generated by:
1

1 1

1 1
...

1 1
... 1

1 1
... 1 b

1 1
... 1 b 0

1 1
... 1 b 0 0

1 1
... 1 b 0 0 0

t1 =

t2 =

...
tn−1 = ln−1

tn = bln
...

X = B+(exp([
∑n−1
i=1 Pi)] + bPn))

1
1 1

1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

t1 =

t2 =

t3 =

t4 =

...

X = B+(exp

( ∞∑
i=1

Pi

)
)

or: X = +B+(X)

Table 4: Strong 0th order sequences (complete).

Λ-array Element of Seq Generated by:

a+ b
2a+ b a+ b

3a+ b 2a+ b a+ b
4a+ b 3a+ b 2a+ b a+ b

t1 =

t2 = (a+ b)

t3 = (a+ b)2 +
(a+ b)a

2

...

X = B+((1 + bX)
a+b
b ), a, b ∈ K and b 6= 0

X = B+(exp(aX)), a, b ∈ K and b = 0

a+ b
2a+ b b

3a+ b b b
4a+ b b b b

t1 = t1 =

t2 = (a+ b)

t3 = (a+ b)b + (a+ b)a

X = B+( 1+bX

1−a
)

Table 5: Strong 1st order sequences (not complete).

105



Λ-array Element of Seq Generated by:
f(1)

f(2) 0
f(3) 0 0

f(4) 0 0 0

with f(i) = ikak + ik−1ak−1 + ...+ a0

Scaled corollas

Table 6: Strong kst order sequences, for all k ≥ 2 (complete).

C.2 Some Known Weak Sequences

Name Λ-array

B(n)

1

1
...

1
... 1

1
... 1 0

1
... 1 −1 1

1
... 1 −2 1

...

1
... 1 −3 1

... 1

1
... 1 −4 1

... 1 0

1
... 1 −5 1

... 1 −1 1

1
... 1 −5 1

... 1 −1 1
...

C(n)

1

1
...

1
... 1

1
... 1 0

1
... 1 −1 1

1
... 1 −2 1 1

1
... 1 −3 1 1 1

1
... 1 −4 1 1 1 1

1
... 1 −4 1 1 1 1 1

1
... 1 −4 1 1 1 1 1 1

Table 7: The Λ-arrays of some weak 0th order sequences.
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Λ-array:

a+ b
2a+ b −a

3a+ b 0 −a
4a+ b 0 0 −a

5a+ b 0 0 0 −a
6a+ b 0 0 0 0 −a

7a+ b 0 0 0 0 0 −a
8a+ b 0 0 0 0 0 0 −a

...
with a, b ∈ K, a 6= 0

Sequence begins:

t1 =

t2 = (a+ b)

t3 = −(a+ b)a +
(a+ b)(3a+ b)

2

t4 = (a+ b)a2 − (a+ b)a2 − (a+ b)(3a+ b)a

2
+

(a+ b)(11a2 + 6ab+ b2)

6

t5 = −(a+ b)a3 +
(a+ b)(3a+ b)a2

2
+ (a+ b)a3

− (a+ b)(11a2 + 6ab+ b2)a

6
+ (a+ b)a3 − (a+ b)(3a+ b)a2

2

− (a+ b)a3 +
(a+ b)(50a3 + 30a2b+ 10ab2 + b3)

24

Table 8: A family of weak 1st order sequences.
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Λ-array:

a+ b
4a+ 2b a+ b

9a+ 3b 6a+ 2b a+ b

16a+ 4b 3(4a+b)(3a+b)
(2a+b) 8a+ 2b a+ b

25a+ 5b 4(5a+b)(4a+b)
2a+b

3(5a+b)(4a+b)
2a+b 10a+ 2b a+ b

36a+ 6b 5(6a+b)(5a+b)
2a+b

4(6a+b)(5a+b)(4a+b)
(3a+b)(2a+b)

3(6a+b)(5a+b)
(2a+b) 12a+ 2b a+ b

...
with a, b ∈ K, b 6= −ka for any k ∈ N

Sequence
begins:

t1 =

t2 = (a+ b)

t3 = (a+ b)2 +
(3a+ b)(a+ b)

2

t4 = (a+ b)3 + (5a+ b)(a+ b)2 +
(3a+ b)(a+ b)2

2
+

(17a2 + 6ab+ b2)(a+ b)

6

t5 = (a+ b)4 +
(3a+ b)(a+ b)3

2
+ (5a+ b)(a+ b)3 +

(17a2 + 6ab+ b2)(a+ b)2

6

+ (7a+ b)(a+ b)3 +
(7a+ b)(3a+ b)(a+ b)2

2
+

(8a+ b)(3a+ b)(a+ b)3

2(2 ∗ a+ b)

+
(80a3 + 53a2 ∗ b+ 10ab2 + b3)(a+ b)2

2(2 ∗ a+ b)

+
(304a4 + 201a3 ∗ b+ 55a2 ∗ b2 + 15ab3 + b4)(a+ b)

24(2 ∗ a+ b)

Table 9: A family of weak 2nd order sequences20.

20The Λ-array corresponding to the Connes-Moscovici subalgebra is recovered by choosing a = b = 1
2

.
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