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Abstract

In this report we build on the work done in the previous term where we applied general
equations for the flows of the the anomalous dimension and the beta function, were special-
ized to a massless φ4 theory. One of the questions which we left unanswered in the previous
term was when exactly are there Landau poles in φ4 theory. In answering this question we
find intimidate generalization to any massless theory. We next consider renormalization
in the Wess-Zummino model and show how this can simplifies the equations we need to
consider for the anomalous dimension and beta function fining only a single equation is
needed for each of these functions. We then study the flows generated by these equations
and find them to be very similar to the equations for the massless QED theory. Finally
we give new Feynman rules for the vertices which result from the co-action relating to the
renormalization of Cutkosky graphs and find that momentum conservation forces vertices
to have a specific form.
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Chapter 1

Introduction and Background

1.1 Introduction

In this work our goal is to derive and investigate the renormalization group functions (the
anomalous dimension and the beta function) for several different physical theories using
the combinatorial methods developed in [21]. Renormalization has been an important part
of quantum field theory nearly since the inception of the field. Radiative corrections, where
the ideas of renormalization are seen in quantum electrodymanics are very important and
many of these results are responsible for some of the most impressive results of quantum
field theory, see for instance [15], [16], [14]. However for several years there was no known
well defined mathematical prescription for the generalizations of these ideas. Eventually
however the mathematical structure of renormalization was formalized and given a solid
mathematical background [8]. With this more solid mathematical background it became
possible to better understand the mathematical and specifically Hopf algebraic structure
of renormalization[5],[11],[4],[2]. Studying and understanding the algebraic structures has
lead to many physically relevant interesting results[13],[11],[3] and in this work we intend
to make more progress in this direction by studying the ordinary differential equations
which were derived in [21]. In my previous project relating to this we analysed the or-
dinary differential equations from φ4 theory and proved a result relating to the existence
of global solutions for the beta function in φ4 theory analogous to the result in [7]. Our
previous analysis however left open several important questions and the goal here is to
answer these questions. Specifically we were interested in where φ4 theory has Landau
poles and how can we characterize the separating surfaces between solutions. To answer
these questions we consider the Riccati equations associated to the non-linear differential
equations which are derived in [21]. This reduces these first order non-linear differential
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equations into second order linear differential equations. This transformation gives an in-
teresting relationship between the zeros of the transformed solution and the Landau poles
of the anomalous dimension. We then apply this form of analysis to the massless version
of Quantum electrodynamics as well as the super-symmetric Wess Zumino model. A lot of
the work required to apply the analysis of [21] to the massless version of quantum electro-
dynamics and φ4 theory has been done in previous works, see [20],[10], however to apply
these methods to the Wess Zumino model there is some extra work we need to do and these
questions are also addressed in our work. Specifically we address weather or not the sums
of the insertion operators

∑
iB

k,i;r
+ as considered in [20] indeed form a Hochschild 1 cocycle

and conversely what identities would need to be satisfied to have the insertion operators
form a Hochschild 1 cocyle. We also derive the Dyson-Schwinger equations for the scalar
and fermon self energies and show how the supergauge invariance of the lagrangian reduces
these into a single equation. From this point on the equation in [21] can be applied directly.
Finally, we investigate the co-action related to Cutcosky graphs developed in and how one
can prescribe Feynman rules in a way consistent with momentum conservation imposed by
the vertices.

The rest of the report is structured as follows, in chapter 2 I introduce the necessary
combinatorial and physical background required to understand the report. In chapter 3 I
develop the theory for proving the existence of Landau poles, and apply this to the specific
case of φ4 theory. In chapter 4 I present the Wess Zumino model as well as supergauge
transformations and how the Lagrangian is invariant under these transformations as well as
how this leads to the combinatorial Ward identities, and how these will lead to simplifying
the equations derived in [21], which we then use to investigate the Wess Zumino model.
In chapter 5 I discuss the new Feynman rules for the vertices generated by considering the
co-action on Cutcosky graphs and conclude the report.
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Chapter 2

Background

In this chapter I will present all of the necessary combinatorial and physics background
for the project. The first section of this chapter will focus on the physics needed for the
project, specifically renormalization and the different schemes for renormalization. We will
also give an account of the different Feynman rules for different types of fields as we will
use them frequently. From the combinatorics side I will introduce several key concepts
from graph theory which will be of use in the entire report. There are several concepts
which I will not cover in this report as they have been described in the previous report
and therefore will not be elaborated on here. These concepts are Hopf algebras, the basic
physics of renormalization, as well as the generalities on the derivation of the main equa-
tion in [21]. If one is interested in any more information on my topics they are referred to
my previous report which may be found on professor Yeats’ website.

2.1 Physics of Renormalization

2.1.1 Basics of Quantum Field Theory

In this section I will discuss the physics of renormalization, to begin I will give a brief
summary of the standard Feynman rules for spin 0, spin 1/2 and spin 1 fields. I will then
discuss the different commonly used renormalization schemes in physics. We begin by re-
calling the Feynman rules for a scalar field. First for a scalar field.
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Type of Line Diagram Representation Mathematical Expression
External Line 1
Internal Line i

k2−m2

Similarly for fermion (spin 1/2) lines we have,

Type of Line Diagram Representation Mathematical Expression
External Line us(p)
External Line ūs(p)
External Line v̄s(p)
External Line vs(p)

External Line i(/k+m)
k2−m2

Where s labels the spin of the fermion, and /k = γµkµ. For spin 1 fields we have,

Type of Line Diagram Representation Mathematical Expression
External Line εµν
External Line ε∗µν

Internal Line i(gµν−
kµkν

k2
)

k2−m2

These rules are general for any fields, but of course in a real physical theory one will also
have interaction terms. These interaction terms will specify the theory and will of course
be dependant on the theory. When we discuss specific theories I will provide the vertices,
which specify the interaction terms. Next I want to introduce the idea of a functional
derivative. Defining these formally in terms of mathematical distributions is beyond the
scope of what we wish to discuss in this document. We will want to still do computations
however, to this end we define.

δJ(x)

δJ(y)
= δ4(x− y) (2.1)

So that if for instance
R(x) =

∫
d4y K(x, y)J(y)

Then
δR(x)

δJ(z)
= K(x, z)
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These relations are all we will need to compute functional derivatives. Next I will define
another useful tool we will use frequently called a(n) (n-point) Green’s function, this is
defined by

G(x1, x2, . . . , xn) = 〈0| T
(
φ̂(x1)φ̂(x2) · · · φ̂(xn)

)
|0〉 (2.2)

And where T (·) is the time ordering operator which we define by

T
(
φ̂(x1)φ̂(x2) · · · φ̂(xn)

)
=
∑
σ∈Sn

(
n−1∏
j=0

θ
(
tσ(j) − tσ(j+1)

))
ε(σ)φ̂(xσ(1))φ̂(xσ(2)) · · · φ̂(xσ(n))

(2.3)
Where as usual Sn is the permutation group on n elements, and ε(σ) = 1 if the operators

are bosonic operators or ε(σ) = sgn(σ) if the operators are fermionic operators. Usually,
when working with quantum field theory one would then relate these Greens functions to
the S-matrix (or usually the other way around) using the LSZ reduction formula since this
then allows one to calculate cross sections and decay rates. However since we won’t be
considering these quantities and I won’t remark on that here other than saying that to
compute these physical quantities it is enough to compute these n-point Green’s functions.
For different parts of this document it will be helpful to define the generating functional
for the n-point Green’s function to be

Z[J ] =
∑
n≥0

in

n!

∫
d4x1 d

4x2 · · · d4xn G(x1, x2, . . . , xn)J(x1)J(x2) · · · J(xn) (2.4)

From this definition we can obtain the Green’s function through functional as

G(x1, x2, . . . , xn) =
δnZ[J ]

iδJ(x1) iδJ(x2) · · · iδJ(xn)

∣∣∣∣
J=0

(2.5)

This generating functional contains all information about the n-point Green’s functions
for all n > 0 and thus is computationally a powerful tool. However it is usually more com-
mon in physics to work with the the Fourier transform of each of these Green’s functions.
The next thing that we need is the concept of functional integrals. Once again delving
into the mathematical details of these integrals (how they are defined and properties) is
beyond the scope of the document and can be found in almost any standard quantum field
theory textbook see for example [15]. What I will mention here is that for many quantum
field theories for example in a spin-0 field we have

Z[J ] =
1

Z[J = 0]

∫
Dφ ei

∫
d4x L−J(x)φ(x) (2.6)
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And from these equations we can derive for example the propagators and vertices for the
different theories. Two remarks are in order here. First is that when using these functional
integrals with fermion fields, will use Grassman variable valued functions as the currents
and not regular functions. I will comment on this more when we need to use them but
for now I will move on. Secondly when deriving Green’s functions or correlation function
in this way one will get correct results but these will be in the ”position representation”.
Although at first they might seem different these representations are equivalent because
they are related by a Fourier transform which is invertible. We will often not use this and
stick to the momentum representation.

Next I want to give a brief overview of Dyson-Schwinger equations which are generally
speaking, (functional) differential equation for the generating functional and currents de-
rived through symmetries. These are going to be an important part of what we are going
to do with the Wess-Zumino model and so it is worth remarking on here. Since again
these relations will depend on the theory we choose let’s consider the specific Lagrangian
L = 1

2
∂µφ∂

µφ − 1
2
m2φ2 then in this case we see using integration by parts we can write

L = 1
2
φ (�−m2)φ+ Surface Terms and thus the generating functional is

Z[J ] =
1

Z0

∫
Dφ ei

∫
d4x− 1

2
φ(x)

(
�+m2

)
φ(x)−J(x)φ(x) (2.7)

Now by the analogue of the fundamental theorem of calculus we have
∫
Dφ δF

δφ
= 0 and

so we find, (
�+m2

) 1

Z0

∫
Dφ φei

∫
d4x− 1

2
φ(x)

(
�+m2

)
φ(x)−J(x)φ(x) + J(x)Z[J ] = 0 (2.8)

Now we can use the fact that − 1
Z0

∫
Dφ φei

∫
d4x− 1

2
φ(x)

(
�+m2

)
φ(x)−J(x)φ(x) = δZ

δiJ(x)
to get

(
�+m2

) δZ

δiJ(x)
= J(x)Z[J ] (2.9)

This is a first example of a Dyson Swinger equation. One can see that it is indeed a
differential equation for the generating functional. This is sometimes also called an equation
of motion for the generating functional. This can also be combined with symmetries to yield
what are usually called Ward identities. For instance by considering the transformation
ψ −→ ψ + ieα(x) and using the fact that shifting the fields leaves the functional integrals
and Fourier transforming the result one derives a standard QED Ward identity.

−ikµMµ = ie (M(p+ k; q)−M(p; q − k)) (2.10)
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Of course this is a specific example, we can generalize this to different theories using these
generating functionals which will come in useful while discussing the Wess-Zumino model
and thus we will keep these ideas in mind for later. So far nothing we have discussed
strictly speaking involves perturbation theory at all, all of these results are completely
non pertubative. In the next section we will discuss perturbation theory and specifically
renormalization.

2.1.2 Renormalization

In this section I will describe more about renormalization and throughout this section I
will be using the φ4 theory which has Lagrangian,

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 +

λ

4!
φ4 (2.11)

Now as discussed in my last report and is well known the four-point function which we can
represent diagrammatically as,

iM(p1, p2 → p3, p4) =

Is divergent. The goal of renormalization is thus to assign meaningful physical quantities
to these divergent amplitudes which we can use in the computation of scattering cross
sections for example. The way we do this is by using the fact that we actually have
some freedom in the ”constant” terms in the Lagrangian m and λ as well as an over all
field strength renormalization Zr. Let’s denote the physical mass by m2

p and the physical
coupling constant λp and the physical field Φ by

√
ZrΦ = φ. Then the Lagrangian in terms

of the physical field becomes

L =
Zr
2
∂µΦ∂

µΦ− Zr
2
m2Φ2 − Z2

rλ

4!
Φ4 (2.12)

Now we want to write this in terms of only the physical quantities plus counter terms, we
do this by noting Zr = 1 + (Zr − 1) and −Zrm2 = −m2

p − (Zrm
2 − m2

p) and −Z2
rλ =

−λp− (Z2
rλ− λp) now we can rewrite the Lagrangian in terms of these physical quantities

and the quantities δZ = Zr − 1, δm = Zrm
2 −m2

p and δλ = Z2
rλ− λp and this we can write

L =
1

2
∂µΦ∂

µΦ− 1

2
m2
pΦ

2 − λp
4!
Φ4 +

(
δZ
2
∂µΦ∂

µΦ− δm
2
Φ2 − δλ

4!
Φ4

)
= Lp + δL (2.13)
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Note that the counter-terms (the δ terms) are unobservable since they are not part of
the physical Lagrangian and thus can be infinite and in fact they must be infinite, their
specific goal will be to absorb the infinite terms which come from the divergent diagrams.
Of course this leads us to the question how to we determine what Zr, mp and λp are? The
answer to these questions are called the renormalization conditions. Since the masses are
location of the poles in the bare propagators and Zr would be the value of the residue at
these poles it makes sense to define mp by the relation,

=
i

p2 −m2
p

+ f(p2) (2.14)

Where f(p2) is a regular function at p2 = m2
p. This fixes both Zr as the residue of the

pole of the full 2-point function and the value of mp as the location of the pole in the
full two-point function. We can use the four-point function to define the physical coupling
constant as 


s=4m2,t=u=0

= −iλp (2.15)

Where, s, t and u are the standard mandelstam variables. With these conditions we can
move on to calculate the different physical quantites of interest. Usually in physics this
is done perturbatively order by order in the number of loops. For instance the one loop
correction to the coupling constant is simply,

= + + + +

Where the last diagram comes from the vertex counter term in the Lagrangian. We
could evaluate these diagrams and find the leading order values of λp for instance. We
can so the same for the self energy diagrams as well. Now all of this would be good but
a question is still remaining, can we do this in a consistent way i.e do we have enough
counter terms to remove all the divergences we can generate at any loop order and get
reasonable physical values for the coupling and mass.
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We can get an idea of this by thinking about the structure of the diagrams, and an-
ticipating what kind of integrals we will get. Based on the Feynman rules we know for
every loop in the diagram we will have to do an integral over the loop momenta and (in n
dimensions) this will be an be an integral with kn−1 in the numerator. We can see this by
considering the n-dimensional version of spherical coordinates. Also for each propagator
we will get a factor of k−p. Using these two facts we can get an estimate for how badly our
integrals will diverge when integrating over the loop momenta. Note that for an integral
of the form km/kn to converge we need to have m < n − 2 since then the integral will go
as m− n + 1 < −1. Thus in order to estimate how the integrals will diverge, suppose we
have in N space-time dimensions we have a diagram with L loops, additionally suppose our
theory has r different types of propagators which are elements of a set Π with |Π| = r to
each propagator we assign a weight wp which is the powers of momenta in the denominator
of the propagator. Then for large momenta our integral will be of the form∫

dk1 · · · dkL
kN−1
1 · · · kN−1

L

ks
→ k(N−1)L+L

ks
= kD

Where, D = NL − s and s =
∑

p∈Π npwp where np is the number of propagators of
type p and wp is the weight of the propagator of type p. This motivates us to define in N
dimensions the superficial degree of divergence as

D = NL−
∑
p∈Π

wpnp (2.16)

For many diagrams D < 0 the integrals converge at large momenta, when D = 0 we will
have a logarithmic divergence and when D > 0 we will have a polynomial divergence. This
will not always be the case and many counter examples can be found but still this super-
ficial degree of divergence is a useful litmus test for if the diagrams will lead to divergences.

Let’s compute the value of D for our φ4 in four dimensions theory to see how this can
be useful. First we note that there is only one type of propagator with weight 2. We are
only considering connected diagrams because when computing physical quantities these
diagrams will be cancelled when we divide by an overall normalizing factor (the Z[J = 0])
in equation 2.6. It is a combinatorial fact that L = ne−nv +1 and since all of the vertices
are four-valent we have 4nv = 2ne + re where ne is the number of internal edges and re is
the number of external edges. Thus L = 1

2
ne − 1

4
re + 1 and hence

D = 2ne − re + 4− 2ne = 4− re (2.17)

So we can see that only the zero, one, two, three and four point functions will be su-
perficially divergent and hence need renormalizing, the zero point function is nothing more
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than an unobservable vacuum energy shift and so we don’t need to worry about it, since the
Lagrangian is symmetric under φ → −φ the one and three point functions have to vanish
and thus only the two and four point functions need renormalizing. This is good news
since for these two functions we have two parameters to play with the mass and coupling
constant. It is also worth pointing out that this entire discussion is concerned with U.V
divergences, there are also infrared divergences which occur in the limit of small k but this
discussion does not apply to them.

A full and complete proof that φ4 theory is fully renomalizable is known as the BPHZ
theorem [8], of course the full details of this is beyond the scope of this document but it is
nevertheless an amazing result. We can do this procedure to this for QED as well splitting
up the Lagrangian in a similar way, this time with the mass of the electron and the electron
charge, of course we will now have two field strength renormalzations on for the electron
field and one of the electromagnetic field.

This is all we will need to know about the physics for the project to make sense, for a
more in depth look into some of these topics the reader is referred to any one of [14][15] or
[17]. In the next section I will describe some of the important combinatorial background
needed to understand the project anything else not covered here is in the other report for
437A.

2.2 Combinatorics and Renormalization

As was evident in the last section, there is a lot of utility in treating these diagrams as
graphs, because there are a lot of theory for graphs which when needed can be applied to
these diagrams. The goal of this section is to outline the basics of this which we will need
for the project going forward. I have already discussed the idea of Hopf algebras and a
small amount of graph theory in the previous report. Therefore I will not remark on the
basics of Hopf algebras and graph theory here, I will however need to discuss some more
advanced topics related to these for the last part of the report. Another set of important
concepts which I will not be addressing in this report since again they have been discussed
in detail in my first report is much of the theory covered in [21]. We will only be using the
main results of [21] here and a lot of the detail is already covered in my first report.

10



2.2.1 Feynman Graphs

The first combinatorial concept we will use in this report is the idea of a Feynman graph.
These are essentially the natural way of adding structure to Feynman diagrams which allow
them to be seen as graphs. Strictly speaking the reason why these are not graphs, is due
to the external edges. In fact if we remove all of the external edges then these would be
perfectly good graphs. In addition we can’t have arbitrary vertices, but this doesn’t make
these not graphs, it only makes them more restrictive graphs. Thus to be able to analyse
these diagrams as graphs rather than considering full edges, as in standard graph theory it
is better instead to consider half edges. Most of these definition and concepts are derived
from [12]

Definition 2.1.1 - 1:
A Feynman graph is a set of half edges H and a set of vertices V and a set of edges E,
such that V is a partition of of H where each part of the partition has size at least three,
and E is a partition of H where each part is has cardinality at most 2. The parts of E
with size 2 are called internal edges and the parts of E with size 1 are called the external
edges.

As an example consider the graph below,
e1

e2

e3,4e5,6

e7
e8

In this case we can see that we can identify the half edge set, withH = {1, 2, 3, 4, 5, 6, 7, 8}
the partition V = {{1, 2, 3, 5} , {4, 6, 7, 8}} and the edge set is E = {{1} , {2} , {3, 4} , {5, 6} , {7} , {8}}.
One can see that the singleton sets in the edge partition indeed correspond to the external
edges.

This notion of a Feynman graph is slightly different from the notion I had in the first
report and for good reason, this notion of a Feynman graph allows us to more easily con-
sider the standard graph theory operations of contraction and cutting. To see this suppose
we want to cut the full edge {3, 4} in the normal graph theory sense diagrammatically this
would simply be the graph,

11



e1e2
e3

e5,6

e4
e7e8

Now one can see that this corresponds to the sets, H ′
= H = {1, 2, 3, 4, 5, 6, 7, 8}

the partition V
′
= V = {{1, 2, 3, 5} , {4, 6, 7, 8}} and the edge set partition is now E

′
=

{{1} , {2} , {3} , {4} , {5, 6} , {7} , {8}}. One will immediately notice that all of the parts
of E ′ are subsets of one of the parts of E. In the language of partitions we say that E ′

is a refinement of E. Thus, the graph theory operation of cutting and edge corresponds to
refining the partition of H by E.

One can consider a similar set theoretic operation for the standard graph theory oper-
ation of contraction as well and one can also cut graphs by considering refinements of the
V as well and graphically we would view these as cutting the vertex from a graph theory
point of view. For the sake of keeping this report short, the reader is referred to [12].

One can define the notion of a pre-cut graph which for the purposes of this document
we will consider as a regular Feynman graph with decorations on the edges and vertices
specifying which edges are to be cut. This is a slight abuse as it might give one the im-
pression that the pre-cut graph and the undecorated graph are the same. Strictly speaking
this is not entirely accurate and for the slight subtlety related to this the reader is again
referred to [12], for us it won’t be very important. This allows us to define the concept of
a cut graph.

Definition 2.1.1 - 2: A cut graph is a pre-cut graph where only the edge set partition
is refined.

This definition allows us to define Cutkosky and pre-Cutkosky graphs.

Definition 2.1.1 - 3:

• A pre-Cutkosky graph is a pre-cut graph graph which has the property that has the
property that every edge which is cut has each end in different components of the
cut graph.
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• A Cutkosky graph is a cut graph graph which has the property that has the property
that every edge which is cut has each end in different components of the cut graph.

We will also be interested in the graph theory concepts of spanning trees and funda-
mental cycles. Recall that a tree is a connected graph with no cycles. A graph (with more
than one connected component) with no cycles is called a forest. A spanning forest is a
forest where each vertex in the graph is adjacent to some edge in the forest. Consider
now a connected graph G1 and a spanning tree T of G let e ∈ G \ T be an edge, and let
T ′ = T ∪ {e} then T ′ contains a unique cycle which is called the fundamental cycle of G
with respect to T and e.

Finally we are going to consider cycles in graph theory. These are precisely what a physi-
cist would call a loop in a Feynman diagram. As discussed in the previous section these
loops are very relevant for us since they in general cause worse convergences of the ma-
trix elements which are parts of the S-matrix elements or Green’s functions. This is the
motivation for taking this slight graph theory detour. For the sake of brevity, and since
nothing discussed here is novel in the slightest I will be not be providing proofs of many
of the facts stated here, they can however be found in any text on linear algebra in graph
theory such as [6]. First consider the Feynman graphs as we have defined them, for this
discussion we call each part of the edge partition E an edge e, similarly we consider each
part of the vertex partition V a vertex. To make these Feynman graphs an actual graph
we will add a vertex to the end of all external edges. With this set up we may consider
Feynman graphs as graphs in the regular sense. With this discussion out of the way let
G be the graph derived from the Feynman graph in way just described. Let E(G) be the
edge set of G and let P (E(G)) be the power set of the edge set of G2. There is a natural
addition operation defined on P (E(G)) which is given by symmetric difference of the two
subsets in the power sets. There is also a natural multiplication by scalars in Z2 defined
by 0 · S = ∅ and 1 · S = S. It is simple to verify that these operations are compatible and
thus (P (E(G)) ,Z2) is a vector space with these two operations.

Now consider C(E(G)) ⊂ P (E(G)) be the set of all subset of E(G) which are cycles.
This is clearly a subset of P (E(G)), but additionally it is vector subspace of P (E(G))
which is called the cycle space of a graph G. The dimension of this space corresponds to
what a physicist would call the number of loops of the graph so we define the loop number
L of a Feynnam graph to be the dimension of the cycle space of G. Additionally a basis for
the cycle space is given by the distinct fundamental cycles with respect to any spanning

1If G is not connected one can consider the same set up for each connected component.
2The power set is the set of all subsets of a set.
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tree and edge. An explicit formula in terms of the number of vertices edges and connected
components c is given by,

L = dim (C(E(G))) = |E(G)| − |V (G)|+ c (2.18)

One can also bi-partitions of the vertex set of G. That is ways to divide the vertex
set into two disjoint subsets these are called (vertex) cuts of a graph. Any cut of a graph
can be represented by a subset of the edge set CU(G) which when each of the edges in the
sense of being split as discussed before splits the graph into two connected components
where each the two parts of the vertex partition lie in different connected components. It
turns out that CU(G) is also a vector subspace of P (E(G)) and is called the subspace,
additionally it is the orthogonal complement of C(E(G)). With all of this in mind we can
discuss the incidence co-action which will be the last bit of set up needed for this report.

2.2.2 The Co-Action of Pairs

In this section I will discuss the ideas behind the co-action of pairs and specifically how
one can compute the co-action of pairs. Before continuing however, I will mention that
there are many different notions of Hopf algebras and co-actions associated to these Hopf
algebras. All of these are discussed in [12] in greater detail than I can possibly go into
here. In my last report I discussed briefly discussed the Hopf algebra of Feynman graph
which in [12] is called the core Hopf algebra, there is a similarly defined Hopf algebra for
pre-Cutkosky graph, and a Hopf algebra on the pairs of graphs and spanning forests of the
graphs. All of these give rise to co-actions which are developed and studied in [12].

For this section I will focus on the co-action related to the Hopf algebra of pairs, and
specifically how to compute them. Given a pair consisting of a Feynman graph G and a
tree in the graph T . We define the co-action of the pair to be,

ρ ((G, T )) =
∑

S⊆E(T )

(G/ (T \ S) , S)⊗ (Gc(S), T \ S) (2.19)

Where Gc(S) is the pre-cut graph, with cut defined by the set S. The set S defines
uniquely a cut since T \S is a forest and the vertices in the same connected component of
the forest define a cut in the original graph. One can define then the co-action for a graph
without reference to a spanning tree by

ρ(G) =
∑

T a spanning tree

ρ(G, T ) (2.20)
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In the next part I will lay out the models which we will be working with, as well as
recall the important results from the last report which will be needed to understand the
results of the report.
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Chapter 3

Models and Set-Up

In this chapter the goal is to give a brief recap of the main results from last term’s work as
well as the models which we will be working with in this report, along with the necessary
properties of these models we will use going forward.

3.1 The Models

In this report we will be primarily concerned with three different physical theories. The
first is φ4 theory with the Lagrangian we have already seen in the previous chapter, I will
state it again here for completeness sake.

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 +

λ

4!
φ4 (3.1)

In the past a massless version of QED has also been studied using similar methods [7].
The Lagrangian for QED is simply,

L = −1

4
FµνF

µν + ψ̄
(
i /D −m

)
ψ (3.2)

Where Fµν = ∂µAν − ∂νAµ and Dµ = ∂µ + ieAµ is the gauge covariant derivative and ψ
is a spinor field. This theory is invariant under the usual gauge transformations Aµ →
Aµ +

1
e
∂µα(x) and ψ → eiα(x)ψ. This gauge invariance leads to the QED Ward identities.
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The Wess-Zummino model first described in [18] is given by the following Lagrangian,

L = −1

2

[
∂µA∂

µA+ ∂µB∂
µB + iψ̄ /∂ψ − F 2 −G2

]
+m

(
FA+GB +

i

2
ψ̄ψ

)
+

g
[
F
(
A2 −B2

)
+ 2GAB − igψ̄

(
A− γ5B

)
ψ
]

(3.3)

This Lagrangian was designed to be invariant under the following simultaneous in-
finitesimal transformations called superguage transformations[19].

δA = iᾱψ (3.4)

δB = iᾱγ5ψ (3.5)
δψ = ∂µ

(
A− γ5B

)
γµα + n

(
A− γ5B

)
γµ∂µα + Fα +Gγ5α (3.6)

δF = iᾱγµ∂µψ + i

(
n− 1

2

)
∂µᾱγ

µψ (3.7)

δG = iᾱγ5γµ∂µψ + i

(
n− 1

2

)
∂µᾱγ

5γµψ (3.8)

Where n is called the weight of the supergauge transformation and α is a Majorana
spinor field. These supergauge transformations make this a supersymmetric field theory
[19].

These are the models to which we will be applying the results of [21]. Since the renormal-
ization group equation as used in [21] requires that the fields be massless we will generally
work in the massless limit which amounts to taking m = 0 in equations (3.1), (3.2) and
(3.3). The massless QED theory has been studied in [7], and our last report we studied
the massless φ4 theory, so the only novel model we will be considering here is the Wess-
Zummino model. We do however wish to present general results which apply to all of these
models and so laying all of them out here will be helpful for later.

3.2 Main Equations

In this section I will lay out the main equations which we will be using in the body of the
report. The derivation of these equations in its totality can be found in [21]. The first
equation is an equation for the anomalous dimension,

γr1(x) = Pr(x)− sgn (sr) (γ
r
1)

2 +

(∑
j∈R

|sj|γj1(x)

)
x
∂γr1
∂x

(3.9)
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Where R is the set of residues (vertices and edges in the theory) and sr is either 1 or −1.
We also have an equation for the beta function as,

β(x) = x
∑
j∈R

|sj|γj1(x) (3.10)

The coupling constant x and the physical scale L are related by the following relationship

dx

dL
= β(x) = x

∑
j∈R

|sj|γj1(x) (3.11)

Using this relationship we can rewrite equation (3.9) in terms of the physical scale to be,
after rearranging

dγr1
dL

= γr1(L) + sgn(sr) (γr1(L))
2 − Pr(L) (3.12)

It is equation (3.12) which will be of most use to us when we discuss Landau poles in
these theories. Another important set of equations for the main results of the report will
be the formula for the combinatorial invariant charge, this formula is discussed in detail in
[21] and is given by

Q =

(
Xv∏

i (X
ei)mi

) 1
val(v)−2

(3.13)

Where Xv and Xei are formal power series, where the coefficient of the k-th monomial
are the sum of all the one particle irreducible Feynman graphs with k loops and external
leg structure of v or ei respectively. When the theory has more than one type of vertex
such a quotient is formed for each vertex and in the case of QED and QCD respectively
the Ward and Slavnov-Taylor identities ensure that each of these quotients agree. One
other point to mention since we will be applying this to the Wess-Zumino model which has
multiple vertices, this approach only works for theories with a single vertex. In theories
with multiple vertices we need to make sure of sets of identities which ensure these quotients
agree and this will allow us to apply the equations to these models.
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Chapter 4

Results

In this chapter I will present the main results of my research term. There are three main
results which I will be presenting here. The first is the theorems on the existence of Landau
poles in general theories and then applying it specifically to our case of φ4 theory. I will
then discuss the renormalization and Ward identities for the Wess-Zumino model and how
these results lead to identities which we can use to analyse the Wess-Zumino model using
equations (3.9), (3.10) and (3.11). Lastly we discuss a method for giving a meaningful
assignment of Feynman rules to the new vertices generated by co-action of pairs. We will
start by discussing Landau poles in general theories.

4.1 Landau Poles

We begin by considering the general equation for the anomalous dimension found in [21]

dγr1
dL

= γr1(L) + sgn(sr) (γr1(L))
2 − Pr(L)

And we consider the change of variables

γr1 = −sgn(sr)
ur

dur

dL
(4.1)

And then the equation will become

d2ur

dL2
− dur

dL
+ sgn(sr)Pr(L) = 0 (4.2)
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And this equation will be the focus of this section. Consider the case where Pr(L) is a
constant that is Pr(L) = K then equation 4.2 becomes,

d2ur

dL2
− dur

dL
+ sgn(sr)K = 0 (4.3)

We can use the ansatz ur(L) = eikL to find,

−k2 − ik + sgn(sr)K = 0

By the quadratic formula, we find

ik =
1

2
−
i
√
4sgn(sr)K − 1

2

Thus we can see that the solution will be oscillatory if 4sgn(sr)K > 1 and the solution
will be of the form,

ur(L) = eL/2 {A sin(κL) +B cos(κL)} (4.4)

Where κ =
√

4sgn(sr)K−1

2
is the frequency of oscillation, so the solution is periodic with

period T = 2π/κ. This will be an important fact which will come up later. We now wish
to study this equation in the more general case where Pr(x) is not necessarily constant.

To continue we will first need a lemma which will connect the behaviour of ur(L) to
the behaviour of γr(L).

Lemma 1. The zeros of ur(L) correspond to Landau poles of γr1(L)

Proof. First recall that by definition γr1 = − sgn(sr)
ur

dur

dL
, note first that if ur → 0 then

γr1(L) → ∞.

Thus the problem of finding Landau poles reduces to finding zeros of the function ur(L).
Since ur(L) is the solution to a second order linear differential equation we can find zeros
using Sturm Liouville theory. Let’s begin by analysing the general case of equation (4.2).

Theorem 1. Suppose 4sgn(sr) > 1 on some interval I = [L0, L
∗] and let ρr = infL∈I Pr(L)

then if I1 =
[
L0, L0 +

2π
k

]
⊆ I where k =

√
4sgn(sr)ρr−1

2
then γr1(L) has a Landau pole

contained in I.
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Proof. We first note that equation (4.2) is equivalent to the equation

d

dL

(
e−L

dur

dL

)
+ e−Lsgn(sr)Pr(L) = 0 (4.5)

This is the ”self adjoint” form of equation (4.2). Now let ũ(L) be the solution to the
equation

d

dL

(
e−L

dur

dL

)
+ e−Lsgn(sr)ρr = 0 (4.6)

We know the exact solution to (4.6) is

ũ(L) = e
L−L0

2

[
ũ(L0) cos (k (L− L0)) +

1

k

dũ

dL
(L0) sin (k (L− L0))

]
(4.7)

Now by the Sturm comparison theorem since Pr(L) > ρr and since ũ(L) has two zeros
in the interval I = [L0, L

∗] there must be a zero of ur(L) in I as well since zeros of ũ(L)
are Landau poles we conclude there is at least one Landau pole of ur(L) in I also.

The conditions on this theorem are rather strict, however the theorem also guarantees
that the Landau pole is contained in a potentially very small interval. One might naturally
then ask, if we weaken some of the conditions can we still guarantee the existence of Landau
poles? The answer is yes and it is presented in the following theorem.

Theorem 2. Suppose there is some L∗ such that ρ∞ = infL∈[L∗,∞) Pr(L) has 4sgn(sr)ρ∞ > 1
then γr1(L) has a Landau pole for some L > L∗.

Proof. The proof follows directly by applying the Sturm comparison theorem on the with
the same two functions and on the interval I =

[
L∗, L∗ + 2π

k

]
where again k =

√
4sgn(sr)ρ∞

2
.

These two theorems are completely general and apply to any theory. Since we were
initially were looking at these in the context of φ4 theory, I will remark here that the condi-
tion 4sgn(sr) > 1 is equivalent to P+(L) > 1

4
and P−(L) < −1

4
respectively, so specializing

these theorems to that case is immediate.

So far with these two theorems we have guarantees about the existence of Landau poles,
it is also a worthwhile question to ask when we will not have Landau poles. This question
is not as easy as we don’t have the power of Sturm Liouville theory in this case, but there
are some things we can say about it nonetheless. Specifically we have the following.
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Theorem 3. Suppose γr1(L0) > 0 and sgn(sr)Pr(L) < 0 for all L ∈ I = [L0, L
∗] then there

are no Landau poles in I.

Proof. For L ∈ I we have by integrating equation (4.5)

dur

dL
= −sgn(sr)

∫ L′=L

L′=L0

eL−L
′
Pr(L

′)ur(L′) dL′ (4.8)

And by definition γ(L0) =
1

ur(L0)
dur

dL
(L0).

Since γr0(L0) > 0 then both ur(L0) and it’s derivative have the same sign at L0 since
γr1(L0) and sgn(sr)Pr(L) have the opposite for all L ∈ I = then by equation (4.8) the sign
of the derivative and the sign of ur(L) are the same for all L ∈ I. Thus in this case ur(L)
has no zeros in I and hence no Landau poles. The other case

It should be noted that the theorem is not true if the anomalous dimension starts out
negative since in these cases u(L0) can have zeros and depends entirely on if the second
derivative of ur(L) is of large enough magnitude to cause the sign of the first derivative to
swap before u(L) crosses 0. These set of three theorems characterize the Landau poles of
φ4 theory which is what we want to do. Next we will discuss analysing the Wess-Zumino
model using the equations derived in [21].

4.2 The Wess-Zumino Model

As discusses in chapter three the Wess-Zumino model is a super-symmetric field theory
with 5 scalar fields and a fermion field. Generally the fields F and G are not consid-
ered physical and they are usually eliminated using their equations of motion. However
when considering renormalization it is more useful to keep these fields explicitly in the La-
grangian [9] and thus we will do the same here. The renormalization of the Wess-Zumino
model has been studied in detail originally in [9], and they give a direct demonstration
that to all orders in perturbation theory the mass and coupling constant renormalization
are not needed and there is only a common wave function renormalization needed. For our
purposes this means that there will be only one equation for us to consider.

Guided by this physical intuition, we should be able to show this combinatorially as well
and to do this we will use the Ward identities generated by the currents to do so. Specif-
ically, we will use the physical ward identities to prove the combinatorial ward identities
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which will do the work of eliminating the other equations in favour of a single anomalous
dimension and beta function. First though it is instructive to look at the reasons for doing
this. A priori to apply the methods of [21] to the Wess-Zumino model one would need
to consider 10 coupled ordinary differential equations. Considering all of these however is
unnecessary due to the symmetries present in the Wess-Zumino model which allows us to
eliminate nine of these equations leaving only one. As pointed out in [9], although there are
other ways to derive these Ward identities it is most convenient to discuss Ward identities
by considering the generating functional

Z[J ] =

∫
DADBDFDGDθ̄ei

∫
d4x L+JAA+JBB+JFF+JGG−iθ̄ψ (4.9)

Where L is the Lagrangian which is given in section 3. Now the currents are meant
to form a scalar multiplet with respect to supergauge transformations so that equation
(4.9) is invariant under supergauge transformations. In order for this to work we need the
currents to transform in the following way,

δJA = −i
(
∂µθ̄
)
γµα (4.10)

δJB = i
(
∂µθ̄
)
γ5γµα (4.11)

δJF = iθ̄α (4.12)

δJG = iθ̄γ5α (4.13)

δθ = ∂µ
(
JF − γ5JG

)
γµα + (JA + γ5JB)α (4.14)

By using these relationships and the fact that the full generating functional is invariant
under supergauge transformations, it is easy to see

0 = δZ =

∫
d4x

δZ

δA
δA+

δZ

δB
δB +

δZ

δG
δG+

δZ

δF
δF +

δZ

δθ
δθ (4.15)

And inserting the expressions for the current variations equations (4.10) - (4.14) one
gets an equation which can be repeatedly functionally differentiated to obtain different
Ward identities. We could do this here obtaining a large number of Ward identities for the
two and three point functions which will help us in our analysis. Fortunately this work
is again done in [9] where they derive these Ward identities. We want to use the Ward
identities to prove that the following quantities are equal.

XFAA

XF (XA)2
=

XFBB

XF (XB)2
=

XAψψ

XA (Xψ)2
=

XBψψ

XB (Xψ)2
=

XGAB

XGXAXB
(4.16)
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These are easily verified using the Ward identities which are derived in the paper
[9]. For instance the first equality is a result of the Ward identities on the three point
function which says that XFAA = XFBB and that XB = XA. Again this is all covered
in the reference [9] and is not novel so I won’t go into it here. What this allows us to do
however is to reduce the system into a single equation since we only need to consider the
field strength renormalization, for a single field since they are all the same and the vertex
functions are all finite. Keeping this in mind it is easy to see that the equation for the
anomalous dimension is simply.

dγ1
dx

=
γ1(x) + (γ1(x))

2 − P (x)

3xγ1
(4.17)

Which is remarkably similar to the equation for QED studied in [7]. In particular we see
immediately that this is a special case of the equation studied there with s = 3 and thus
we have the following theorem as a consequence of theorem (2.1) in [7].

Theorem 4. Global solutions of the beta function for the Wess-Zumino model exist if and
only if, ∫ ∞

x0

P (z)

z
5
3

<∞ (4.18)

For some x0 > 0.

Proof. The proof follows directly from specializing theorem 2.1 in [7] with s = 3.

In addition to this all of the interesting theorems from [7] follow as well with s = 3 and
I won’t list them all here, but needless to say this can be done.

Before leaving the Wess-Zumino model I will analyse the asymptotic behaviour for the
anomalous dimension and beta function with the specific choice of P (x) = x. This is an
interesting case because it is the only case as far as we could find aside from the case of
constant Pr(x) where the anomalous dimension has a closed form solution. The closed
form solution in this case has the form,

γ1(L) = −L
2
−

Ai′
(
L+ 1

4

)
+ kBi′

(
L+ 1

4

)
Ai
(
L+ 1

4

)
+ kBi

(
L+ 1

4

) (4.19)

Where k = −γ0Ai
(
1
4

)
+Ai′

(
1
4

)
γ0Bi

(
1
4

)
+Bi′

(
1
4

) is a constant of integration. Although finding the beta function
can’t be done exactly, in closed form we can find it by considering well known asymptotic
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forms of the Airy and Bi-Airy function. Thus for large L we have

γ1(L) ≈ −1

2

L+
1 + 21

20
Γ(11/6)Γ(7/6)
Γ(5/6)Γ(1/6)

(
L+ 1

4

)−3/2

1− 3
4
Γ(11/6)Γ(7/6)
Γ(5/6)Γ(1/6)

(
L+ 1

4

)−3/2

 (4.20)

Which can be integrated to find the beta function easily. We are then interested with the
growth of the coupling as a function of physical scale which again can be approximated
asymptotically as the following.

(x0
x

)2/3
≈ e

L2

2
+ 7L

3

[
3
Γ(11/6)Γ(7/6)

Γ(5/6)Γ(1/6)
L+

3

4

Γ(11/6)Γ(7/6)

Γ(5/6)Γ(1/6)
− 4

] 16
30

Γ(5/6)Γ(1/6
Γ(11/6)Γ(7/6)

(4.21)

Showing that the coupling eventually increases exponentially with the energy scale.

Finally we are interested in comparing our numerical results with the expressions de-
rived in [1] where the anomalous dimension was computed to 200 loops using similar Hopf
algebraic techniques. Using the recurrence relation

(k + 1)γk+1 =
∑
n≥0

(γ1 + βx∂x)γk (4.22)

And using equation (4.17) to compute the anomalous dimension and beta function for
the Wess-Zumino model with P (x) = x and compare it to the anomalous dimension also
computed in [1]. The results are shown in the figure below. The good agreement for a
large range of different coupling values has given some validation for our choice of P (x).

This is all we have considered for the Wess-Zumino model in the next section we will
study the coaction of pairs and how we can assign in a reasonable way Feynman rules to
the new vertices which are generated from it.

4.3 The Coaction of Pairs

The goal of this section is to develop a reasonable assignment of the Feynman rules for the
new vertices which are created through contraction of edges in the co-action of pairs. We
plan to study this more in the future but we will present our preliminary findings here for
the sake of completeness. We already have quite a good understanding of what physically
cutting the edges should mean it effectively just puts the particle on-shell and this is easy
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Figure 4.1: A comparison of the anomalous dimension computed both using our method
along with the recursion and the exact solution from [1]

enough to give an assignment of a Feynman rule to. What is not so clear is what the
physical meaning of contracting an edge should be.

Intuitively one can understand this as taking the limit of the virtual particles mass to
be infinite so that it is larger than any momentum scale in the problem. This intuition
however can break down for virtual particles since there momentum is not bounded. There
is a better way to understand this however since contraction preserves momentum conser-
vation but moreover it means there is no momentum transfer between the two vertices on
either side of the edge which is being shrunk. This does give us a relatively meaningful
way to assign values to the new vertices. Simply assign the value of the vertex to be the
amplitude of the Feynman graph which produced it with delta functions enforcing zero
momentum transfer for each contracted propagator. For instance if in QED we have the
four point fermion vertex it would be associated to the fermion-fermion scattering diagram
with the photon enforced to have zero momentum transfer. Another interesting thing to
note is that (if we define things this way) for photons there is no difference between con-
tracting them and cutting them.

If it is possible to do this in an unambiguous way then we will have a meaningful as-
signment of the Feynman rules to each new vertex. I will now show this is indeed possible
to do in QED. We will assume each of the contracted vertices come from a tree. Thus
letting mf and mp be the number of fermion and photon internal lines respectively and let
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mv be the number of QED vertices. Then we know that mf +mp = mv − 1 and by double
counting each of the different lines we find that 2mv = 2mf + Nf and mv = 2mp + Np

where Np and Nf are the number of external fermion and photon lines respectively. Thus
for trees we must have

mf =
1

2
Nf +Np − 2 (4.23)

and
mp =

1

2
Nf − 1 (4.24)

Thus for a vertex with s photon lines and r fermion lines it should be associated with
the amplitude of the Feynman graph with all r−2

2
of the internal photon lines cut and with

a delta function and the gamma matrix associated to the (r+2s−4)/2 fermion lines having
zero momentum transfer.

4.4 Conclusion

During this term we have investigated several different aspects of several different models
using the equations derived in [21]. We have found three novel things relating to finding
Landau poles in general theories, the analysis of the Wess-Zumino model according to the
methods of [21] and how to give meaningful Feynman amplitudes to the vertices which
come from the co-action of pairs. We are interested in finding more out about the last
subject specifically if the Ward identities are preserved and the other ways in which the
co-action relates to the quantum field theory from which it is derived.

27



References

[1] Marc P. Bellon and Fidel A. Schaposnik. “Renormalization group functions for the
Wess–Zumino model: Up to 200 loops through Hopf algebras”. In: Nuclear Physics
B 800.3 (Sept. 2008), pp. 517–526. doi: 10.1016/j.nuclphysb.2008.02.005. url:
https://doi.org/10.1016%2Fj.nuclphysb.2008.02.005.

[2] Christoph Bergbauer and Dirk Kreimer. Hopf algebras in renormalization theory:
Locality and Dyson-Schwinger equations from Hochschild cohomology. 2006. arXiv:
hep-th/0506190 [hep-th].

[3] D.J. Broadhurst and D. Kreimer. “Exact solutions of Dyson–Schwinger equations for
iterated one-loop integrals and propagator-coupling duality”. In: Nuclear Physics B
600.2 (Apr. 2001), pp. 403–422. issn: 0550-3213. doi: 10.1016/s0550-3213(01)
00071-2. url: http://dx.doi.org/10.1016/S0550-3213(01)00071-2.

[4] Alain Connes and Dirk Kreimer. “Renormalization in quantum field theory and the
Riemann-Hilbert problem”. In: Journal of High Energy Physics 1999.09 (Sept. 1999),
pp. 024–024. issn: 1029-8479. doi: 10.1088/1126-6708/1999/09/024. url: http:
//dx.doi.org/10.1088/1126-6708/1999/09/024.

[5] Kurusch Ebrahimi-Fard and Dirk Kreimer. “The Hopf algebra approach to Feynman
diagram calculations”. In: Journal of Physics A: Mathematical and General 38.50
(Nov. 2005), R385–R407. issn: 1361-6447. doi: 10.1088/0305-4470/38/50/r01.
url: http://dx.doi.org/10.1088/0305-4470/38/50/R01.

[6] Jonathan L. Gross and Jay Yellen. Graph Theory and Its Applications, Second Edition
(Discrete Mathematics and Its Applications). 2005. isbn: 158488505X.

[7] Guillaume van Baalen, Dirk Kreimer, David Uminsky and Karen Yeats. “The QED
beta function from global solutions to Dyson–Schwinger equations”. In: Annals of
Physics 324.1 (Jan. 2009), pp. 205–219. issn: 0003-4916. doi: 10.1016/j.aop.
2008.05.007. url: http://dx.doi.org/10.1016/j.aop.2008.05.007.

28

https://doi.org/10.1016/j.nuclphysb.2008.02.005
https://doi.org/10.1016%2Fj.nuclphysb.2008.02.005
https://arxiv.org/abs/hep-th/0506190
https://doi.org/10.1016/s0550-3213(01)00071-2
https://doi.org/10.1016/s0550-3213(01)00071-2
http://dx.doi.org/10.1016/S0550-3213(01)00071-2
https://doi.org/10.1088/1126-6708/1999/09/024
http://dx.doi.org/10.1088/1126-6708/1999/09/024
http://dx.doi.org/10.1088/1126-6708/1999/09/024
https://doi.org/10.1088/0305-4470/38/50/r01
http://dx.doi.org/10.1088/0305-4470/38/50/R01
https://doi.org/10.1016/j.aop.2008.05.007
https://doi.org/10.1016/j.aop.2008.05.007
http://dx.doi.org/10.1016/j.aop.2008.05.007


[8] Klaus Hepp. “Proof of the Bogoliubov-Parasiuk theorem on renormalization”. In:
Communications in Mathematical Physics 2.4 (1966), pp. 301–326. doi: cmp/1103815087.
url: https://doi.org/.

[9] J. Iliopoulos and B. Zumino. “Broken supergauge symmetry and renormalization”.
In: Nuclear Physics B 76.2 (1974), pp. 310–332. issn: 0550-3213. doi: https://doi.
org/10.1016/0550-3213(74)90388-5. url: https://www.sciencedirect.com/
science/article/pii/0550321374903885.

[10] K. Johnson, M. Baker, and R. Willey. “Self-Energy of the Electron”. In: Phys. Rev.
136 (4B Nov. 1964), B1111–B1119. doi: 10.1103/PhysRev.136.B1111. url: https:
//link.aps.org/doi/10.1103/PhysRev.136.B1111.

[11] D. Kreimer. “Anatomy of a gauge theory”. In: Annals of Physics 321.12 (Dec. 2006),
pp. 2757–2781. issn: 0003-4916. doi: 10.1016/j.aop.2006.01.004. url: http:
//dx.doi.org/10.1016/j.aop.2006.01.004.

[12] Dirk Kreimer and Karen Yeats. Algebraic Interplay between Renormalization and
Monodromy. 2021. doi: 10.48550/ARXIV.2105.05948. url: https://arxiv.org/
abs/2105.05948.

[13] Dirk Kreimer and Karen Yeats. “An Étude in non-linear Dyson–Schwinger Equa-
tions”. In: Nuclear Physics B - Proceedings Supplements 160 (Oct. 2006), pp. 116–
121. issn: 0920-5632. doi: 10.1016/j.nuclphysbps.2006.09.036. url: http:
//dx.doi.org/10.1016/j.nuclphysbps.2006.09.036.

[14] Franz Mandl and Graham Shaw. QUANTUM FIELD THEORY. 1985.
[15] Michael Edward Peskin and Daniel V. Schroeder. An Introduction to Quantum Feild

Theory. Westview Press, 1995.
[16] Julian Schwinger. “On Quantum-Electrodynamics and the Magnetic Moment of the

Electron”. In: Phys. Rev. 73 (4 Feb. 1948), pp. 416–417. doi: 10.1103/PhysRev.73.
416. url: https://link.aps.org/doi/10.1103/PhysRev.73.416.

[17] Steven Weinberg. Quantum Theory of Feilds. Cambridge University Press, 1995.
[18] J. Wess and B. Zumino. “A lagrangian model invariant under supergauge transfor-

mations”. In: Physics Letters B 49.1 (1974), pp. 52–54. issn: 0370-2693. doi: https:
//doi.org/10.1016/0370-2693(74)90578-4. url: https://www.sciencedirect.
com/science/article/pii/0370269374905784.

[19] Julius Wess and Bruno Zumino. “Supergauge Transformations in Four-Dimensions”.
In: Nuclear Physics 70 (1974), pp. 39–50.

[20] Karen Yeats. Growth estimates for Dyson-Schwinger equations. 2008. arXiv: 0810.
2249 [math-ph].

29

https://doi.org/cmp/1103815087
https://doi.org/
https://doi.org/https://doi.org/10.1016/0550-3213(74)90388-5
https://doi.org/https://doi.org/10.1016/0550-3213(74)90388-5
https://www.sciencedirect.com/science/article/pii/0550321374903885
https://www.sciencedirect.com/science/article/pii/0550321374903885
https://doi.org/10.1103/PhysRev.136.B1111
https://link.aps.org/doi/10.1103/PhysRev.136.B1111
https://link.aps.org/doi/10.1103/PhysRev.136.B1111
https://doi.org/10.1016/j.aop.2006.01.004
http://dx.doi.org/10.1016/j.aop.2006.01.004
http://dx.doi.org/10.1016/j.aop.2006.01.004
https://doi.org/10.48550/ARXIV.2105.05948
https://arxiv.org/abs/2105.05948
https://arxiv.org/abs/2105.05948
https://doi.org/10.1016/j.nuclphysbps.2006.09.036
http://dx.doi.org/10.1016/j.nuclphysbps.2006.09.036
http://dx.doi.org/10.1016/j.nuclphysbps.2006.09.036
https://doi.org/10.1103/PhysRev.73.416
https://doi.org/10.1103/PhysRev.73.416
https://link.aps.org/doi/10.1103/PhysRev.73.416
https://doi.org/https://doi.org/10.1016/0370-2693(74)90578-4
https://doi.org/https://doi.org/10.1016/0370-2693(74)90578-4
https://www.sciencedirect.com/science/article/pii/0370269374905784
https://www.sciencedirect.com/science/article/pii/0370269374905784
https://arxiv.org/abs/0810.2249
https://arxiv.org/abs/0810.2249


[21] Karen Yeats. Rearranging Dyson-Schwinger Equations. Vol. 211. Memoirs of the
American Mathematical Society, 2011.

30


	List of Figures
	List of Tables
	Introduction and Background
	Introduction

	Background
	Physics of Renormalization
	Basics of Quantum Field Theory
	Renormalization

	Combinatorics and Renormalization
	Feynman Graphs
	The Co-Action of Pairs


	Models and Set-Up
	The Models
	Main Equations

	Results
	Landau Poles
	The Wess-Zumino Model
	The Coaction of Pairs
	Conclusion

	References

