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Abstract

In this project we investigate the φ4 beta function through a coupled set of ordinary differential equations which

are obtained through combinatoric techniques. Specifically we use the results of Professor Yeats’ thesis combining

the renormalization group equation and combinatorial Dyson-Schwinger equations to reduce the equations to a

set of coupled ordinary differential equations in terms of the anomalous dimensions and auxiliary functions. We

use standard methods of analysing ordinary differential equations to produce three implicit solutions each which

gives us some information on the conditions on the auxiliary functions and initial conditions for which global

solutions to the beta function exist. We also present a numerical analysis of several different solutions for different

functional forms of the auxiliary functions and show how these examples support our conditions on the auxiliary

functions and initial conditions. We also present a preliminary analysis of the three dimensional phase space plots

of these solutions and separatrix surfaces separating the solutions with Landau poles with those without. It is our

intention to derive more information on these surfaces as well as consider other models in the continuation of this

project next term (PHYS 437B).
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1. Introduction

Quantum field theory is an important part of modern physics with many amazing successes ranging from the

prediction of the Higgs boson [7] and the prediction of the anomalous magnetic moment of the electron [13]. These

and many other predictions have made this a very highly regarded physical theory. A central and important

aspect of almost all quantum field theories is renormalization [11][16] since naive evaluaton of Feynamn diagrams

leds to infinite physical quantities.

There has been a lot of work on understanding renormalization in physics and this is generally done pert-

erbatively, order by order see the examples in [11][16]. This is however, not the only way to understand this

problem. Another approach is to use combinatorial methods specifically, hopf algebras in graph theory to analyse

this problem. Combinatorial methods have been applied successfully to obtain interesting results see for example

[3][10][5][4][9] and the references therein. Our goal is to use these techniques and specifically the equations derived

in [19], to investigate the renormalization of φ4 theory. This is an interesting testing ground for these methods for

a few reasons. First the rrenormalization of φ4 theory is well understood and so we already know what to expect

and secondly as pointed out in [18] this is the simplest field theory that leads to a genuine system of equations to

analyse.

Here we numerically and analytically investigate solutions of the differential equations which govern the

evolution of the anomalous dimensions and the beta function in φ4 theory. We will provide a sufficient condition

for global solutions of β(λ) to exist and present results relating to the existence of the anomalous dimensions as

well. I also present numerical examples of the solutions as well as the slope fields and numerical investigations into

where the beta function has zeros which under certain conditions lead to necessarily non-physical solutions. I

will also lay out the different work which is planned for the future relating to this work. This purpose of this

work is to understand when global solutions to the beta function of massless φ4 theory exist and in this work

I present an example of a global solution obtained numerically. The rest of the work is structured as follows,

chapter two gives the necessary physical and combinatorial background. Chapter three presents a derivation of all

of the necessary equations which will be used in the rest of the work as well as some preliminary analysis and the
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numerical methods used to do all of the numerical analysis. Finally chapter four gives the main results as well as

the conclusions of the paper.
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2. Background

2.1 Physics of the Beta Function

In this part I will describe the physics of the beta function and give a brief overview of quantum field theory and

in particular re-normalization. First however I will lay out notation which will be used throughout this section.

The notation : φ(x)φ(y) : denotes the normal ordering of two fields, the notation φ(x)φ(y) is the contraction of

two fields, similarly with similar notation for contractions with states. The n-point correlator hereafter referred

to as the n-point Green’s function is G(x1,x2, . . . ,xn) = 〈Ω|T (φ(x1),φ(x2), . . . ,φ(xn)) |Ω〉, where T (·) is the time

ordering operator and |Ω〉 is the ground state of the full interacting theory. Lastly we will use λ do denote the

running coupling and L will as usual denote log
(
q2/µ2).

2.1.1 Why We Need Renormalization

In this part I will give a brief example showing why we need renormalizaiton through an example in φ4 theory.

Most of this section is loosely based on the discussions in chapter 12 of [11] and in chapter 10 of [16]. Consider the

second order diagram for φφ scattering in φ4 theory

According to the momentum space Feynman rules for this theory we have a 1 for each external edge and a

factor of i
p2−m2+iε

for each of the two propagators, we also get two factors of −iλ for each of the vertices, we then

enforce momentum conservation for each momentum and integrate over the undetermined momentum. We thus
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see this digram is equivalent to the integral.

(−iλ)2

(2π)4

∫
d4p

i

p2 −m2 + iε

i

(p−k)2 −m2 + iε

Where k := p1 +p2 is the sum of the initial momenta. We can simplify these integral using a four dimensional

analogue of spherical coordinates in which d4p = p3 sin2(θ)sin(ϕ) dpdθdϕdψ and we thus have evaluating the

angular integrals which evaluate to order unity constants we get that the amplitude is proportional to the integral

V
(
k2)=

∫ p=∞

p=0
dp

p3

(p2 −m2 + iε)((p−k)2 −m2 + iε)

We can evaluate the integral explicitly using Feynman parameters but, to see the problem it is enough to consider

the large p limit since we will need to integrate to infinite momentum we see that

V
(
k2)−→large p

∫ ∞

p0

dp
1
p

∝ lim
p→∞

log(p/p0) = ∞

So we can see that this integral will diverge in the infinite momentum limit. This is clearly a problem for evaluating

these second order corrections and so there is something we need to change. The answer is that we have set up

our theory’s lagrangian in terms of the bare mass and coupling constants which are to us unobservable. In the

next section I will show how to rewrite the theory’s lagrangian in order to fix this problem.

2.1.2 A Brief Introduction to Renormalization

In this section I will give a brief introduction to renormalization from the perspective of physics. For this section

I will consider as an example φ4 theory since this will be the primary theory for the focus of my project. The

Lagrangian for φ4 theory is given by

L = 1
2∂µφ

′∂µφ′ − 1
2m

2
0(φ′)2 − λ0

4! (φ′)4 (2.1)

I have used m0 and λ0 for the bare mass and coupling constant respectively. We consider the field strength

rescaling φ′ = Z
1
2φ then the lagrangian in (2.1) becomes

L = Z

2 ∂µφ∂
µφ− Z

2 m
2
0φ

2 − Z2λ0
4! φ4 (2.2)

Now we can’t observe the bare mass and coupling constant but we consider the quantities DZ = Z− 1, Dm =

Zm2
0 −m2 and Dλ = Z2λ0 −λ where the quantities m and λ are the physical mass and coupling constant. Using
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these quantities we can rewrite the lagrangian for the theory in terms of these quantities as

L = 1
2∂µφ∂

µφ− m2

2 φ2 − λ

4!φ
4 + DZ

2 ∂µφ∂
µφ− Dm

2 φ2 − Dλ

4! φ
4 (2.3)

In terms of Feynman diagrams the ”additional”1 terms in the Lagrangian will lead to counter terms which will

cause integrals such as the ones considered in the previous subsection to converge to unambiguous values. A very

similar procedure to this works in other physical theories and is a very important part of quantum field theory

and this is the heart of renormalization. In the interest of brevity I will not go into depth on how the physical

mass m and physical coupling constant λ are defined2 but it can be done and can also be done in other theory

such as quantum electrodynamics.

2.1.3 The Renormalizaiton Group Equation

In this final part of the physics introduction I will present a derivation of the renormalization group equation3

this equation will be central to our later discussions so this section more than any of the other ones so far is very

important. There is a problem with the renormalization scheme I presented in the previous section. The problem

comes in the case where our field is massless since some of the previous renormalization conditions will still lead to

divergences4 so the question becomes how can we deal with massless theories? The answer is we choose a specific

momentum scale µ and we impose the same renormalization conditions as in [11],

We would like physical quantities like the n-point Green’s function to be independent of our choice of

renormalization scale. By enforcing this we can get an equation which must be satisfied by the n-point Green’s

function. Specifically suppose we make the infinitesimal shift µ→ µ+dµ which can induce a change in coupling

constant λ → λ+ dλ and change in the field strength φ → φ+ dϕ which for we can always parametrize using

dφ= dηφ i.e η can be defined through dη
dφ = 1

φ . With this parametrization we can write φ→ φ+dηφ we get that

the change in the n-point Green’s function is simply the change induced by the field strength so that the total

change is given by G−→ (1+ndη)G so we get that

dG= ndηG (2.4)

We can use the chain rule to write

dG= ∂G

∂µ
dµ+ ∂G

∂λ
dλ (2.5)

1These terms aren’t really additional, they of course were always there since we have only rewritten the Lagrangian. I will however
continue to use the abuse of terminology since it makes talking about this significantly easier.

2The mass as well as the field strength renormalization can be defined as the pole of the two-point Green’s function of the full
interacting theory and the residue respectively and the coupling constant as the scattering amplitude at zero momentum.

3Also called the Callan-Symanzik eqauation
4This is why I mostly skipped over these conditions.
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And by combining these we find (
∂

∂µ
dµ+ ∂

∂λ
dλ−ndη

)
G= 0 (2.6)

It is conventional to express the last two terms in terms of different quantities by defining β = µdλ
dµ and γ = µ dη

dµ

using these we find that (2.6) becomes

(
µ
∂

∂µ
+β(λ) ∂

∂λ
−nγ(λ)

)
G(x1,x2, . . . ,xn) = 0 (2.7)

The quantity β(λ) = µdλ
dµ is called the beta function and as we can see it tells us how our coupling constant changes

with renormalziaion scale. We call the function γ(λ) the anomalous dimension for the theory and this quantity is

something we will be coming back to in subsequent sections. We can write the beta function in terms of a different

quantity L= log
(
q2/µ2) so that dL= 1

µdµ and so and then we can see from the definition of the beta function

that

β(λ(L)) = dλ

dL
(2.8)

And this is another equation we will be coming back to later when we analyse these theories in a different way. In

the next section I will present a more mathematical and combinatorial approach to these same ideas and this will

allow us to get a different version of these equations which we will be analysing for the main results of this work.

2.2 Combinatorics of the Beta Function

In this section I will present a general overview of a combinatorial perspective on the same ideas of the beta

function we described through the physics of the renormalization in the previous section. Almost all of the content

in this section is based primarily on [19] as well as [17] and many of the topics are expanded upon in both of these

works.

2.2.1 Feynman Diagrams and Combinatorics

Here I will present some of the ideas which will allow us to talk about Feynman diagrams as combinatorial objects

called graphs. We will need to modify some of the standard ideas of graph theory in order to do this; so for those

familiar with more standard graph theory do note that we are modifying the standard notions of graph theory for

this and all subsequent sections. With that being said here I will mention some notions in graph theory which will

not change for us. A graph is connected if there is a path via the edges of G between any two vertices of G.5 A

graph is called 2-edge connected if it remains connected whenever a single edge is removed the graph remains

connected6. With these definitions being borrowed from our standard graph theory we are able to define our
5When a graph is not connected it can be decomposed into more than one connected component.
6This is often called being one particle irreducible in physics
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notions of graphs called Feynman graphs. A Feynman graph is a combinatorial object comprised of a set of half

edges E, each element of E can be put into a many to one correspondence with the set {1,2, . . . ,n} for some n > 1.

Each integer in the set {1,2, . . . ,n} can be associated with a label called a half edge type and so the total number

of half edge types in the theory is n. Each Feynman graph also has an associated set V called the vertex set, each

vertex is a set of size N ≥ 3 half edge types, each set defines a specific vertex type and the allowed vertex types we

take as prescribed by the physical theory we are considering.

For example in quantum electrodynamics there are three half edge types (half photon edge, front half fermion

edge and a back half fermion edge) and a single vertex type consisting of one of each of the half edge types. For

φ4 theory we have a single half edge type consisting of the half scalar edge and a single vertex type consisting of 4

of the scalar half edges.

We now have to consider the operations on these graphs, which will be needed for when we define the Hopf

algebra structure for these graphs. For those familiar with graph theory this first definition will correspond to

our version of the standard graph theory operation contraction. Before doing this however we need to make a

definition which will come in handy. In each Feynman graph the half edges which are adjacent to at most one

vertex or other half edge is called an external edge. The set of external edges in a Feynman graph corresponds

to at most one edge or one vertex type and this edge or vertex type is called the external leg structure of the

Feynman graph. With this definition we are ready to define some operations on Feynman graphs.

Let Γ be a Feynman graph and γ be a subgraph of Γ and suppose γ has external leg structure of vertex type v

then we define the Feynman graph Γ/γ to be the graph with all of the vertices of γ removed from Γ and all the

internal edges of γ removed from Γ and with the adjacencies induced from Γ along with the adjacencies of the

external edges of γ with the new vertex.

We can do this in a similar way if the external leg structure of Γ is an edge type we define the graph Γ/γ to be

the graph obtained by Γ by removing all of the half edges of γ with the adjacencies induced by Γ and with the

external edges of γ retained with the induced adjacencies in Γ7.

The operation I described in the preceding two paragraphs is called contraction and we will be using it when

we describe the the Hopf algebra structure of these types of graphs. We would also like to give some notion of

insertion for these graphs. We again in this case need to be careful because we can’t insert arbitrary subgraphs

into arbitrary graphs since we only have a given set of possible vertex types we also need to worry about having

two half edges adjacent which are not the same type which is also not allowed. We therefore need to define an

insertion operation which will take these different possible problems into account. The way this is done will be the

subject of the next paragraph.

Let Γ and γ be a Feynman graphs and suppose γ is a connected graph with an external leg structure of vertex

type v. Let ṽ be a vertex of type v in Γ. Let f be a bijection from the external edges of γ to the adjacent edges
7In the case that γ is not connected we define this operation to be the previous two paragraphs applied to each connected component.
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in Γ which preserve half edge type. Then G ◦ṽ,f γ is the graph consisting of the vertices of Γ except for ṽ in

disjoint union with the vertices of γ and the half edges of Γ and those of γ with identifications given by f and the

adjacencies induced by both Γ and γ.

Let Γ and γ be Feynman graphs and suppose γ is a connected graph with an external leg structure of edge

type e and let ẽ be an edge in Γ of type e. Let f be a bijection from the external edges of γ to the half edges

composing ẽ such that if e′ is an external edge of γ then (e′,f(e′)) is a permissible half edge half edge adjacency.

The Γ◦ẽ,f γ is the graph consisting of, the vertices of Γ in disjoint union with the vertices of γ. The half edges

of Γ in disjoint union with those of γ with the adjacencies e′ and f(e′) for each external edge e′ along with the

induced adjacencies from Γ and γ. For both of these operations it is possible to show that inserting a 2-edge

connected Feynman graph into a 2-edge connected Feynman results in a 2-edge connected Feynman graph and

contracting any subgraph of a 2-edge connected Feynman graph also results in a 2-edge connected Feynman graph,

the details of both of these are found in [19].

These two definition give us two operations on graphs which we will be using frequently in the next part

describing the Hopf algebra on these graphs.8 The goal of the next part of this section will be to describe this.

2.2.2 Hopf Algebra of Feynman Graphs

The goal of this part of the section is to describe a Hopf algebra structure on a subset of these Feynman graphs.

First however we need to discuss divergence in graphs. The reason for the term divergence is that when we consider

these graphs in a physical theory they will be associated to integrals9. To this end for a Feynman graph we define

the superficial degree of divergence to be

D`−
∑

e

w(e)−
∑

v

w(v) (2.9)

Where D is the dimension of spacetime and w(·) denotes the weight of an edge or vertex and ` is the number of

independent loops in the graph. This essentially measures how divergent these integrals which are obtained from

the Feynman rules are. A Feynman graph with a non-negative degree of divergence is called a divergent graph.

The motivation for this definition physically is that the reason we needed to talk about renormalization in the

previous section was for the diagrams which are divergent. For instance in our example in the previous section

with φ4 theory, the number of loops is 1 and the dimension of spacetime is 4 and the weight of each of the two

internal edges is 2. Therefore the superficial degree of divergence is 0 and so we can expect the logarithmic UV

divergence which is what we computed analytically. Given the idea of a superficial degree of divergence and a

divergent graph we are able to define the Hopf algebra of Feynman graphs.
8An introduction to Hopf algebras is given in the appendix.
9If we only care about the combinatorics and not for example calculating lifetimes or cross sections for scattering then we can

consider these integrals to be purely formal.
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Let H be the vector space formed by the Q-span of disjoint unions of 2-edge connected divergent Feynman

graphs along with the empty graph denoted by 110. It is very easy to see that H also has the structure of an

algebra with the multiplication given by disjoint union and the identity given by the empty graph. Once this

algebra structure has been noted it is easy to see that this algebra can be made into a Hopf algebra. To show this

we need to define the unit map ι : Q→ H by ι(q) = q1. We can also define the coproduct by ∆(Γ) =
∑

γ⊆Γ γ⊗Γ/γ

where each γ in the sum is 2-edge connected and divergent including Γ and 1. We also extend this sum to all of H

by algebra homomorphism. We can also define the algebra homomorphism η : H → Q which satisfies η(1) = 1 and

η(G) = 0 for any connected Feynman graph G. These two maps give a coalgebra structure on H with coproduct ∆

and with counit η given in the previous sentence. We also define recursively the antipode S : H → H by S(1) = 1

and S(Γ) = −Γ−
∑

γ⊂ΓS(γ)Γ/γ where again the sum is over products of 2-edge connected divergent Feynman

graphs but this time we do not include Γ and 1 in the sum. These maps give H a Hopf algebra structure and we

will refer to this as the standard Hopf algebra of Feynman graphs. All of the components of the proof that this

indeed has a Hopf algebra structure can be found collectively in [1] and [14]. Given this Hopf algebra structure we

can adopt some of the standard terminology from this subject, for example a Feynman graph Γ is primitive if

∆(Γ) = 1⊗Γ+Γ⊗1. Note that for a 2-edge connected Feynman graph to be primitive it has to have no divergent

subgraphs. These previous two subsections have given the necessary combinatorial and algebraic background of

Feynman graphs. In the next subsection I will present the main ideas which lead to the equations which will be

the basis of my work. Specifically I will introduce combinatoric and analytic Dyson-Swinger equations.

2.3 Combinatorial and Analytic Dyson-Schwinger Equations

In this section I introduce on of the main tools for deriving the equations we will be analysing. Using the graph

theoretic and Hopf algebraic structure of the Feynman graphs presented in the previous two sections I will present

a summarized version of combinatoric and analytic Dyson-Schwinger equations and how they lead to the main

equations we analyse namely equations (3.1) and (3.2). All of this is essentially a summary of chapter 3-7 of [19]

and more details can be found there, however the details presented here should be sufficient for this analysis.

In order to do this however we need to talk about one more operation on Feynman graphs as well as some of

the subtleties associated with this operation. In order to understand this definition for Feynman graphs however

we first will follow the approach of [19] and first mention a similar definition which is an operation on rooted trees.

First recall a rooted tree is a tree which has a special designated vertex called the root. These trees also admit a

Hopf algebra structure similar to the structure we defined on Feynman graphs which is called the Connes-Kreimer

Hopf algebra on rooted trees. Now the operation denoted B+ takes two rooted trees and forms a single rooted

tree in the following way, insert a new root vertex and connected it by a single edge to the roots of input trees.
10This is needed so that H has an identity element
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This operation has a very useful and important property called the Hochschild 1-cocycle property meaning that

∆B+ =
(
id⊗B+)∆+B+ ⊗1, see [1]. This property is required for our Feynman graphs for many of the proofs to

be valid and so this is a desirable property to have in our analogous definition of B+ for Feynman graphs. We

would have this property immediately if all of the insertion places for our graphs would form a tree structure,

however this fails for potentially two cases. First there could be overlapping insertion points meaning we don’t

have an insertion tree structure. The other problem is that in gauge theories there may be different ways to get

the same graph by inserting two graphs with different external leg structure. The solution to the second problem

found in [19] which cites [9] is to define

Bγ
+(X) =

∑
Γ⊆Hlin

bij(γ,X,Γ)
|X|

1
maxf(Γ)(Γ|X)Γ (2.10)

With the definitions of these quantities being found in [19] this definition fixes the first problem since the

combinatoric factors take care of the issue of overlapping divergences. The second problem is solved by considering∑
Bγ

+ where the sum is over γ with a given loop number and external leg structure, the Ward identities in QED

and the Slavnov-Taylor identities in QCD ensures that these sums have the Hochschild 1-cocycle property.

Now I will introduce the idea of a combinatorial Dyson-Schwinger equation, this is a recursive equation or

system of equations for the edges or vertices of a theory written in terms of the Bγ
+ operator. These equations can

be derived in a similar way to standard recursive combinatorial objects such as rooted trees and lattice paths,

using combinatorial classes as well as the function Bγ
+. For an example of this see [4] where they study a special

case of Yukawa, where the combinatorial Dyson Schwinger equation can be found exactly and it is

X = 1−B+

(
1
X

)
(2.11)

A derivation and further explanation is found in both [19] and [17], but to briefly summarise the derivation of

this is similar to that of the derivation for the generating function for plane rooted trees. The reason for this

similarity is that the the insertion tree for this structure is a plane rooted tree. We can then derive analytic

Dyson-Swinger equations by applying the Feynman rules to the combinatoric Dyson-Schwinger equations. There

are some subtleties associated with this that are once again discussed in [19]. Now I will give a summary of the

main results of [19]. First (systems of) combinatorial Dyson-Swinger equation(s) of the form11

Xr(x) = 1− sgn(sr)
∑
k≥1

tr
k∑

i=0
xkBk,i;r

+

(
XQk

)
(2.12)

Where sr ∈ Z, k is an index for the loop number and r is an index running over the external leg structures and
11Here x is the coupling constant I write it as x to be consistent with [19] but after this chapter it will be renamed to λ.
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i indexes the primitives with given loop number and external leg structure r and Q =
∏

r∈RXr(x)−sr is the

combinatorial invariant charge12. The Dyson-Schwinger equations associated to equation (2.12) is given defined in

[19] to be

Gr (x,L1,L2, . . . ,Lj) = 1− sgn(sr)
∑
k≥1

tr
k∑

i=0
xkGr

(
x,∂−ρr

1

)−sgn(sr)
· · ·Gr

(
x,∂−ρr

sgn(sr)sgn(srk−1)

)−sgn(sr)

∏
t∈R\{r}

Gt
(
x,∂−ρt

1

)−sgn(st)
· · ·Gt

(
x,∂−ρt

sgn(st)(stk)

)−sgn(st)

(
e

−L
(

ρ1+ρ2+···+ρnk,i;r

))
F k,i;r

(
ρ1, · · ·,ρnk,i;r

)∣∣∣∣
ρ1=ρ2=···=ρnk,i;r =0

(2.13)

Where F k,i;r is the Mellin transform of the primitive Bk,i;r
+ . This is then combined with the expansion of the

Green’s function in terms of the anomalous dimension as

Gr (x,L) = 1− sgn(sr)
∑
k≥1

γr
k(x)Lk (2.14)

Having these two equations I will go over very briefly the ideas of reducing these equations into a more useful

form for us the steps are

• Finding a first recursion.

• Reducing to a single insertion place.

• Reducing to a geometric series.

• Finding a second recursion.

In order to derive the first recursion, the expansion for the Green’s function in terms of the anomalous dimension

(equation (2.13)) is inserted into the renormalization group equation13 after this one obtains [19]

γr
k = 1

k

−sgn(sr)γr
1(x)+

∑
j∈R

|sj |γj
1(x)x ∂

∂x

γr
k−1(x) (2.15)

Once this equation is derived the next step is to reduce to the case of a single insertion plane so that the Mellin

transform becomes a function of a single variable. This is done using the ideas of coloured insertion trees. The

end result of this is [19] chapter 5 theorem 5.13

Xr = 1− sgn(sr)
∑
k≥1

xkR
qr

k
+

(
XrQk

)
(2.16)

The next step is to reduce to the case of a geometric series, again the end result of this is [19] theorem 6.3 which
12See [19] for the exact relationship between this quantity and the standard invariant charge used in physics.
13This can also be done in a different way see [19] section 4.2
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says there are unique rj
k, r

j
k,i such that

∑
k≥1

tk∑
i=0

xk
(
1− sgn(sj)γj (−∂ρ)

)1−srk ∏
j∈R\{r}

(
1− sgn(sj)γj (−∂ρ)

)−sjk
(
e−Lρ −1

)
F k,i (ρ)

∣∣∣
ρ=0

=

∑
k≥1

tk∑
i=0

xk (1− sgn(sr)γr (−∂ρ))1−srk
∏

j∈R\{r}

(
1− sgn(sj)γj (−∂ρ)

)−sjk
(
e−Lρ −1

) rr
k,i

ρ(1−ρ) +
∑

1≤i<k

rr
k,iL

i

ρ

∣∣∣∣∣∣
ρ=0

The final step is deriving the second recursion, this involves subbing in the previous results and extracting the

first two coefficients. This will present a remarkable simplification but it will come at the cost of introducing new

functions which are called pr(k) = rr
k −2r

k,1. The end result is [19] theorem 7.2,

γr
1 = −

∑
k≥1

pr(k)xk + sgn(sr)(γr
1(x))2 −

∑
j∈R

|sj |γj
1(x)x∂γ

r
1(x)
∂x

(2.17)

By defining P r(x) := −
∑

k≥1 p
r(k)xk we finally obtain the two equation which will be the main focus of this

analysis.

γr
1 = −P r(x)+ sgn(sr)(γr

1(x))2 −
∑
j∈R

|sj |γj
1(x)x∂γ

r
1(x)
∂x

and,

β(x) = x
∑
j∈R

|sj |γj
1(x)

There two equations for a given combinatorial physical theory will generate a system of differential equations

which we can solve for the anomalous dimension and the beta function.
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3. Deriving the Equations and Preliminary

Analysis

In this chapter I will derive the equations which will be the basis of my analysis for this project, present some

preliminary analyses of these equations and give a comparison to the same type of equations derived and analysed

in both [2] and [19]. Lastly I will discuss the particulars regarding the numerical analysis of the equations we

performed.

3.1 Deriving the Equations

Recall from the previous chapter the main result of the work in [19]1 is the following pair of equations.

γr
1(λ) = P r(λ)− sgn(sr)γr

1(λ)2 +

∑
j∈R

|sj |γj
1(λ)

λ∂γr
1

∂λ
(3.1)

β(λ) = λ

∑
j∈R

|sj |γj
1(λ)

 (3.2)

Now we only need to specialize this to φ4. As mentioned in the example in section (2.2.1) there are two

external leg structures one is the the single vertex type in φ4 theory and the other is the single edge type. This

corresponds to R being the finite set of size 2 which we immediately identify with {+,−} and we will keep with

this convention for the remainder of this work. The only thing remaining therefore is to determine s+ and s−.

This is also an immediate corollary of the combining equations (3.5) and (3.6) in [19]. Specifically equation (3.6)

with a single edge with m= 4 and val(v) = 4 as appropriate for the single vertex in φ4 theory gives

Qφ4 = Xv

(Xe)2 (3.3)

1I am writing λ instead of x, which is used in Yeats 2011 for the value of the coupling constant. Since we are going to specialize to
φ4 theory and this notation should be more familiar to readers in physics.
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Comparing this to equation (3.5) in [19] which says Q=
∏

r∈R(Xr)−sr we see that for this theory we must have,

sv = s+ = −1 and se = s− = 2. With these substitutions and isolating the derivative we get the following set of

equations2

dγ−

dλ
=
γ− +

(
γ−)2 −P−(λ)

λ(γ+ +2γ−) (3.4)

dγ+

dλ
=
γ+ −

(
γ+)2 −P+(λ)

λ(γ+ +2γ−) (3.5)

β(λ) = λ(γ+ +2γ−) (3.6)

It is these equations which will be the main focus of our analysis. These are very similar equations to the equations

analysed in [2] and so I will be using the results of this paper as an analogy quite frequently from now on in this

work. With that said there is an important difference between this and the case of massless QED. This is that the

QED case can be reduced to a single equation by combining the Ward identities with [8] however in this case we

are not able to do that so we must analyse this as a system. This can lead to a lot of interesting behaviour which

we will see further on in the work. For now I will present an equivalent set of equations to (3.4)-(3.6) which for

some of the analysis will be better then the system of three equations we currently have. Recall from the physics

introduction we have the relation
dλ

dL
= β (λ(L)) (3.7)

Where L= log
(
q2/µ2) is the physical scale. Using this relation and the chain rule in the form d

dL = dλ
dL

d
dλ we can

write the equations in terms of the physical scale parameter by multiplying both sides of (3.4) and (3.5) by β(λ)

and using (3.6) to get the equivalent set of equations.

dγ−

dL
= γ− +

(
γ−)2 −P−(L) (3.8)

dγ+

dL
= γ+ −

(
γ+)2 −P+(L) (3.9)

And still supplementing with equation (3.6). Some discussion of equations (3.8) and (3.9) is warranted. Although

it may appear we have decoupled the system this apparent simplicity is slightly deceiving. The reason for this is

that the evolution variable L is now related to the coupling in the following way

L(λ) = L0 +
∫ λ

λ(L0)

1
β(λ′) dλ

′ (3.10)

2We have suppressed the λ dependence of γ on λ and converted the partials to ordinary derivatives since there is only a single
variable of interest.
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This is undesirable since we are interested in solutions for β(λ) so having the evolution variable coupled to the

desired solution in this way is not ideal. Specifically this is a problem since given a functional form for P±(λ)

there is no simple way to convert this analytically to P±(L) since finding L is difficult. Numerically, however

this form of the equation is very advantageous for solutions where β(λ) ≈ 0 since all of the problems go into the

evolution variable but we can still evolve γ+,γ− and λ and get sensible numerical results. I will discuss this more

further on but I mention it now for motivating this rearrangement. Another useful rearrangement will be to write

a single differential equation for the beta function this can be done through combining (3.4) and (3.5) and using

the product rule on equation (3.6) the end result of this can take many forms, here I will give only two which I

will use later, and the derivations of both of these equations can be found in appendix B.

dβ

dλ
= 1+ 2β(λ)

λ
−λ

2(γ+ +γ−)2 +Q(λ)
β(λ) (3.11)

Another useful form is
d
(
γ+ +2γ−)
dλ

= 1
λ

+ γ+ +2γ−

λ
−

2
(
γ+ +γ−)2 +Q(λ)
λ(γ+ +2γ−) (3.12)

Where Q(λ) := P+(λ)+2P−(λ) is a simple linear combinations of the two functions. These rearrangements are

useful because they are the closest we can get to decoupling equations (3.4) and (3.5) and will allow us derive

results analogous to some results in [2]. This is the last rearrangement we will need to do everything in the analysis

section.

Finally it will be useful it will be useful for us to have equations (3.8) and (3.9) in a single matrix-vector

equation this can be written as
dγ

dL
= Aγ −P (3.13)

Where γ =
(
γ+ γ− λ

)T , P =
(
P+(L) P−(L) 0

)T and A =


1−γ+ 0 0

0 1+γ− 0

λ 2λ 0


Writing the equation in this form will allow us to solve the equations numerically more easily and it will also

allow us to perform a stability analysis on the system when viewed as a function of L. Of course if we are not

content with specifying P±(L) then this system won’t be as helpful for stability analysis in this case though we

can still use the two equations (3.4) and (3.5) to analyse the equations.

3.2 Preliminary Analysis

Before delving into the both the numerical and analytical results we would like to have an idea of what we expect

our solutions to look like and what we expect to find. First I consider the behaviour of β(λ) close to β(λ) = 0. The
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reason for considering this specifically is that if β(λ) → 0 then the denominators of equations (3.4) and (3.5) go to

0 which will cause problems. We would thus like to have some ideas about the solutions around this region which

we can not find numerically. The main goal of this analysis is to rule out these solutions for β(λ) as non-physical.

The reason for this is the following lemma.

Lemma 1. 3

Let λ∗ > 0 be a point where β (λ∗) = 0 and suppose Q(λ∗)> 0 then λ∗ is a maximum of λ(L).

Proof. By equation (3.7) we have dλ/dL|λ∗ = β (λ∗) = 0 and by combining the chain rule with equation (3.11) we

find
d2λ

dL2

∣∣∣∣
λ∗

= β
dβ

dλ

∣∣∣∣
λ∗

= −2λ∗ (γ+ +γ−)2 −λ∗Q(λ∗)< 0

Thus by elementary analysis, λ∗ is a maximum of λ(L)

The importance of the lemma is the following, suppose we have a physical solution for β(λ) which has a 0 for

some λ∗. Then lemma 3.2.1 guarantees that this is a maximum for λ(L) and therefore by continuity we must

have at least for some interval (λa,λb) containing λ∗ the function β(λ) is multivalued and hence not a reasonable

physical solution. One should also note that the fact that equations (3.4) and (3.5) give an infinite derivative is

not to conclude that these solutions are not physically reasonable since the equations can be solved in terms of the

physical scale L without issue and could therefore be valid solutions if β(λ) were not multivalued. Thus we may

assume that for any physical solutions we must have either β(λ)> 0 or β(λ)< 0 for all λ.

Having found problems with the solutions of β(λ) which have zeros it is natural to ask, when do these solutions

occur? In order to answer this investigate this question both numerically and analytically. Before diving into

more of these preliminary results, it is instructive to solve the equations for the special case of P+(L) =K+ and

P−(L) =K− where K+ and K− are constants since this will give us something concrete to keep in mind as we

discuss some more abstract results additionally we can use these for understanding asymptotic solutions if the

functions are asymptotically constant which many interesting solutions will be. For this special case equations

(3.8) and (3.9) can be integrated directly to get

γ−(L) =


a−
(
tanh

[
b− −a−(L−L0)

])
− 1

2 K− >−1
4

1
c−−(L−L0) − 1

2 K− = −1
4

ã− (tan
[
ã−(L−L0)+ b̃−])− 1

2 K− <−1
4

3Throughout this work I will assume in all results that both λ(L) and β(λ) are continuous functions of their arguments
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γ+(L) =


a+ (tan

[
b+ −a+(L−L0)

])
+ 1

2 K+ > 1
4

1
c++(L−L0) + 1

2 K+ = 1
4

ã+ (tanh
[
b̃+ + ã+(L−L0)

])
+ 1

2 K+ < 1
4

Where a± =
√
K± ∓ 1

4 , ã± =
√

−
(
K± ∓ 1

4
)
, b+ = arctan

(
γ+

0 − 1
2

a+

)
,b− = arctanh

(
γ−

0 + 1
2

a−

)
, b̃+ = arctanh

(
γ+

0 − 1
2

ã+

)
,b̃− =

arctan
(

γ−
0 + 1

2
ã−

)
and c± = 1

γ±
0 ∓ 1

2
. Plots of these solutions are shown in 3.1. These solutions are simple but also

quite illustrative of some general concepts which we will see later on. Now however I will point out that for

K+ < 1
4 and for K− >−1

4 we find global solutions without Landau poles for both of the anomalous dimensions

and for all initial conditions where as for K± = ±1
4 we find that there are Landau poles if γ+

0 < 1
2 or if γ−

0 >−1
2 .

For K+ > 1
4 and K− <−1

4 we have Landau poles for any initial conditions. There are 9 different cases for both

β(λ) and for λ(L) depending on the values of K+ and K− and enumerating them in their totality is not overly

interesting so I will not present them here but they all have closed functional forms which can be solved for in this

case. In the main results section we will see how this is a special case of a form for the anomalous dimension.

Another question of interest is about when solutions cross. The reason for this is knowledge that the solutions

can’t cross along with a demonstration of two solutions with different limits as λ→ ∞ guarantees a separating

solution similar to what was found in [2]. Of course for a single equation the solutions will not cross and so the

argument for the QED system is slightly easier than in this case. In fact it is quite easy to find numerically

solutions of β(λ) which cross each other, see 3.2 for an example of this, meaning this method will unfortunately

not work. Of course in the three dimensional phase space we will have this non-crossing property and additionally

we can quantify exactly the way the difference between two solutions changes as a function of λ and this again is

another one of our results.

To conclude this preliminary analysis we will present a simple stability analysis of the equations so we will

have more of an idea of how to make sense of the phase portraits which will be displayed in the results section and

so we can better understand what to expect. Assuming that λ > 0 we see the critical points of the system occur

Figure 3.1: The different types of solutions in the case of a constant P +(L),P −(L). The leftmost plot shows two global
solutions with no Landau pole, meaning β(L) or equivalently either γ±(L) diverge for finite L, the center solution shows one

solution γ− with a Landau pole and one solution γ+ without a Landau pole, the rightmost solution shows a solution where both
solutions have Landau poles, although only one is shown. The initial conditions for all plots were γ+

0 = 0.85 and γ−
0 = 0.30.
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Figure 3.2: Several different numerical solutions of β(λ). One can easily see the pink solution crossing several other solutions.

when −2γ+ = γ− and

γ+ = 1
2 ±

√
1−4P+(L)

2

γ− = −1
2 ±

√
1+4P−(L)

2

Linearising the system (3.13) in general will be difficult due to the fact that the system is non autonomous in

general and since it is not our main goal we will simply analyse the simple case where the system is autonomous

in this case we see by simply linearizing the system there are indeed no stable solutions. We could see this directly

from integrating the solutions in this case as well but it is a fine thing to cross check for this analysis.

3.3 Methods of Numerical Analysis

In this section I describe the methods used to numerically analyse equations (3.4)-(3.9). To solve the equations I

used the scipy package odeint using the Runge-Kutta-Fehlberg method for solving odes [12]. Using this method

equations (3.8), (3.9) and (3.7) are integrated together with L as the evolution variable and the system
{
λ,γ+,γ−}

being treated as dependant on L alone. The system of equations (3.7), (3.8) and (3.9) are chosen over (3.4) and

(3.5) to avoid numerical problems which arise when attempting to integrate the latter equations near β = 0. When

we integrate equations (3.9) and (3.8) we can see this points indeed correspond to vertical tangent lines of the

parametric curves for β(λ). We can then numerically compute β(λ) by the appropriate linear combination of the

anomalous dimensions numerically. We also use python’s matplotlib and matplotlib3d to generate all plots in this

work.
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4. Results and Main Analysis

In this chapter I will present the main results of the work. The main goal of this analysis is to determine when

solutions exist globally and conversely when the solutions have Landau poles. For this section I will present 3

different rearrangements of the equations presented in chapter 3 and what we can analytically determine from

these rearrangements. I will also present the numerical solutions to these equations and what we can empirically

determine from these numerical solutions.

4.1 The First Rearrangement

In this section I present our first rearrangement of equations (3.8) and (3.9). First with equation (3.8) we can

divide by γ− +
(
γ−)2 to get

dγ−

γ− +(γ−)2 =
(

1− P−(L)
γ− +(γ−)2

)
dL (4.1)

We then integrate both side of (4.1) from γ−
0 to γ−(L) on the left hand side and from L0 to L on the right

hand side, so that γ−(L) = γ−
0 . We can evaluate the left hand integral using a partial fraction expansion to write

1
γ− +(γ−)2 = 1

γ− − 1
1+γ−

Thus we have, assuming 0 /∈ [γ−,γ−
0 ] and 1 /∈ [γ−,γ−

0 ] since otherwise the division to get equation (4.1) is not

permitted.

∫ γ−

γ−
0

dγ−

γ− +(γ−)2 = log
(
γ−)− log

(
1+γ−)−

[
log
(
γ−

0
)

− log
(
1+γ−

0
)]

= log
(

γ−

1+γ−
1+γ−

0
γ−

0

)

The right hand side integrates to

∫ L

L0

1− P−(L)
γ− +(γ−)2 dL= (L−L0)−

∫ L

L0

P−(L)
γ− +(γ−)2 dL
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Therefore the integrated version of equation (4.1) becomes

log
(∣∣∣∣ γ−

1+γ−

∣∣∣∣ ∣∣∣∣1+γ−
0

γ−
0

∣∣∣∣)= (L−L0)−
∫ L

L0

P−(L)
γ− +(γ−)2 dL

We can exponentiate both sides to get

∣∣∣∣ γ−

1+γ−

∣∣∣∣= C
[
eL−L0e−f(L,L0)

]

Where C =
∣∣∣∣ γ−

0
1+γ−

0

∣∣∣∣ and f (L,L0) =
∫ L

L0
P −(L′)

γ−+(γ−)2 dL
′ have been introduced for ease of notation. We can solve this

equation for γ−(L) to find

γ−(L) = ± e(L−L0)−f(L,L0)

1
C ∓e(L−L0)−f(L,L0) (4.2)

We can perform a similar rearrangement for γ+(L) and it is similar but is different in a very important way due to

the sign of the terms in the partial fraction expansion. The details are given in appendix B, but the final result is

γ+(L) = ± e(L−L0)−g(L,L0)

1
D ±e(L−L0)−g(L,L0) (4.3)

Where in a similar way D =
∣∣∣∣ γ+

0
1−γ+

0

∣∣∣∣ and g (L,L0) =
∫ L

L0
P +(L′)

γ+−
(

γ+
)2 dL

′. It is worth noting that strictly speaking

equations (4.2) and (4.3) are not ”solutions” to the differential equation in the way one normally thinks of since

the solutions depend on the solutions at all previous L values and not functions of L alone. They are quite useful

in some respects. In particular they will allow us to find where the solution exists and specifically where there are

Landau poles.

4.1.1 Conditions on γ+

Here I will examine equation (4.3) and what we can derive about the solutions based on the functional form.

Before considering this however, we need to be careful about how we use equation (4.3). The reason for this is

that if one looks at equation (4.3) it would seem that all of the solutions for γ+(L) are positive if D is positive.

However we know from the example in chapter 3 that indeed this need not be the case. Consider for example

K+ = 1/4 and c+ = −0.3 then γ+
0 = 0.2 and so D > 0 however we see that indeed the solution diverges to −∞.

This is also a slight bug of the presented solution for γ+(L) and the problem is that the solution for γ+(L) crosses

0 and so doing the integration is not formally valid since it crosses a singularity. It is for this reason we will

need to make some extra assumptions in the propositions for both of these rearrangements. There are specifically

problems when using equation (4.3) if γ(L) crosses either 0 or 1 since dividing by γ+ −
(
γ+)2 is not defined there.

We can always construct full solutions using (4.3) in each of the three regions with different initial conditions. As
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a final disclaimer I also mention that a lot of conditions will be in terms of P±(L) which can not necessarily be

applied to P±(λ) additionally a global solution for γ±(L) does not give necessarily a global solution for γ±(λ)1.

Nevertheless studying this is still interesting since if γ±(L) fails to exist for some L then so too does γ±(λ) since

λ= λ0 +
∫ L

L0

β
(
L′) dL′

So if either of γ±(L) fail to exist so too does β(L) and hence λ does also. Note that the sign choice of equation

(4.3) is not arbitrary if γ+
0 ∈ (0,1) then we must choose the negative sign. Otherwise, we must choose the positive

sign. This leads to two different cases, if γ0 > 1 then 1/D < 1 and additionally if γ+
0 < 0 then 1/D > 1. This leads

to natural conditions on γ+ and g (L,L0). A simple thing we can see is that for instance the following result.

Proposition 1. Let γ+(L)> 1 then if g (L,L0)< 0, γ+(L) is a global solution to equation (3.9)

Proof. By the first assumption we have that the solution to γ+(L) is given by (4.3) with 1/D < 1 since the

exponential is positive the term in the denominator is positive and hence will never go to 0.

We can get a similar condition if we are in the other direction. That is,

Proposition 2. Let γ+(L)< 1 then if g (L,L0)> 0 and g(L,L0)> L−L0 for all L, γ+(L) is a global solution to

equation (3.9)

Proof. By the first assumption we have that the solution to γ+(L) is given by (4.3) with 1/D > 1 since g grows

faster than L the exponential is less than 1 for all L and so this solution can’t have a pole.

These are simple propositions but are not particularly helpful since they have complicated conditions which

are not easy to verify.

4.1.2 Conditions on γ−

Before continuing I will reiterate a point from the previous section which is that equation (4.2) is only valid

assuming the solutions don’t cross 0 or −1. But again we can always construct piecewise solutions for which these

solutions are valid for the entire range of solutions. Here I will present the analogues of the two propositions in the

previous section. Note that here we have different conditions, if C ∈ (−1,0) then we need to choose the positive

sign in the denominator and otherwise we need to choose the minus sign for the denominator. With this in mind

and slightly abbreviated since it has been covered in the last section.

Proposition 3. Suppose that γ− <−1 for all L, then if f (L,L0)< 0 there are global solutions to equation (3.8).

Proof. The proof is the same as the analogous proposition for γ+ since in this case C < 1.
1An example of this is given in section 4.3
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Proposition 4. Suppose that γ− > 0 for all L, then if f (L,L0) > 0 and f(L,L0)> L−L0 for all L there are

global solutions to equation (3.8).

Proof. The proof is the same as the analogous proposition for γ+ since in this case C > 1.

These results are true, but not overly useful since the hypothesises are difficult to verify. In the next section I

show another analysis which has significantly easier to verify hypotheses.

4.2 The Second Rearrangement

While everything done in the previous section is perfectly valid, the thing I am most interested in is β(λ) Here

and throughout the section we take Q(λ) to be a C2 positive function. In order to find conditions where global

solutions of β(λ) exist for all λ we rewrite equation (3.12) using the integrating factor 1/λ to write

γ+ +2γ− =
(
λ

λ0

)[
γ+

0 +2γ−
0 +1

]
−1−λ

∫ λ

λ0

2(γ+ +γ−)2 +Q(z)
z (γ+ +2γ−) (4.4)

Now suppose that γ+ +2γ− > 0, the reason behind this assumption is the purpose of lemma 1 any solutions which

cross 0 become multivalued. We therefore have,

γ+ +2γ− ≤
(
λ

λ0

)[
γ+

0 +2γ−
0 +1

]
(4.5)

These two equations will be key in the next theorem which is the main goal of this work.

Theorem 1. Let Q(λ) be a C2 positive function with γ− > 0 and 2γ+ +3γ− having the same sign, then global

solutions to (3.12) exist if there is some λ0 such that

∫ ∞

λ0

zQ(z)dz <∞ (4.6)

This theorem gives an integrability condition for global solutions to exist. The proof will follow very closely [2].

Proof. First, let λ0 be as in the theorem statement, γ±
0 = γ± (λ0) and ε > 0 choose

γ+
0 +2γ−

0 = 1
λ0

(
2
∫ ∞

λ0

zQ(z) dz+ ε2
) 1

2
(4.7)

Note that for global solutions to not exist we must have that for some λ∗ <∞ we have either γ+ (λ∗)+2γ− (λ∗) →

∞ or γ+ (λ∗)+ 2γ− (λ∗) = 0. The solution can’t have a pole since equation (4.5) bounds the solution,thus assume
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for a contradiction that γ+ (λ∗)+2γ− (λ∗) = 0 so the third term is positive too, now consider,

1
2
d

dλ

(
γ+ +2γ−)2 = γ+ +2γ−

λ
+
(
γ+ +2γ−)2

λ
−

2
(
γ+ +γ−)2

λ
− Q(λ)

λ

Simplifying we have

1
2
d

dλ

(
γ+ +2γ−)2 = γ+ +2γ−

λ
−
(
γ+ +2γ−)2

λ
+

2γ− (2γ+ +3γ−)
λ

− Q(λ)
λ

Or,
1
2
d

dλ

(
γ+ +2γ−)2 ≥ −

(
γ+ +2γ−)2

λ
− Q(λ)

λ

Where the inequality follows since both terms removed are positive rearranging gives,

λ2 d

dλ

(
γ+ +2γ−)2 +2λ

(
γ+ +2γ−)2 ≥ −2λQ(λ)

Or,
d

dλ

(
λ2 [γ+ +2γ−]2)≥ −2λQ(λ) (4.8)

Integrating equation (4.8) on [λ0,λ
∗] and using (4.7) gives

γ+ +2γ− ≥ 1
λ2

(
λ2

0
[
γ+

0 +2γ−
0
]
−
∫ λ∗

λ0

zQ(z) dz
)
>

(
ε

λ0

)2
> 0 (4.9)

Contradicting our assumption that γ+ (λ∗)+2γ− (λ∗) = 0. This shows that given our assumptions (4.7) is enough

to give global solutions.

theorem 1 is the main result of our work during the term. The converse to theorem 1 is false and an example of

this is provided in section 4.3. As an example of the theorem I show a global solution of β(λ) which is guaranteed

by theorem 1 in 4.1

There is one more thing worth remarking regarding this theorem. Notice that from [19] Q(z) should be a

polynomial in z and not a Laurent series. This is important because it means the integrability condition in theorem

1 can’t possibly be satisfied. This is something we would expect because indeed our massless φ4 model on it’s own

is not a physical theory.

In this section we also consider how solutions grow apart or converge to each other. This is related to equation

to equation (10) in [2] which quantifies exactly how fast solutions grow apart. Unsurprisingly they find the solutions
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Figure 4.1: An example of a global solution to β(λ) with existence guaranteed by theorem 1 the functions are
P +(λ) = P −(λ) = 4

λ3 and γ+
0 = −0.6 and γ−

0 = 3.

grow apart; since the system in that case is one dimensional we know solutions can’t cross. This question is slightly

more interesting in our case since we only have this property in the full three dimensional
{
γ+,γ−,λ

}
space and

does not in general hold for β(λ) as discussed in chapter 3. Here I will quantify and explain this relationship.

Suppose we have two solutions for let αi := γ+
i +2γ−

i for i= 1,2 then we can write.

d(α1 −α2)
dλ

= α1 −α2
λ

−2
(
γ+

1 +γ−
1
)2 −

(
γ+

2 +γ−
2
)2

λ
(4.10)

We can write an implicit solution to this equation as,

α1 −α2 = λ

λ0
[α1,0 −α2,0]−2λ

∫ λ

λ0

(
γ+

1 +γ−
1
)2 −

(
γ+

2 +γ−
2
)2

z2 dz (4.11)

Equation (4.11) gives some idea of how the difference between two solutions change as a function of λ. There are

two interesting observations to make. First note that it is very possible for solutions cross as long as the first term

in the integral is larger than the second term and is not damped too much by the z2 in the denominator. Conversely

if either of the two previous conditions fail we will have solutions crossing eventually. Another interesting point to

make is that if the first term in the integral is grater than the second for all λ > λ∗ as λ increases it is more likely

that solutions will cross.

4.3 Numerical Results

In this section I will discuss some of the numerical results which were obtained throughout the semester. First a

numerical example with the constant P+(L) and P−(L), which illustrates that even if global solutions to γ+ and

γ− exist this does not necessarily give a global solution for β(λ). The converse however is true, if global solutions

to β(λ) exist we must have global solutions to both γ+ and γ−

In order to understand the solutions I also generated the slope fields for several different types of solutions.

Below I present an example of this with global solutions. This is another way of analysing equations which in



CHAPTER 4. RESULTS AND MAIN ANALYSIS 25

some cases is operationally more useful than the analytical arguments presented. For instance in 4.3 one can

see that in the case of the given P± at least for the plotted range for γ+
0 ≥≈ −0.5 there are solutions which are

attracted to one and below this are Landau poles. Similarly for γ− with the opposite signs and directions.

Of course we can also analyse only β(λ) on its own using the same slope field code. This is shown in

While examples like these are easy to visualize and quite illustrative, ultimately they are not perfect since

ultimately this is a three dimensional system and thus we would like to consider this full three dimensional system.

Thankfully this system is still 3 dimensional system we can visualize this numerically an example of this is shown

in 4.5.

We can also demonstrate the non crossing property of solutions in this three dimensional phase space, we

of course already know this has to be true due to existence and uniqueness theorems as in [15] but it is a good

test of my numerical code to ensure this. For example 4.6 shows several solutions sampled from different initial

conditions, one can see directly the fact that the solutions don’t cross.

Next I performed some numerical analysis on what initial conditions lead to the β(λ) having zeros. This is an

interesting question because as discussed in chapter 3 given certain conditions these solutions can be ruled out as

non-physical because of being multivalued. An example of the regions of initial conditions which lead to different

initial conditions is shown in 4.7. One interesting thing to note is that the boundary between the two types of

solutions follows a line on one side which in the figure is shown in red. It is also worth noting that many of the

solutions in purple which are not ruled out through having zeros, will still not be physical solutions, they may still

have Landau poles for example. Determining more about where these solutions have Landau poles is something

we plan to look at in the future. The zeros are counted by counting the number of points which have neighbours

of an opposite sign. This means that each zero gets counted twice once from the point before the sign change and

once after, this leads to a numerical artefact when the integration ends after a zero and this is seen through the

green line of each of the plots. For the purposes of zeros, this should be counted as a single zero.

Lastly I present an example of a global solution for β(λ) found numerically showing that, indeed global solutions

are possible this is shown in 4.8. This is also incidentally an example where the converse of theorem 1 fails.

Figure 4.2: A Numerical Example of the solutions for P +(L) = −1 and P −(L) = 2 with the initial conditions γ+
0 = 0.9 and

γ−
0 = 0.3. This shows even though both γ+ and γ− have global solutions this doesn’t imply that β(λ) does as well.
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Figure 4.3: An example of the two dimensional slope fields generated with a solution curve super imposed on each. The functions
in this case were P +(λ) = 1.5λ + 1.8336λ2 − 3.728λ3 and P −(λ) = 0.0833λ2 + 0.1874λ3 motivated by the φ4 perturbation

expansion. This system is difficult to analyse through the methods of section 4.1 since the functions are not defined in terms of L

Figure 4.4: An example of the two dimensional slope field of β(λ) with a solution curve super imposed. The functions are the
same as in 4.3 with the initial conditions of the solution curve β (λ0) = −0.9 with λ0 = 0.04.

Figure 4.5: An Example of the three dimensional slope field for P +(L) = 1.5L + 1.8336L2 − 3.728L3 and
P −(L) = 0.0833L2 + 0.1874L3 along with the solution curve superimposed.
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Figure 4.6: An example of several solutions sampled from different initial conditions where the non crossing property can be
clearly seen.

4.4 Conclusion

In this work we have analysed the differential equations governing the beta function and anomalous dimension

in massless φ4 theory. We have presented the background and used these background concepts to derive these

differential equations, this is based heavily on previous work. We then analysed these equations both numerically

and analytically. On the analytic side we present a condition which guarantees the existence global solution for

the massless φ4 beta function. In particular we see that for all forms of Q(λ) which we would obtain from the

physical theory these global solutions are not guaranteed to exist. This is something we would expect because

massless φ4 theory is not a physical theory on it’s own and this gives some mathematical insight as to why. On

the numerical side we use standard integration software to plot different forms of solutions and their slope fields.

This gives us insights into the different behaviour of the solutions with different initial conditions. We also used

the integrator to determine where the solutions have zeros. This is interesting because as discussed these solutions

can not be physical solutions and can be ruled out immediately. Solutions not crossing zero doesn’t mean the

solutions are necessarily physical only that they might be, since they can still have Landau poles for instance. For

the next part of this project we plan to use a different rearrangement to give more insight on where the Landau

poles exist and apply these combinatorial ideas to a super-symmetric physical theory.
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Figure 4.7: An example of the regions generated by the different initial conditions. The Yellow region has solutions with one
non-trivial zero of the beta functioneta function and the purple region has no zeros. The putple region is the solutions with no
non trivial zero of the beta function. The green line is a numerical artefact which essential comes from the way the zeros are

counted and the red line is the line γ+
0 = −γ−

0
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Figure 4.8: A numerical example of a global solution for β(λ), the functions were P +(λ) = −1 and P − (λ) = 3, with γ+
0 = 0.6

and γ−
0 = −3.
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A. Algebras and Hopf Algebras

The point of this appendix is to give the reader a brief introduction to the mathematical structure known as a

Hopf algebra. Since the core audience for this report is physicists who don’t necessarily work often (if at all) with

Hopf algebras this is included so that these readers can be made familiar with the subject quickly within this

document.

In order to define the notion of a Hopf algebra we need to first define the notion of an algebra. Let V be a

vector space over a field F and let ∇ : V ⊗V −→ V be a linear map1 and let η be a linear map η : F−→ V called the

unit with the following two conditions, ∇◦ (∇⊗1V ) = ∇◦ (1V ⊗∇) and ∇◦ (1V ⊗η)◦µR = ∇◦ (η⊗1V )◦µL = 1V ,

where µL : V −→ F ⊗V is the map µL(v) = 1F ⊗v and µR : V −→ V ⊗F is the map µR(v) = v⊗1F . With these

two conditions the structure (V,F,∇,η) is called a unital, associative algebra. In order to define the idea of a Hopf

algebra we also need to define coalgebra. Let V be a vector space over a field F and let V ⊗V by the tensor space

of V with itself. Let ∆ : V −→ V ⊗V be a map which we call the coproduct and let ε : V −→ F be a map we call

the counit, if the maps ∆ and ε satisfy (1V ⊗∆)◦∆ = (∆⊗1V )◦∆ and (1V ⊗ ε)◦∆ = (ε⊗1V )◦∆ then the tuple

(V,F,∆, ε) is called a unital associative coalgebra.

Lastly we will need to define a bialgebra, the rough idea behind a bialgebra is that it is an algebra and coalgebra

together with some compatibility conditions. Formally a bialgeba is a tuple (V,F,∇,η,∆, ε) such that (V,F,∇,η)

is a unital associative algebra and (V,F,∆, ε) is a coalgebra and the following compatibility conditions are satisfied.

1. ∆◦∇ = ∇⊗∇◦1V ⊗ τ ⊗1V ◦∆⊗∆.

2. ε◦∇ = ε⊗ ε.

3. ∆◦η = η⊗η.

4. ε◦η = 1F .

Where τ : V ⊗V −→ V ⊗V is the linear operator which satisfies τ (v⊗w) = w⊗v for all v,w ∈ V and extended to

all of V ⊗V by linearity.

Given all of this I can finally give the definition of a Hopf algebra. A Hopf algebra is a bialgebra together

with an antiautomorphism called the anipode S : V −→ V which satisfies the following compatibility condition.

∇ ◦S⊗1V ◦ ∆ = ∇ ◦1V ⊗S ◦ ∆ = η ◦ ε. There are a lot of different uses for the notions of Hopf algebras which
1This is equivalent to a bilinear map from V × V −→ V by the universal property
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arise in combinatorics see for example [6] for a large review of these concepts. For us the only use will be to note

that the 2-edge connected divergent Feynman graphs can be made into a Hopf algebra structure.



34

B. Auxiliary Calculations

In this appendix I will provide some of the calculations which are necessary for the main report, but would

cause the flow of the main report to be broken. Beginning with equation (3.12) in the main text by considering

2× (3.4)+(3.5) in the main text I get

d
(
γ+ +2γ−)
dλ

=

(
γ+ +2γ−)+

{
−
(
γ+)2 +2

(
γ−)2

}
−
(
P+ (λ)+2P−(λ)

)
λ(γ+ +2γ−)

We then define Q(λ) := P+(λ)+2P−(λ) and we get adding 0 inside the brackets we have

d
(
γ+ +2γ−)
dλ

=

(
γ+ +2γ−)+

{
−2
(
γ+)2 +

(
γ+)2 +4

(
γ−)2 −2

(
γ−)2 +4γ+γ− −4γ+γ−

}
−Q(λ)

λ(γ+ +2γ−)

We can collect terms and simplify to get

d
(
γ+ +2γ−)
dλ

=

(
γ+ +2γ−)+

{(
γ+)2 +4γ+γ− +4

(
γ−)2 −2

(
γ+)2 −4γ+γ− −2

(
γ−)2

}
−Q(λ)

λ(γ+ +2γ−)

We can now write the terms in the curly brackets as a sum of square terms to get,

d
(
γ+ +2γ−)
dλ

=
(
γ+ +2γ−)+

(
γ+ +2γ−)2 −2

(
γ+ +γ−)2 −Q(λ)

λ(γ+ +2γ−)

And dividing through the denominator we get

d
(
γ+ +2γ−)
dλ

= 1
λ

+ γ+ +2γ−

λ
−

2
(
γ+ +γ−)2 +Q(λ)
λ(γ+ +2γ−) (B.1)

Which is equation (3.12) in the main text. In order to derive equation (3.11) we simply write

dβ

dλ
= d

dλ

{
λ
(
γ+ +2γ−)}= γ+ +2γ− +λ

d
(
γ+ +2γ−)
dλ
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Therefore using (B.1) we have

dβ

dλ
= 1+2

(
γ+ +2γ−)−

2
(
γ+ +γ−)2 +Q(λ)
γ+ +2γ−

Using γ+ +2γ− = β(λ)/λ we finally get

dβ

dλ
= 1+ 2β(λ)

λ
−λ

2(γ+ +γ−)2 +Q(λ)
β(λ) (B.2)

This is equation (3.11) in the main text. Next I will derive equation (4.3) in the main text. First dividing through

γ+ −
(
γ+)2 in equation (3.9) we get

dγ+

γ+ − (γ+)2 =
[

1− P+(λ)
γ+ − (γ+)2

]
dL

Again using a partial fraction expansion on the left hand side we have

[
1
γ+ + 1

1−γ+

]
dγ+ =

[
1− P+(λ)

γ+ − (γ+)2

]
dL

Integrating using the initial condition γ+ (L0) = γ+
0 . We get

log
(∣∣∣∣ γ+

1−γ+
1−γ+

0
γ+

0

∣∣∣∣)= (L−L0)−
∫ L

L0

P+ (λ)
γ+ − (γ+)2 dL

Defining D =
∣∣∣∣ γ+

0
1−γ+

0

∣∣∣∣ and g (L,L0) =
∫ L

L0
P +(λ)

γ+−
(

γ+
)2 dL we get

γ+

1−γ+ = ±De(L−L0)−g(L,L0)

Rearranging and simplifying we have

γ+(L) = ± e(L−L0)−g(L,L0)

1
D ±e(L−L0)−g(L,L0) (B.3)

Which is equation (4.3) in the main text.
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