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Abstract

This research paper investigates holomorphic bisectional curvature and the
Frankel conjecture. The Frankel conjecture states that a connected compact Kéahler
manifold with positive holomorphic bisectional curvature is biholomorphic to the
complex projective space. Following Goldberg and Kobayashi, we present proofs of
the conjecture in dimension two and in the case of Kéhler—Einstein manifolds.
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Introduction

The Frankel conjecture was posed by Frankel in 1961 and states that a closed Kahler man-
ifold with positive bisectional curvature is biholomorphic to CP". Its algebro-geometric
version, known as the Hartshorne conjecture, was posed by Hartshorne in 1970 and
states that an irreducible non-singular projective variety over an algebraically closed field
k, with ample tangent bundle, is isomorphic to a projective space over k. It was proved
by Mori using algebraic geometry of charateristic p > 0. Hartshorne’s conjecture is more
general than Frankel’s conjecture, as it only requires the tangent bundle to be ample,
where as Frankel’s conjecture requires positive bisectional curvature. Frankel’s conjecture
was proved in the two-dimensional case by Andreotti-Frankel, and resolved completely
by Siu-Yau using harmonic maps and characterization of projective space obtained by
Kobayashi-Ochiai.

A full proof of Frankel’s conjecture can be found in Siu and Yau [9]. This research
paper will focus on the cases of dimension two and Kéahler—Einstein manifolds. The
following is a breakdown of the contents.



The first section will be a summary of basic notions. There two sections on manifolds
with a slight twist in presentation, and one big section on Kahler structures. All three
sections have proofs of most statements. Also, there is one section on Riemannian geom-
etry containing no proofs. References will be given almost throughout when proofs are
missing.

The second section will be an exposition of Goldberg and Kobayashi [10]. The
Frankel conjecture in dimension two will be proved using complex algebraic geometry and
Castelnuovo-Andreotti’s result on surface classification. The Kahler-Einstein case will be
proved using mainly Riemannian geometry. In the Kahler-Einstein case, a stronger re-
sult than Frankel’s conjecture can be attained, giving a holomorphic isometry instead of
a biholomorphic equivalence.

1 Basic Kahler geometry

1.1 Differentiable and holomorphic maps

Let K be a field of characteristic 0. For our purposes, we can assume K = R, C. The
standard coordinates z',...,2" of the vector space K" will be realized as the dual of
the standard basis eq,...,e, of K®. They will often be used to indicate components of
elements in K", as © = x'(x)e; for every x € K". The Einstein summation convention
will be used.

Let 2',..., 2" be the standard coordinates of R".

Definition 1.1.1. Given a continuous map f : U — R, where U C R™ and a € U, the

partial derivative g a{ (a) at a is the limit

flat, oo x4t ™)

lim ,
t—0 t
where the limit is taken over the set of a + te; € U with t € R. If gg,. (a) exists for all

a € U, we write % for the resulting real function on U.

Let y',...,y™ be the standard coordinates of R™. Consider a map f : U — V, where
U CR"and V C R™, denote f* =y'o f.

Definition 1.1.2. The total derivative f, is the matrix given by (f.)" o

i Bai:

Remark 1.1.3. Note that if the partial derivatives exist, f, exists and is a function
U — Mpun(R) = R"”. In particular, we can talk about the total derivative of f, as a
function U — R™ which may not be continuous.

Definition 1.1.4. A map f : U — V is r-times continuously differentiable or C", if
the partial derivatives ﬂ% exists and are continuous, or equivalently, the result of
applying the operation of taking the total derivative r-times to f exists and is continuous,

and f is infinitely differentiable or C'*° if it is C" for each r € N.

Remark 1.1.5. We include 0 in N, and denote N*™ = N\ {0}. By convention f is C? if
f is continuous.



In the rest of this subsection, we assume the following setup in each definition and

proposition. Let z',...,2" be the standard coordinates on C*. We may write 2! =
x! + yi, where 2!, y' are two copies of the coordinates for R”, and identify C" with R?"
by identifying the coordinates via (z1,...,2,) — (1, ..., Zp,Y1,- .-, Yn), Which preserves

the topology on the two spaces. Put

+ 10 =1
N I
Fix amap f: U — V, where U C C™ = R*" and V C C" = R?" are open subsets, and

define f, using this identification between C" and R™. Denote f' = z'o f, u! = z'o f and
vl =19ylo f,s0 fl =ul + vl
Definition 1.1.6. The map f : U — V where U C C™,V C C" is holomorphic if it is

C', and j"f, = f.j™ or equivalently the Cauchy-Riemann equations

out ot ou! o'

oxr Oy’ dxr Oy’

are satisfied, or equivalently f, is of the form {_AB i] )

Proposition 1.1.7 (Osgood’s lemma). Suppose f is holomorphic, then given a € U,
there is a unique power Series erpansion

)= D (2P — a2 = am)

Kt oo kim =0
in some neighbourhood of a, where a* = 2'(a).

Proof. Choose e, . ..,&, > 0such that the closure of the poly-disk A given by |2!—d!| < g
is contained in U. For z € A, repeated application of the Cauchy integral formula for a
single variable gives,

Wy L _d& 4 G
f (Z) (27Ti)m /|al§1=51 £l — 21 4262#& £2 — 22 /|am§m|:gm gm — me(f)

1 d&; - - - d¢,
=2y /|g| IO e en —amy

where the second equality is by Fubini’s theorem, since the integrand is integrable over
la' — &!| = ;. The fact the integrand is integrable over |a’ — &!| = ¢; follows from the fact
that the integrand is bounded on |a' — ¢! = g, and |a' — €!| = ¢; has a finite measure. By
substituting the following series which converges absolutely uniformly on |a' — &!| = g
into the above equality,

GEEDIN D

and bringing the summation out of the integral, we get the desired expression. O

1 > S gkl (g — gm)em
3 ( )" )
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Corollary 1.1.8. A holomorphic map f: U — V is of class C" for every r € N.

_AB i] of a holomorphic map f:U —V

is holomorphic as the function A+iB : U — M,«,(C) = C™, where U C C™,V C C™.

Corollary 1.1.9. The total derivative f, = [
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1.2 Manifolds, vector bundles and fibre metrics

A textbook in differential geometry often treats differentiable manifolds without bound-
ary, but waves off the treatment of manifolds with boundary and complex manifolds as
being similar to manifolds without boundary. But to feel confident about the validity of
these structure, one may still wants to work them out in detail. The following is an at-
tempt to deal with these manifolds with similar structures all at once. The classical notion
of a pseudo-group of transformations captures the structure of various types of manifold.
We generalize it to the notation of pseudo-category of transformations, which encodes
the properties of morphisms between manifolds in addition to the manifold structures.

Definition 1.2.1. A pseudo-category of transformations A on a collection S of topological
spaces is a collection of continuous maps from an open subset of S to an open subset of
S’ for S, 8" € S, such that S contains the singleton point space * and is closed under
taking product of two spaces, and

1.if f: U — Visin A and W C U is any open subset, then f|y : W — f(W) is in
A;

2. (locality) given f : U — V and an open cover of U given by U, C U ranging over
r,if fly, : U. — f(U,) is in A for every r, then f € A;

3. for each open subset U C S, idy € A;

4. givenmaps f: U —wVandg: W — Zin A, fog: fFH{VNW) = g(VNW)isin A
(if VN W = @, we get the empty bijection, which is vacuously a homeomoprhism
map between open subsets);

5. if f € A is a homeomorphism, then f~! € A;

6. given f,g € A, f x g given by (f x g)(z,y) = (f(2),g(y)) is in A;

7. for each open subset U C S, S € S, the unique map *y : U — * is in A, and for
each a € U, the map a : * — U given by a(x) = a is in A;

8. for each open subset U C S, S € S, the diagonal map 0y : U — U x U given by
dy(x) = (z,z) is in A;

9. given f:U xV = W, if f(a,—), f(—,b) € AMoralla e U, be V, then f € A.

Let A(S,S’) C A denotes the subset of A consisting of maps f from an open set of S to an
open set of S” for S,5" € S, and let A(S) C A(S, S) denote the subset of A(.S,.S) consisting
of homeomorphisms for S € S. A pseudo-groupoid of transformations on a collection of
topological spaces S (with no additional requirements) is a collection of homeomorphisms
from an open subset of S to an open subset of S’ for §,5" € S satisfying 1 through 5.
A pseudo-group of transformations is a pseudo-groupoid of transformations on a single
topological space. In particular, each A(S) above is a pseudo-group of transformations.

Remark 1.2.2. Given a pseudo-category of transformations A, f € A, f: U — V, and
W C S, the projection f X sy : U X W — V xx =V isin A. Given f € A such that
f:UxV =W, and a € U, we have f(a,—) = fo(axidy):V=«xV > UxV - W
is in A.



Remark 1.2.3. A pseudo-category of transformations may be viewed as a category where
objects are topological spaces and morphisms are continuous maps from open subsets to
open subsets, satisfying certain additional properties.

Example 1.2.4. We have the following examples:

1. The pseudo-category A™N(H,R) of C"-transformations consisting of C" maps be-
tween open subsets of spaces in the collection of topological spaces generated by R
and H = [0,00), and the associated pseudo-groups A"(R™) on R", A"(H x R™) on
H xR" and A"(H™ x R™) on H™ x R".

2. The pseudo-groupoid A"N(H,R) of orientation preserving transformations is the
subsets of A™N(H,R) consisting of homeomorphisms f such that det f, is positive,
with associated pseudo-groups AL(R™), A7(H x R™) and AL(H™ x R™).

3. The pseudo-category AY(C) of holomorphic transformations consisting of holomor-
phic maps from an open subset of C™ to an open subset of C™, and the associated
pseudo-groups A(C™) on C".

Remark 1.2.5. By Corollary and Definition [1.1.6] we have A(C") C ATN(H,R) C
A™N(H,R).

Definition 1.2.6. Given topological spaces S, M, and a pseudo-group of transformations
A on S, a A-atlas of M is a family of pairs (U;, p;), called A-charts, indexed over a set I,
such that U; indexed over I is an open cover of M, and

1. for every i € I, p; : U; — V; is a homeomprhism, where V; C S is an open subset;
2. for every i,5 € I, p; 0 ;" 1 ¢;(U; N U;) — ¢;(U; N Uj) is an element of A.

A A-structure of M is a A-atlas of M that is not a proper subfamily of any A-atlases
of M. A A-space is a topological space equipped with a A-structure. A A-manifold is a
second countable Hausdorff A-space.

Remark 1.2.7. Given an open subset U C M, a A-atlas of M gives an unique induced
A-atlas on U.

Proposition 1.2.8. Given a A-atlas A of M, there exists a unique A-structure of M
containing A as a subfamily.

Proof. Let A be the family of pairs (U, ) such that ¢ : U — V is a homeomoprhism,
V' C §is an open subset, and p;0¢™! : p(U;NU) — ¢;(U;NU) is an element of A for every
(Ui, ;) in A. Thus A C A. For any chart (U, ¢) in some A-atlas A’ containing A, we get
(U, p) € A, so A is not properly contained in any A-atlas. We check that A is an A-atlas.
Since A C A, A covers M by open sets. Given (U, ) and (W,) in A, and (U;, ¢;) in
A, we have 1) o p;, 00 @; € A, and the map Yot : o UNW NU;) = »(UNWN)
is equal to ¢ o p; 0 (pop) ™t € A Since oUNW) = U, o(UNW NU;), we get
Yol pUNW) = ¢(UNW)is in A by locality of A. Hence A is a A-structure. [

Corollary 1.2.9 (Manifold chart lemma). Let S be a topological space, and A a pseudo-
group of transformations on S. Given a set M, a family (U;, @) indexed over some I,
where U; € M ranging over a countable subset of I covers M, p; : U; — V; are bijections
such that Vi and p;(U; N U;) are open subsets of S, and @; o ;' € A for all i,j € I.
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If M is given the minimal topology making p; continuous for all v € I, then there is
an unique A-structure of M containing the pairs (U;, ;) as charts. If additionally S is
second-countable and any p,q € M has i,j € I such thatp € U;, g € U; and U;NU; = &,
then M is second countable Hausdorff.

Proof. By minimality, each ¢; is a homeomorphism, so the conclusion follows from Propo-
sition[1.2.8] Suppose the additional assumptions hold. Since each ¢; is a homeomorphism,
U; is open, thus M is Hausdorff. Also, U; is second countable, where M is covered by
countably many U;, hence M is second countable. O]

Definition 1.2.10. Let A be a pseudo-category of transformations, and A and B be
a A(S)-structure and a A(S’)-structure on topological spaces M and N respectively. A
continuous map f : M — N is a A-map if for any charts (U, ¢) € A and (V,9) € B, we
have ¢ o fop~t e A(S,S"). If f is a A-homeomorphism, and f~! is a A-map, then f is
a A-isomorphism.

Remark 1.2.11. The product M x N can be given the A(S x S")-atlas A x B = {(U x
Viex): (Up) € A, (V,9) € B}. Then for two A-maps (A-isomorphisms) f: M — N,
g : M — N’, the product map f x g : M x M’ — N x N’ is also a A-map (resp.
A-isomorphism).

Definition 1.2.12. A differentiable manifold of class C" (resp. differentiable manifold
of class C" with boundaries, differentiable manifold of class C" with corners, oriented dif-
ferentiable manifold of class C", oriented differentiable manifold of class C" with bound-
aries, oriented differentiable manifold of class C™ with corners, complex manifold) of
dimension n is a A"(R")-manifold (resp. A"(H x R™)-manifold, A"(H™ x R™)-manifold,
Al(R™)-manifold, AL(H x R"™)-manifold, AJ(H™ x R")-manifold, A(C")-manifold). A
C"-differentiable map (resp. holomorphic map, C"-diffeomorphism, orientation preserv-
ing C"-diffeomorphism, biholomorphic map) is a A™N(H,R)-map (resp. AY(C)-map,
A™N(H,R)-isomorphism, A7N(H,R)-isomorphism, AN(C)-isomorphism).

Remark 1.2.13. By Remark a complex manifold is an oriented differeiantable
manifold of class C°.

Remark 1.2.14. Let z',... 2™ (resp. 2',...,2") be the standard coordinates for R"
(resp. C™), and let (U, ¢) be a C"-differentiable (resp. holomorphic) chart of real dimen-
sion n (resp. 2n). We abuse notation and write ' = x’ o ¢ (resp. 2' = 2" 0 ), and call
these local C"-coordinates (resp. local holomorphic coordinates) associated to (U, p).

Definition 1.2.15. A C* function (resp. homomorphic function) on an open subset U
of a differentiable manifold of class C" (resp. complex manifold) M is a C" map (resp.
holomorphic map) f : U — K where K = R (resp. C). A C* curve passing v € M
at t € [ is a C*-map v : I — M with v(t) = z, where I C R is an open interval. A
holomorphic curve passing x € M at z € U is a holomorphic map v : U — M with
v(z) = x, where U C C is an open connected set.

Definition 1.2.16. Let A be a pseudo-category of transformations on a collection of
topological spaces containing a topological field K such that addition and scalar multi-
plication of K are in A, and M be a A(S)-space. A K-vector bundle of rank r over M is a
topological space E equipped with an A(S x K")-atlas, a A-surjection 7w : E — M called
the projection map, and a r-dimensional K-vector space structure on E, = 7 !(z), called

6



the fibre at x, for each x € M, such that for every p € M there exists an open subset
U > p and a A-isomorphism @ : 771(U) — U x K", called a local trivialization, such that
®|p, is a linear isomorphism to {z} x K" for each z € U.

Remark 1.2.17. Since K € §, and addition and scalar multiplication on K™ are in A,
the map M, (K) x K" — K™ given by (A4,v) — Av is in A, where M,,y,(K) = K™",

Remark 1.2.18. For local trivializations (U;, ®;) and (U;, ®;), the A-isomorphism ®; o
®; ! has the form (®; 0 &) (p,v) = (p, gi;(p)v), where gy : U; N U; — GL(n,K) C K”
are A-maps called transition maps.

Definition 1.2.19. Given a K-vector bundle E of rank r over a A(S)-space M, and an
open subset U C E, a A-section of E over U is a A-map s : U — M such that mos = idy.
The set of A-sections of E over U is denoted I'(E, U), and I'(E) = I'(E, M).

Definition 1.2.20. Let E, F' be K-vector bundles over a I'(S)-space M and I'(S")-space
N with projection maps 7, my respectively. A wvector bundle morphism f : E — F is a
[-map such that there exists a [-map g : M — N covered by f, meaning 7m0 f = gomy,
and f|g, is a K-linear map for each x € M. The rank (resp. nullity) of f at x € M is
the rank (resp. nullity) of f|g,.

Definition 1.2.21. A rank r subbundle of F is a K-vector bundle F' of rank r with a
vector bundle morphism ¢ : F' — FE covering id;; with constant rank » and nullity 0.

Proposition 1.2.22 (Vector bundle chart lemma). Let A, K, and M be as above, and
let E, be a r-dimensional K-vector space for each x € M. Given a family (U;, ®;) indezed
over some I, such that U; ranging over I covers M with open sets, and ®; : m=1(U;) —
U; x K" are bijections, ®;|g, is linear, 7 : E — M is defined by sending E, to x, with
E =||,c0 Bz where ®; 0 ®; 1 is a A map. If E is given the minimal topology making
®; continuous for each i € I, there is a unique A(S x K")-structure making E a K-vector
bundle of rank r over M. If in addition M is second countable Hausdorff, then so is E.

Proof. For each x € M, there is a (U;, ®;) and a chart (V,,, ¢, ) in the A(S)-structure on M
such that U; 2V, 3 x. Then the composition 1, = (p, X idgr) o ®; : 71 (V,) — ¢.(V,) x
K" C § x K" is a bijection onto an open subset. For y € M, let ¢, = (¢, X idgr) o ®;,
then ¢, (m (V) N7 (V) = a1 (V) 0 (2a(Vy) X K7) = (Vi 1 Vy) x K7, which
is open, and 9, o ¥t = (¢, x idgr) o ®; 0 &' o (p, x idg-)"! € A. By Corollary
[1.2.9, E with the minimal topology making the ®; continuous has a unique A(S x K")-
structure containing each (V,,,), and if M is second countable Hausdorff, so is E. Since
promothl 1 (V) x K — ¢, (V,) is equal to idy, (v,) X*xr, 7 is a A-surjection by
Remark , and p, 0 ®; 09 1 = idg, (v,)xkr, 50 ®; are A-isomorphisms. O

Remark 1.2.23. The condition ®; o ®;! is a A-map is met if there is a A-map Gij -
UiNU; — GL(n,K) such that ®; 0 ®;'(p,v) = (p, gi;(p)v).

Corollaries [1.2.24] and [1.2.28] below follow from Proposition [1.2.22]

Corollary 1.2.24. Let E and F be K-vector bundles over M. We have K-vector bundles
E*, E®F, EQ F, \"E, and Sym"™ E over M, with fibres E*, E, ® F,, E, ® F,,
N" E., and Sym" E,, and given sections s,s1,...,5, € I'(E,U) and t € T'(F,U), s* €
I(E*U), sete N(Ead FU), st e N(E® F,U), ssA---As, € L(\N"E,U), and
$10 - © s, € I'(Sym" E,U) respectively. If K = C has a conjugation a — a which
is a field automorphism, we also have E with fibres E,, where E, is a copy of E, with
elements denoted v for v € E, such that z-v =7z -v for z € C.
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Remark 1.2.25. If K is a finite field extension of L., F is a K-vector bundle, and F'is a
LL-vector bundle, then £ ® F' is naturally a K-vector bundle.

Remark 1.2.26. A set of sections s1,...,s, € I'(E,U) is a local frame of E over U if
it is a basis at each x € U, and the set of dual sections s!,..., s' € T'(E*,U) are the
associated local coordinates.

Remark 1.2.27. A section s € I'(E* ® E) is a vector bundle morphism s : £ — E
covering id,;, for a K-vector bundle E over M. In particular, the A-eigenspaces of s for
A € K form a subbundle of E if s has constant A-geometric multiplicity.

Corollary 1.2.28. Given a A-map f: M — N, and a K-vector bundle E over N, we
have the pullback bundle f*E = || .\, Ef@) over M, such that g : f*E — E which is the
identity on each fibre is a K-vector bundle morphism covering f.

Definition 1.2.29. A Riemannian metric (resp. Hermitian metric) on a R-vector bundle
(resp. C-vector bundle) E is a section h € I'(E* @ E*) (resp. I'(E* ® E*)) such that
h(v,v) > 0 for all v # 0 and h(v,w) = h(w,v) (resp. h(v,w) = h(w,v)).

1.3 Cotangent (tangent) bundle and connections

Tangent vectors are often defined as operators on the space of smooth functions satisfying
the product rule, notably in Lee [I], and cotangent vectors are defined as the dual. This
definition is simple, but somewhat abstract is the sense that it is harder to visualize
cotangent vectors geometrically. This section uses a direct construction of the cotangent
bundle using sheaf theory, defining cotangent spaces as the quotient of the space of germs
of differentiable functions by germs of functions constant to first order at the point. The
approach adds complications but has the advantage of being more intuitive.

Sheaf theory

Only the theory essential for the construction of the cotangent bundle is presented. The
interested reader may consult [§] for a more elaborate treatment.
For our purposes, a ring will be a commutative ring.

Definition 1.3.1. A presheaf of rings (resp. abelian groups) F on a topological space
M consists of:

1. for each open subset U C M, a ring (resp. abelian group) F(U);

2. for each pair V. C U C M of open subsets, a ring (resp. group) homomorphism
puy @ F(U) = F(V), called the restriction map, such that pyy = idgw), and
puw = pvw © py,y for open subsets W CV C U C M.

Let A be a presheaf of rings on a topological space M, with restriction maps resyy. A
presheaf of A-modules on M is a presheaf of abelian groups F on M such that F(U)
is a A(U)-module for each open subset U C S, and the restriction maps pyy satisfy
puv(a-s)=resyy(a)-puy(s)forall a € AU) and s € F(U) for open subsets V C U C
M.



Definition 1.3.2. Let A be a presheaf of rings on a topological space M and F a presheaf
of A-modules with restriction maps py . A presheaf of A-modules G is a sub-presheaf of
A-modules of F if G(U) is a A(U)-submodule of F(U) and pyv(G(U)) C G(V) for every
open subsets V' C U C M where the restriction maps of G are pyv|gw): G(U) = G(V).

Definition 1.3.3. Let A be a presheaf of rings on a topological space M and F,G be
presheaves of A-modules with restriction maps py,v, py;y respectively. The direct sum
F & G is the presheaf of A-modules such that (F & G)(U) = F(U) & G(U) with the
restriction maps being pyyv © ppy given by s @t — pyyv(s) ® pyy(t). The tensor
product F ® 4G is the presheaf of A-modules such that (F®4G)(U) = F(U) @4 G(U)
with the restriction maps being pyy ® ppyy given by s @ t = pyyv(s) ® pUV(t). If
G is a sub-presheaf of A-modules of F, the quotient sheaf F/G is the presheaf of A-
modules such that (F/G)(U) = F(U)/G(U) and the restriction maps being py given

by s+ g(U) — pUy(S) + Q(V)

Definition 1.3.4. A directed system of rings (resp. abelian groups) is a index family
{Xi}ier of rings (resp. abelian groups) with a partial-order < on I such that for each
i,7 € I thereis k € I such that ¢ < k and j < k, and a ring (resp. group) homomorphism
fij + Xi = Xj for each 7,5 € I with i < j, such that f; = idx,, and fir, = fjx o fi
for 4,7,k € I with i < j < k. The direct limit of the directed system of rings (resp.
abelian groups), denoted ligie ; X, is the ring (resp, abelian group) with underlying set
|_|iE ; Xi/ ~ where ~ the the equivalence relation given by x; ~ x;, where x € X, and
z; € X; for some ¢,5 € I, if and only if there is k € I such that ¢ < k and j < &,
and fix(z;) = fjx(x;), with addition given by [z;]~ + [zj]~ = [fix(®:) + fix(z;)]~, and
multiplication given by [z;].[z;|~ = [fix(x:) fir(z;)]~ for z; € X;, z; € X;, and i < k,
j<k,t,j,k el Foriel, the canonical map f; : X; — ligiel X is fi(z) =[]~

Proposition 1.3.5. The ring (resp. group) structure on ligliel X; is well-defined and

gives a ring (resp. abelian group), and the canonical maps f; are ring (resp. group)
homomorphisms.

Proof. Let z; € X;, z; € X, 2 € X, 1y € X; such that there is r,s € I, 4,5 < r,
k,l < s, such that f;.(x;) = fjr(z;) and fis(zx) = fis(x;), then there is t € I, r,s < t,
50 fit(mi)fkt(l’k) = frt(fir(ﬂci))fst(fks(m)) = frt(fjr(%))fst(fzs(l'z)) = fjt(xj)flt(ﬂﬂl), S0
the multiplication is well-defined. Addition is checked similarly. The other ring (resp.
abelian group) axioms follow from X; being rings (resp. abelian groups) and the f;; being
ring (resp. group) homorphisms. Given z;,y; € X;, we have [z;y;]~ = [fii(x) fii(yi)]~ =
[zi]~[yi]~, and similarly for addition, so f; is a ring (resp. group) homomorphism. O

Definition 1.3.6. Given a presheaf F of rings (resp. abelian groups) on a topological
space M, the stalk of F at x € M is the direct limit F, = lim, F(U) of the directed
system consisting of F(U) over open subsets U 3> = of M, with the partial-order O and
the restriction maps. Denote s, = [s]. for s € F(U). Elements of the form s, are
sometimes called germs at x.

Proposition 1.3.7. For a presheaf of rings A on a topological space M and a presheaf of
A-modules F on M, F, is an A,-module by the action a,-m, = pw(resyw(a)- py.w(m))
fora e A(U), m € F(V), where U,V 2 W > x are open subsets of M, and py satisfies
pw(a - s) = resw(a) - pw(s) for all a € AW) and s € F(W), where resw, pw are the
canonical maps.



Proof. Similar to Proposition [1.3.5 [

Proposition 1.3.8. Given a presheaf of rings A on a topological space M, a presheaf of
A-modules F, and a sub-presheaf of A-modules G of F, G, is a A,-submodule of F, for
each v € M.

Proof. Let py be the canonical maps to F,, then pw (G(W)) = G, for each W > x, so G,
is a submodule of F, by Proposition [1.3.5] and Proposition [1.3. [

Proposition 1.3.9. Given a presheaf of rings A on a topological space M, and presheaves
of A-modules F,G, (F®G)y = Fs ® G, and (F @4 G), = Fu Qu, Go, and if G is a sub-
presheaf of A-modules of F, then (F/G), = Fu/Ga.

Proof. We write s ~ t for the relation that there is some restriction map which maps s, ¢
to the same element. By the definition, we have s & s’ ~ t @ ¢’ if and only if s ~ t and
s' ~t', so we may identify (F & G), = F, @& G,, with the canonical maps pw @ pj;,, which
gives the A,-module structure. Similarly, s ® @) 8" ~ t ® 4y t' if and only if s ~ ¢ and
s' ~ t', so we may identify (F @4 G), = Fr @4, Gu, with canonical maps py ® pj;,. We
have s+ G(U) ~ t+G(V) if and only if ppw(s) — pvw(t) € G(W) for some W C U, V', so
we may identify (F/G), = F./G., with canonical map F(W)/G(W) — F,/G. induced
from pw : F(W) — F,. O

Example 1.3.10. A presheaf F may be defined with F(U) consisting of functions on U,
with the restriction maps pyy given by sending f to f|y. Some examples are:

1. The presheaf of C"-functions C"(—) on a differentiable manifold of class C*, where
r<k,rkeNtU{oo}.

2. The presheaf of holomorphic functions H(—) on a complex manifold.

3. The presheaf of constant functions R(—) on a differentiable manifold of class C", or
C(—) on a complex manifold.

Cotangent bundle

When constructing structures on differentiable manifolds, the property of being r-times
differentiable is often unstable. For example, the tangent bundle of a C" manifold is
C™ !, and a differentiable vector field sends C” functions to C"~! functions. Therefore
we will only work with the C'*° case eventually, although some results will still be stated
in general when permitted.

Proposition 1.3.11. Given a differentiable manifold of class C” (resp. complex mani-
fold) M where r > 0, the stalk CZ (resp. H.) is a R-vector space (resp. C-vector space)
for each x € M.

Proof. Given x € M, the sheaf of rings R(—) with restriction maps resyy has resyw (f) =
resyw(g) for f €e R(U), g € R(V), and U,V DO W > z, if and only if f(z) = g(x), so the
stalk of R(—) at x is R. The presheaf C"(—) is a presheaf of R(—)-modules, so C7 is a
R-vector space by Proposition [1.3.7 Similarly for H,. O
Proposition 1.3.12. The subset KC of C% consisting of those f, € C°, where f € C*(U)
with x € U, such that d]:% r—o = 0, for all C* curves v passing x at 0, where r > 1, is a
R-subspace. The subset L of H, consisting of those f, € H,, where f € H(U) withx € U,
such that %uzo =0, for all holomorphic curves v passing x at 0, is a C-subspace.
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Proof. The functional d((_1207|t:0 on C” is well-defined and R-linear, for a fixed C' curve
v passing x at 0, so its kernel K, is a R-subspace. As the intersection of K, over all v, K
is a R-subspace. The case for £ is similar. n

Definition 1.3.13. The cotangent space at x € M of a differentiable manifold M of class
C" is the quotient R-vector space T/ M = CI/K. The holomorphic cotangent space at
x € M of a complex manifold M is the quotient C-vector space H:M = H, /L. Denote
dfy, = fo + K (resp. df, = fo + L) for f € C"(U) (vesp. f € H(U)) where U > z is an
open subset of M.

Proposition 1.3.14. There is a natural C-linear inclusion HXM — TM Qg C for a
complex manifold M given by df, — du, + idv, where f = u + iv.

Proof. Since HXM = H, /L, and C*(U) ® C quotients to T, M ® C by taking the stalk
at = then modding out K ® C, the inclusion H(U) C C*(U) ® C induces a linear
injection H;M — T M ®gr C. Specifically, the identification f — u 4 iv gives a natural
inclusion H(U) € C*(U) ® C for each U > x, realizing H(—) as a sub-presheaf of
the presheaf of C(—)-modules C*°(—) ®@g(—) C(—), which passes to a C-linear inclusion
H, — C* ® C given by f, — u, + iv,. Since L C K ®g C, we are able to get a
C-linear map HM — T:M ®g C between the quotients, given by df, — du, + idv,,
where du, = u, + K ®g C and similarly for dv,. Suppose f = u + iv € H(U) and
Uz, U, € K, then f € L necessarily, so the above map is injective. Another way to say
this is £ =H, N (K ®g C). O

Proposition 1.3.15. Given f!,..., f* € CT (resp. H.), and a C" (resp. holomorphic)
function g on U, where r > 1, U > y is an open subset of R¥ (resp. C¥) and y =
(fY(x),..., ), there is a well-defined h, = g(f*,..., f*). € C" (resp. H,) such that
dh, = gfl( YdfL, with 2 afl denoting the partial derivative of g in the l-th variable.

Proof. Let f* ..., f*: W — R such that f! are the germs we are given. Define h(p) =
g(fr(p),..., f*(p)) on some V > z, then h, € C". For every C! curve ~y passing z at 0, the

chain rule states %4 |,_, = aa—ﬁl(y)df 21,0, so by linearity we have h, — afl (y)fL € K,.
Thus h, — 3 fl( )fL € K. The holomorphic case is verbatim using the chain rule for
holomorphic maps. O

Corollary 1.3.16 (Product rule). Given f,, g, € TiM (resp. H:M ), we have d(fg), =
g9(x)dfe + f(x)dgs.

Corollary 1.3.17. If M is a n-dimensional differentiable manifold of class C" (resp. 2n-
dimensional complex manifold), where r > 1, given a C"-chart (resp. holomorphic chart)
(U, o) withU > p, letx', ... x" (resp. z',...,2") be the associated local coordinates (resp.
local holomorphic coordinates), then dx}?, .o day (resp. dz;, ...,dz]) form a basis for
TxM (resp. HyM), so we get bijections ®y : By — U x K" for By = | |,., T*M and
K =R (resp. By = |,cp H*'M and K = C) by sending (p,df) to (p, ggfiei) (resp.
(p, %ei)), such that ®y o &' are C"*-maps (resp. holomorphic maps).

Proof. As a direct consequence of Proposition[I.3.15] this is a spanning set. Given ¢; such
that c;z}, € K, where z, are germs, we have % +—o = 0 for any C* curve passing 0
at p. Let e; be the standard basis on R™ and let v;(t) = o~ (z(p)e; + tex), where (U, )
is the chart giving the local coordinates. Then 0 = Mh 0 = Ck. Do it is linearly

independent. The same goes for the holomorphic case. O
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Remark 1.3.18. From Corollary [1.3.17, dim Ty M = dim M and 2dim¢ H; M = dim M.
So given a complex manifold M, the vector space H:M has half the C-dimension of
"M @ C.

Definition 1.3.19. The cotangent bundle (resp. holomorphic cotangent bundle) T* M
(resp. H*M) of a C™ manifold (resp. complex manifold) M is the vector bundle given by
the above bijections @y via the vector bundle chart lemma. The tangent bundle (resp.
holomorphic tangent bundle) TM (resp. HM) of M is the dual vector bundle of T*M
(resp. H*M).

Remark 1.3.20. The tangent or cotangent bundle of a differentiable manifold of class
C" is a differentiable manifold of class C™ 1.

Definition 1.3.21. A differential n-form (resp. holomorphic n-form) over U C M is
a section w € T(A"T*M,U) (resp. T(A" H*M,U)). A wvector field (resp. holomorphic
vector field) over an open subset U C M is a section X € I'(T'M,U) (resp. I'(HM,U)).

From now on, we will only work with the C* case.

Remark 1.3.22. Given f € C°(U) (resp. H(U)), its differential df € I'(T*M,U) (resp.
[(H*M,U)) is the section  + d f,, which is C* (resp. holomoprhic) by Corollary[1.3.17
Given some X € I'(T'M,U) (resp. I'(HM,U)), denote X (df) € C*(U) (resp. H(U)) by
X f. We see X is a linear operator on C*(U) (resp. H(U)) satisfying the product rule,
X(fg) = fXg+gX[.

Remark 1.3.23. Given a C"-chart (holomorphic chart) on U C M with associated local

C"-coordinates z',..., 2" (resp. local holomorphic coordinates z!,...,2"), the associ-
ated coordinate frames of T*M and T'M (resp. H*M and HM) over U are the local
fraame dx;, ...dz™ (resp. dz',...dz") and its dual frame, denoted %, e % (resp.

5200 - - - » 3o ), Tespectively.

Remark 1.3.24. Let M be a complex manifold with local holomorphic coordinates
2, ..., 2" and local C*®-coordinates z',..., 2", y',...,y" which are identified via 2! =
2! 4 iy'. We have the holomorphic coordinate frame dz',...,dz" for H*M, where dz! =
dz!4+4dy’. We may extend dz', ..., dz" to a frame dz?,...,dz", dz!,...,dz" for T*M ®C,
where dz! = da! — idy! and dZ' is called the complex conjugate of dz!. More generally,
given w =0+ € Th M ® C for 0,7 € T M, its complex conjugate is w = o0 — i7. The

S W
dual of the frame dz!,...dz" is denoted %, cee 6%. We have % = % (% - i%) and
azt 2 2!
%f =0 for f € C*°(U) ® C by Definition m
Remark 1.3.25. We write T¢M =T*M ® C and TeM =TM ® C.

Proposition 1.3.26. The set of linear operators X on C*(U) (resp. H(U), C=(U)®C)
such that X (fg) = gX f + fXg may be identified with T'(T*M,U) (resp. T'(H*M,U),
D(TEM,U)).

B)
9, =1 (i + i%) by direct computation, and consequently f € H(U) if and only if

Proof. Given a linear operator X on C*(U) (resp. H(U)) satisfying the product rule.
Suppose f € C*(U) (resp. H(U)) such that df, = 0, then %\x =0,s0 Xfl, =0 by
Taylor’s theorem (resp. Osgood’s lemma) and the product rule. Thus X passes through
the quotient to a smooth section in I'(T'M, U) (resp. I'(HM,U)). The statement follows
from Remark [[.3.22 O
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Remark 1.3.27. The Lie bracket on I'(T'M,U) (resp. I'(HM,U), I'(TEM)) is defined
[X,Y] = XY — YX. One may check [X,Y] is linear and satisfies the product rule, and
that the Jacobi édentity, (X, [Y, Z]|+]Y, [Z, X]]+[Z, [ X, Y]] = 0 holds. In local coordinates
X=X Y =Y’ we have

s = (g5 ) (Vo) - (o) (¥

i, 0
=X (a— )axz“ (a_ f)Y

0 0 0 ,
—Y7 X' f Y7 X'
(83:3 ) (%ﬂf ( 7 0x’ f)
0 -0 .\ O
X —Yy' -yl X - f .
( OxJ OxJ ) &’clf
Remark 1.3.28. Given a C? curve (resp. holomorphic curve) v passing x at ¢, (resp. 2),

the operator d(gzowt:to (resp. d(;ZO“’ .=z, ) satisfies the product rule, so it is an element

of T, M (resp. H,M). We denote it as 7/(ty) (resp. 7'(20)).

Remark 1.3.29. We write QP(M) = T'(A"T*M). Define d : QY(M) — Q*(M) via
d(df) = 0 where df is the differential of f for f € C*°(M), and extending to QP (M)
by following d(a A B) = da A B+ (=1)Pa A dfS for a € QP(M). This is called the
exterior derivative and it is the coboundary map of the cochain complex Q°*(M), the pth
cohomology of which is the pth de Rham cohomology HYn(M) on M. In particular, d on
QY(M) extends by C-linearity to d : QL(M) — Q&(M), which extends to coboundary
maps of Q&(M). For a w € QF(M), we have explicitly

dw(X, ..., ZXwXO,... X, .. Xe)

—Z D w([X5, X)), Xoy o Xay o X X))
1<J
The Poincaré lemma states that Hj,(U) = 0 for any star-shaped U C R" and p > 1.
This implies that every closed real p-form is locally exact, meaning if dw = 0 then there is

a section 7 over some neighbourhood such that dr = w. A proof is found in [I, Theorem
17.14].

Definition 1.3.30. Given a C*° map f : M — N, for differentiable manifolds M, N of
class C*, the pullback is the R-vector bundle morphism f*: f*(T*N) — T*M define by
[*(dgs@)) = d(go f), on each TF N for g € C>®(U), f(z) € U C N. The pushforward
is the R-vector bundle morphism f, : TM — f*(T'N) defined by f.(X,)g = X,(g o f)
on T,M for g € C>*(U), f(p) € U C N. The map f is an immersion if f, has constant
nullity 0, and a submersion if f, has constant rank dim N.

Definition 1.3.31. Let M, N be differentiable manifolds of class C°, then N is an
immersed submanifold of M if there is an immersion ¢ : N — M, and an embedded
submanifold (we will just call it a submanifold) of M if ¢ is additionally a homeomorphism
onto its image. The codimension of N in M is dim M — dim N.

Definition 1.3.32. A subbundle A of TM (resp. Tc M) is involutive if it is closed under
Lie brackets. A subbundle A of T'M is integrable if for each x € M there is a submanifold
N > z of M such that A, = T,N for all p € N, where N is called an integral manifold of
A.
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Remark 1.3.33 (Frobenius theorem). A subbundle A of T'M is involutive if and only if
it is integrable. We will also say an integrable subbundle of Tz M to mean an involutive
subbundle of TcM. A proof is found in [I, Theorem 19.12].

Definition 1.3.34. A connection on a K-vector bundle E over a differentiable manifold
M of class C* is a K-linear map V : ['(F) — I'(T*M ® FE) satisfying the Leibniz rule,
V(fs)=fV(s)+df @sfor f e C"(M), s € T'(E), for a finite field extension K of R, or
just K=R,C.

Remark 1.3.35. A connection V is determined locally, meaning V xs|, depends only
on the value of s € T'(F) on a neighbourhood of p, and we may define the restriction
V:I'(E,U) - T'(T*"M ® E,U) to some open subset U C M.

Remark 1.3.36. Given K-vector bundles F, F' with connections V, we have an associated
connection Von E*, E® F, E® F, \" E and Sym" E defined respectively by:

L Vx(w)(s) = X(w(s)) —w(Vxs) for w € [(E"), s € T(E), X € T(TM),
2. V(s@t)=V(s) @ V(t) for s e T'(F) and t € ['(F),

3. V(s®t) =V(s) @t +s® V(t) for s e I'(E) and t € T'(F),

4. V(si Ao ANsp) =D 1 s1 AN AV(s) A= Asy for sq,..., 8, € T(E),
5. V(510 08,) =20 1510 OV(s) ©---Os, for sq,...,s, € T(E).

If Kk — k is an involution on K that is a field automorphism (or just conjugation on
K = C), we may also define V on E by Vx5 = Vxs. One may check that 3 to 5 above
is well-defined.

Definition 1.3.37. A connection V on a K-vector bundle E equipped with a Riemannian
metric (resp. Hermitian metric) h is h-compatible if Vh = 0.

Definition 1.3.38. A connection V on T'M is torsion-free if VxY — Vy X = [X,Y].

1.4 Riemannian manifolds

Everything in this section can be found in [2].

Definition 1.4.1. A Riemannian manifold is a differentiable manifold M of class C*
equipped with a Riemannian metric g on T'M.

Remark 1.4.2 (Fundamental theorem of Riemannian geometry). There exists a unique
Levi-Civita connection V on a Riemannian manifold (M, g) that is torsion-free and g-
compatible.

Definition 1.4.3. The curvature tensor R € I'(T*M @ T*M @ T*M @ T'M) is given by
R(X,Y) = VxVy — VyVx — Vixy], and the associated tensor R € I'(T*M @ T*M &
T*M @ T*M) is given by R(X,Y, Z, W) = g(R(X,Y)Z,W).

Remark 1.4.4. The curvature tensor R has the following symmetries and identities:

1. (skew symmetry) R(X,Y) = —R(Y, X),
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2. (skew symmetry) R(X,Y, Z, W)= —-R(X,Y, W, Z),

3. (interchange symmetry) R(X,Y,Z, W)= R(Z, W, XY,

4. (first Bianchi identity) R(X,Y)Z + R(Y,Z2)X + R(Z,X)Y =0,

5. (second Bianchi identity) (VxR)(Y,Z) + (VyR)(Z,X) + (VzR)(X,Y) = 0.

Remark 1.4.5. Given a K-vector space V', there is a canonical identification V* ® V =
End(V). In particular, we may define tr : V* @ V' — K.

Definition 1.4.6. The Ricci curvature tensor Ric € I'(T*M®T™* M) is given by Ric(X,Y) =
tr R(—, X)Y and the associated tensor Ric € I'(T*M ® T'M) is given by g(Ric(X),—) =
Ric(X, —). The scalar curvature Ry € C*°(M) is given by Rs(z) = tr Ric,(—).

Remark 1.4.7. Given a local g-orthonormal frame Xi,..., X, € T'(T'M,U), we have
Ric(X,Y) = >, R(X;, X,Y,X;), which by the symmetries of R shows that Ric is
symmetric. Also, Ry(z) =Y ., Ric(X;, X;).

Definition 1.4.8. We write Ric > k for & € R if all eigenvalues A of Ric(—) satisfies
A > k. A Riemannian manifold (M,g) is Finstein with Finstein constant k € R if
Ric(X) = kX for all X € I'(T'M). This means Ric(X,Y) = kg(X,Y) for all X € I'(T'M)
by Definition [1.4.6]

Definition 1.4.9. The sectional curvature K of M is a real function on the fibre bundle
Gr(2, M) of 2-dimensional subspaces of T, M given by K(c) = R(X,Y,Y, X) for any
orthonormal basis X,Y of ¢ C T, M.

Definition 1.4.10. Let (M, g) be a Riemannian manifold. A Riemannian submanifold
(N, g) of (M, g) is a submanifold N of M equipped with the induced Riemannian metric
from g. The normal bundle T+ N over N is defined by T+ N = (T,,N)* where L indicates
the g-orthogonal complement in T'M. The second fundamental formof Nisl € T'(T*N ®
T*N @ T+N) given by I(X,Y) = (VxY)!, where L indicates the orthogonal projection
onto T+ N.

Remark 1.4.11 (Gauss-Codazzi formula). Let N C M be a submanifold of (M, g), Ry
be the Riemann curvature tensor on /N, and II be the second fundamental form of N. We
have I(X,Y) — I(Y, X) = [X, Y]+ = 0 since [X,Y] € ['(T'N) for X,Y € I'(TN). Hence
I is symmetric. Moreover, we have the Gauss-Codazzi formula:

Ry(X,Y,Z, W) =R(X,Y, Z,W) + (X, W), LY, Z)) — g(I(X, Z),L(Y,W)) .

Definition 1.4.12. A C'*° curve 7 : I — M on a Riemannian manifold is a geodesic if
V@ (t) =0 forall t e 1.

Remark 1.4.13. The tangent vector V. 7'(t) is defined by extending +'(s) for s €
(t —e,t+¢), for some € > 0 to a C™ section over a neighbourhood of (t). The result is
indeed independent of the choice of extension.

Remark 1.4.14. Given a v € T, M, there is a unique geodesic v : (—¢,¢) — M such
that v(0) = x and /(0) = v, for £ > 0 small enough.
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Definition 1.4.15. The exponential map exp, : U C T, M — M at x € M is given by
exp, (v) = 7,(1), where 7, is the unique geodesic with 7/ (0) = v, and U is a neighbourhood
of 0 where 7,(1) is defined for all v € U.

Remark 1.4.16. For small enough U, exp, is a C*°-diffeomoprhism. Given a basis
V1, ..., v, of T,M with dual basis v!,...,v", we have the chart exp; ' : exp,(U) — U C
T,M = R" and v’ = v’ o exp,! are the associated local coordinates. Local coordinates
associated with charts arising this way are called normal coordinates.

Proposition 1.4.17 (First and second variation of length). Suppose V,W are subman-
ifolds of a complete Riemannian manifold (M,g), and v a shortest geodesic joining V'
and W, where X is a unit parallel field, and c,(t) a smooth variation of co(t) = y(t) and

Zeo(t)|amo = Xy Denoting T ) = 2ca(t), and let L(a) = fol VITeoty: Teawy)dt be

9a Ca
the arc length of v, then the first and second variations of length for ~v with variational

field X are

, 0
L'x(0) = %L(aﬂazo =0,

82 l
S L(@)]aco = (V3 X, T) — g,(Vx X, T) - / R(T, X, X, T)dt.
0

If co(to) is a geodesic for constant to, then L% (0) = — f(f R(T, X, X, T)dt.

L (0) =

1.5 Kahler metrics

The goal in this section is be to give a basic understanding of Kéahler manifolds.

Almost complex structures

A Kahler manifold has a Hermitian structure and a complex structure. We start by
defining a complex structure.

Definition 1.5.1. Given a differentiable manifold M of class C*°, an almost complex
structure on M is a section J € I'(T*M ® TM) such that J> = —1 as a section of
End(TM). The pair (M, J) is called an almost complex manifold.

Remark 1.5.2. An almost complex structure has a unique extension J € I'(TEM@TcM).
Since J? = —1, the only possible eigenvalues of .J are i, —i, JX is linearly independent
to X for X € T,M, and J is a non-singular endomorphism at each point.

Definition 1.5.3. Let T%'M be the subbundle of i-eigenspaces of J and T%°M be the
subbundle of —i-eigenspace of J.

Proposition 1.5.4. We have TcM = T'M & T*°M, and T"'M = {X +iJX : X €
TM} and TVYM = {X —iJX : X € TM}, so T®'M and T*°M are indeed subundles.

Proof. Let n = dim M. Since J? = —1, J does not have real eigenvalues, so X, JX are
linearly independent for every X € TM. Also by J? = —1,if X;,JX,,..., X,,JX,,Y are
linearly independent, then so are X1, JX4,..., X,, JX,, JY, thus we can find by induction
a basis for T, M of the form X;, JXy,...,X,,JX,. Clearly X +¢JX and X —¢JX is
a —i-eigenvector and i-eigenvector respectively for any X € TM, and X; + iJ X, X; —
iJ X1, .., Xp +1JX,, X, — iJX, is a C-basis for (TcM),. Hence we get the desired
decomposition of Tz M and explicit descriptions of T%'M and T"°M. Each of these has
R-rank n, so they are indeed subbundles. O
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Remark 1.5.5. An almost complex manifold (M, J) is always even dimensional since
T,M is the direct sum of invariant subspaces spang (X, JX) for X € T,,M.

Remark 1.5.6. Similarly, we can consider J to be a section of End(T: M) where J? = —1,
and do the above constructions with T¢M verbatim. Particularly, Jw = J(—,w) =
w(J(—)) = wo J, where the last two J are considered to be a section of End(TcM).

Definition 1.5.7. Let A"*M and A% M be the subbundle of TEM of —i-eigenspaces
and i-eigenspaces of J respectively.

Proposition 1.5.8. We have TG M = N"°M & N>'M, AY°M = {w —iJw:w € T*M}
and N\"'M ={w +iJw:w € T*M?}, and T*'M and T*°M is the annihilator of N'°M
and N\ M respectively.

Proof. Suppose X € T)'M and w € A)°M, then J(X,—) = iX(—) and J(—,w
—i(—)(w) as they are eigenvectors, so iX(w) = J(X,w) = —iX(w), thus X(w) =
Similarly for X € T)°M and w € AJ'M.

=l

Definition 1.5.9. A complex k-form is a section of /\k TEM and a (p, q)-form is a section
of APIM, where AP'M = AP(AYYM), A\®M = ANY(A™ M), and APIM = \P'M ®
A>IM.

Remark 1.5.10. We have A" T3M = D, g1 N\VIM, where ADIM is identified with
the space generated by pure tensors o A 7 for 0 € AP°M and 7, € A®M. Write
ANTeM = @} N TEM, and \°°M = Ry, @ C, where Ry, is the trivial vector bundle.

Proposition 1.5.11. A complex k-form w is a (p, q)-form if and only if w(Xq, ..., X)) =
0 whenever there are p 4+ 1 sections of T™'M or q + 1 sections of T*°M in X1,..., X}.

Proof. We prove the forward direction on pure tensors ¢ @ 7 for 0 € AP°M and 7 €
NIM. Tf Xy,..., Xy € (TcM), has p + 1 elements of TO'M or ¢ + 1 elements of
THM, then o ® 7(X1,..., X)) = o(X1, ..., X,)7(Xpi1,. .., Xi) has at least one X; €
T>'M in the arguments of o or at least one X; € Tr°M in the arguments of 7, so
o ®7(Xy,...,X,) = 0. For the backwards direction, consider a complex k-form w =
w1 A -+ Awg that is a pure tensor satisfying the condition, such that each wj is either in
ALOM or AY1M, then the condition implies there are exactly p-many w; € AL°M and
g-many w; € ALOM in wy, ..., wg. ]

Remark 1.5.12. For ¢ € AR9M and 7 € A2*M, we have o A7 € AET7T5)M | where
APM = 0if a+b > dimM = 2n or max{a,b} > n. Given a pure complex k-form
w=uwi A - Awy, its compler conjugate is W = wy N --- N\ Wi, and we may extend this
definition by linearity to all complex k-forms. In particular, w € A??M for w € A\PIM,
and d commutes with complex conjugation.

Proposition 1.5.13. We have d(AP4M) C AP M A\PTHIM AP M \P~Hat2 )
for an almost complex manifold.

Proof. By Remark [1.5.10, d(A*°M) C AMM & A°M and d(AY'M),d(A>' M) C
A2 M & AMM @ N\>2M. The statement follows from d(c A7) = do A7 — o Adr for
complex 1-form ¢ and complex k-form 7, and induction. O]
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Definition 1.5.14. The linear operators 0 : APYM — AP*MM and 0 : A\PYM —
AP9HIM are defined as § = P19 0d and 9 = 7P od where 779 : A TEM — A\PIM is
the projection map, for an almost complex manifold M. One can check that 0,0 satisfy
Leibniz’s rule.

Definition 1.5.15. The Nijenhuis tensor N7 € T'(T*M ® T*M ® TM) is given by
N/(X,Y) = [X,Y]+ JJX, Y]+ J[X,JY] — [JX,JY] for an almost complex manifold
(M, J).

Proposition 1.5.16. The Nijenhuis tensor N” is a tensor.

Proof. In local coordinates, by Remark we have [X,Y] = OxY — 0y X, where
dx is given by component-wise differentiation, for example, OxY = X752 (Y?)%. We
may also apply dx component-wise to J, which is a matrix of functions under the local
coordinates, to get another matrix of functions. Then

X, Y] =0xY — 0y X,
[JX, JY] =0;x(JY) = Oy (JX)
:(8J~XJ)Y + Jajx(Y> — (aJyJ)X — Jajy(X),
J[JX,Y] =Ja,x(Y) — JOy(JX)
=J0;x(Y) — (OyJ)(JX) + Oy X,
JIX, JY] =(0xJ)(JY) = OxY — JOv(X),
thus
NU(X,Y) = 0y ])X — (05x J)Y + (9xJ)(JY) — (8y J)(JX),
which satisfies N/(fX,gY) = fgN7(X,Y) for X, Y € I(TM) and f,g € C*(M). O
(

Remark 1.5.17. Given a complex manifold M, and a holomorphic chart (U, ¢) with

associated local coordinates z',...,z", and local C®-coordinates x!,..., 2" y*, ..., y"
where 2! = 2! +iy!, we may define a natural complex structure J by J (aii) = Biyi and
J( 8‘31) = —6‘21. This is the same as J = ¢, ! 0 j, o ¢, so given another holomorphic

chart (V,¢), we have 90*_1 O Jn O Qs = ¢;1 o O§0*_1 O Jn © P Oib*_l o = 10*_1 O Jn ©
Yoot o, ot orh, =1 o j, 01, by Definition since 1, 0 oyt = (Yo p7t), is
holomorphic, thus J is well-defined. Then dz!,...,dz" and dz!,...,dz" is a local frame
for AY°M and A®'M respectively. From Remark [1.3.24] a function f € C®(U) ® C is
holomorphic if and only if Zf = 0 for all Z € T%'M if and only if df € A'°M. Given
two complex manifolds (M, J) and (N, J'), a C*®°-map f: M — N is holomorphic if and
only if f, o J = J o f,, where J,J' are viewed as operators on the tangent spaces. A
complex structure is an almost complex structure arising from a holomorphic structure

this way. We see that H*M = AYYM under the identification in Proposition [1.3.14] by
Corollary and Remark [1.3.24]

Proposition 1.5.18. Given an almost complex manifold (M, J), the following are equiv-
alent:

1. J is a complex structure;

2. TOM is involutive;
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3. d=0+0;
4. 0> =0;
5. N/ =0.

Proof. (1 == 2) Given Z,W € T>'M, written in local coordinates Z = Z'-2 and
W =W'Z then [Z,W] € TO' M by the local coordinate expression in Remark [1.3.27]

(2 = 1) This is a deep theorem of Newlander and Nirenberg. A proof may be
found in [5, Chapter 2].

(2 < ) Given w € T(A"’M), and Z,W € T(T"'M), dw(Z, W) = Zw(W) +
Ww(Z) —w([Z,W]) =0, thus dw € T(A"'M @& A\**M), so d = 9+ 9 on T'(A°M), and
on T'(A% M) as well since d commutes with complex conjugation. The rest follows by
induction as in Proposition [1.5.13 On the other hand, if d = 9 + 9, then w([Z, W]) = 0,
so T%L M is integrable.

(3 = 4) Since d? = 9%+ 00 + 00 + 0, where each term maps to a different space,
s0 02 =0, 0> =0, and 90 + 00 = 0.

(4 = 3) Let ¢’ be a local frame for A'"°M. Given a function F' on a neighbourhood
of z, write dF = fie' + g;€', so OF = fie'. Then 0 = 9*F = 1%2d0F = 7%2d(d - 0) F =
—7%2dOF = —n%2d(fie'), so the (0,2)-part of d(f;e;) vanishes. Then dw, € AL'M &
A22M for all (1,0)-forms w.

(2 < 5 Let X,Y € TM, and Z = [X +iJX,Y +iJY] = [X,Y] +i[X, JY] +
i[JX,Y] —[JX,JY]. Then

7 —iJZ
=X, Y] +i[X, JY]+ilJX, Y] = [JX, JY] —iJ[X, Y]+ J[X, JY] + J[JX, Y] +iJ[JX, JY]
=N7(X,Y) —iJN/(X,Y).

So Z € T%' M if and only if N’ = 0. O

Complex structures

We list some facts about complex structures. In this subsection, M will be a complex
manifold.

Proposition 1.5.19. A smooth complex function f : U — C defined locally on M is
holomorphic if and only if Zf = 0 for every Z of type (0,1), if and only if df is type
(1,0).

Proof. The second equivalence is clear. For the first equivalence, using a local holomor-
phic coordinate, f is holomorphic if and only if (JX)f = ¢ X f for all X, if and only if
(X +4iJX)f =0 for all X. O

Definition 1.5.20. A vector field Z € T(T%'M) is holomorphic of Z(f) € H(U) for
every f € H(U), U C M an open subset. A (p,0)-form w is holomorphic if Ow = 0. A
real vector field X € I'(T'M) is holomorphic if X — iJX is holomorphic.

Proposition 1.5.21. A real vector field X is holomorphic if and only if LxJ = 0, if and
only if the flow of X are holomorphic transformations.
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Proof. The last two statements are logically equivalent. For the first equivalence, suppose
X, Y are vector fields where X is real holomorphic, and f is a locally defined holomorphic
function. Note Z is (0,1) if and only if Zf = 0 for any locally defined holomorphic
f. Thus (X +iJX)f =0, s0o (X —iJX)f = 2Xf, then Xf is holomorphic. Hence
(Y 4+iJY)(Xf)=0and (Y +iJY)f =0,s0 [Y +4iJY, X]|f = 0. Since f was arbitrary,
Y +iJY, X] is type (0,1), so [Y, X] +i[JY, X] = [V +iJY, X]| = [V, X] +iJ[Y, X], thus
[JY, X] = J[Y, X]. Then (LxJ)Y = Lx(JY)—JLxY =[JY, X] - J[Y,X] =0.
Similarly, suppose for all Y, [JY, X| — J[Y, X] = (LxJ)Y = 0. Then [Y +iJY, X] is
(0,1), thus for any holomorphic f, we have (Y +iJY)(X f) — X(Y +iJY)f = 0. Since
(Y +iJX)is (0,1), X(Y +¢JY)f =0, thus (Y +4iJY)(Xf) =0. So X f is holomorphic
since Y was arbitrary. Then 2Xf = (X +iJX)f + (X —iJX)f = (X —iJX)f is
holomorphic, thus X is real holomorphic. O

Proposition 1.5.22 (9-Poincaré lemma). For a (0,1)-form w such that dw = 0, there
exists locally a function f such that Of = w.

A proof of the -Poincaré lemma is in [3, p. 25].

Proposition 1.5.23 (local i0d-lemma). Let w be a real 2-form of type (1,1) on a complex
manifold M, then w is closed if and only if w = i00u for some locally defined real function
u.

Proof. Suppose w = i90u, then dw = 0 as d(@é) = 0?0+ 00% = 0. Suppose w is a closed
real (1,1)-form. By the Poincaré lemma in Remark [1.3.29] there is a local real 1-form
7 such that d7 = w. Decompose 7 = 710 + 7% then 79! = 710 since 7 is real. By
w=dr = 00 + 970 + (9710 + 9791, we have 710 = 979! = 0 as w is type (1,1).
The O0-Poincaré lemma gives a local function f such that df = 7%, so 7% = 9f. Thus
w =0 +9r% = 90f + 00f = i00(21Im f). O

Non-degenerate 2-forms with complex structure

One way to look at Kéhler manifolds is as a manifold with a closed non-degenerate 2-form
with a compatible complex structure J.

Definition 1.5.24. Let w be a non-degenerate 2-form over a C'*°-manifold M. An almost
complex structure J on M is w-tame if w(X, J(X)) > 0 for all X € T'M, and w-compatible
if it is w-tame and w(X,Y) = w(JX, JY).

Proposition 1.5.25. Let w be a J-compatible non-degenerate 2-form on an almost com-
plex manifold (M, J), the Riemannian metric g(—,—) = w(—, J(—)) and its Levi-Civita
connection V satisfies

(V) + J(Vid) =0,
g(Vx )Y, Z) +g(Y,(VxJ)Z) =0,
dw(X,Y, Z) = g(Vx )Y, Z) + g(Vy ) Z,X) + g((Vz])X,Y).

If w s closed, then
(VyxJ)=—-J(VxJ).
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Proof. The first identity follows from differentiating /> = —1. By differentiating g(JY, Z)+
g(Y,JZ) =0, we get

0=9(Vx(JY),Z)+g(JY,VxZ)+g(VxY,JZ) + g(Y,Vx(JZ))
=9(Vx(JY), g, J(Vx(2))) = 9(J(VxY), Z) + g(Y,Vx(JZ))
:g((VXJ)Y, Z)+ (Y, (V)(J)Z)

A
A

~— —

With w(X,Y) = —¢(X, JY) and the second identity, we have

dw(X,Y, Z) =Xw(Y,Z) = Yw(X, Z) + Zw(X,Y) — w([X,Y], Z) — w(]Y, Z], X) + w([X, Z],Y)
=Xw(Y,Z) - Yw(X,Z) + Zw(X,Y)
—w(VxY = Vy X, 2) —w(VyZ — VY, X) +w(VyZ — V;X,Y)
=~ Xg(Y,JZ)+Yg(X,]Z) — Zg(X,JY)
+ (VY = Vy X, JZ) + g(VyZ — VY, JX) — g(VxZ — VX, JY)
VxY,JZ2)+ g(Vy X, JZ) — g(V2 X, JY)
Y Vx(JZ)) + g(X,Vy(JZ)) — g(X,Vz(JY))
VxY = VyX,J2) 4+ g(VyZ — VY, JX) — g(VxZ — VX, JY)
Y, Vx(J2)) + g(X,Vy(JZ)) — g(X,V2(JY))
VyZ —V,Y,JX) - ¢(VxZ,JY)
(VxI)Z) + g(VyJ)Z, X) = g(X, (V2 ])Y)
zg((VxJ)Y, Z) +9((VyJ)Z, X) + g((VzI)X.Y).

—9(
—9(
+9(
—9(
+9(
—9(Y,

For X e I'(T'M), define 7x(Y, Z) = g((VxJ)Y, Z). The second identity shows that 7x is
a 2-form. Using the first identity we get

(Y, Z) +mx(JY, JZ) = 0.
By the third identity and dw = 0,
x(Y,2)+v(Z,X)+12(X,Y) =0,
then applying this to 7x (Y, Z) and 7x(JY, JZ) gives
25 (Y, Z) = mx (Y, Z) — 7x (JY, JZ) = —1(Z, X) — 72(X,Y) + T3y (JZ, X) + 712(X, JY) .
Replacing X, Y with JX, JY,

Qzj(JY, Z) = — TJy(Z, JX) — Tz(JX, JY) — Ty(JZ7 JX) — sz(JX, Y)
= — ij(JZ,X) +T2(X, Y) —|—Ty<Z,X) — TJz(X, JY)
=-2x(Y,2),

which gives the last identity. O

Corollary 1.5.26. Let w be a J-compatible non-degenerate 2-form on an almost complex
manifold (M, J), defining the Riemannian metric g(—,—) = w(—,J(—)) and its Levi-
Civita connection V. The following are equivalent:

1. VJ=0;
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2. J 1s integrable and w is closed.
Proof. We use Proposition [1.5.25 Using [X,Y]=VxY — Vy X, Vx(JY) = (VxJ)Y +
JVxY and the first identity,
N(X,Y) =[X,Y]+ J[JX, Y]+ J[X,JY] - [JX,JY]
=VxY - Vy X+ JV,;xY — JVy(JX)
+ JVx(JY) = IV X =V x(JY)+ Vv (JX)
—(Vux )Y+ (Viy HX — (VxJ)JY + (VyJ)JX.

Then VJ = 0 implies N’/ = 0 and dw = 0 by the above and the third identity respectively,
since VxJ = 0. Using the first three identities,

g(N'(X,Y), Z) == g(Vux )Y + (V)X — (VxJ)JY + (VyJ)JX, Z)
= - g((VJXJ)Y7 Z) - g((VYJ)Za JX) - g((VZJ)JX> Y)

—9(VxJ)JY, Z) = g(Voy 1) 2, X) = g(V2 )X, JY) = 29(J(Vz]) X

=—dw(JX,Y,Z) —dw(X,JY, Z) — 29(J(VzJ)X,Y),
so if N/ =0 and dw = 0, then V.J = 0. O

Holomorphic vector bundles

We introduce Chern connections for the purpose of characterizing Kahler manifolds. Fix
M to be a be a complex manifold.

Definition 1.5.27. Let E — M be a C-vector bundle. An operator dp : A\P*E —
AN E, where NP E = NP9 M ® E, is a pre-holomorphic structure on E if it satisfies
the Leibniz rule dx(fs) = 0(f) ® s + fOr(s). If Jp is additionally a coboundary map,
i.e. 02 =0, it is a holomorphic structure.

Definition 1.5.28. A complex vector bundle £ — M is holomorphic if there exists local
trivializations V¥,, where (¥, o \Ilgl)(x) = (2, gap(x)v), such that the transition maps
Gap : Uo NUg — GL(n,C) are holomorphic.

Remark 1.5.29. Given a pre-holomorphic vector bundle (E,dg), a section o € ['(E) is
called holomorphic if Ogo = 0.

Proposition 1.5.30. A complex bundle is holomorphic if and only if it has a holomorphic
structure. More specifically, there is a canonical holomorphic structure for every holo-
morphic bundle E, and for every holomorphic structure O, there are trivializations of E
with holomorphic transition maps such that O is the canonical holomorphic structure.

Proof. Given a holomorphic vector bundle E, let 0g be defined component wise under
local frames by Op(s) = 0(s') ® e;, where 0 = o, o d. Suppose s = sle; = t 'f;, and
s = gitj so gie; = f;. Then Op(s) = 9(s") ® e; = A(git!) ® e; = glo(t) @ e; = (V) f;
since 8gj = 0 as F is holomorphic, thus d it is well-defined. The other direction appeals
to the Newlander-Nirenberg theorem, and a proof can be found in [6]. O

Remark 1.5.31. For every connection V on E, we have V¥ : T'(E) — I'(A'"YE) and
VOl T(E) — T(A™E) given by V0 = 7190 ¥V and V%! = 7% o V where 79 :
T:M @ E — APYE is the projection map. The operator V%! is a pre-holomorphic
structure. If V%! is a coboundary map, then F is holomorphic with canonical holomorphic
structure 0 = V1.
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Proposition 1.5.32. Given a complex vector bundle E with a holomorphic structure O,
and a Hermitian fibre metric h on E, there exists a unique h-compatible connection V
on E such that V' = 0p.

Proof. Fix some local frame eq,...,e,, then H = (h;) is a matrix of functions with
h; = h(e;,e;). Suppose there is a h-compatible connection V such that V%' = 9. With
respect to this local frame, we have V = d+ A for some matrix of 1-forms A = (a}), where
d act component-wise. By h-compatibility, dh(e;, e;) = h((d+A)e;, e;)+h(e;, (d+A)e;) =
h(Ae;, e;) + h(e;, Aej) = h(ale, e;) + hle;, af'ey,), so dhy; = athl + aj'hy,, thus

dH = ATH + HA.

Decompose d = 9 + 0, where 0,0 = Op acts component-wise, then V** = 9 + A by
VO = Op. Since d maps to (1,0) forms, A is a matrix of (1,0)-forms. Then OH = ATH

and OH = HA. Since 0H + 0H = dH = dH = 0H + 0H, by comparing types we get
OH = 0H, so HA = 0H. Hence

A= (0H).

This shows uniqueness. Now for existence, we define V locally with the above A with
respect to some local frame. Since OH is type (1,0), we see that A is a matrix of (1,0)-
forms. But 0 also maps to (1,0)-forms, so V%! = 9. Also 0H = HA by HA = 0H and
OH = OH. Since h is Hermitian, we have HT = H, so AT = (0HT)(H™)™! = (0H)H !,
thus OH = ATH. Hence V is h-compatible. By uniqueness, we obtain a well-defined
connection. O

Definition 1.5.33. The Chern connection of a pre-holomorphic structure 0 on a Hermi-

tian vector bundle (E, h) is the unique h-compatible connection V such that V%! = 0.

Kahler manifolds

Next, we define and give two characterizations of Kahler manifolds.

Definition 1.5.34. Given a Riemannian metric h on an almost complex manifold (M, J),
its fundamental formis w(X,Y) = g(JX,Y). A Hermitian metric on an almost complex
manifold (M, J) is Riemannian metric such that its fundamental form is J-compatible.
A Hermitian metric on a complex manifold (M, J) with closed fundamental form is a
Kdhler metric, and (M, J) with a Kéhler metric is a Kdhler manifold.

Proposition 1.5.35. A Hermitian metric on an almost complex manifold g on (M, J)
1s Kdhler if and only if VJ = 0 for the Levi-Civita connection V of h.

Proposition [1.5.35| follows from Corollary [1.5.26]

Remark 1.5.36. A Hermitian metric on a complex manifold is Kéhler if and only if

there locally exists v such that w = i%. The functions u are called Kdhler potentials.

Remark 1.5.37. The tangent bundle "M can be made into a complex vector bundle
with scalar multiplication of i given by iX = JX. We can then identify TM with TH°M
by X — (X —iJX) as C-vector bundles, preserving the action of J.
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Proposition 1.5.38. The holomorphic structure on the complex bundle TM = T1OM
for a complex manifold (M, J) with a Hermitian metric on a complex manifold g is given
by OxY = L(VxY + IV, xY — J(VyJ)X), where V is the Levi-Civita connection of g.

Proof. By Proposition |1.5.30} it suffices to show that the above defined 5Yﬁis a T'M-
valued (0, 1)-form for all Y, J is a linear operator satisfying Leibniz rule, and 9Y = 0 for
all holomorphic Y. To show JY is of type (0, 1), note that

Ox4isxY =0xY +i0;xY

=S (VXY 4 VY = J(Vyd)X + VY + iV px¥ — i (Vy J)(IX)

:%(vxy + IV xY — J(Vy )X +iVixY +iJVxY —iJ(VyJ)(iX))

=S (VY + IV 5xY = J(Vy )X = V¥ — IV Y + (T J)(X))

=0.

Also
Ox(FY) =5 (Vx(f¥) + IV sx(FY) = J(VrT)X)

:%((X HY + VY + J(TX)F)Y + FIVxY — FI(VyJ)X)
:%((x DY +i((JX)))Y + fVXY + fIV XY — fI(VyJ)X)
(X FUTX)FY + [UXY + [IV5xY — LI(Vy ])X)
=0x(f)Y + foxY,

so O satisfies the Leibniz rule. Since 0 is a C-linear in the second entry and C>°(U)-linear
in the first, it is an operator. Finally, if Y is holomorphic, then by Proposition [1.5.21

0=(LyJ)X
=J[X,Y] - [JX,Y]
=JVxY — JVyX — V;xY + Vy(JX)
=JVxY — JVyX =V xY + (VyJ)X + JVy X
=JVxY = VixY + (Vy )X
=JOxY .

]

Proposition 1.5.39. Given an almost complex manifold (M, J) with a Hermitian metric
on an almost complex manifold g, the Chern connection of the complex bundle T'M with
Hermitian metric h = g — iw is the Levi-Civita connection of g via the identification

TM = TYM in Remark if and only if g is Kdihler.

Proof. Suppose the Levi-Civita connection V is the Chern connection, then V is a com-
plex connection on T'M, so (VJ)Y = V(JY) — JVY = V(iY) —iVY = 0. Thus
VJ = 0, hence h is Kéhler by Proposition [1.5.35, Suppose h is Kéhler, then (M, J)

is complex, and the Levi-Civita connection V is g-compatible and VJ = 0. Thus
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(Vw)(X,Y) =g(JVX,Y)+g(JX,VY)=¢g(V(JX),Y)+g9(JX,VY) = (Vg)(JX,Y) by

VJ =0,s0 Vw = Vg =0, hence V is h-compatible. It remains to show that V%! = 07,,.
By Proposition [1.5.38 and VJ = 0,

1 , 1 _
VY =ViuxY = S (VY +iVyxY) = S(Vx + JVyx) = (Ora)xY
where X is a vector field and Y is a section of the complex bundle. O

Fubini-Study metric

The following is an important example.

Let CP" = (C"*!\ {0})/ ~ where u ~ v if and only if u = cv for some ¢ € C\ {0}.
Denote [z9 : -+ ¢ zm] = [(20,--+,2n)]~, and let U; = {[20,...,24] : z; # 0}. Define
¢i Uy = C" by ¢i([z0, -5 20]) = (20/ 2y - - Zie1/ Ziy Zi1 ) Zis - - - 20/ 2i), then, for i < j,

1 w1 Wi—1 Wit w;, 1 w;jq w
(gzﬁ,ogzﬁ] )(wlv"'7wn):( PRI - ) - PRI ]a ) ! yor e n)a

which is holomorphic. Thus the ¢; defines a holomorphic structure on CP", giving CP"
a complex structure J.

Define the projection map 7 : C**1\ {0} — CP" and the 2-form ppg on C*™1\ {0}
by

1 o . .
PFS = A zmam) Z(ijjdék AdzF — F2RdE A deb)
m J#k
and define the 2-form wprg on CP",| called the Fubini-Study form, by
(Wrs)a(X,Y) = (pps)a(u, v)

for u,v € C"™ = T,(C"™' \ {0}) such that n(z) = =, mau = X and 7,0 =Y, ie.
T*wrs = prs. The associated metric is called the Fubini-Study metric. One can check
that wpg can be written on the open sets ¢;(U;) as

Wrs = %83]}, fj(Z) = log (M) )

ZizJ

s0 wrg is closed. One can also check that the restriction of prg to the unit sphere is the
standard symplectic form ) dz,, A dym,, so wrg is non-degenerate. One can moreover
check that J is wpg-compatible. Hence the Fubini-Study metric is a Kéhler metric.

2 Holomorphic sectional curvature

For a Kéhler manifold (M, h), by [4, Prop. 4.5, Ch. IX] we have R(X,Y)JZ =
JR(X,Y)Z, which gives

R(X.Y,JZ,JT) = R(X,Y,2,T) = R(JX,JY, Z,T).

This identity together with the symmetries and identities in Remark will be used
freely throughout the section.
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2.1 Bisectional curvature

Holomorphic bisectional curvature is a variation of the usual sectional curvature in the
setting of Kéhler manifolds.

Definition 2.1.1. A plane o in T,M, p € M is holomorphic if it is J-invariant.

Definition 2.1.2. The restriction of K to holomorphic planes is called the holomorphic
sectional curvature, and denoted H. Given a vector X € o we write H(X) = H (o). For
holomorphic planes o, ¢’, the holomorphic bisectional curvature is defined

H(c,0')=R(X,JX,JY)Y),
for any unit vectors X € o0 and Y € o’.

Remark 2.1.3. Given a holomorphic plane o and some non-zero (resp. unit) vector
X € o, one can check that the pair X, JX is an orthogonal (orthonormal) basis. Recall
that the sectional curvature K of a plane in the tangent space is defined to be K(o) =
R(X,Y,Y, X) for any orthonormal basis X,Y of ¢. So for a unit vector X € o, where
o is holomorphic, we have H(X) = R(X,JX, JX, X). Since H(o,0) = H(0), and using
the first Bianchi identity,

R(X,JX,JY,Y)=—R(JY,X,JX,Y) — R(JX,JY,X,Y)
=R(X,JY,JY,X)+ R(Y,X,X,Y) = K(X,JY)+ K(Y,X),

so holomorphic sectional curvature H(—) has less information than holomorphic bisec-
tional curvature H(—,—), which in turn has less information than sectional curvature

K.

Proposition 2.1.4 ([4, Prop. 7.3, Ch. IX]). If a Kdhler manifold (M,g) has constant
holomorphic sectional curvature c, then

c
— g(X, JZ)g(Y, JW) + g(X, JW)g(Y, JZ) — 2(X, JY )g(Z, JW)),
from which it follows that

R(X,JX,JY,Y) :g(g(X, X)g(Y,Y) + g(X,Y)? + g(X, JY)?).

Remark 2.1.5. Given constant holomorphic sectional curvature, let X € o and Y € o’
be unit vectors, we have g(Y,JY) = 0. Then there is an orthonormal basis of T, M
of the form X; = Y, Xy = JY, X35,...,X,, s0o 1 = ¢g(X,X) = > ¢(X,X,)%. Thus
g(X,Y)? 4+ g(X,JY)? < 1. It follows that R(c,0") is between § and c.

Proposition 2.1.6 (|4, Prop. 7.4, Ch. IX]). For any ¢ > 0, the projective space CP"
with the Kdhler form %wFS has constant holomorphic sectional curvature c, where wpg is
the Fubini-Study form.

Proposition 2.1.7 ([4, Prop. 7.9, Ch. IX]). Two simply connected complete Kdihler
manifolds with constant holomorphic sectional curvature ¢ are holomorphically isometric.
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Remark 2.1.8. Using Propositions [2.1.6] and Synge’s theorem, any connected
compact Kahler manifold with positive constant sectional curvature is holomorphically
isometric to CP" with the Fubini-Study metric up to a positive scalar.

We end this section with a look at complex submanifolds. Given a complex submani-
fold N C M, where (M, J, g) is a Kédhler manifold, denote the induced Riemann curvature

on N by Ry. Let Il be the second fundamental form of N, then from Remark [1.4.11] I
is symmetric and we have the Gauss-Codazzi formula giving

Ry(X,Y,Z,W) = R(X,Y, Z,W) + g(I(X, W), (Y, Z)) — g(I(X, Z),1(Y,W)) .

Since V.J = 0 and TN,T+N are J-invariant, (X, JY) = (Vx(JY))* = (JVxY)t =
J(VxY)t=JI(X,Y), so

Ry(X,JX,JY,Y) = R(X,JX,JY,Y) = |[I(X,Y)|* — (X, JY)|]>.

Hence the holomorphic bisectional curvature of N is less than that of M.

2.2 Frankel conjecture in dimension two

We prove Frankel’s conjecture for Kahler surfaces.

Theorem 2.2.1. Let M be a connected compact Kdahler manifold with positive holomor-
phic bisectional curvature, and let V., W be compact complex submanifolds. If dimV +
dimW > dim M, then V and W have non-empty intersection.

Proof. Suppose VNW = @. Let v :[0,{] — M be a shortest geodesic between V and W,
which exists since M is compact thus complete, with v(0) = p € V and y(l) = ¢ € W.
Since 7y is shortest, v is orthogonal to T,V and T, W, as if v is not orthogonal to 7,V and
T,W, we can deform it to get a shorter path. Parallel transport along 7 defines a linear
map from 7,V to T, M, then by denoting its image subspace as B, B and T,I¥ are both
orthogonal to 7 since parallel transport preserves the metric. So by dimV + dim W >
dimM, BNT,W # &. Thus we may find a unit parallel field X along ~ such that
X, € T,V and X, € T,W. Since JX is also unit and parallel as J preserves g and V.J = 0,
and JX, € T,V, JX, € T,IW as V, W are complex submanifolds. By Proposition
and denoting T' = 7/, the second variation of length for v with variational fields X and
JX respectively are

l
L4(0) = g, (VA X T) — g)(Vx X, T) — / R(T, X, X, T)dt
0

l
L (0) = gy (Vyx (JX), T) — g,(Vyx (JX), T) — / R(T, JX, JX,T)dt.
0
We have

g(VXX'f- VJX(JX),T) :g(JVXX + JVJ)((JX),JT)
:g(VX(JX) —VJ)(X, JT)
=g([JX, X],JT),
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where ¢([JX, X],JT) = —g(J[JX,X],T) = 0 at p and ¢ since V, W are complex sub-
manifolds so [JX, X], € T,,V, J[JX, X], € T,V and T is orthogonal to 7,V and similarly
at ¢. Thus by the first Bianchi identity,

l
L2 (0) + L (0) = — / (R(T, X, X, T) + R(T, JX, JX, T))dt
0
!
_ / R(T,JT, X, JX)dt <0,
0
since bisectional curvature is positive. Hence L% (0) or L’ (0) is negative, but = is

shortest, a contradiction. O

Starting here, we expect more sophistication in algebraic geometry, Chern classes and
Hodge theory from the reader. A reference for the first is [3], and a reference for the last
two is [6].

Given a local orthonormal frame X7,..., X, we write Rypeq = R(X,, X, Xe, Xa),
R, = Ric(X,, X3). Suppose the local frame has the form Xi,..., X, JX;,...,JX,, we
write Rij+; = R(X;, JX;, JX;, X;), etc. When summing over the indices, a,b,c runs
through all sections, while i, j, k£ only runs through the first half Xq,..., X,,.

Proposition 2.2.2. Using the above convention, we have

1
Ric(X,Y) = - > R(X,, JX,, JY,X) =) R(X:, JX;, JY, X) .

In particular, R;; = Rpp-i-j, so positive bisectional curvature implies positive definite
Ricci curvature.

Proof. Using the first Bianchi identity,
Ric(X,Y) =) R(X,, X,Y, X,)

- Z R(X., X, JY, JX,)

= i(—R(X, JY, X, JX,) — R(JY, X, X, JX,))

= Ea:(R(JY, X, X,,JX,) — R(JX,,Y, X, JX,))

- Z R(JY, X, X,, JX,) — Ric(X,Y).
so Rie(X,Y) = > R(X;, JX;, JY, X). O
Corollary 2.2.3. We have Ric(X,Y) = Ric(JX, JY) for any vector fields X,Y .

Proof. Follows from Proposition [2.2.2] m

Definition 2.2.4. The Ricci form of a Ké&hler manifold M is defined as p(—,—) =
Ric(J(—), —).
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Definition 2.2.5. A (1,1)-form o is positive if o(X,JX) > 0 for any X € TM. A
holomorphic line bundle L over a complex manifold is positive if there exists a metric
on L where the Chern connection has a curvature form © such that %@ is a positive
(1,1)-form. On the other hand, L is negative if L™ = L* is positive.

Proposition 2.2.6 ([3, p.148]). Given any real closed representative o of type (1,1) for
the first Chern class of a holomorphic line bundle L, there exists a metric on L such that
the curvature form © of the Chern connection satisfies o = %@. Thus L is positive if
and only if its Chern connection can be represented by a positive form.

Proposition 2.2.7 ([6]). The first Chern class of TM = T'YYM for any compact Kdhler
manifold is represented by %p, where p is the Ricci form.

Proposition 2.2.8 ([0]). For any complex vector bundle E over a complex manifold M
of rank k, the first Chern classes of E and /\k E are the same for k > 1.

Remark 2.2.9. For any compact Kahler manifold M of dimension 2n with positive
bisectional curvature, let p be the Ricci form. Since bisectional curvature is positive,
Ric is positive definite by Proposition [2.2.2] thus p is positive. The first Chern class of
A" (T*°M) has the representative 5-p by Propositions [2.2.7|and [2.2.8] so the curvature
form of \"(T"°M) is © = —ip by Propositions [2.2.6] thus i®© = p. Hence \"(T"°M) is
positive, so A"'M = (A" (T*°M))* is negative.

Definition 2.2.10. An algebraic Kdahler manifold is a Kéahler manifold which is also pro-
jective variety. The canonical line bundle of an algebraic Kahler manifold M of complex
dimension n is the line bundle K, = A™° M of (n,0)-forms. The anti-canonical bundle
Kﬂ}l = K73, is the inverse line bundle of K, which happens to be the dual bundle. The
ith plurigenus of M is the complex dimension P; = dimI'(M, K%;) = dim H°(M, K}),)
of the vector space of global holomorphic sections of the i¢th tensor power of K;;. The
arithmetic genus of M is p, = Z;:ol (—1)7h"30 where h?*? denotes the Hodge numbers
of M.

Definition 2.2.11. A ruled surface is the total space S of a holomorphic fibre bundle
where the fibres are CP' and the base space is a non-singular complex algebraic curve.

Lemma 2.2.12 (Castelnuovo-Andreotti, [I1, Theorem 49]). Given a algebraic Kdhler
surface M, if Py = p, =0, then M is either CP? or a ruled surface.

Theorem 2.2.13 (Kodaira’s embedding). Given a compact Kdihler manifold and a holo-
morphic line bundle L over M, if L is positive, then there is a holomorphic embedding of
M into some complex projective space.

Theorem 2.2.14 (Chow’s theorem). A closed holomorphic submanifold of a complex
projective space is an algebraic subvariety.

Theorems [2.2.13| and [2.2.14] can be found in [6] and [7, Prop 5.1] respectively.

Theorem 2.2.15 (Kodaira-Nakano vanishing). If L is a positive line bundle over a
compact Kahler manifold of complex dimensionn, then H1(M, K%, & L) = 0 for p+q > n.

Theorem 2.2.16 (Serre duality). If L is a holomorphic vector bundle over a compact
Kdhler manifold of complex dimension n, then HY(M,E) = H" 1M, K}, @ E*)*.
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Theorems [2.2.15| and [2.2.16| can be found in [3] on p.103 and p.154 respectively. Us-
ing Serre duality and Kodaira-Nakano vanishing theorem, one obtains a dual version of
Kodaira-Nakano vanishing theorem.

Theorem 2.2.17 (dual Kodaira-Nakano vanishing). If L is a negative line bundle over a
compact Kdhler manifold of complex dimensionn, then H1(M, K5, ®@L) = 0 for p+q < n.

We can now prove the Frankel conjecture for Kahler surfaces.

Theorem 2.2.18. A compact Kdhler surface M with positive holomorphic bisectional
curvature is biholomorphically equivalent to CP?.

Proof. 1f the bisectional curvature is positive, K]\}l is positive and K); is negative by
Remark [2.2.9 Then from Kodaira’s embedding theorem and Chow’s theorem, M is
algebraic. Using both versions of Kodaira-Nakano vanishing theorem, by letting L = K;;!
and L = K respectively, we have H(M, K¢;) = 0 for all d > 0, so the plurigenus P; = 0
for ¢ > 0 all vanishes. Since M is Kéhler, it is even dimensional and orientable, and it
is compact, so by Synge’s theorem M is simply connected. Since it is simply connected,
the first cohomology group vanishes. By Kéhlerity, dim H'(M) = h'% + h%l so the
Hodge number h** = 0 vanishes. Note that P, = dim H(M, Ky;) = dim (M, Kj;) is
the dimension of the space of global sections of Ky = A*°M, thus h*® = 0. Then the
arithmetic genus g, = h*® — h%® = 0 vanishes. As P, = 0, by the surface classification
theorem of Castelnuovo-Andreotti, M is either a ruled surface or CP?. The fibres of a
ruled surface are disjoint compact complex dimension 1 submanifolds, so we eliminate
this possibility with Theorem [2.2.1] Therefore M is CP?. []

2.3 Kahler-Einstein manifolds

We prove the Frankel conjecture when the metric is Einstein.

Lemma 2.3.1. Given a tensor T € I'(T*M @T*M) on a Kdihler manifold (M, J,g), such
that T(X,Y) = T(Y,X) and T(X,Y) = T(JX,JY), there exists a local orthonormal
frame Xq,..., X, JX1,...,JX, near x € M such that T(X;, X;) = 0 at x fori # j.
Moreover, we may choose any X, satisfying T(Xy,—) = Ag(X1, —) at x, for X € R.

Proof. Since T is symmetric, T is orthogonally diagonalizable as a linear operator on
T, M, so there exists an orthogonal basis for T, M consisting of of T-eigenvectors. An
eigenvector of 7" is any X € T, M satisfying T'(X, —) = Ag(X, —) for some A € R. So
given a T-eigenvector X with eigenvalue A\, we have

TJX,Y)=-T(X,JY) = -\g(X,JY) = A\g(JX,Y),

thus the eigenspaces of T' are J-invariant. Then starting with any eigenvector X, we
can obtain by induction a set of orthogonal basis of the form Xi,..., X, JX1,...,JX,
of T-eigenvector. We can then extend them to a local frame. O

Lemma 2.3.2. For an Einstein manifold with Ricci curvature Ric(X,Y) = kg(X,Y),
under an orthogonal frame, we have

1
Z §vavo¢R1221 = Z(Riwg — R%gab + Riapt Roapa) + kRi201 -
« a,b

30



Proof. Fix an orthonormal frame. By the second Bianchi identity,

> (VaVaRiza + VaViRaao + VaVaRai1) = 0.

a

The Ricci identity given in [13] states
VoV Rsao1 =V Vo Rsao1 — RarsmBima21 — RaramBsma1 — Raram Bsam1 — RarimRsazm -
The Einstein condition implies
Raram Rsma1 = —Rrm Rsmo1 = —kgrm Rsma1 = —kRga1
and with the the second Bianchi identity
VaRsa21 = —VaR1a — ViRsaa2 = VaRg — ViRe = Vakga — Vikge = 0.

So plugging in r = 1,s = 2 and r = 2, s = 1 respectively,

VaViRou21 = — RaamRma21 + kR2121 — Ra12m Roam1 — Rat1m Raa2m

VaVaRa121 =Raoim Rma21 — kRi221 + Ra2am Riam1 + Ra2im Riazm -

Combining these,

Z VoVRi221 = 2kRi221+Ra12m Boma21 + Ra12mR2am1 + RatimR262m

- RaZlmRma21 - RaQQleaml - Ra21mR1a2m
= 2kR1201+2Rp19m Rina21 + 2Ra19m Roam1 — 2Ra20m Riam1

= 2kR1991+2(Ramz21 + Ra21im) (Rma21 + Roam1) — 2Roama Riam1
= 2kRi901+2(R2y,,, — B2, 01) — 2Rouma Riam1

a2lm am21
where the second equality is by symmetries, switching the roles of indices, and the third
equality by first Bianchi identity. m
Lemma 2.3.3. Let X, JX,Y,JY be orthonormal vectors and a,b € R such that a®> +b* =
1, then
H(aX +bY)+ H(aX —bY)+ H(aX +bJY) + H(aX — bJY)
=4(a*H(X) +b*H(Y) + 4a**R(X, J X, JY,Y)).
Proof. By definition H(X) = R(X,JX,JX,X) and H(X,Y) = R(X,JX,JY,Y), so
HJX,)Y)=H(X,JY)=H(X,Y). Using H(X,Y) = K(X,Y)+ K(X,JY) in Remark
2.1.3] one computes that
H(aX +bY)+ H(aX —bY)
=R(aX +bY,aJX +bJY,aJX +bJY,aX + bY )+
R(aX —bY,aJX —bJY,aJX —bJY,aX —bY)
=2(a"H(X) +b*H(Y) + 6a°0*H(X,Y) — 4a’b* K (X,Y)),
and, replacing Y with JY, we also get

H(aX +bJY)+ H(aX —bJY)
=2(a*H(X) +b*H(Y) + 6a*b*H(X,Y) — 4a*V’ K (X, JY)).

The result follows from H(X,Y) = K(X,Y) + K(X, JY). O
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Lemma 2.3.4 ([12] 7.4]). Given a Kdhler manifold of dimension n, the scalar curvature

at p is given by
n(n+1)
AT / HX

where S, is the unit sphere is T,M, vol(S*~1) is the volume of the standard (2n — 1)-
sphere in Fuclidean space, and dX is the canonical measure on S,.

Theorem 2.3.5. A n-dimensional compact connected Kdhler—Einstein manifold with
positive holomorphic bisectional curvature is holomorphically isometric to CP" with the
Fubini-Study metric up to a positive scalar.

Proof. Let UM denote the fibre bundle of unit tangent vectors of M. Since UM is
compact, H has a maximum as a function on UM. Suppose H obtains a maximum
at the unit vector v € T, M, let Hy = H(v). We see that H restricted to T, M is the
associated quadratic form of the symmetric tensor T'(—,—) = R(v, Jv, J(—),—). We
may associate T" with an operator P on T, M given by g(P(Y),—) = T(Y,—). Since T
is symmetric, g(P(X),Y) = g(X, P(Y)). Suppose Y € T, M is a unit vector orthogonal
to v, then Y may be identified with a unit vector in T, (7T, M), so there is a curve =y
on the unit sphere of T, M passing v at 0 with 7/(0) = Y. Differentiating H(v(t)) =
T(v(t),v(t)) = g(P(y(t)),(t)) at t = 0, by maximality of H at v,

d
0=,
~ (di PO ) + g (POO).
~o(P(V).0) + 9(Y, P0))
=2g(P(v),Y).

H(~(t))

. v(t)>

Thus T'(v,Y) = g(P(v),Y) = 0 for all unit Y such that g(X,Y’) = 0, so v is an eigenvector
of T, ie. T(v,—) = Hig(v,—). Now by applying Lemma to T, we can choose an
orthonormal frame Xi,...,X,,,JX;,...,JX, such that Ry;+,; = 0 at x for a # ¢* and
(X1)z = v. Let k € R such that Ric(—, —) = kg(—, —). Let Q = (% Y VaVaRn*l*l) |2
then by Lemma [2.3.1] with 2 = 1*, and evaluating everything at x,

Q=Y (Rl — Biiewp+ Riant Rivan-) + kH,y

= > (Rl — Riyewp + Riant Rican+) — Hi + kHy

a,b#1,1*
=—2 Z Rll*z *g + Z Rlabl* + RlablRl*abl*) - ]—-[12 + kHl
£l a,b#1,1*
= =2 Rl + Y (Rup + Ruej1)” + (Ruijer — Ruen)?) — Hy + kHy
i1 i,j#1
_2ZR11*11 Hf“"kHl,
i#1
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where we have used the fact that R} ;. = R} ,.; = Ri,, after summing over b, so

Z (Rigp- + Rian Ryva) = Z (RY 1 + Riabt Ruave1)

ab#1,1* a,b#1,1*
_ 2 2 2 2
= E (Rlijl + Ry jer + Ry + Rijja
ij#1
+ Rlileli*j*l + Rli*j*lRlijl - Rli*lelij*l - Rlij*lRli*jl)

= Z ((Ryij1 + Rli*j*1)2 + (Rujje1 — Rli*jl)z) :

ij£1
But k = Ryy =), Ryyvini = Hi1 + Zi# Ri1++; at & by Proposition , SO
Q>-2 Z R}y — HY + (Hl + Z Rll*i*i) Hy = Z Riyeiei(Hy — 2Ry10vi) -
i#1 i#1 i#1

For each ¢ # 1, let a X + bY € T, M be a unit vector where X = X; and Y = X;. Using
Lemma [2.3.3] and maximality of Hy,

AH, > 4(a*H(X) + 0*H(Y) 4 4a°0*Ryy-4+:)
thus moving the first term over,
(1+a*)b’Hy = (14 a*)(1 — a®)Hy > b*H(Y) + 46°0° Ryjeio

so Hy > 2Ryi++; by cancelling b* and setting a = 1. Hence Q > 0. But Q < 0
by maximality of Hy, hence () = 0. Since Rjj«+; > 0 we have H; = 2Ry1+4+;. Thus
k= H + 3(n —1)H; = {(n + 1)H,. Then for each p € M, the scalar curvature is
R(p) = Raq = 2nk = n(n + 1)H;, combining this with Lemma [2.3.4]

| - n0)x —o,
S

so H(X) = H; >0 for all X € U,M. The result follows from Remark [2.1.8 O
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