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A ﬁriqri estimates for Yang-Mills Fields

KAREN UHLENBECK

The Yang-Mills equations, introduced by theoretical physic‘ists into mathemat-
ics, continue to yield a fascinating supply of new forms, facets and applications
[A-B], [D1}),-[D2), [Si}." Technically as partial differential equations Yang-Mills is

fairly well understood in dimension four and below. Ia dimension n > 4, previous

techniques apply only if a local bound on the L*/? norm of the curvature is known.
This is not a natural condition. This paper presents the rather technical result that,

given any smooth solution of a Yang-Mills type equation (including a lower order

term), estimates on arbitrary LP norms of the curvature, and hence higher deriva-

-'thw.

tives, can be obtained from energy (L? bounds) by using the equation. This theory
has content in dimension larger than four only. Similar results have been obtained
for the equations by Nakajima [N]. Iam indebted to Nakajima for pointing out an

error 1o my first version of Chapter 2.

Although this type of result is standard in the theory of elliptic systems of
no:}vﬁnear partial diﬁ‘ere:ntial equations, our work is special to.Yang-Mills equations
because of the gauge freedom. We rely heavily on previous work on gauge fixing.
Otherwise tixe'pmofs are similar to and originate from the same jdeas as Schoen’s
estimates for harmonic maps. The monotonicity or scaling formu.l.as of section three
extend the work of Price [Pj. S.T. Yau and the author found these results useful in
constructing Hermitian Yang-Mills fields in stable bundles on Kahler manifolds and
some of our more complicated terms are included precisely to handle that case [U-

Y] T conjecture that estimates of this sort can be used to solve the Dirichlet problem

_for domains of dimensjon larger than 4 with smgula.r sets of Hausdorf dx;nensmn at

most-n — 4

In section one we formulate the usual Yang-Mills equations, describe previously
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understood gauge fixing techniques and regularity theory and give our precisc result. -

In section two the holomorphic (or Hermitian) Yang-Mills theory is d_escribed and
our results derived for this special case. In section three we prove both monotonicity
formulas, which allow normalized L? estimates on balls to pass down to :rsmaller balls,
i;or.the brdix;ary Yang-Mills theory and the holomorphic theory.

The main interest in the estimates as they stand is a weak convergence theory.

Given the results of this paper, a sequence of “approximate” Yang-Mills fields with =

bounded energy has a subsequence which converges off a set of finite Hausdorff
diz;xension' dim M — 4 The corresponding theorem for harmoni¢ maps says the
singular set js of dimension dim M —~ 2. This argument can be found in [Se], [N] and
[U-Y] and we do not repeat it. This theory should be part of a more general theory
encompassing 'both the thf:ory of harmon.it; maps and Yang-Mills. The necessary

ingredients are monotonicity and Jocal regularity estimates. Gauge theory differs

from harmonic map theory in the necessity for choosing local gauges as well as in

the lack of a good notion of a weak (L2) solution. In any case, past experience has
g 1

shown thal general abstract theories are not good approaghes to non-linear partial
differential equations. A more interesting challenge is to find a third set of geometric

equations with properties similar to the harmonic map and Yang-Mills equations.

rPade
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1. The Yang-Mills Equation for a Riemannian Manifold.

The Yang-Mills equations are formulated as equations for a connection in a vector

bundle E over a Riemannian manifold M. For simplicity we assume the gauge

group is U(N) or a subgroup of U(N). It must in any case be compact. The metric

in U(N) we teke to be the bi-invariant trace inner product

(VW) = VW = S VW
for V W € u{N). The independent variables are encoded in a connection D) on E
which is locally writen in a tn‘\na.hza.txon over an open set QCX as

ElQuax N

(1) D=d+ A where A(z)= ZAJ‘(-"E) dz .
“ 5 :

Here A j(z) is a skew-Hermitian N x N complex matrix. Local gauge tranisformations
are maps s : 0 — U(N) and the change in the potential is given by

A s™lAs 4+ ™ ds

2 .
@) Aiz) = 3—1 (=) (A;(z)s(x) + is‘-(x)) .

There are no a pnon estimates possible for A, since even 4 = 0 can be gauge

charged mto a smgular A= 514 by choosing a smgu]a.r s. Invariant estimates
are made on the ﬁeld or curvature F'. This is a u(N) valued two-form

| P=dA+}dA4)= ZF.,dz‘Adz’
(3) i

File) = garAs(e) ~ ooz Aa) + [4i(@), Ay(2)]

Curvature transforms by the ad action of s
(4) | F=351Fs

which mean l.l:"l = |F| as s is unitary. Therefore L? estimates on curvature are

invariant.

rFade
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We alrcady know that uniform LP estimates on curvaturc for dimX < 2p
imply th'e existence of 2 good gauge in which L? norms on F lead to L} estimates
on good choices of A and weak compactness arguments. Qur goal is to obtain the
LP estimates from the natural L2 estimates and an equation. To write down the
egquation, we need a Riemannian metric, a.nd' the size of balls allowed in our theory
depends 1 m a crucial way on the geometry of this metric,

If g = X ; gijdz'dx? is 2 Riemannian metric on X in local coordmates, then
the full Yang-Mills equations are

- (6) . D F= E -—(detg_l iy “F;k)gu drt =0

4,3y "
where $5V = 22V + [4;,V]. We consider the equation
(7) . DF=0Q
where Q = 3, Q¢dz! has a maximum estimate max,¢x |Q(z)| £ Qoo Wwhich is 2
priori known. Note this estimate is gauge invariant.
' The Riemannian tensor g on M enters into the estimates in the following
manner: all estimates are local and are carried out in Gaussian normal coordinates

about an arbitrary point £ € M in balls of radius at most o, which are well inside
the injectivity radius of M. We denote the geodesic balls by |

(8 c(é) { z€M:6(z,6) <o) | )

where & < 9. The bound on ¢ is determined by the following conditions
(a) o9 < injectivity radius of (M,g) .
(b)  lg¥(z) ~ 6] < Kolzl®

®) la—zgg"(z)l < Kol

() o3Ko<1/2

_ The constant Ko depends on the Riemannian curvature of g.

- The fundamental gauge fixing result’ can be interpreted on our Riemannian
manifold in the context of these geodesic balls.
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‘I’he.orem 1.1. There exists & = &(n,N) such that if ¢ < 70 and

/ PP < 0o
B.(€) .
then there exists a unique choice of gauge (up to constant rotations of the fiber) in
which d*A = 0 on B,(£), A | normal =0, and

1/2
leA]"f2*1+(/ [Al"*l) <C / ;F[“lz_*;.

B.(§) B,(¢) Be.(£)
Here C = C(n, N). '

Proof. For the flat metric this is the main theorem in the first part of an earlier
paper [U-1]. The condition ¢ < oo shows that the geometry of B,(£) is close to
that of the ball of radius £ in R", so the safne proof will work with a small but fixed
modification of & (to x/2) and C (te 2C). Technically in the proof we have solved
X; ¥ a:: A ; = 0 rather than d*4 = 0 (+ in the g metric). A second application of the
JmPhCIt function theorem to a slight modification of the original theorem allow us

to solve d* 4 = Q.

As a fairly straightforward corollary, we obtain L? estimates for any p. We find

it convement to mtroduce the notatien

‘e

(10) NGl |F|'*1)w=fp(e,a)<= £).
Be(€) : .

This is a scale invariant quantity, in that we can always rescale our original manifold

{and Kj) to work in the ball ¢ = 1. This is explained a little less briefly in chapter 3.

Theorem 1.2, Let D*F =Q, |Q(z)| § Qoo 28d (f, (¢ 1F1"/* x1)2/™ = f,2(£,0).

Then there exists a constant x,, such that forer £ 00,2 £ p < 1, fay2(€,0) £ Knp
and 'some ¢y

| .(021"—" f lF|5’ * 1)1/, = f;(ﬁ, 0)2)

Bal 2(&)

< ep(f2(6,0) + ¢Qos) -

rPade
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with & metric satisfying (9) for oo = 1.

Proof. We rescale to prove in the unit ball
We use the gauge of Theorem 1.2. Our first step is to point out .

| (1}) AL,z € allF lo2 = c1fa
as shown in' Lemma 2.5 of [U-1], Now write the two equations d"A = 0 and

D*F = 0 together in a single Laplace-type equation for A.

(12) AgA +[4,dAl + [4,14,4]] =Q .

Here A, is the Laplace operator d*d + dd* on cne-forms and the exact form of the
qon-linearities is not important, only the type. '
In the range chosen for p, the multiplication theorems
PQL? = LL,

of the estimate becomes infinite. Regard

are vahd although as p — n the norm gy
i /2,

as 2 linear equation for A = ¢ with lower ordexr coefficients dA €

equation (12)
(4,A) € L/

La(d) = (Ag — 1)@+ [&,dA]+ (6,4, Al =Q—- 4.

The linear operator is a perturbation of size &y fusz from Ag—1 as 2, map L? — L%,

As such, both the uniqueness and interior estimates hold if & f,, j2 and ot K are’

sufficiently small, In particular we get an interior estimate on By/z.

“4’“1 P12 = e (“4’“1 2,1 + “LA‘IS“-I,):.I)

For ¢ = A this gives

-

(13) HAlLp1/2 & C'p(“A“I.Z + Qoo) -

Equations (12) and (13) transform into the gange invariant estimate on curvature

£60,1/2) £ cp(f2(0,1) + Qo)
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This is stated in the scaled result as the theorem. This result is quite similar to
results in [U-1).

Further improvement is standard. We rewrite (12) as

) JE A,A=Q+[A,dA]+[A;[A,A]].

Estimates on Q plus an 1mtxa1 24 estimate on A yield interior estimates on arbitrary

higher Sobolev norms of A using the iteration of the standard L¢ estimates for the

Lapla.ce ope;ator. ‘We state one corollary in its gauge invariant form. 1t is proved by

applying the theorem to estimate f,(€, 0/2) and then iterating the estimate again.
Corollary 1.3. Let fa/2(£,0) £ &z 2nd f2(§,0) < ¢ for nf2<p o< a'o..'TI?en
for = € By 4(€) | |
?|F(z)] € Ka(1 + 6+ Quo0)(e + Qoo)
We now use the monotonicity on scaling inequalities s proved in Theorem 3.2.

For convenience we state the iequality here. For Kgo? < 1/2 as described in (9)
we have from Theorem 3.2 ' ' '

L J

(16) T B69) Swe(ER) + Q%)

Here wo = expwol (w(n)Ko + 1)o? where w(n) ~ n! is a combinatorial constant
depending on n = dim M.

Lemma 1.4. There exists gg > 0 such that if 4p < oy, f2(§,4,0) = £ < €0, Qwp < &
then for all ¢ < p, z € B;,(&). |

fg(x?p) <wE.
where w? = wo(4™~4 +1).

Proof. From (16) we obtain '
o 2 2 L% 2
fi(z0) £ wo(fz(z,P).-i- Q% 0% .

However B,(z) C B,,(£) and we may conclude fZ(z,0) & 4""‘ f2(€,4p). This gives
our mequahty immediately.

Pade
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Lemma 1.5. Assume the hypotheses of Lemnma 1.4, and require in addition that

Frj2(2,0) & Knyp for some z and . Then
Fnj2(2.6/2) S Capae .
?|F(y)] £ Kne for y € Byyu(z) -
Proof First apply Theorem 1.2 with p = /2. Note Caj2 = Caja(wr +1). Now
| apply Corollary 1.3. We can compute exactly that .

fu = K,,(l -+ (w1-+ 1)60)(11.?1 + 1) .

We are now set up to prove rather easily our main theorem. On 2 compact
manifold with [,/ [F[* < &}, the argument is very easy. One finds
max, e [F(2)| = [F(y)}, chooses if possible a ball of the right size in which

([ wares 1)2’“‘= Fua20) = Kagz »

Be(y)
and obtains a max estimate in B,/4(y) from Lemma 1.5. Since |[F(z)] £ |F(y)| we
get an estimate in all of M. 1f g is sufficiently small, we obtain a contradiction.
The elaboration in the proof of Theorem 1.6 comes from the need to adjust the size
of balls depending on their distance from the boundary of the large ball in ques'tion.
This adjustment could be accomplished in a number of ways. '

Theorem 1.6, Let D*F = Q. with max,epm |Q(z)] £ Qo.. There exists g9 > 0
such that if 4p < &0, Qoop < € < € and f2(€,4p) < € £ €, then

max p'|F(z)| £ Kpe .

=€8,(§)
Progf. Define a function -
g:Bye X [9,1] - R*
l by the formulas
p g(=, 1) = fq f2(, tw(z))
(17 . w(z) = { (8p—68(z,8))/2 p<é8(z,6)<3p
. P 5(z,€) S p
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' By constaucting the function w(z) == w(z, £, p) is continuous.’ Moreover, g(z,t) =0
for t = 0 and for 2 € 6(33,(6)). The heart of the pFOOf is to show g(z,1)} € Kqy2 in
the entire domain (z,t) € B;,(£€) x [0,1]. Once we have done this, we let.t =1 and
z € B,(£) to get

fﬂl3(;lp) = 9(':5., 1)< Knj2 - -

-

Now Lemma 1.5 yields the estimate

PIF()] £ Kae

by taking the center = of each ball B,(z) as y.

To show ¢(z,%) < Ky for all (z,1) in the domain and for & sufficiently small,

assume this is not true., Due to continuitj; and ¢(z,0) = 0, we can assume that .

there exists a 0 < 7 < 1 and a y € Ba,(¢) with the properties

9(v, T) = Kn/2

q(z,t) S knpr for 1 <7

Moreover, y is strictly in the interior of Bs,(£) since g(z,t) = 0 for x € 8B3,(£)-
The point of the argument is that we are still able to apply Lemma 1.5, since

9(z,7) = fasa (z, Tw(-'r-)) < Kny2. This gives us the estimate in.the ball of half the
radius '

(18) fagalz, 7/20()) < Capae -

On the other hand, the integral f:;: (y, rw(y)) can clearly be estimated in terms

of a sum of integrals over the smaller balls ) . f,':,/: (%1, rw(zs)) for z; € Brugy(y)-
Alternately, we try a double integral and change the order of integration. By con-

struction

N',lﬁ = fuls (g Tw(y)) = / [P/« 1.
' Bvu(y)(!’)

Page
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However,

|E)I™* + 1) ‘1l

TE€EB. () (V) NEBesauay(®) ot
aw o= [ (] )i
ME€B.(y) 2E€B.y(y)(¥)NBr/20(a)(n) ' :
R >mo [ RO = a2
WEBrw(y)(y) .
Here the number m can be estimated exactly as
m=  min ( . / *1)
ﬂEB.ru(y)(y)

:EBrw(’)(y)ﬁBrIB u(s)(”)

.

»  From the definition of w(z), i §(z,y) < w(y) we can conclude w(z) € 1/2uw(y).
So it suffices to estimate a lower bound for the area of B ruy)(¥)N B g0 (1) when
€ B,.,,,(,,)(y). Clearly the worst case is when 7 € BB,‘,(,)(y) when slightly under
balf the ball B, w(y)(7) lies in B,,(,)(y). In any case

m 2 m{n)(rw(y))" .

If we substitute this inequality in (19) and use (18) we have -

m(n) (‘rw(y))"n:;: = / fr //22 (zsm/20(z)) *+ 1
E17: NN €

S (Cay2€)™? vol By (v) .

< (Ch /25)“/ V. ('rw(y)) n.

This is impessible if £ is too small relative to K, /2- This completes the praof.

10



Sent’ by :DEPRRTMENT OF MATH Feb~29-80 11:56an from 6126262817561749521886

2. The Holomorphic Yang-Mills Equations and
the Hermitian-Einstein Tensor

The holomorphic Yang-Mills equations, are formulated in a vector bundle E over a

complex Kihler manifold X, with the additional assumption that the buridle E has -

2 holomorphiic structure. The connections we allow are to be compatible with this

holomorphic structure. The existence of the holomorphic structure means precisely
that there is a holomorphic trivialization
E|lozoxcV

(200 ... _ - D=d+A
) A(z) = ZA.,(z)dz

where A4(z) € GL(N, €) and Az(z) = 0. In other words, in holomerphic coor-
dinates the covariant derivative agrees with ordinary differentiation in the z% =
z% —1y® directions. Because changes in the holomorphic coordinates in the bundle
are holomorphic maps s : O — GL(N, T), this is a.coordinate inﬁﬁant definition
of a compatible connection.

Since D = J in holomorphic coordinates, it follows that the curvature Fy 3 = 0.
The converse is also true. By the Newlander-Nirenberg theoreni, if a counection
with F, 3 = = 0 is given, this connection defines a holomorphic¢ structure on E. In
our estimates we make use of the fact that the information about the holomorphic
structure on F is encoded in any compatible connection. For our global results,

there is no need to fix the holomorphic structure.

Our results apply only to bundles with connections which are comipatible with

some holomotphic structure and whose structure group reduces to a compact U(N)

group. The results are certainly not true for non-compact groups. Givena holomor-

phic bundle E, and D = § part of 2 connection, a umta.ry connection is equivalent

to the choice of a metric h on E. In holomorphic coordinates
(21) , " D=(8,8+h16n),
Note that if A = u"u locally, then the gauge equivalent 4

D=uoDou?

e

Pagde 11



ient’ byiDEPARTHMENT OF MATH Feb-29-068 11:56an from 612626201736174952180 Page 12

has the local form
(22) D=(8+ud(u"t), 8+ (u)ou").

In thi¥ unitary and noi holomerphic choice of frame, the connection form has the

forfnula. 5
g =1
As azé(u)u
£ Aa - ( )_1 (u-) — __Aﬂ

In real coordinates these connection forms are sl\cw-Hermtmn Just as in the first
. chapt.er on real manifolds.

We have not yei explained where the Kahler metric will come in. Suppose X
b.as B Kahler metric with Kahler form w € Q' (X). For any unitary connection
compatible with any complex structure on E; as explained before F € QV1( X, AdE).

The Hermitian-Einstein tensor is by definition

. () B =(w,F)— ul € C*(AdE) .

The p € IR is 2 normalization constant depending on w and ¢; (E) which is chosen

for, the purpose of global calculations on compact manifolds in sucha way to insure

- ' /ter"‘ =

- : X

Our calculations are local and we assume p = 0. The relationship with Yang-Mills

becomes apparent given the following theorem.

Theorem 2.1.. (Kobayashi [K]) If D is a connection compatible with any holo-
morphic structure on E, then (w, F') = pI implies the Yang-Mills equations.

Proof. Since p € R, D(w, F) = 0. However, one can compute that
> D(w,F) = (w, DF) + (D*F) 2" — (D" F)y dz" .

By the Bianchi 1dent1t1es DF =0, a.nd for connections with curvatures i in QI 1(AdE),
D*F =0 is equivalent to D(w, F) =

1
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In the technical process of constructing solutions to the cquation H = 0 on a
compact Kahler manifold, it becomes useful to examine the inequality ||H|| L= X B.

The local form of these equations is considerably simpler than the full Yang-Mills
equations

ZgaﬂF‘?lﬁ =
(24) a.8
ﬁ == a p =] 0 .

The results and the method of obtaining them are only slightly different in the
holomorphic, case. ‘To start with, we need similar estimates on the geometry o
The Kahler form on X enters into the estimates in much the same way the -
Riemannian tensor did in Chapter I. All estimates are done locally in holomorpic
coordinates about an arbitrary point ¢ € X, in balls of radius at most g, well
inside the injectivity radius. We assume that we work in a region of X in which
every point has such a holomorphic chart O = {(z!,...,2™) : |z| € oo}, which |
depends contimously on € € X. There may be global topological obstructions, but
our theory is all local. Let Bo(€) = {z € O : |2| € ¢}. The bound on ¢y and the
geometry are determined by the following restrictions on the Kahler form in these

coordinates

(a)  Bg,(2) € X is a holomorphic coordinate.
(25) ®)  1g"(z8) - 67| < Kial? -

)
. N T O PR 4

In repeating ourselves from the Riemannian case, Theorem 1.1 applies as is to

-the holomorphic case. The definition for complex dimension m = n / g

' 1/p
feo)= (2 [ jppan)
B (=)
still applies:. Since we assume the holomorphic coordinates centered at £ depend _
continuously on £ as we move § throughout our ball (remember ‘we don't have
Gaussian normal coordinates any more), we still have that f,(£,o) is continuous in

£ € X. The analog of Theorem 1.2 is the following:
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Theorem 2.2. Let (w,F) = H, |H(2)| € Hx and
( f F**fu) = fm(£,9)
Beis)
.. Then there exists a copstant %), such that fore < o'o,.2 < p<2mand f,(€,0) < K ™.
. ' 1/ o
(az(""") / |F|P#1) < &, (f2(610) + 0% Heo)
Bcl?({) )

Note the simplification in terms of the complex dimension m = n/2.

. Broof. As in the Riemannian case, we rescale to the unit ball in the holomorphic
coordinate chart. Note that Q scaled like a one-form, but H now scales like a two
form, which explains the a’Ho from sc.ahng by o. We obtain as the first step the

result of Theorem 1.1.
3 2 ba
. d* A= Eg 'ﬂ(B——Aﬁ-I-apA-):O :
@

lAlh,z £ e1]|Flloz = er fo

in the unit ball. Our equations are the following over-determined elliptic system for |
the real form Yoo Aadz™ + Agdz® with Ay = ~A3,.

. . de+A=10
" (27) - (w-(da+(4,4)) =H
| (dA+[4,4) " =0. .

" To see the form of this system, it can be written for ) A.dz” as

ap O 1

(27 .
| 4 D oA 14, 4,]=1H
’é?;Aﬂ B2F a+{ o) ﬁ]"i .

View A4 and one factor of the quadratic term as coefficients and we have an over-

determined elliptic linear system La¢ = H for A = ¢. In the range we are working

I"® LT — IF .
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by multiplication. From Theorem 1.1

“A"(),n S C:fm ...<. C;:f\'.:.,., .

-

So the linear operator L4 is a perturbation of size c;:fm for
Lo = { (w, B®) , 00 } .

Since the geometry is nearly flat, we are in fact near a set of equations which are

familiar from analysis of the Dolbeault complex.

et
8 o
Braf " pppha=0.

Under the conditions that the coefficients which perturb the system from this fa-
miliar linear system are small, we obtain

I¢l13.7.8y2 < & (1l ,2,8: + IL48Ho.p.5,) -

This smallness criterion is met by Theorem 1.2 when fin(€,¢) <'&.,. Remember
that m = n/2. The theorem follows by letting ¢ = A and estimating ||H]|L» by.
Heoo '

The rest of the proof essentially follows the Riemannian case with one not
very essential difference, In the R.lemanman case it seemed: most natural to obtain )
maximum estimates on the curvature tensor F, although under the given hypothesis -
we certainly could have obtained I? estimates for all p on the covaniant derivative of
F. In the complex case, we assume a maximum estimate on H, which is one order .
less than a maximum estimate on (. Since elliptic systems do not invert from L™
to L3®, we cannot expect to use (26) and the maximum estimates on H to obtain
maximum estimates on F. The equivalent of the Riemannian theorem would require
maximum estimates on DH 2 Q. This is too strong for certain applications which

we have in mind. We expect to be able to obtain [? estimates on F for all p.
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Hence for the rest of this chapter we pick a fixed Sobolev exponent {, 2m <
¢ < oo. Replace the scale invariant o2 F(z) of the Riemannian case by the scale
invariant f¢(z,o). Recall that

fiz,0)= (™ [ 1 DE.
- B.(z)
_The ¢omplex equivalent of Corollary 1.3 is the following.

Corollary 2.3." Assume the hypotheses of Theorem 2.2 are valid. Then

-

fz(&, : ) < K; (1+e?l-02Hm)(e+0’;Hm) .

Praof We apply Theorem 2.2. This gives us an est:mate in Be T(£) Take the
elliptic system (27) and put the non-linearities on the right-hand side. )
dxA=0

h

(- dA) = —(w, [A,4])

[dA)*? = =[A4, AP . .
The right-hand side is in L9 for ¢ = § < m. Hence by elliptic regulanty theory,
A € L) for { C interior of Bg({). By the Sobolev emhbedding theorem, A € Le
for ¢' (-1-,9;5 Repeat the interior elliptic regularity estimate using ¢' instead of
¢. By judicious choice of p < 2m, ¢' = £ for our chosen 2. Our estimate keeps track
of rescaling for the small balls we work in.
" We now borrow again from section 3 ahead and use the monotonicity formulas .

for the complex case. From Theorem 3.5 we obtain in a straightforward way the

next inequality.

Lemma 2.4, There exists ¢y > 0 such that if 4p < oo, fal€,p) = € < € and
Hoop® < &, then for o < p and z € B,() '

falz,p) S wie
where w!, = (1 + Ko2)™* max (1+ Koo, Vam ).

In the final preparatory lemma, we again copy Lemma 1.5, but with f¢ replacing

the maximum estimate.



Sent' by :DEPARTMENT OF MATH Feb-29-80 11:57an from 6126262017561749521880

Lemma 2.5. Suppose the hypotheses of (2.3) and (2.4) are valid. Then

f;ﬂ(sr)§%j) ﬁg(:;te
fe(y) € Ke

foryEB «(z) and p £ }(§ - ly — 2|).

Proof. First apply Theorem 2.2 with p=m. This gwesw'
(6 3) seu (o) s
The quantity fr(€,¢) needs no renormalization factors, so

Fults 26 fr (c 7)

for Bao(y) C Bg(£). Now apply Corollaz-y 23 with{ =yand o replaced by P to
get the Lémma. .

Theorem 2.6. Let (w,F) = H and assume max,gp |H(z)| S Hoo. There exists
&' > 0 such that if 4p < 09, Heup? < € £ €' and fo(, 4p) < £ < €', then

fe=,p) = (a“"'“’- f |F(E))% » 1)-7 <R'e

. By(2)

Proef. The proof of Theorem 1.6 carries over precisely to this case. We define

g¢(z,t) in the'same way, use (2. 2) (2.4) instead Of (1.2)—(1.4), a.nd primed quantxtlﬁ _

instead of unprimed, We then get

ewee f3(@0) = gz,1) <K} .

An application of Lemma 2.5 yields

f(z,p) £ Kie

rPage 17,24
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3. The Scaling Inequalities

The scaling or monotonicity formulas transfer normalized L? estimates in a ball
_of arbitrary radius down to normalized estimates on smaller balls. These formulas
play a central role in the regularity theory of harmonic" maps [S]; [S-U] and we
expect them to be as jmportant in the general theory of Yang-Mills equations.
The originai monotonicity formﬁ,la for solutions of Yang-Mills equations is dv;e 't.o
Paice.[P]. We prove two diﬂ'crlent formulas. The first is for solutions of D*F' = @
on Riemannian manifolds and the second for solutions of (w, F') = H which are

holomorphic connections on K3hler manifolds. ' ,
In the theory of harmonic maps s : M — N, the quantitydsisa ‘(tensor-valued)

one-form, the scale invariant quantities are the integrals

g2 / ]dslzx* 1=s(£,0)
B.{(¢)

and the monotonicity formulas for harmonic maps take the form

s(¢,0) £ &s(¢, )

for o < p [S], [S-U]. In Yang-Mills theory, the connection form A is a one-form a;nd

the energy density is constructed from Fl4, which scales as 2 two-form.
Fy = Fi;dz* A dz’ ..

The correctly scaled integrals, the counterparts of the s(§,¢), have already been
introduced in (10)

: ot " / |Fal? x1 = f3(£,0) -
- B.(£)
Keep in mind that the results we wish to prove come from simple integration _b;: )

parts formulas in R™ and C™ on Yang-Mills connections. The complications in our
&

theory derive solely from the incorperation of the curvature of M and the lower

order terms in the cstimates.

Pad9e 18-/24
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We start with the Riemannian case. Let
25) F? =Zg‘ktrFuF;k ds' @ dz’

>e the symmetric two tensor on M obtained by contracting tr F ® F" once with the.

netric, Contracting twice will clearly give |F[2. In our application of the calculation

n the next lemma, y(z) = 16(z,£) & 3z — £]? and dip(z) ¢ 2. The inner produects -

ind divergence are all taken with respect to the Riemannian metric.

Lemoma 3.1, Let D*F = Q and ¢ be a real-valued function o.n M. Then
d* ((dy, F*) — 1dep(g, F?)) = (W, F?) = tr(dp ® Q, F) .

Here W | is’the symmetric two-tepsor W = d%p — 100¢.

Proof. Calculate at a single, arbitrary point z € M in Gaussian normal coordinates
n a gauge with A(z) = 0. Then by the Leibnitz rule, at # in coordinates
&*((d, F?) ~ LAp(g, F?) ~ (W, F))(z)

'“-Z[az (azl ’3-7 43 x n)()

(af:gy() 42( )‘P(“’)‘Sk:j jzk(-’”)}
Zax:\ )(azk ki(2) = (-'5))

= (dp, (d"F* — Ld|F"))(2) -
Contmue by evaluating the term in the right-hand side of the inner _product above
(d*F? — 1d|F)(z)

. F:) - d
?.trZ,(T 2 Fis(z) + Fyee) oo Fek i)
I

= (Q,F*) + }(F", DF) = x(Q.F) .
Here the extra terms 3 (Fj,, 225 a7 Fa) — 5 Fje, %; F3,)dz* are'rearranged using the
anti-symmetry Fjp = —Fyj = —Fj T to be written in terms of the threc form

2 3—35'1'_31- dz* Adzi A dzf, which vanishes by the Bianchi identity and D = d at .

rPage 19,24
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Theerem 3.2. Assume that ¢ < p < 0y. Then

. (6,0) S T (f1(60 ) + QEorY)
where w = 4w(n)K, + 1 for w(n) ~ n! 2 combinatorial constant.

Proof. Let w(z) = L6(€,2) = }|z[? in Gaussian normal coordinates centered at
£ 6 M. Integrate the inequality of Lemma 3.1 over a.ge‘ode.*;ic ball éf radiue o.
" From the coordinates given in (9) on the size of the ball -

. ... o
W = Z—dz’ ® dz? + %b—x—‘.(\/ﬁgu)x’gﬂ. d:z:k.® dz*

b

< (—% + 14 w(n)Kolz|?) gre dz* @ dz* .
Here w(n) depends on the number of terms in z2-(,/7 ¢'/). We have three further
estimates we will insert in the inequality as follows:

n-—4
4

(W,F%), < (- +w(n)Kao?)|FP?,

2
Tl
(4o ®Q,F) < |FIIQlIel < E1FP + 02
(z @ dp, F2)dS >0 .
§(z 8)=0
From the integration over the ball B,(£) we obtain directly

[ mmysis [@weana + o2 [ Gednrias
B,(¢) Be(8) - . 6(2.,€)=a'

-% f |FI2ds .
5(z.£)=0 ‘
" This is converted to the following inequality by substituting the three above in-
equalities and rearranging a little
T~ 4 d‘z , 2 2 (22 F 2 dS “Q2 _
( y —-T-w(n)fxoa) {F] #15:_-4- 1F + " Qeln -
) Box) 5(z,6)=0
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w

The constant v, is essentially the normalized unit ball volume

- vp = max ¢~ " / *1 .
- . . <
WSt ale

A dittle ;nampulatzon of this inequality converts it into a differential mequalxty of

the form - '
0< ;d—(a_“;*"‘exi)waz( / [Fi2 * 1) -+ vna‘Qﬁ,) .
B, (&)
Herew =1+ 4w(n)K 0 as we said before. Next integration from o to p-yields an
mequahty whmh xmmedxately 1mphes the statement in the lemma.

* The formulas in the Hermitian-Einstein case for monotonicity are even easier
to describe. We work in holomorphic coordinate charts as described in chapter 2. It
is a standard fact that globally the energy [, M |F2e = of a holomorphic connection
is ngen in terms of f,, |H[*%s = and a characteristic class term f A T FAF Aw™2
becanse the. two-form F is of type (1,1) [U-Y]. This will avtomatically -convert
into a monotonicity formula of. the type we v'vant, where in the local framework the

Chern-Weil term will be replaced by an integral over the boundary.

Lemma 3.3. Let F be a tensor of the type of a curvature tensor for a umtmy
connection oz, a comp]ex Kahler manifold M. Let H = (w, F) be the Hermitian-
Einstein pa.zt and F e Q2(E) + Q’"’(E) be the part of F which is not of type
(1,1). Then if we compute in tbe metric from the Kahler form

(PP - L ~ 247 1= (L%_Zg‘)_, wFAFAW™?

P "Wf Choose holomorphxc coordinates at an a.rbxtrary point { € M in which
= 2 8z A dz“” 2 o(28) dy™ A dz=. It is not very difficult to see that

trF/\FAwm “Petr Z(Fﬂ'&Fﬁﬁ - csFﬁa'}‘FaﬁFﬁa) dz“ Adz Adzﬁ/\d"ﬂ/\w m=2,
. ayg . .

The térm dz® A dz® A dz A dzP A w™"? represents & form of the top (real) degree
9

2m = n and it is a calculation to show it is —(m ~ 2){(2i)™ times the standard

.

rPade 21,24
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volume form. Due to the fact that F has the reality propertics of the curvature of
a unitary connection
'3 ;E = Fsa -

This éivw the identity
G FAFPAW™? = (2z)m(m ON(IHE + |2 — |F']) *1

where 'F' = 3 Fapdz® A d2P is the part of F of type (1,1) and F = Y F,, 3dz
dzﬂ + Fppdz® A dzﬂ is the part of type (0, 2) and (2, 0) As before H = ) F,,
@The lemama follows. I

For £ € M, we work in the coordinate system (21).

Lemma 3.4. If F is the curvature of 2 unitary, holomorphic connection, then for
o S_ To

h Y

tu1< [ 1gRer - o I1+ES) [ i
_/ |Fal**1 < / |H|“*1" + ST — 2) |Fal*dS .
B. (&) B, (&) §(z,8)=¢
Here‘.B,.(e) represents the ball of radius o in our holomorphic coordinate chart

based at £.

L)

Proof. We use the previous lemma to obtain

j |Fal?*1= j |B?*«1 + T(m) / tr FAF Aw™ 2,

_ Ba(§) B9) Bu(® |

Here the constant T(m) could be important; however our method of evaluating

the Chern-Weil term makés its exact value unimportax-lt.. We elect to compute the

Chern-Weil term by recalling that tr F'A F is a closed four;fonn and replace it by

tre(r*F A 'r"F) where 7 : .B,({) — {€} — {z : &(z,£) = o}. In our coordinates,

7(z) = - The forms tr F A F and tr(r*F A 7°F) = r* to(F A F) are both closed

.and_.have the same tangential components. We apply Lemma 3.3 again to get
[Fal* »1 = / [P #1 4+ T(m)trr* FAT* FAw™?

B, (&) o B.(¢)

< [ QEFEIrEaR) o1
) B,(¢)
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Now, in the case of a flal metric w = Y _ dz® A dz#, the integral over the ball can

be prccis;:ly evaluated as

. . 9 =_¢7__ ‘F st,
- /l‘rFAI'*l 2 —2) f |T* Fal
B, (&) 5(B.(£))

a 2
—_— F.lcdS .
< 2(m — 2) _/ [Fal .
b(z,£)=a

The S;aéquality comes from the fact that 7" F, includes only curvatures tangent to
6(.8; ({)) and the full curvature has radial components in addition. The (1 + Ko?)

rhust be added to account for deviations of the Kihler metric from the .ﬁat case.
. \

]

T heorém 3.5. Let F be the curvature of a unitary, holomorphic connection a.z'zd
assume |H| < Hy. Thenifa < p <oy

£3(8,0) S (1 + K™ 2 f2(¢, p) + prvam HE(1 + Ko?)™3 .

Proof. Note 2m = n, so

(£,0) = g=m=D) j FalPx1.
. By(8)

‘We can rewrite Lemma_ 3.4 as

o2 =N f2(¢,0) < vz.,',.a"'"Hs +o(1+ Ka? )g;(a“"‘_’)ff(& o)) .
This can be manipulated to give
0 (1 + KoY (e ) + Ponn (14 KoY
We integrate from o to p and make some'obﬁom replacements to get the final

result. ' . T

e,
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