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Abstract. A method for integrating nonlinear partial differential equations

is discussed which can be viewed as a nonlinear analogue of the Fourier trans-
form. It involves associating the solution of the nonlinear equation to a linear

eigenvalue equation whose eigenvalues are constants of the motion for the orig-

inal equation. The solution of the original equation plays the role of a potential
in the eigenvalue problem. Thus the solution is mapped to scattering data of

the eigenvalue equation and the time evolution of these data is trivially com-
puted. Inverse scattering techniques are then applied to obtain the solution

to the original equation. It is also shown how these equations can be viewed

as completely integrable infinite dimensional Hamiltonian systems in classical
mechanics.
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1. Introduction

Since the study of differential equations began, almost all progress until recently
had been made only for linear equations: those in which at most one power of the
unknown function or its derivatives appeared in each term of the equation. The
main reason for this is that linear equations obey the superposition principle. That
is, since differentiation is a linear operation, any linear combination of solutions of
a linear equation is again a solution of the equation. Hence the methods of Fourier
series and Fourier transforms were developed to express general solutions in terms
of sums or integrals of certain basic solutions.

However, in the last 30 years, there has been enormous progress in the study
of nonlinear equations and in exact methods for their solution. In this expostion,
we will give a semi-historical account of some of this work, specifically concerning
the inverse scattering transform, which among other things can be viewed of as a
nonlinear analogue of the Fourier transform.

There is much more to the inverse scattering transform than we discuss in this
paper. Consideration of one-dimensional periodic problems solvable by this method
reveals connections with algebraic geometry and Riemann surfaces. The inverse
scattering transfrom is also connected to Bäcklund transformations, which relate
solutions of partial differential equations to solutions of other equations. Much work
has also more recently been done for higher dimensional problems. In addition, the
main feature of these equations, the existence of particle-like solutions called solitons
is only briefly mentioned in passing. More extensive treatments beyond this simple
introduction can be found in [11], [12], [13], and [14].

For the sake of simplicity, we will restrict attention to partial differential equa-
tions in 1 + 1 dimensions, meaning that there is one variable t that should be
thought of as representing time (t ≥ 0) and one variable x ∈ R representing a
spatial dimension.

Definition 1.1. An evolution equation is a partial differential equation for an
unknown function u(x, t) of the form

(1.1) ut = K(u)

where K(u) is an expression involving only u and its derivatives with respect to
x. If this expression is nonlinear, equation (1.1) is called a nonlinear evolution
equation.

Definition 1.2. A C∞ function u(x, t) on R (where t is regarded as a smoothly
varying parameter) is said to decay sufficiently rapidly if u and all its x-derivatives
go to zero as |x| → ∞.

Remark. To avoid technical arguments that only serve to distract us from the ideas
we are concerned with, we will always assume that the solutions u(x, t) of the
evolution equations in question decay sufficiently rapidly, so that boundary terms
upon integration by parts will vanish. Note that most of the results we shall prove
require only the first two or three x-derivatives of u to go to zero as |x| → ∞, but
we will not be concerned with trying to identify the weakest necessary hypotheses
in each case.

The technique of inverse scattering as a method for integrating nonlinear evo-
lution equations was first discovered in 1967 in the course of studying solutions to
the Korteweg-deVries equation. We begin by reviewing this early work.
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2. The KdV Equation

2.1. Preliminaries. The Korteweg-deVries equation, hereafter abbreviated the
KdV equation, is perhaps the simplest nonlinear partial differential equation:

(2.1) ut + 6uux + uxxx = 0

where u = u(x, t) is a function of two variables. The KdV equation is extremely
important as it arises in many physical contexts. It can be used to describe waves
in shallow water (for which it was first discovered in 1895), anharmonic nonlinear
lattices, gas dynamics, and hydromagnetic and ion-acoustic waves in cold plasma,
for example. The interested reader is referred to [13] for the physical derivations.
Note that the coefficients in front of the three terms are somewhat arbitrary and
were chosen for future notational simplicity, since we can rescale our coordinates
by letting u = au′, x = bx′, and t = ct′ and the equation becomes

acu′t′ + 6a2bu′u′x′ + a3b3u′x′x′x′ = 0

Hence by suitably choosing a, b, and c, we can obtain any real coefficients.
Another observation that should be made about the KdV equation is that it is

Galilean invariant, meaning that if u(x, t) is a solution, then so is u(x− 6ct, t) + c
for any c ∈ R, as can be easily verified. Thus we obtain a one parameter family of
solutions.

Lemma 2.1. Solutions of the KdV equation that decay sufficiently rapidly are
uniquely determined by the initial data.

Proof. Let u, v, be two solutions of equation (2.1), and let w = u− v. Substitution
easily yields the equation

wt + 6uwx + 6wvx + wxxx = 0.

If we multiply the equation by w and integrate over all x, then after integrating by
parts on the second term and using the fact that w and all its x-derivatives go to
zero, we obtain

1
2
d

dt

∫ ∞
−∞

w2dx+ 6
∫ ∞
−∞

(
vx −

1
2
ux

)
w2dx = 0

Letting E(t) = 1
2

∫
w2dx, and M = sup |6vx − 3ux| <∞, we have E(t) ≤ E(0)eMt.

Since E(0) = 0, we have E(t) ≡ 0 and hence w ≡ 0, so u = v for all times t. �

2.2. Soliton Solutions. We can ask if there are any permanent wave solutions
of the KdV equation of the form u(x, t) = f(x − ct). Substituting this into equa-
tion (2.1), we obtain

f ′′′ + 6ff ′ − cf ′ = 0

which can be immediately integrated once to get

f ′′ + 3f2 − cf = m

for some constant m. Now multiplying by f ′ and integrating once more,
1
2

(f ′)2 + f3 − c

2
f2 − 2mf = n

for some other constant of integration n. This can actually be used to solve for f
implicitly in terms of elliptic integrals, but we will consider only solutions where
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f(x) decays sufficiently rapidly, which forces m and n to be zero. The differential
equation for f can now be integrated directly, and the result is:

(2.2) u(x, t) =
c

2
sech2

(√
c

2
(x− ct− x0)

)
Note that since the solution exists only for a wave speed c > 0, these solitary wave
solutions always travel to the right, and the propogation speed is proportional to
the wave amplitude, with larger waves moving faster.

Numerical experiments in 1965 by Kruskal and Zabusky (see [13]) showed that
when two solitary wave solutions pass through each other, they emerge with their
shape unchanged and a relative phase shift. Since their interactions were particle-
like, these solutions were named solitons. Because nonlinear equations do not obey
a superposition principle, special solutions like solitons were not expected to play
a special role. However, the experiments by Kruskal and Zabusky also revealed
that any solution of the KdV equation which vanishes asymptotically must in some
sense be made up of a finite number of solitons.

2.3. The Modified KdV Equation. A similar equation that will play an impor-
tant role in what follows is known as the Modified KdV equation, abbreviated the
MKdV equation:

(2.3) vt + 6v2vx + vxxx = 0

The inspiration for the inverse scattering method came when Miura [2] discovered
the following ingenious nonlinear transformation that related the solutions of the
KdV and MKdV equations. If we let u = v2 − ivx, then one easily verifies that:

ut + 6uux + uxxx =
(

2v − i ∂
∂x

)(
vt + 6v2vx + vxxx

)
Hence a solution v(x, t) of the MKdV equation gives rise to a solution u(x, t) of
the KdV equation by the Miura transformation. Note that the transformation only
works in one direction.

2.4. Conservation Laws. In the course of attempting to solve the KdV equation
exactly, it was discovered that the equation has an infinite sequence of nontrivial
conservation laws, which we shall presently define.

Definition 2.2. A conservation law associated to a differential equation in 1 + 1
dimensions is an expression of the form

(2.4) Tt +Xx = 0

where T and X are functions of t, x, u and derivatives of u. T is called the conserved
density and −X is called the flux of T .

A local conservation law depends only on u and its derivatives, and not explicitly
on x and t. This is the case, for example, if X and T are polynomials in u and
its derivatives. For these conservation laws, we can integrate equation (2.4) to see
that

I =
∫ ∞
−∞

Tdx

is a constant: It = 0. We say I is a constant of the motion, or an integral of the
differential equation.
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Remark. It is possible to have constants of the motion that do not arise from
conservation laws. An example of this will be seen below when we see that the
eigenvalues of a certain linear differential operator will be constants of the motion
for the KdV equation.

The first of the conservation laws for the KdV equation can be easily seen by
direct examination of equation (2.1):

ut + (3u2 + uxx)x = 0

Another can be obtained by multiplying the equation by u:(
1
2
u2

)
t

+
(

2u3 +
(
uuxx −

1
2
u2
x

))
x

= 0

We will now describe a method presented in [3] by Miura, Gardner, and Kruskal
for generating an infinite sequence of conservation laws for the KdV equation. If
we define u by

(2.5) u = w + iεwx + ε2w2

where ε is some parameter, then one can readily verify that

ut + 6uux + uxxx =
(

1 + 2ε2w + iε
d

dx

)(
wt + 6(w + ε2w2)wx + wxxx

)
.

Thus we can map solutions w of the differential equation on the right hand side of
the above equation to solutions of the KdV equation. This is nothing more than a
generalization of the MKdV transformation defined in Section 2.3. Now let w be
a solution of the partial differential equation given in the right hand side above.
Then we can immediately read off the conservation law

(2.6) wt +
(
3w2 + 2ε2w3 + wxx

)
x

= 0.

Thus
∫
wdx is a constant of the motion, by integration of equation (2.6), and

using the fact that w decays sufficiently rapidly. Now by formally writing w =
w0 +w1ε+w2ε

2 + . . ., and substituting into equation (2.5), we can equate powers
of ε to get w = u − iuxε − (u2 + uxx)ε2 . . ., which we can substitute into

∫
wdx

and equation (2.6) to obtain a conservation law which is a formal power series in ε.
Thus, since the KdV equation is independent of this parameter, the coefficients of
each power of ε are conservation laws for the KdV equation. These calculuations
give, for example, the following third nontrivial conservation law:

(2.7)
(
u3 − 1

2
u2
x

)
t

+
(

9
2
u4 + 3u2uxx − 6uu2

x − uxuxxx +
1
2
u2
xx

)
x

= 0

This particular conservation law will play a very important role in Section 7. Note
that the presence of infinitely many conservation laws is not a feature of all evolution
equations solvable by the inverse scattering method that will be described below,
although it is true for the KdV and MKdV equations. What does happen, however,
as we shall see in Section 7 is that there are infinitely many constants of the motion,
not necessarily arising from conservation laws, which characterize the equations as
completely integrable Hamiltonian systems.
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2.5. Exact Solution by Inverse Scattering. Since this section is only meant to
give a historical introduction to the inverse scattering transform, we will only sketch
the original solution of the KdV equation as given in [1] and more explicitly in [8],
and will leave the more rigorous description of the method to Sections 5 and 6.
In 1967, the team of Gardner, Greene, Kruskal, and Miura, hereafter abbreviated
GGKM, discovered a method of exactly solving the initial value problem for the
KdV equation. Again we consider only initial data that decay sufficiently rapidly.

We begin by recalling the Miura transformation u = v2− ivx of Section 2.3 that
transforms solutions of the MKdV equation into solutions of the KdV equation.
Now equation (2.3) is a Ricatti equation, and there exists a well known procedure
for linearizing such equations: If we let v = −iϕx

ϕ , then the equation defining the
Miura transformation becomes u = −ϕxx

ϕ . The Galilean invariance of the KdV
equation lets us replace u by u+ λ, and after some rearranging, we get:

(2.8) ϕxx + (λ+ u(x, t))ϕ = 0

which is exactly the one dimensional time independent Schrödinger equation of
quantum mechanics, and has been studied since the 1930’s. There are two kinds of
solutions to this equation that interest us. The bound states (so named because in
quantum mechanics they correspond to particles whose total energy is negative),
which correspond to negative eigenvalues and are square integrable, so in particular
they decay as |x| → ∞. There is always a countable, discrete family of these
solutions. There is also a continuum of unbounded states corresponding to all
possible positive eigenvalues. These solutions are asymptotically periodic waves as
|x| → ∞. Under the hypothesis that the potential u(x, t) decays sufficiently rapidly,
one can show that there is in fact only a finite number N of negative eigenvalues.

Since u(x, t) evolves according the KdV equation, we can determine the time
evolution of λ(t) and ϕ(x, t) in equation (2.8). Let us first consider the bound state
solutions. These eigenfunctions ϕn satisfy ϕn → 0 as |x| → ∞, and ϕn is square
integrable. Solving equation (2.8) for u and substituting into the KdV equation,
one obtains:

(2.9) λntϕn
2 + (ϕnQx − ϕnxQ)x = 0

where Q = ϕnt + ϕnxxx − 3(λn − u)ϕnx. Now if we integrate equation (2.9) and
use the fact that the bound state eigenfunctions are square integrable, we see that
λnt = 0. Thus the discrete eigenvalues λ1, λ2, . . . , λN of equation (2.8) are constants
of the motion in the KdV equation. Now using this fact, we can directly integrate
equation (2.9) to obtain

(2.10) Q = C(t)ϕn +D(t)ϕn
∫ x

0

ds

ϕn(s)2

We will choose to normalize the eigenfunctions ϕn with respect to the standard
norm on L2(R) by demanding that

(2.11)
∫ ∞
−∞

ϕ2
ndx = 1

Let us write the discrete eigenvalues as λn = (iκn)2, with κn > 0. The function
ψn(x) = ϕn

∫ x
0

ds
ϕn(s)2 is a solution of equation (2.9) that is linearly independent to

ϕn. But we know that asymptotically, since the potential u(x, t)→ 0, the solutions
look like linear combinations of e±κnx. Now since ϕn → 0 as |x| → ∞, we see
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that ψn blows up, so we must have D = 0. If we now multiply equation (2.10) by
ϕn and integrate, then using equation (2.11), we see that C = 0 for the discrete
eigenvalues.

Now we define the components cn(t) of the scattering data that correspond to
the discrete eigenvalues by

ϕn(x) ∼ cn(t)e−κnx as |x| → ∞(2.12)

Substituting this into equation (2.10) and using the fact that u → 0 as |x| → ∞,
and easy calculation yields:

(2.13)
dcn
dt

= 4κ3
ncn(t)

which is trivial to integrate for the time evolution of cn(t).
We can follow a similar such procedure with the continuum of positive eigenvalues

and their corresponding eigenfunctions. For large |x|, since u→ 0, the λ = k2 > 0
solutions ϕ of equation (2.8) are asymptotically linear combinations of e±ikx. This
time since we have a continuum of positive eigenvalues, we can simply choose that
λt = 0 in equation (2.9) and study the resulting eigenfunctions. Our goal is to
eventually solve the KdV equation. We will do this by determining what is known
as the scattering data for the eigenvalue problem in equation (2.8). One part of
these data is the collection of functions cn(t) defined above. The rest of the data
consists of a pair of functions a(k, t) and b(k, t) defined by imposing the following
asymptotic boundary conditions:

ϕ ∼ e−ikx + ρ(k, t)eikx as x→ +∞(2.14)

ϕ ∼ τ(k, t)e−ikx as x→ −∞(2.15)

where ρ(k, t) and τ(k, t) are known as the reflection and transmission coefficients,
respectively. The quantum mechanical interpretation of these conditions is that
they represent steady-state radiation coming from x = +∞ only. Actually, we
will only need the reflection coefficient ρ(k, t) to solve the KdV equation. Now
the boundary condition at x → +∞ gives us that C(k) = 4ik3 and D(k) = 0 in
equation (2.10) and substitution of equations (2.14) and (2.15) into equation (2.10)
gives us

dρ

dt
= 8ik3ρ

dτ

dt
= 0(2.16)

which are again trivial to integrate.
We can now use equations (2.13) and (2.16) to completely determine the time

evolution of the scattering data:

S =
{

(κn, cn)N1 , ρ(k, t), τ(k, t), k ∈ R
}

The initial condition u(x, 0) gives us S(0), and we can determine S(t) for all time
t > 0, so all that remains to solve the initial value problem for the KdV equation
is to invert the scattering data S(t) to get the potential u(x, t) in equation (2.8).
The important point is that in the Schrödinger equation, the variable t is only a
parameter, and the scattering data evolves with t according to the KdV equation.
Determination of the potential u(x, t) from knowledge of the scattering data S(t)
is called the inverse problem of scattering theory for the Schrödinger equation.
It involves a linear integral equation, known as the Gel’fand-Levitan-Marchenko
equation. The details can be found in Section 5.3.
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It turns out that if the reflection coefficient is initially ρ(k, o) = 0, we can ob-
tain the solution explicitly entirely in terms of the cn’s and κn’s. These types of
solutions describe the interaction of a finite number of solitons. Each soliton has
an amplitude and speed characterized by the eigenvalue κn and a position charac-
terized by cn(t) (see [8]). In fact the potentials corresponding to soliton solutions
are always reflectionless. It can be shown that the soliton solution of equation (2.2)
corresponds to one discrete eigenvalue and a zero reflection coefficient.

Thus we have in principle the method of the inverse scattering transform: we
map the solution u of the KdV equation to a potential in a Schrödinger equation,
for which we can determine the initial scattering data and determine its time evolu-
tion. Then we invert the process to determine the potential u(x, t) that gives these
scattering data in the Schrödinger equation. The main reason why the method
works is that the time evolution of the scattering data is easily computed. This
happens because the scattering data are defined as |x| → ∞, where u is known to
approach zero. Thus the problem is reduced to solving linear ordinary differential
equations for the time evolution of the scattering data and a linear integral equation
where t is nothing more than a parameter.

The fact that the inverse scattering transform can be thought of as a nonlinear
analogue of the Fourier transform can be seen by recalling the method of solution
for the linearized KdV equation: ut + uxxx = 0. Taking Fourier transforms of both
sides, we get:

û(k, t) =
∫ ∞
−∞

u(x, t)e−ikxdx

û(k, 0) =
∫ ∞
−∞

u(x, 0)e−ikxdx

ût = ik3û

where we use the fact that u→ 0 as |x| → ∞ and integrate by parts to get the time
evolution of û. Thus the partial differential equation is transformed to an infinite
number of ordinary differential equations in t with k as a parameter, just as in the
inverse scattering method used to solve the KdV equation. In Section 7 we will
intrepret this in terms of action-angle variables for completely integrable systems
in Hamiltonian mechanics. Now we can find û(k, t) for all times t and invert to
recover u(x, t):

u(x, t) =
1

2π

∫ ∞
−∞

û(k, t)eikxdx

.
We will now summarize our results in a way which will become useful in Section 3.

Combining equation (2.8) with equation (2.10) and simplifying, we are led to the
following system of equations for ϕ:

Lϕ = λϕ =
(
− ∂2

∂x2
− u(x, t)

)
(2.17)

Bϕ = ϕt = −4ϕxxx − 3uxϕ− 6uϕx + Cϕ(2.18)

At this point it is instructive to see that we can obtain again the fact that λt = 0
for the discrete eigenvalues (where C = 0) by cross differentiating these equations
and using the fact that ϕxxt = ϕtxx.
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3. The Lax Approach

In 1968, Lax discovered a formalism [4] for describing integrable nonlinear evo-
lution equations that are amenable to exact solution by the method of inverse
scattering. He presented a general principle for associating nonlinear evolution
equations with linear operators so that the eigenvalues of the linear operator are
constants of the motion for the nonlinear equation, as is the case with the KdV
equation and the Schrödinger operator.

Consider the system of equations (2.17) and (2.18) involving the differential
operators L and B, and view these operators as acting on L2(R), the space of
square integrable funtions on the real line. Lax observed that the fact that the
spectrum of L did not change with time could be shown to be equivalent to the
statement that the operators L(0) and L(t), which are both self-adjoint in this case,
are unitarily equivalent. That is, there exists an operator U(t) such that U∗U = I,
the identity operator, and

(3.1) L(t)U(t) = U(t)L(0).

Now let ϕ(x, 0, λ) be an eigenfunction of L(0) with eigenvalue λ. Let ϕ(x, t, λ) =
U(t)ϕ(x, 0, λ). Then

L(t)ϕ(x, t, λ) = L(t)U(t)ϕ(x, 0, λ)

= U(t)L(0)ϕ(x, 0, λ)

= U(t)λϕ(x, 0, λ)

= λϕ(x, t, λ).

Hence ϕ(x, t, λ) is an eigenfunction of L(t) with eigenvalue λ. If we differentiate
equation (3.1) with respect to t, we obtain

Lt(t)U(t) + L(t)Ut(t) = Ut(t)L(0)

Now multiplying on the right by U∗, and using UU∗ = I,

Lt(t) + L(t)Ut(t)U∗(t) = Ut(t)L(0)U∗(t)

= Ut(t)U∗(t)U(t)L(0)U∗(t)

= Ut(t)U∗(t)L(t)U(t)U∗(t)

= Ut(t)U∗(t)L(t)

Hence, letting B = UtU
∗, we finally obtain:

(3.2) Lt = BL− LB = [B,L]

which is known as the Lax equation, and L and B are called a Lax pair. If one
similarly differentiates the equation U∗U = I, we get the identity B∗ = −B, and
thus B is skew-adjoint. The skew-adjoint property is needed to preserve unitarity,
as we show in the following lemma.

Lemma 3.1. Let U(t) be a one parameter family of linear operators, such that
Ut = BU , for some skew-adjoint one parameter family B(t). Then if U(0) is
unitary, U(t) is unitary for all t.
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Proof. Let v1, v2 ∈ V . Define wi = U(t)vi. Then wit = B(t)wi, and

〈w1, w2t〉 = 〈w1, Bw2〉
= 〈B∗w1, w2〉
= 〈−Bw1, w2〉
= −〈w1t, w2〉 .

Thus we have

〈w1, w2〉 = 〈U(t)v1, U(t)v2〉
= 〈U(0)v1, U(0)v2〉
= 〈v1, v2〉

where we have used the fact that U(0) is unitary in the last equality. Thus U(t) is
norm preserving, and U(t)U∗(t) = U(0)U∗(0) = I, so U(t) is unitary. �

Lax chose equation (3.2) as the starting point for his formalism, and showed
that this equation implied the spectrum of the eigenvalue problem Lϕ = λϕ was
invariant in time.

Theorem 3.2. Let L(t) be a one parameter family of self-adjoint linear operators
defined on some Hilbert space V . Suppose that the discrete eigenvalues of Lϕ = λϕ
and their corresponding eigenfunctions are continuously differentiable with respect
to t. Further suppose there is a one parameter family of operators B(t) such that
Lt = [B,L]. Then λt = 0, the spectrum of L is invariant.

If λ is a simple eigenvalue (multiplicity one), then ϕt = (B + C)ϕ for some ar-
bitrary continuous function C(t). If B+C is skew-adjoint, then ‖ϕ‖ is independent
of t.

Proof. Differentiating Lϕ = λϕ, we have

Ltϕ+ Lϕt = λtϕ+ λϕt.

Now using Lt = [B,L], and BLϕ = λBϕ, we get

(3.3) (L− λ) (ϕt −Bϕ)− λtϕ = 0.

Taking the inner product on the left with ϕ and using the fact that L is self-adjoint,

λt‖ϕ‖2 = 〈ϕ, (L− λ) (ϕt −Bϕ)〉
〈(L− λ)ϕ, (ϕt −Bϕ)〉
0.

Thus the spectrum is invariant. Now looking back at equation (3.3), we see that if
λ is a simple eigenvalue, since ϕt−Bϕ is in the eigenspace, we have ϕt = Bϕ+Cϕ
for some C(t). Finally,

∂

∂t
‖ϕ‖2 = 〈ϕ, (B + C)ϕ〉+ 〈(B + C)ϕ,ϕ〉

and hence if B + C is skew-adjoint, ‖ϕ‖2 is independent of t. �
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In the case of the KdV equation as described in Section 2.5, we chose ‖ϕ‖ = 1,
and calculation shows that B is already skew-adjoint, so C = 0. From equa-
tions (2.17) and (2.18), we see that the choices

L = − d2

dx2
− u(x, t)

B = −4
d3

dx3
− 3

(
u
d

dx
+

d

dx
u

)
+ C

consitute a Lax pair for the KdV equation. Indeed, one can easily compute that
Lt = [B,L] in this case gives exactly the KdV equation (2.1).

Thus in general if ut = K(u) is an evolution equation, we try to associate to it
a self-adjoint operator L and a skew-adjoint operator B, which evolve with time,
that satisfy the Lax equation (3.2). By the above remarks this shows that the
eigenvalues of L are a set of integrals (constants of the motion) for ut = K(u). The
main drawback to this approach is that it requires one to successfully guess the
right L and B for a given equation to show that the equation would be solvable by
the inverse scattering approach.

One advantage, however, is that given a self-adjoint L, there is a somewhat
systematic albeit complicated way of finding a sequence of evolution equations for
which this given L is unitarily equivalent for all t and hence describes isospectral
flow (constancy of the eigenvalues). We illustrate this method using the Schrödinger
operator L = − d2

dx2 − u(x, t). One easily computes Lt = −ut, and so we need to
find a skew-adjoint B such that [B,L] = −ut. If we try B0 = d

dx we get isospectral
flow for the evolution equation ut+ux = 0, since in this case [B0, L] = ux. If we try
the skew-adjoint operator B1 = a d3

dx3 + b ddx + d
dxb, with a and b to be determined,

then we have

[B1, L] = 3aux
d2

dx2
+ 3auxx

d

dx
+ auxxx + 2bux − 4bx

d2

dx2
− 4bxx

d

dx
− bxxx.

Thus we see that if we choose a = 4 and b = −3u(x, t), we recover the KdV equation
ut + 6uux +uxxx = 0 giving isospectral flow for L. It is easy to see how this can be
generalized by trying more complicated (higher order) skew-adjoint B’s and finding
corresponding nonlinear evolution equations whose flow leaves the eigenvalues of L
invariant. In fact there is an infinite sequence of B’s that are connected with each
odd order of ∂

∂x , and hence an infinite family of evolution equations whose flows Ut
all leave invariant the spectrum of the same eigenvalue problem. We will see this
again in greater generality in Section 6.

4. Other Integrable Nonlinear Evolution Equations

4.1. The Non-Linear Schrödinger Equation. In 1972, Zakharov and Shabat [6]
studied the Nonlinear Schrödinger equation, hereafter abreviated the NLS equation:

(4.1) iut + uxx + 2|u|2u = 0

This equation describes the stationary two-dimensional self-focusing and the asso-
ciated transverse instability of a plane monochromatic wave (see [13]). Unlike the
linear Schrödinger equation, it contains a soliton solution, thereby embodying the
concept of a wave packet. It represents a balance between linear dispersion, which
tends to break up the wave packet, and a focusing effect of the cubic nonlinearity,
produced by self interaction of the wave with itself.
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Zakharov and Shabat found a Lax pair for this equation and showed that one
can solve it using the inverse scattering technique. This was indeed an important
discovery, not only because it was a second nonlinear evolution equation solvable
by this technique, but also because the associated linear eigenvalue problem that
one has to consider was not the linear Schrödinger equation in this case.

Remark. There is no connection between the linear and nonlinear Schrödinger equa-
tions as they appear in this discussion. The former is the linear eigenvalue problem
associated to the KdV nonlinear evolution equation, while the latter is itself a non-
linear evolution equation that is solvable by the inverse scattering technique, to
which is associated a different linear eigenvalue problem.

Zakharov and Shabat actually considered a slightly more general version of the
NLS equation, with the factor of 2 appearing in the third term replaced by 2

1−p2

for some p 6= ±1. The Lax pair that they discovered for this equation consisted of
the following pair of 2× 2 matrix differential operators:

L = i

(
1 + p 0

0 1− p

)
∂

∂x
+
(

0 u∗

u 0

)
B = ip

(
1 0
0 1

)
∂2

∂x2
+

(
|u|2
1+p iu∗x

−iux − |u|
2

1−p

)

With these choices, the Lax equation Lt = [B,L] is satisfied. Note that if p = 0,
we are reduced to the NLS equation as defined in equation (4.1). In this case it
is easy to see that L and B are indeed self-adjoint and skew-adjoint, respectively,
although this is not true in general for p 6= 0. However, it is still true in the
general case that we have isospectral flow for the eigenvalue equation LΦ = λΦ

for Φ =
(
ϕ1

ϕ2

)
if u evolves according to the NLS equation, since the statement

and proof of Theorem 3.2 only assumed the validity of the Lax equation (3.2).
The asymptotic characteristics of the eigenfunctions (the scattering data) can be
calculated at any instant of time from their initial values, and then u(x, t) can be
reconstructed at any time t by inverse scattering.

In their paper, Zakharov and Shabat presented the theory of inverse scattering for
a general 2× 2 eigenvalue problem, which they obtained from the above eigenvalue
problem by the following change of variables.

ϕ1 =
√

1− pe−i
(

λ
1−p2

)
x
ψ2 ϕ2 =

√
1 + pe

−i
(

λ
1−p2

)
x
ψ1

q =
iu√

1− p2
ζ =

λp

1− p2

It is an easy calculation to determine that this change of variables results in the
following eigenvalue problem:

ψ1x + iζψ1 = q(x, t)ψ2

ψ2x − iζψ2 = −q∗(x, t)ψ1

They made a further generalization by replacing the −q∗ in the second equation by
another arbitrary function. We can write the general Zakharov-Shabat equations
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as:

ϕ1x + iζϕ1 = u(x, t)ϕ2(4.2)

ϕ2x − iζϕ2 = v(x, t)ϕ1(4.3)

where the potentials u(x, t) and v(x, t) are taken as usual to be rapidly decaying
smooth functions. We shall study the general theory of inverse scattering for these
equations in Section 5.

Remark. If we take v = −1 in equations (4.2) and (4.3) above, and let ϕ2 = ψ,
then after some simplification, the system of equations reduces to

ψxx + u(x, t)ψ + ζ2ψ = 0

which is just the linear Schrödinger equation that was used to solve the KdV equa-
tion.

4.2. The Sine-Gordon Equation. In 1973, Ablowitz, Kaup, Newell, and Segur,
(hereafter abbreviated AKNS) applied the Zakharov-Shabat inverse scattering for-
malism to the Sine-Gordon equation [7]:

(4.4) uxt = sin(u)

This equation describes the propogation of ultra-short optical pulses in resonant
media, and also arises in statistical mechanics and condensed matter physics. In
fact it had also been studied long ago in connection with the theory of surfaces of
constant negative curvature (see [13]).

AKNS considered the Zakharov-Shabat equations (4.2) and (4.3) with the sub-
stitutions u → − 1

2ux, v → 1
2ux, and chose the following time evolution for the

eigenfunctions ϕ1, ϕ2:

(ϕ1)t =
i

4ζ
(ϕ1 cos(u) + ϕ2 sin(u))(4.5)

(ϕ2)t =
i

4ζ
(ϕ1 sin(u)− ϕ2 cos(u))(4.6)

With this choice for the time evolution of the eigenfunctions, if we assume isospec-
tral flow, one can easily check under what conditions the two sets of equations (4.2)-
(4.3) and (4.5)-(4.6) are consistent by cross differentiating and equating mixed par-
tial derivatives. The result is that u must evolve according to the Sine-Gordon
equation 4.4. Hence the methods of inverse scattering can be applied to this equa-
tion using the Zakharov-Shabat formalism which we shall describe in the next
section.

5. Inverse Scattering

5.1. The Scattering Data. We will know outline the general methods and results
of inverse scattering for the linear Schrödinger equation and the general Zakharov-
Shabat eigenvalue problems, including the derivation of the linear integral equation
that characterizes the inverse scattering problem. We begin with the Zakharov-
Shabat equations (4.2) and (4.3). As usual, the potentials u and v are assumed
to decay sufficiently rapidly. This is of vital importance in the results that are to
follow, as it will be used many times. To define the scattering data, we study the
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following four solutions to these equations, given as 2 × 1 column vectors, which
are defined by their asymptotic behaviour, where ζ = ξ + iη is the eigenvalue:

Φ ∼
(

1
0

)
e−iζx as |x| → −∞ Ψ ∼

(
0
1

)
eiζx as |x| → +∞(5.1)

Φ̃ ∼
(

0
−1

)
eiζx as |x| → −∞ Ψ̃ ∼

(
1
0

)
e−iζx as |x| → +∞(5.2)

Note that construction of the scattering data from the eigenvalue problem and
inverse scattering is studied at a fixed time t, where t is only a parameter. Thus we
will omit the explicit time dependence in all equations in this section. The study of
the time evolution of the scattering data is a separate problem that requires the use
of the nonlinear evolution equation, and this does not concern us in this section.
Now one easily computes the Wronskians W (Φ,Ψ) = ϕ1ψ2 − ϕ2ψ1 to be

W (Φ, Φ̃) = −1(5.3)

W (Ψ, Ψ̃) = −1.(5.4)

Thus both Φ, Φ̃ and Ψ, Ψ̃ are pairs of linearly independent solutions, so we may
write

Φ = a(ζ)Ψ̃ + b(ζ)Ψ(5.5)

Φ̃ = −ã(ζ)Ψ + b̃(ζ)Ψ̃(5.6)

for some functions a, b, ã, and b̃, where the minus sign is chosen for future notational
convenience.

Now using equations (5.3), (5.4), (5.5), and (5.6), one easily verifies the relation

aã+ bb̃ = 1

Lemma 5.1. The Zakharov-Shabat eigenvalue problem of equations (4.2) and (4.3)
with the boundary conditions for Φ of equations (5.1) and (5.2) is equivalent to the
integral equation

(5.7) ϕ1(x, ζ)eiζx = 1 +
∫ x

−∞
dy

∫ y

−∞
dzu(y)v(z)e2iζ(y−z)ϕ1(z, ζ)eiζz.

Proof. Differentiating the first of the Zakharov-Shabat equations and substituting
the second, we have:

ϕ1xx + ζ2ϕ1 = uxϕ2 + uvϕ1.

Now it is easy to check that equation (5.7) satisfies this equation as long as we
define

ϕ2(x) =
∫ x

−∞
v(z)eiζ(x−z)ϕ1(z, ζ)dz

and with this choice the other Zakharov-Shabat equation is also satisfied. The
constant term arises from the boundary condition that ϕ1e

iζx → 1 as |x| → −∞.
�

One can now use this integral equation to show (see [11]) that if u and v decay
faster than any exponential, then the components of Φeiζx, Ψe−iζx, Φ̃e−iζx, and
Ψ̃eiζx are entire functions of ζ. This implies in particular that a(ζ), ã(ζ), b(ζ), and
b̃(ζ) are entire functions.
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Remark. It is not necessary to make these rather strict assumptions on u and v to
make progress on the inverse scattering problem, but since we are only outlining
the main ideas, we shall make this simplifying assumption.

Proposition 5.2. The asymptotic behaviour of a(ζ) and ã(ζ) for large |ζ| is given
by

a(ζ) = 1− 1
2iζ

∫ ∞
−∞

u(y)v(y)dy +O
(

1
ζ2

)
ã(ζ) = 1 +

1
2iζ

∫ ∞
−∞

u(y)v(y)dy +O
(

1
ζ2

)
.

Proof. Using Lemma 5.1 and its proof, integration by parts gives large |ζ| expan-
sions for Φeiζx, and analogous integral equations for Φ̃, Ψ, and Ψ̃ give similar
asymptotic expansions. Now use of equations (5.5) and (5.6) yields the desired
result. The details are elementary and are left to the reader. �

The scattering data also contains information about the discrete eigenvalues.
These are defined to be the points ζj and ζ̃j where a(ζ) and ã(ζ) vanish, respectively.
They are discrete since a and ã have only isolated zeroes. We will soon see why
these points are significant. At these points ζk, ζ̃k, examination of equations (5.5)
and (5.6) shows that Φ(x, ζk) = DkΨ(x, ζk) and Φ̃(x, ζ̃k) = D̃kΨ̃(x, ζ̃k) for some
constants Dk = b(ζk) and D̃k = b̃(ζ̃k).

Theorem 5.3. Under the hypothesis that ensure analyticity of a and ã in the entire
complex plane, there are only finitely many discrete eigenvalues for the Zakharov-
Shabat problem.

Proof. By Proposition 5.2, both a and ã approach 1 as |ζ| → ∞. Thus these
functions are bounded away from zero outside some bounded region. Since the
zeroes are isolated and lie in a compact set, there can only be a finite number of
them. �

An important special case occurs when v = u∗. Then it is easy to check that the
following symmetries hold:

Ψ̃(x, ζ) =
(
ψ∗2(x, ζ∗)
ψ∗1(x, ζ∗)

)
Φ̃(x, ζ) =

(
−ϕ∗2(x, ζ∗)
−ϕ∗1(x, ζ∗)

)
(5.8)

ã(ζ) = a∗(ζ∗) b̃(ζ) = −b∗(ζ∗)(5.9)

ζ̃k = ζ∗k D̃k = −D∗k k = 1, . . . , N(5.10)

5.2. Inverse Scattering for the Zakharov-Shabat Equations. We are now
in a position to derive the inverse scattering equations for the Zakharov-Shabat
problem. Using the boundary conditions in equations (5.1) and (5.2), we can write
down the following integral representations for Ψ and Ψ̃:

Ψ =
(

0
1

)
eiζx +

∫ ∞
x

K(x, s)eiζsds(5.11)

Ψ̃ =
(

1
0

)
e−iζx +

∫ ∞
x

K̃(x, s)e−iζsds(5.12)

The integral terms involving K and K̃ represent the difference between the asymp-
totic behaviour as x→∞ and the true eigenfunctions.
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Theorem 5.4. The kernels K and K̃ are independent of the eigenvalue ζ.

Proof. We will assume the result and show that we can indeed solve for K and K̃
in this case. Substituting the expression for Ψ into the Zakharov-Shabat equations,
we obtain

0 = −K1(x, x)eiζx +
∫ ∞
x

K1x(x, s)eiζsds+ iζ

∫ ∞
x

K1(x, s)eiζsds

− u(x)eiζx − u(x)
∫ ∞
x

K2(x, s)eiζsds

0 = iζeiζx +
∫ ∞
x

K2x(x, s)eiζsds−K2(x, x)eiζx

− iζeiζx − iζ
∫ ∞
x

K2(x, s)eiζsds− v(x)
∫ ∞
x

K1(x, s)eiζsds

Now in the first equation we integrate the third term by parts and similarly for the
fourth term in the second equation. This gives the following two equations:

0 =
∫ ∞
x

eiζs
[(

∂

∂x
− ∂

∂s

)
K1(x, s)− u(x)K2(x, s)

]
ds

− (u(x) + 2K1(x, x)) eiζx + lim
s→∞

K2(x, s)eiζs

0 =
∫ ∞
x

eiζs
[(

∂

∂x
+

∂

∂s

)
K2(x, s)− v(x)K1(x, s)

]
ds− lim

s→∞
K2(x, s)eiζs.

Now if we insist on imposing the boundary conditions that K1(x, x) = − 1
2u(x)

and lims→∞K(x, s) = 0, then we see that necessary and sufficient conditions (by
continuity) for the Zakharov-Shabat equations to be satisfied is that(

∂

∂x
− ∂

∂s

)
K1(x, s)− u(x)K2(x, s) = 0(

∂

∂x
+

∂

∂s

)
K2(x, s)− v(x)K1(x, s) = 0

We can now see that a solution exists by introducing the new coordinates µ =
1
2 (x + s) and ν = 1

2 (x − s) in which the equations and their boundary conditions
become

∂

∂ν
K1(µ, ν)− u(µ+ ν)K2(µ, ν) = 0 K1(µ, 0) = −1

2
u(µ)

∂

∂µ
K2(µ, ν)− v(µ+ ν)K1(µ, ν) = 0 lim

s→∞
K(µ, ν) = 0

Now from the theory of integral equations the solution exists and is unique. The
argument for K̃ is similar. �

Let us rewrite equations (5.5) and (5.6) as

Φ(x, ζ)
a(ζ)

= Ψ̃(x, ζ) +
b(ζ)
a(ζ)

Ψ(x, ζ)

and substitute this into equations (5.11) and (5.12). We have
(5.13)
Φ(x, ζ)
a(ζ)

=
(

1
0

)
e−iζx +

∫ ∞
x

K̃(x, s)e−iζsds+
b(ζ)
a(ζ)

(
0
1

)
eiζx +

∫ ∞
x

K(x, s)eiζsds.
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All the zeroes of a(ζ) lie in a bounded region, so we can choose a contour C starting
at ζ = −∞+ i0+ and ending at ζ = +∞+ i0+ (in case there are any zeroes on the
real axis) that passes above all the zeroes of a(ζ). Now we use the fact that the delta
function can be represented as δ(x) = 1

2π

∫
C e

iζxdζ and operate on equation (5.13)
with the operator given by 1

2π

∫
C
(
eiζy·

)
dζ for y > x to obtain, after interchanging

integrals:

I = K̃(x, y) +
(

0
1

)
F (x+ y) +

∫ ∞
x

K(x, s)F (s+ y)ds(5.14)

F =
1

2π

∫
C

b(ζ)
a(ζ)

eiζxdζ(5.15)

I ≡ 1
2π

∫
C

Φ(x, s)
a(s)

eiζydζ(5.16)

Since Φeiζx is analytic and y > x, we can close the contour C by adding a semicircle
of radius R to get a total integral of zero and the path we added contributes
nothing in the limit, since the integral along that path is bounded by a term of the
form e−R(y−x) which goes to zero as R → ∞. Here we use the fact that Φ and
a(ζ) are both bounded. Thus we can conclude that I ≡ 0. A similar analysis of
Φ̃ = −ãΨ + b̃Ψ̃ gives the analogous equation

0 = K(x, y)−
(

1
0

)
F̃ (x+ y)−

∫ ∞
x

K̃(x, s)F̃ (s+ y)ds(5.17)

F̃ (x) =
1

2π

∫
C̃

b̃(ζ)
ã(ζ)

e−iζxdζ(5.18)

where C̃ is an analogous contour passing below all the zeroes of ã(ζ). A special case
occurs when both a and ã do not vanish on the real axis and have only isolated,
simple zeroes. Then by closing the contours along the real axis and applying the
residue theorem, one obtains:

F (x) =
1

2π

∫ ∞
−∞

b(ξ)
a(ξ)

eiξxdξ − i
N∑
j=1

b(ζj)
a′(ζj)

eiζjx

F̃ (x) =
1

2π

∫ ∞
−∞

b̃(ξ)
ã(ξ)

e−iξxdξ + i
Ñ∑
j=1

b̃(ζ̃j)
ã′(ζ̃j)

e−iζ̃jx

We can put the equations (5.14)–(5.16) and (5.17)–(5.18) into a single matrix
equation by defining

K =
(
K̃1 K1

K̃2 K2

)
F =

(
0 −F̃
F 0

)
.

The equations then become

(5.19) K(x, y) + F(x+ y) +
∫ ∞
x

K(x, s)F(s+ y)ds = 0

The physically significant case v = u∗ offers several simplifications. In addition to
equations (5.8), (5.9), and (5.10) we have:

F̃ (x) = −F ∗(x) K̃(x, y) =
(
K∗2 (x, y)
K∗1 (x, y)

)
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and equation (5.19) becomes

K1(x, y) + F ∗(x+ y) +
∫ ∞
x

∫ ∞
x

K1(x, z)F (z + s)F ∗(s+ y)dsdz = 0

which is the integral equation for inverse scattering in this case. The potential u is
given by

u(x) = −2K1(x, x)
Again, the theory of integral equations assures us of existence and uniqueness of
solutions for this equation. See [11] for details. This completes the overview of
inverse scattering for the Zakharov-Shabat eigenvalue problem.

5.3. Inverse Scattering for the Linear Schrödinger Equation. We will now
discuss some of the details of inverse scattering for the linear Schrödinger equation.
A very extensive treatment was done by Deift and Trubowitz in [10]. Now the
eigenvalue problem is

(5.20) ϕxx + (λ+ u(x))ϕ = 0

and to define the scattering data we consider solutions to this equation satisfying
the following asymptotic behaviour:

ϕ ∼ e−ikx as x→ −∞

ψ ∼ eikx as x→ +∞

ψ̃ ∼ e−ikx as x→ +∞

where λ = k2. Calculation of the Wronskian of ψ and ψ̃ shows that they are linearly
independent for k 6= 0. Thus there exist a(k), b(k) such that

(5.21) ϕ(x, k) = a(k)ψ̃(x, k) + b(k)ψ(x, k)

To compare with the analysis in Section 2.5, the reflection and transmission coeffi-
cients are given by ρ(k) = b(k)

a(k) and τ(k) = 1
a(k) . The discrete eigenvalues λn = −κ2

n,
are defined where ϕn(x) = ϕ(x, iκn) and ψn(x) = ψ(x, iκn) both vanish as |x| → ∞
and hence correspond to bound states. These occur at the zeroes of a(k), where
ϕn = Dnψn for some constant Dn. If we define Cn = Dn

a′(iκn) = b(iκn)
a′(iκn) , and follow a

similar development as in Section 5.2, we obtain the following results for the inverse
scattering problem. First we define

F (ξ) =
1

2π

∫ ∞
−∞

ρ(k)eikξdk − i
N∑
n=1

Cne
−κnξ

and then solve the Gel’fan-Levitan-Marchenko linear integral equation for K(x, y)
with y ≥ x,

K(x, y) + F (x+ y) +
∫ ∞
x

K(x, z)F (y + z)dz = 0

subject to the boundary condition that K(x, z)→ 0 as z →∞. Then the potential
u(x, t) that gives rise to these scattering data is given by

u(x, t) = 2
d

dx
K(x, x).

All that remains is to relate the Cn’s to the cn’s of the scattering data as defined
in Section 2.5. This is given by the following lemma.
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Lemma 5.5. With the definitions of Cn and cn given above and in equation (2.12),
the following relation holds:

−iCn = c2n

Proof. We use the fact that in the linear Schrödinger equation, the discrete eigenval-
ues are simple and occur only on the imaginary axis (see [10]). A simple calculation
using equations (5.20) and (5.21) yields the following relation at k = iκn:

(5.22)
∂

∂x

(
∂ϕ

∂k

∂ϕ

∂x
− ϕ ∂2ϕ

∂x∂k

)
= 2iκnϕ2

As x → +∞, we have ϕn ∼ Dne
−κnx and ∂kϕn ∼ a′(iκn). Also, as x → −∞, the

eigenfunction ϕn and all its x and k derivatives go to zero exponentially. Putting
these results into equation (5.22) gives the following equation:

a′(iκn) = −i

(∫∞
−∞ ϕ2

ndx

Dn

)
.

Using a′(iκn) = Dn
Cn

, we have

−iCn =
D2
n∫∞

−∞ ϕ2
ndx

= c2n

where we have used the fact that the definitions of cn and Dn agree when the
eigenfunctions have been normalized to unit norm. �

6. Ablowitz-Kaup-Newell-Segur Formalism

6.1. Time Evolution of the Scattering Data. We will present a method, origi-
nally devised by AKNS, of obtaining, given any suitable linear eigenvalue problem,
nonlinear evolution equations solvable by the inverse scattering method which keep
its spectrum invariant. In general, the associated evolution equations can then
be solved if the inverse scattering procedure can be carried out for the particular
eigenvalue problem.

The method is very general, but we will concentrate on the case when Φ is a
2 × 1 column vector of functions with components ϕ1 and ϕ2. They began by as-
suming that the eigenvalue problem is that proposed by Zakharov and Shabat from
equations (4.2) and (4.3), and considered the most general linear time evolution for
the function Φ:

ϕ1x = −iζϕ1 + u(x, t)ϕ2 ϕ1t = Aϕ1 +Bϕ2(6.1)

ϕ2x = iζϕ2 + v(x, t)ϕ1 ϕ2t = Cϕ1 +Dϕ2(6.2)

where A, B, C, and D are scalar functions independent of Φ, but of course can
and in general will be functions of u and v and their various derivatives. If we
choose v = −1, we get the linear Schrödinger equation as remarked in Section 4.1
and if we let v = ±u∗, we also get some physically significant evolution equations.
We want to derive evolution equations for u and v that will leave the spectrum of
equations (6.1) and (6.2) invariant under their flow. Thus we assume ζt = 0 and
proceed by cross-differentiating equations (6.1) and (6.2) and equating the mixed
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partial derivatives. This gives the following system of equations for A, B, C, and
D:

Ax = uC − vB(6.3)

Cx − 2iζC = vt + v(A−D)(6.4)

Bx + 2iζB = ut − u(A−D)(6.5)

−Dx = uC − vB(6.6)

We can choose A = −D to simplify to just three equations in three unknowns. We
will restrict our attention to the following boundary conditions:

B,C → 0 as |x| → ∞(6.7)

A→ Ω(ζ) as |x| → ∞(6.8)

for some function Ω(ζ). Note this is not a very restrictive hypothesis since all the
integrable nonlinear evolution equations described thus far satisfy these require-
ments.

Now solutions of these compatibility equations (6.3)–(6.6) give rise to evolution
equations for u and v. If we try a polynomials in ζ for A, B, and C of up to second
order, then a routine but tedious calculation yields the following equations:

−1
2
µuxx = ut − µu2v

1
2
µvxx = vt + µuv2

where µ is a constant that was the coefficient of ζ2 in the expansion of A. This is a
coupled pair of nonlinear evolution equations similar to the nonlinear Schrödinger
equation, and indeed we obtain exactly the NLS equation if we choose v = −u∗ and
µ = 2i. With these choices equations (6.3)–(6.6) are satisfied when u(x, t) evolves
according to the NLS equation.

In an exactly analogous method, if we try third order polynomials in ζ we can,
with proper choice of the coefficients, reproduce the KdV and MKdV equations.
Similarly expanding in negative powers of ζ will yield the Sine-Gordon equation
and other physically interesting nonlinear evolution equations. See [11] for details.

We can now determine the time evolution of the scattering data for the AKNS
equations. We will consider the same eigenfunctions and their asymptotic behaviour
as described in equations (5.1) and (5.2).

Definition 6.1. The time dependent eigenfunctions that satisfy the AKNS equa-
tions (6.1) and (6.2) are given by:

Φ(t) = ΦeΩ(ζ)t Ψ(t) = Ψe−Ω(ζ)t(6.9)

Φ̃
(t)

= Φ̃e−Ω(ζ)t Ψ̃
(t)

= Ψ̃eΩ(ζ)t(6.10)

If we differentiate equations (6.9) and (6.10) we have, for example,

∂Φ(t)

∂t
=
(
A B
C −A

)
Φ(t) =⇒ ∂Φ

∂t
=
(
A− Ω(ζ) B

C −A− Ω(ζ)

)
Φ.
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If we use equations (6.7) and (6.8) and the fact that as |x| → ∞, Φ ∼
(
ae−iζx

beiζx

)
,

we see that

at = 0 bt = −2Ω(ζ)b

which can be trivially integrated to obtain:

a(ζ, t) = a(ζ, 0) b(ζ, t) = b(ζ, 0)e−2Ω(ζ)t

Thus we have obtained the time evolution of a and b. Similarly we can determine
the time evolution of ã and b̃ using Φ̃. The results are:

ãt = 0 b̃t = 2Ω(ζ)b̃

All that remains is to determine the time evolution of the scattering data corre-
sponding to the discrete eigenvalues.

Cj(t) =
b(ζj , t)
a′(ζj , t)

=
b(ζj , 0)
a′(ζj , 0)

e−2Ω(ζ)t

= Cj(0)e−2Ω(ζ)t

and similarly
(
C∗j
)
t

= 2Ω(ζ)C∗j .
Just as in the solution of the KdV equation in Section 2.5, we see that the time

evolution of the scattering data is an infinite set of uncoupled ordinary differential
equations.

6.2. The General AKNS Evolution Equations. We can put this general class
of nonlinear evolution equations associated to the Zakharov-Shabat problem into a
form that will be used in Section 7. Examination of equations (6.1) and (6.2) shows
that the eigenvalue equations are equivalent to:(

ϕ2
1

)
x

+ 2iζϕ2
1 = 2uϕ1ϕ2(6.11) (

ϕ2
2

)
x
− 2iζϕ2

2 = 2vϕ1ϕ2(6.12)

(ϕ1ϕ2)x = uϕ2
2 + vϕ2

1(6.13)

With the boundary conditions of equations (6.7) and (6.8), we can write

ϕ1ϕ2 = I−
(
uϕ2

2 + vϕ2
1

)(
ϕ2

1

)
x

= −2iζϕ2
1 + 2uI−

(
uϕ2

2 + vϕ2
1

)(
ϕ2

2

)
x

= 2iζϕ2
2 + 2vI−

(
uϕ2

2 + vϕ2
1

)
where we have defined the integral operator I−(·) =

∫ x
−∞ (·)dy. Now let us denote

by Φ and Φ̃ the solutions satisfying equations (5.1) and (5.2). Then we can write

ζΦi = LΦi i = 1, 2

where we have defined

Φ1 =
(
ϕ2

1

ϕ2
2

)
Φ2 =

(
ϕ̃2

1

ϕ̃2
2

)
L =

1
2i

(
−∂x + 2uI−v 2uI−u
−2vI−v ∂x − 2vI−u

)
.(6.14)

Hence if Ω(ζ) is analytic at ζ0, then Ω(ζ)Φi = Ω(L)Φi for i = 1, 2 whenever
|ζ − ζ0| < R, where R is the radius of convergence at ζ0.
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Now let us define

∆ =
(
−1 0
0 1

)
Q =

(
A B
C −A

)
N =

(
0 u
v 0

)
.

with this notation, equations (6.1) and (6.2) (with D = −A) become:

Φx = iζ∆Φ +NΦ

Φt = QΦ

Now cross differentiating this equation and as always assuming isospectral flow
(ζt = 0), we obtain

(6.15) Nt = Qx + i[Q,∆] + [Q,N ]

This equation can be greatly simplified by considering S = P−1QP , where P is
the 2× 2 matrix P =

(
Φ Φ̃

)
. We know P is invertible because by equation (5.3),

det(P ) = W (Φ, Φ̃) = −1. Substituting Q = PSP−1 into equation (6.15) gives,
after much cancellation:

Sx = P−1NtP

which can be integrated directly to give

(6.16) S = Ω(ζ)∆ +
∫ x

−∞
P−1NtPdy

where we have used the boundary condition limx→−∞ S = limx→−∞ P−1QP =
Ω(ζ)∆, from equations (5.1) and (5.2). Thus we have found expressions for A, B,
and C in terms of u, v, Φ, and Φ̃.

Lemma 6.2. Using the notation given in equations (5.1), (5.2), (5.5), and (5.6)
for the scattering data,

lim
x→+∞

S = Ω(ζ)
(
aã− bb̃ 2ãb̃

2ab −aã+ bb̃

)
.

Proof. Asymptotically, as x → +∞, we have Φ ∼
(
ae−iζx

beiζx

)
and Φ̃ ∼

(
b̃e−iζx

−ãeiζx
)

.

Thus we have

lim
x→∞

S = lim
x→∞

P−1QP = lim
x→∞

(
ãeiζx b̃e−iζx

beiζx −ae−iζx
)(

A B
C −A

)(
ae−iζx b̃e−iζx

beiζx −ãeiζx
)

from which the result follows trivially. �

If we also compute limx→∞ S using equation (6.16) and the explicit expressions
for the entries of P−1NtP , and equates the two results, a lengthy calculation yields
the following from the off-diagonal terms:

Ω(ζ)2ãb̃ =
∫ ∞
−∞

(
ϕ̃2

1vt − ϕ̃2
2ut
)
dx

Ω(ζ)2ab =
∫ ∞
−∞

(
−ϕ2

1vt + ϕ2
2ut
)
dx
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Now integrating equation (6.13), and using the asymptotic behaviour of the eigen-
functions, we see that∫ ∞

−∞

(
uϕ2

2 + vϕ2
1

)
dx =

∫ ∞
−∞

(ϕ1ϕ2)xdx

= ϕ1ϕ2

∣∣∣∞
−∞

= ab

The analogous integral with ϕ1 and ϕ2 replaced by ϕ̃1 and ϕ̃2 gives −ãb̃. We can
conveniently combine these last two results in the following equation:

(6.17)
∫ ∞
−∞

[(
vt
−ut

)
+ 2Ω(ζ)

(
v
u

)]
·Φidx = 0 i = 1, 2

where the · denotes the usual dot product on 2-vectors. We can now use the fact
that for an entire Ω(ζ), we can write Ω(ζ)Φi = Ω(L)Φi, but we would like to
convert the integral expression above to something that is the integral of the dot
product of some 2-vector with Φi. Hence, we need to get the adjoint L∗ of L so
that we can write∫ ∞

−∞

(
v
u

)
· Ω(ζ)Φidx =

∫ ∞
−∞

(
v
u

)
· Ω(L)Φidx

=
∫ ∞
−∞

Ω(L∗)
(
v
u

)
·Φidx.

It is important to realize that there are two inner products here—the dot product
of 2× 1 column vectors, and the usual L2 inner product given by integration of the
product of two functions. Now the adjoint of a 2× 2 matrix operator with respect
to the first of these inner products is simply the conjugate transpose of the matrix,
but we still have to get the adjoint with respect to the integration inner product
of each of the entries in the transposed matrix. Simple integration by parts shows
that ∂∗x = −∂x, a fact we used many times implicitly in Section 3.

Lemma 6.3. If α(x), β(x) are two functions, then (αI−β)∗ = βI+α, where the
operator I+ is defined by I+f =

∫∞
x
fdx.

Proof. By direct computation,∫ ∞
−∞

f(x) (αI−βg) (x)dx =
∫ ∞
−∞

f(x)α(x)
∫ x

−∞
β(y)g(y)dydx

=
∫ ∞
−∞

β(y)g(y)
∫ ∞
y

α(x)f(x)dxdy∫ ∞
−∞

(βI+αf) (x)g(x)dx.

�

Now using Lemma 6.3 and the remarks preceding it, we see immediately from
equation (6.14) that

(6.18) L∗ =
1
2i

(
∂x + 2vI +−u −2vI+v

2uI+u −∂x − 2uI+v

)
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Thus, from equation (6.17), we see that a sufficient condition for the AKNS com-
patibility equations (6.3)–(6.6) with D = −A to be satisfied is that

(6.19)
(
vt
−ut

)
+ 2Ω(L∗)

(
v
u

)
= 0

It can be shown (see [11]) that this equation is also necessary if u = v∗ (the physi-
cally significant case), u decays sufficiently rapidly, A, B, and C satisfy the bound-
ary conditions of equations (6.7) and (6.7), and Ω(ζ) is entire. Equation (6.19) is
called the general AKNS evolution equation.

7. The Hamiltonian Formulation

7.1. Review of Hamiltonian Mechanics. In classical Hamiltonian mechanics,
motion of a mechanical system with N degrees of freedom is described by a phase
space parametrized by 2N coordinates qj , pj for j = 1 . . . N , and the evolution of
these coordinates is given by the Hamilton equations of motion,

dpj
dt

= −∂H
∂qj

dqj
dt

=
∂H

∂pj
(7.1)

where H = H(qj , pj) is called the Hamiltonian function for the system. We can
define the Poisson bracket {F,G} of two functions F , G, of the coordinates by

(7.2) {F,G} =
N∑
j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
One can substitute the Hamilton equations (7.1) into the definition of the Poisson
bracket to obtain the following relations:

{qi, qj} = {pi, pj} = 0(7.3)

{qi, pj} = δij(7.4)

If we let F = H in equation (7.2) above and use the Hamilton equations (7.1), we
can express the equations of motion as

(7.5)
dG

dt
+ {H,G} = 0.

We will now rewrite Hamilton’s equations [9] in a form that will be more suitable
to their infinite dimensional generalization. We define

u =



p1

...
pN
q1

...
qN


Hu =



∂H
∂p1
...
∂H
∂pN
∂H
∂q1
...
∂H
∂qN


With this notation, it is easy to verify that equations (7.1) become

du

dt
= J0Hu
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where the 2N × 2N matrix J0 is defined by

J0 =
(

0 −IN
IN 0

)
and IN is the N × N identity matrix. Now a simple computation shows that we
can rewrite the Poisson bracket of two functions F and G in terms of the standard
inner product 〈, 〉 on R2N as follows:

(7.6) {F,G} = 〈Fu, J0Gu〉

It will be also useful to note for Section 7.2 that we can write

(7.7)
d

dε

∣∣∣∣∣
ε=0

H(u+ εv) =
N∑
j=1

(
∂H

∂pj
vj +

∂H

∂qj
vN+j

)
= 〈Hu, v〉.

It can be shown (see [9]) that an arbitrary system dv
dt = JGv can be put into

Hamiltonian form by a linear change of variables if and only if the there exists
a nonsingular matrix T such that TJT ∗ = J0. This is true if and only if J is
non-singular and skew-adjoint. For the purposes of our generalization to infinite
dimensions, we will drop the non-singular requirement for the following definition.

Definition 7.1. A system of differential equations is said to be Hamiltonian if it
is of the form

du

dt
= JHu

for some skew-adjoint linear operator J and some Hamiltonian function H.

From equation (7.5), we see that a function F is constant along the flow of the
Hamiltonian system if {F,H} = 0. In fact, the converse can also be shown to
hold [9] as well. Thus, when this condition {F,H} = 0 holds, the Hamiltonian
flows of F and H commute.

Definition 7.2. A finite dimensional (2N variables) Hamiltonian system is said
to be completely integrable if it admits N constants of the motion Fi, i = 1 . . . N ,
with F1 = H such that {Fi, Fj} = 0 for all i, j and which are independent in the
sense that the gradients Fiu are linearly independent.

Remark. When two functionals Fi and Fj satisfy {Fi, Fj} = 0, the functionals are
said to be in involution. Thus a Hamiltonian system is completely integrable if
there exist N linearly independent gradients that are in involution.

The Liouville Theorem says any completely integrable system can be canonically
transformed (preserving the Hamiltonian structure) to new coordinates known as
action-angle variables in which the system is completely separable. The equations
take the form

dJi
dt

=
∂H

∂θi
= 0

dθi
dt

=
∂H

∂Ji
= ωi

The action variables Ji are functions of the Fi and hence constant in time, and the
angles θi evolve linearly in time: θi = ωit + ai for some constants ωi, i = 1 . . . N .
Thus the equations of motion can be integrated by quadratures in the case of a
completely integrable system.
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7.2. Infinite Dimensional Hamiltonian Systems. We are now ready to gen-
eralize the preceding discussions to infinite dimensional systems and to describe
the relation to integrable nonlinear evolution equations. Our phase space now will
consist of all real valued C∞ functions that decay sufficiently rapidly. The inner
product on this space is the usual one given by

〈u(x), v(x)〉 =
∫ ∞
−∞

u(x)v(x)dx.

In the infinite dimensional case the coordinates are given by a function u(x), with
x being the continuous analogue of the index j in the finite dimensional case. In
this situation the gradient Hu is also called the functional derivative of H and is
denoted δH

δu . We can determine an expression for it by analogy with equation (7.7):

(7.8)
d

dε

∣∣∣∣∣
ε=0

H(u+ εv) = 〈Hu, v〉 =
∫ ∞
−∞

δH

δu
v(x)dx

In fact we can show in general that

(7.9)
∂H

∂s
=
∫ ∞
−∞

δH

δu

∂u

∂s
dx.

We can use equation (7.8) to derive an explicit expression for the functional
derivative. In the infinite dimensional case, the Hamiltonian H is given by an
integral over all x of a Hamiltonian density H,

H(u) =
∫ ∞
−∞
H (u(x)) dx

Now by repeated integration by parts, and the use of the fact that u decays suffi-
ciently rapidly, equation (7.8) allows us to make the identification:

δH

δu
=
(
∂

∂u
− ∂

∂x

∂

∂ux
+

∂2

∂x2

∂

∂uxx
− ∂3

∂x3

∂

∂uxxx
+ · · ·

)
H

In analogy with Definition 7.1, an infinite dimensional Hamiltonian system is
defined to be a a system of the form

(7.10) ut = J
δH

δu

for some (possibly singular) skew-adjoint linear operator J . We will choose J = d
dx ,

which is skew-adjoint with respect to the inner product we have defined, as can
easily be checked by integration by parts. It is definitely singular, however.

Remark. We can also formulate the definition of an infinite dimensional Hamilton-
ian system in a form closely resembling equations (7.1):

dv

dt
= −δH

δu

du

dt
=
δH

δv
(7.11)

for a pair u(x), v(x) of conjugate variables. In this form the Poisson bracket {F,G}
of two functions F , G, becomes

(7.12) {F,G} =
∫ ∞
−∞

(
δF

δu

δG

δv
− δF

δv

δG

δu

)
.

This is the form of the equations that we will use in Section 7.3.



THE I.S.T. AND INTEGRABILITY OF NONLINEAR EVOLUTION EQUATIONS 27

Returning to equation (7.10), we will choose J = d
dx , which is skew-adjoint with

respect to the inner product we have defined. It is definitely singular, however.
With this choice of J and the Hamiltonian density HF2 = −u3 + 1

2u
2
x, equa-

tion (7.10) becomes the KdV equation ut + 6uux +uxxx = 0. This was first discov-
ered in this form [5] by Zakharov and Faddeev. Note that this Hamiltonian is pre-
ciseley the constant of the motion for the KdV equation corresponding to the third
non-trivial conservation law given in equation (2.7). The choice H = F1 = 1

2u
2,

which corresponds to another constant of the motion for the KdV equation, gives
the equation ux + ut = 0. Now a routine computation using equation (7.6) and
Fi =

∫
Fi shows that {F1, F2} = 0, so the two Hamiltonian flows commute verifying

again that F1 is a constant of the motion for the KdV equation. In fact we already
know that the KdV equation has an infinite set of conserved quantities, and if we
consider the infinite sequence of evolution equations that arise from considering
these constants of the motion as Hamiltonians, then we see that the flows of all
these equations commute with each other. We are led to speculate that we have
what can be defined as an infinite dimensional completely integrable system, and
in fact we will see that this is the case in general in Section 7.3.

It is an interesting exercise to see how this formulation of the problem allows us
to compute the constancy of the discrete eigenvalues of the Schrödinger operator
under the flow determined by the KdV equation. We have

(7.13) Lϕ = λϕ

with L = − d2

dx2 − u(x, t), and the eigenfunctions corresponding to the discrete
eigenvalues are normalized so that 〈ϕ,ϕ〉 = 1. Differentiating this identity gives
〈ϕ,ϕt〉 = 0. If we replace u by u+εv, and differentiate equation (7.13) with respect
to ε, we obtain

Lϕt − vϕ = λϕt + λtϕ

Taking the inner product of this equation with ϕ and simplifying, we get

λt = 〈−ϕ2, v〉

from which it follows using equation (7.8) that δλ
δu = −ϕ2. Now by definition of the

Poisson bracket,

{H,λ} =
〈
δH

δu
, J
δλ

δu

〉
=
∫ ∞
−∞

(3u2 + uxx)(2ϕϕx)dx

where we have used the explicit forms of the Hamiltonian density for the KdV equa-
tion the operator J . Now repeated integration by parts and use of equation (7.13)
eventually gives the result that {H,λ} = 0, and so the eigenvalue λ is a constant
of the motion, as we determined in Section 2.5.

7.3. The I.S.T. as a Canonical Transformation. In this section we will show
that the inverse scattering transform is a canonical transformation which converts
a nonlinear evolution equation into an infinite sequence of separated ordinary dif-
ferential equations for the action-angle variables, which can be integrated trivially.
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Definition 7.3. A transformation from a set of coordinates q(x), p(x) to a new
set Q(x), P (x) is called canonical if it preserves the Poisson brackets (Hamiltonian
structure):

{Q(x), Q(y)} = {P (x), P (y)} = 0

{Q(x), P (y)} = δ(x− y)

It is easy to see that these are the infinite dimensional generalizations of the finite
dimensional commutation relations in equations (7.3) and (7.4). We now present
the main result of this section.

Theorem 7.4. If Ω(ζ) is an entire function, then the general AKNS evolution
equation (6.19) represents an infinite dimensional Hamiltonian system, in the sense
of equations (7.11), where u and v play the role of conjugate variables. The map
(u, v) → S, where S is the scattering data, is a canonical transformation. The
Hamiltonian is given by

H(u, v) = i
∞∑
n=0

ωni
nαn(u, v)

where ωn and αn are defined by

Ω(ζ) =
1
2i

∞∑
n=0

(−2ζ)nωn log a(ζ) =
∞∑
n=0

αn

(2iζ)n+1 .

Proof. This rather lengthy proof will be split into several steps, and we will merely
sketch the ideas.

Step 1. We derive expressions for δa(ζ)
δu(x) and δa(ζ)

δv(x) . From equation (4.2) and (4.3),
and the asymptotic behaviour given in equation (5.1), we can easily see that

ϕ1(x, ζ)eiζx = 1 +
∫ x

−∞
u(y)ϕ2(y, ζ)eiζydy.

Using the characterization of the functional derivative given in equation (7.9), we
can immediately read off that

δϕ1(x)
δu(y)

= θ(x− y)ϕ2(y, ζ)eiζ(y−x)

where θ(x) is the Heaviside step function. Taking the limit as y approaches x from
below, we get

(7.14)
δϕ1(x)
δu(x)

= ϕ2(x, ζ)

and similar calculations determine the rest of the functional derivatives:

δϕ2(x)
δv(x)

= ϕ1(x, ζ)(7.15)

δϕ1(x)
δv(x)

= 0
δϕ2(x)
δu(x)

= 0(7.16)

δψ1,2(x)
δu(x)

= 0
δψ1,2(x)
δv(x)

= 0(7.17)
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Direct differentiation with respect to x and use of the Zakharov-Shabat equations
shows that ϕ1ψ2 − ϕ2ψ1 is a constant, and the asymptotic information as x → ∞
determines this constant to be a(ζ), so by equations (7.14)–(7.17), we find

δa(ζ)
δu(x)

= ϕ2(x, ζ)ψ2(x, ζ)
δa(ζ)
δv(x)

= −ϕ1(x, ζ)ψ1(x, ζ).(7.18)

Step 2. We derive expressions for δ log a(ζ)
δu(x) and δ log a(ζ)

δv(x) . Examination of the
Zakharov-Shabat equations shows they can be rearranged in the following form.

(ϕ1ψ1)x + 2iζϕ1ψ1 = u (ϕ1ψ2 + ϕ2ψ1)(7.19)

(ϕ2ψ2)x − 2iζϕ2ψ2 = v (ϕ1ψ2 + ϕ2ψ1)(7.20)

(ϕ1ψ2 + ϕ2ψ1)x = 2uϕ2ψ2 + 2vϕ1ψ1(7.21)

Now integrating equation (7.21) and using the asymptotic behaviour, we get the
relation

(7.22) ϕ1ψ2 + ϕ2ψ1 = a(ζ)− 2
∫ ∞
x

uϕ2ψ2 + vϕ1ψ1.

Substituting equation (7.22) back into equations (7.19) and (7.20) and rearranging,
we have

ζ

(
ϕ2ψ2

−ϕ1ψ1

)
= L∗

(
ϕ2ψ2

−ϕ1ψ1

)
− a(ζ)

2i

(
v
u

)
where L∗ was defined in equation (6.18). We can at least locally, within some radius
of convergence, invert this equation to get

(7.23)
(
ϕ2ψ2

−ϕ1ψ1

)
= −a(ζ)

2iζ

(
1− L

∗

ζ

)−1(
v
u

)
= −a(ζ)

2iζ

∞∑
n=0

(
L∗

ζ

)n(
v
u

)
.

Now using equation (7.23) and equations (7.18) from Step 1, we obtain:

δ log a(ζ)
δu(x)

= − 1
2iζ

∞∑
n=0

(
L∗

ζ

)n
v

δ log a(ζ)
δv(x)

= − 1
2iζ

∞∑
n=0

(
L∗

ζ

)n
u

Step 3. Using the results of Step 2, we can now directly verify that

δH

δu
= −vt

δH

δv
= ut

with the definition of H given in the statement of the theorem. We show the first
equation, for example.

δ log a(ζ)
δu(x)

= − 1
2iζ

∞∑
n=0

(
L∗

ζ

)n
v =

∞∑
n=0

1
(2iζ))n+1

δαn
δu

Equating powers of ζ we see that

δαn
δu

= −(2i)nL∗nv.
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Now we substitute this result into the functional derivative of H:
δH

δu
= i

∞∑
n=0

ωni
n δαn
δu

=
2
2i

∞∑
n=0

ωn(−2L∗)nv

= 2Ω(L∗)v = −vt
where we have used the definitions of αn and ωn as well as the form of the general
AKNS evolution equation. The other Hamiltonian equation is proved similarly. �

Lemma 7.5. The infinite set of constants αn are all in involution with the Hamil-
tonian H for the general AKNS evolution equation.

Proof. we use the results of the previous theorem directly, and the definition of the
Poisson bracket in equation (7.12):

0 =
dαn
dt

=
∫ ∞
−∞

δαn
δu

du

dt
+
δαn
δv

dv

dt
dx

=
∫ ∞
−∞

δαn
δu

δH

δv
− δαn

δv

δH

δu
dx

{αn,H}
�

Thus we have an infinite set of conserved quantities in involution with H and this
suggests that such a system might be completely integrable. In fact, the following
is true (we could also somewhat weaken the hypotheses— see [12] and [11].):

Theorem 7.6. If all the scattering data (a, ã, b, b̃) are entire functions and a(ζ),
ã(ζ) have only simple zeroes and do not vanish on the real axis, then the following
constitute a set of action-angle variables for the system:

P (ζ) = log (a(ζ)ã(ζ)) Q(ζ) = − 1
π

log b(ζ)

Pj = ζj Qj = −2i log(cj)

P̃j = ζ̃j Q̃j = −2i log(c̃j)

In particular, we have a completely integrable system. The mapping given by the
inverse scattering transform of the potential to its scattering data is a canonical
transformation to action-angle variables.

Proof. See [12] for a proof. �
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