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Abstract

This research paper investigates holomorphic bisectional curvature and the
Frankel conjecture. The Frankel conjecture states that a connected compact Kähler
manifold with positive holomorphic bisectional curvature is biholomorphic to the
complex projective space. Following Goldberg and Kobayashi, we present proofs of
the conjecture in dimension two and in the case of Kähler–Einstein manifolds.
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Introduction

The Frankel conjecture was posed by Frankel in 1961 and states that a closed Kähler man-
ifold with positive bisectional curvature is biholomorphic to CPn. Its algebro-geometric
version, known as the Hartshorne conjecture, was posed by Hartshorne in 1970 and
states that an irreducible non-singular projective variety over an algebraically closed field
k, with ample tangent bundle, is isomorphic to a projective space over k. It was proved
by Mori using algebraic geometry of charateristic p > 0. Hartshorne’s conjecture is more
general than Frankel’s conjecture, as it only requires the tangent bundle to be ample,
where as Frankel’s conjecture requires positive bisectional curvature. Frankel’s conjecture
was proved in the two-dimensional case by Andreotti-Frankel, and resolved completely
by Siu-Yau using harmonic maps and characterization of projective space obtained by
Kobayashi-Ochiai.

A full proof of Frankel’s conjecture can be found in Siu and Yau [9]. This research
paper will focus on the cases of dimension two and Kähler–Einstein manifolds. The
following is a breakdown of the contents.
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The first section will be a summary of basic notions. There two sections on manifolds
with a slight twist in presentation, and one big section on Kähler structures. All three
sections have proofs of most statements. Also, there is one section on Riemannian geom-
etry containing no proofs. References will be given almost throughout when proofs are
missing.

The second section will be an exposition of Goldberg and Kobayashi [10]. The
Frankel conjecture in dimension two will be proved using complex algebraic geometry and
Castelnuovo-Andreotti’s result on surface classification. The Kähler-Einstein case will be
proved using mainly Riemannian geometry. In the Kähler-Einstein case, a stronger re-
sult than Frankel’s conjecture can be attained, giving a holomorphic isometry instead of
a biholomorphic equivalence.

1 Basic Kähler geometry

1.1 Differentiable and holomorphic maps

Let K be a field of characteristic 0. For our purposes, we can assume K = R,C. The
standard coordinates x1, . . . , xn of the vector space Kn will be realized as the dual of
the standard basis e1, . . . , en of Kn. They will often be used to indicate components of
elements in Kn, as x = xi(x)ei for every x ∈ Kn. The Einstein summation convention
will be used.

Let x1, . . . , xn be the standard coordinates of Rn.

Definition 1.1.1. Given a continuous map f : U → R, where U ⊆ Rn and a ∈ U , the
partial derivative ∂f

∂xi (a) at a is the limit

lim
t→0

f(x1, . . . , xi + t, . . . , xn)

t
,

where the limit is taken over the set of a + tei ∈ U with t ∈ R. If ∂f
∂xi (a) exists for all

a ∈ U , we write ∂f
∂xi for the resulting real function on U .

Let y1, . . . , ym be the standard coordinates of Rm. Consider a map f : U → V , where
U ⊆ Rn and V ⊆ Rm, denote f i = yi ◦ f .

Definition 1.1.2. The total derivative f∗ is the matrix given by (f∗)
i
j =

∂f i

∂xj .

Remark 1.1.3. Note that if the partial derivatives exist, f∗ exists and is a function
U → Mn×n(R) = Rn2

. In particular, we can talk about the total derivative of f∗ as a
function U → Rn2

which may not be continuous.

Definition 1.1.4. A map f : U → V is r-times continuously differentiable or Cr, if
the partial derivatives ∂rfj

∂xi1 ...∂xir
exists and are continuous, or equivalently, the result of

applying the operation of taking the total derivative r-times to f exists and is continuous,
and f is infinitely differentiable or C∞ if it is Cr for each r ∈ N.

Remark 1.1.5. We include 0 in N, and denote N+ = N \ {0}. By convention f is C0 if
f is continuous.
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In the rest of this subsection, we assume the following setup in each definition and
proposition. Let z1, . . . , zn be the standard coordinates on Cn. We may write zl =
xl + yli, where xl, yl are two copies of the coordinates for Rn, and identify Cn with R2n

by identifying the coordinates via (z1, . . . , zn) 7→ (x1, . . . , xn, y1, . . . , yn), which preserves
the topology on the two spaces. Put

jr =

[
0 −Ir
Ir 0

]
.

Fix a map f : U → V , where U ⊆ Cm = R2m and V ⊆ Cn = R2n are open subsets, and
define f∗ using this identification between Cn and Rn. Denote f l = zl ◦ f , ul = xl ◦ f and
vl = yl ◦ f , so f l = ul + vli.

Definition 1.1.6. The map f : U → V where U ⊆ Cm, V ⊆ Cn is holomorphic if it is
C1, and jnf∗ = f∗j

m or equivalently the Cauchy-Riemann equations

∂ul

∂xr
=
∂vl

∂yr
,

∂ul

∂xr
= − ∂vl

∂yr
,

are satisfied, or equivalently f∗ is of the form

[
A B
−B A

]
.

Proposition 1.1.7 (Osgood’s lemma). Suppose f is holomorphic, then given a ∈ U ,
there is a unique power series expansion

f l(z) =
∞∑

k1,...,km=0

ck1,...,km(z
1 − a1)k1 · · · (zm − am)km ,

in some neighbourhood of a, where ai = zi(a).

Proof. Choose ε1, . . . , εm > 0 such that the closure of the poly-disk ∆ given by |zl−al| < εl
is contained in U . For z ∈ ∆, repeated application of the Cauchy integral formula for a
single variable gives,

f l(z) =
1

(2πi)m

∫
|a1−ξ1|=ε1

dξ1
ξl − z1

∫
|a2−ξ2|=ε2

dξ2
ξ2 − z2

· · ·
∫
|am−ξm|=εm

dξm
ξm − zm

f(ξ)

=
1

(2πi)m

∫
|al−ξl|=εl

f(ξ)
dξ1 · · · dξr

(ξ1 − z1) · · · (ξm − zm)
,

where the second equality is by Fubini’s theorem, since the integrand is integrable over
|al − ξl| = εl. The fact the integrand is integrable over |al − ξl| = εl follows from the fact
that the integrand is bounded on |al− ξl| = εl, and |al− ξl| = εl has a finite measure. By
substituting the following series which converges absolutely uniformly on |al − ξl| = εl
into the above equality,

1

(ξ1 − z1) · · · (ξm − zm)
=

∞∑
k1,...,km=0

(z1 − a1)k1 · · · (zm − am)km

(ξ1 − a1)k1+1 · · · (ξm − am, )km+1
,

and bringing the summation out of the integral, we get the desired expression.

Corollary 1.1.8. A holomorphic map f : U → V is of class Cr for every r ∈ N.

Corollary 1.1.9. The total derivative f∗ =

[
A B
−B A

]
of a holomorphic map f : U → V

is holomorphic as the function A+ iB : U →Mn×n(C) = Cn2
, where U ⊆ Cm, V ⊆ Cn.
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1.2 Manifolds, vector bundles and fibre metrics

A textbook in differential geometry often treats differentiable manifolds without bound-
ary, but waves off the treatment of manifolds with boundary and complex manifolds as
being similar to manifolds without boundary. But to feel confident about the validity of
these structure, one may still wants to work them out in detail. The following is an at-
tempt to deal with these manifolds with similar structures all at once. The classical notion
of a pseudo-group of transformations captures the structure of various types of manifold.
We generalize it to the notation of pseudo-category of transformations, which encodes
the properties of morphisms between manifolds in addition to the manifold structures.

Definition 1.2.1. A pseudo-category of transformations Λ on a collection S of topological
spaces is a collection of continuous maps from an open subset of S to an open subset of
S ′ for S, S ′ ∈ S, such that S contains the singleton point space ∗ and is closed under
taking product of two spaces, and

1. if f : U → V is in Λ and W ⊆ U is any open subset, then f |W : W → f(W ) is in
Λ;

2. (locality) given f : U → V and an open cover of U given by Ur ⊆ U ranging over
r, if f |Ur : Ur → f(Ur) is in Λ for every r, then f ∈ Λ;

3. for each open subset U ⊆ S, idU ∈ Λ;

4. given maps f : U → V and g : W → Z in Λ, f ◦g : f−1(V ∩W ) → g(V ∩W ) is in Λ
(if V ∩W = ∅, we get the empty bijection, which is vacuously a homeomoprhism
map between open subsets);

5. if f ∈ Λ is a homeomorphism, then f−1 ∈ Λ;

6. given f, g ∈ Λ, f × g given by (f × g)(x, y) = (f(x), g(y)) is in Λ;

7. for each open subset U ⊆ S, S ∈ S, the unique map ∗U : U → ∗ is in Λ, and for
each a ∈ U , the map a : ∗ → U given by a(∗) = a is in Λ;

8. for each open subset U ⊆ S, S ∈ S, the diagonal map δU : U → U × U given by
δU(x) = (x, x) is in Λ;

9. given f : U × V → W , if f(a,−), f(−, b) ∈ Λ for all a ∈ U , b ∈ V , then f ∈ Λ.

Let Λ(S, S ′) ⊆ Λ denotes the subset of Λ consisting of maps f from an open set of S to an
open set of S ′ for S, S ′ ∈ S, and let Λ(S) ⊆ Λ(S, S) denote the subset of Λ(S, S) consisting
of homeomorphisms for S ∈ S. A pseudo-groupoid of transformations on a collection of
topological spaces S (with no additional requirements) is a collection of homeomorphisms
from an open subset of S to an open subset of S ′ for S, S ′ ∈ S satisfying 1 through 5.
A pseudo-group of transformations is a pseudo-groupoid of transformations on a single
topological space. In particular, each Λ(S) above is a pseudo-group of transformations.

Remark 1.2.2. Given a pseudo-category of transformations Λ, f ∈ Λ, f : U → V , and
W ⊆ S, the projection f × ∗W : U ×W → V × ∗ = V is in Λ. Given f ∈ Λ such that
f : U × V → W , and a ∈ U , we have f(a,−) = f ◦ (a× idV ) : V = ∗× V → U × V → W
is in Λ.
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Remark 1.2.3. A pseudo-category of transformations may be viewed as a category where
objects are topological spaces and morphisms are continuous maps from open subsets to
open subsets, satisfying certain additional properties.

Example 1.2.4. We have the following examples:

1. The pseudo-category Λr,N(H,R) of Cr-transformations consisting of Cr maps be-
tween open subsets of spaces in the collection of topological spaces generated by R
and H = [0,∞), and the associated pseudo-groups Λr(Rn) on Rn, Λr(H × Rn) on
H × Rn, and Λr(Hm × Rn) on Hm × Rn.

2. The pseudo-groupoid Λr,N
o (H,R) of orientation preserving transformations is the

subsets of Λr,N(H,R) consisting of homeomorphisms f such that det f∗ is positive,
with associated pseudo-groups Λr

o(Rn), Λr
o(H × Rn) and Λr

o(H
m × Rn).

3. The pseudo-category ΛN(C) of holomorphic transformations consisting of holomor-
phic maps from an open subset of Cn to an open subset of Cm, and the associated
pseudo-groups Λ(Cn) on Cn.

Remark 1.2.5. By Corollary 1.1.8 and Definition 1.1.6, we have Λ(Cn) ⊆ Λr,N
o (H,R) ⊆

Λr,N(H,R).

Definition 1.2.6. Given topological spaces S,M , and a pseudo-group of transformations
Λ on S, a Λ-atlas of M is a family of pairs (Ui, φi), called Λ-charts, indexed over a set I,
such that Ui indexed over I is an open cover of M , and

1. for every i ∈ I, φi : Ui → Vi is a homeomprhism, where Vi ⊆ S is an open subset;

2. for every i, j ∈ I, φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) is an element of Λ.

A Λ-structure of M is a Λ-atlas of M that is not a proper subfamily of any Λ-atlases
of M . A Λ-space is a topological space equipped with a Λ-structure. A Λ-manifold is a
second countable Hausdorff Λ-space.

Remark 1.2.7. Given an open subset U ⊆ M , a Λ-atlas of M gives an unique induced
Λ-atlas on U .

Proposition 1.2.8. Given a Λ-atlas A of M , there exists a unique Λ-structure of M
containing A as a subfamily.

Proof. Let Ã be the family of pairs (U,φ) such that φ : U → V is a homeomoprhism,
V ⊆ S is an open subset, and φi◦φ−1 : φ(Ui∩U) → φi(Ui∩U) is an element of Λ for every
(Ui, φi) in A. Thus A ⊆ Ã. For any chart (U,φ) in some Λ-atlas A′ containing A, we get
(U,φ) ∈ Ã, so Ã is not properly contained in any Λ-atlas. We check that Ã is an Λ-atlas.
Since A ⊆ Ã, Ã covers M by open sets. Given (U,φ) and (W,ψ) in Ã, and (Ui, φi) in
A, we have ψ ◦ φi, φ ◦ φi ∈ Λ, and the map ψ ◦ φ−1 : φ(U ∩W ∩ Ui) → ψ(U ∩W ∩ Ui)
is equal to ψ ◦ φi ◦ (φ ◦ φi)

−1 ∈ Λ. Since φ(U ∩ W ) =
⋃

i φ(U ∩ W ∩ Ui), we get
ψ ◦ φ−1 : φ(U ∩W ) → ψ(U ∩W ) is in Λ by locality of Λ. Hence Ã is a Λ-structure.

Corollary 1.2.9 (Manifold chart lemma). Let S be a topological space, and Λ a pseudo-
group of transformations on S. Given a set M , a family (Ui, φ) indexed over some I,
where Ui ⊆M ranging over a countable subset of I covers M , φi : Ui → Vi are bijections
such that Vi and φi(Ui ∩ Uj) are open subsets of S, and φj ◦ φ−1

i ∈ Λ for all i, j ∈ I.
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If M is given the minimal topology making φi continuous for all i ∈ I, then there is
an unique Λ-structure of M containing the pairs (Ui, φi) as charts. If additionally S is
second-countable and any p, q ∈M has i, j ∈ I such that p ∈ Ui, q ∈ Uj and Ui∩Uj = ∅,
then M is second countable Hausdorff.

Proof. By minimality, each φi is a homeomorphism, so the conclusion follows from Propo-
sition 1.2.8. Suppose the additional assumptions hold. Since each φi is a homeomorphism,
Ui is open, thus M is Hausdorff. Also, Ui is second countable, where M is covered by
countably many Ui, hence M is second countable.

Definition 1.2.10. Let Λ be a pseudo-category of transformations, and A and B be
a Λ(S)-structure and a Λ(S ′)-structure on topological spaces M and N respectively. A
continuous map f : M → N is a Λ-map if for any charts (U,φ) ∈ A and (V, ψ) ∈ B, we
have ψ ◦ f ◦ φ−1 ∈ Λ(S, S ′). If f is a Λ-homeomorphism, and f−1 is a Λ-map, then f is
a Λ-isomorphism.

Remark 1.2.11. The product M ×N can be given the Λ(S × S ′)-atlas A×B = {(U ×
V, φ×ψ) : (U,φ) ∈ A, (V, ψ) ∈ B}. Then for two Λ-maps (Λ-isomorphisms) f :M → N ,
g : M ′ → N ′, the product map f × g : M × M ′ → N × N ′ is also a Λ-map (resp.
Λ-isomorphism).

Definition 1.2.12. A differentiable manifold of class Cr (resp. differentiable manifold
of class Cr with boundaries, differentiable manifold of class Cr with corners, oriented dif-
ferentiable manifold of class Cr, oriented differentiable manifold of class Cr with bound-
aries, oriented differentiable manifold of class Cr with corners, complex manifold) of
dimension n is a Λr(Rn)-manifold (resp. Λr(H × Rn)-manifold, Λr(Hm × Rn)-manifold,
Λr

o(Rn)-manifold, Λr
o(H × Rn)-manifold, Λr

o(H
m × Rn)-manifold, Λ(Cn)-manifold). A

Cr-differentiable map (resp. holomorphic map, Cr-diffeomorphism, orientation preserv-
ing Cr-diffeomorphism, biholomorphic map) is a Λr,N(H,R)-map (resp. ΛN(C)-map,
Λr,N(H,R)-isomorphism, Λr,N

o (H,R)-isomorphism, ΛN(C)-isomorphism).

Remark 1.2.13. By Remark 1.2.5, a complex manifold is an oriented differeiantable
manifold of class C∞.

Remark 1.2.14. Let x1, . . . , xn (resp. z1, . . . , zn) be the standard coordinates for Rn

(resp. Cn), and let (U,φ) be a Cr-differentiable (resp. holomorphic) chart of real dimen-
sion n (resp. 2n). We abuse notation and write xi = xi ◦ φ (resp. zi = zi ◦ φ), and call
these local Cr-coordinates (resp. local holomorphic coordinates) associated to (U,φ).

Definition 1.2.15. A Ck function (resp. homomorphic function) on an open subset U
of a differentiable manifold of class Cr (resp. complex manifold) M is a Cr map (resp.
holomorphic map) f : U → K where K = R (resp. C). A Ck curve passing x ∈ M
at t ∈ I is a Ck-map γ : I → M with γ(t) = x, where I ⊆ R is an open interval. A
holomorphic curve passing x ∈ M at z ∈ U is a holomorphic map γ : U → M with
γ(z) = x, where U ⊆ C is an open connected set.

Definition 1.2.16. Let Λ be a pseudo-category of transformations on a collection of
topological spaces containing a topological field K such that addition and scalar multi-
plication of K are in Λ, and M be a Λ(S)-space. A K-vector bundle of rank r over M is a
topological space E equipped with an Λ(S ×Kr)-atlas, a Λ-surjection π : E →M called
the projection map, and a r-dimensional K-vector space structure on Ex = π−1(x), called
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the fibre at x, for each x ∈ M , such that for every p ∈ M there exists an open subset
U ∋ p and a Λ-isomorphism Φ : π−1(U) → U ×Kn, called a local trivialization, such that
Φ|Ex is a linear isomorphism to {x} ×Kn for each x ∈ U .

Remark 1.2.17. Since K ∈ S, and addition and scalar multiplication on Kn are in Λ,
the map Mm×n(K)×Kn → Km given by (A, v) 7→ Av is in Λ, where Mm×n(K) = Kmn.

Remark 1.2.18. For local trivializations (Ui,Φi) and (Uj,Φj), the Λ-isomorphism Φj ◦
Φ−1

i has the form (Φj ◦ Φ−1
i )(p, v) = (p, gij(p)v), where gij : Ui ∩ Uj → GL(n,K) ⊆ Kn2

are Λ-maps called transition maps.

Definition 1.2.19. Given a K-vector bundle E of rank r over a Λ(S)-space M , and an
open subset U ⊆ E, a Λ-section of E over U is a Λ-map s : U →M such that π ◦s = idU .
The set of Λ-sections of E over U is denoted Γ(E,U), and Γ(E) = Γ(E,M).

Definition 1.2.20. Let E, F be K-vector bundles over a Γ(S)-space M and Γ(S ′)-space
N with projection maps π1, π2 respectively. A vector bundle morphism f : E → F is a
Γ-map such that there exists a Γ-map g :M → N covered by f , meaning π2 ◦ f = g ◦ π1,
and f |Ex is a K-linear map for each x ∈ M . The rank (resp. nullity) of f at x ∈ M is
the rank (resp. nullity) of f |Ex .

Definition 1.2.21. A rank r subbundle of E is a K-vector bundle F of rank r with a
vector bundle morphism ι : F → E covering idM with constant rank r and nullity 0.

Proposition 1.2.22 (Vector bundle chart lemma). Let Λ, K, and M be as above, and
let Ex be a r-dimensional K-vector space for each x ∈M . Given a family (Ui,Φi) indexed
over some I, such that Ui ranging over I covers M with open sets, and Φi : π

−1(Ui) →
Ui × Kr are bijections, Φi|Ex is linear, π : E → M is defined by sending Ex to x, with
E =

⊔
x∈M Ex, where Φj ◦ Φ−1

i is a Λ map. If E is given the minimal topology making
Φi continuous for each i ∈ I, there is a unique Λ(S×Kr)-structure making E a K-vector
bundle of rank r over M . If in addition M is second countable Hausdorff, then so is E.

Proof. For each x ∈M , there is a (Ui,Φi) and a chart (Vx, φx) in the Λ(S)-structure onM
such that Ui ⊇ Vx ∋ x. Then the composition ψx = (φx× idKr)◦Φi : π

−1(Vx) → φx(Vx)×
Kr ⊆ S × Kr is a bijection onto an open subset. For y ∈ M , let ψy = (φy × idKr) ◦ Φj,
then ψx(π

−1(Vx) ∩ π−1(Vy)) = ψx(π
−1(Vx)) ∩ (φx(Vy) × Kr) = φx(Vx ∩ Vy) × Kr, which

is open, and ψy ◦ ψ−1
x = (φy × idKr) ◦ Φj ◦ Φ−1

i ◦ (φx × idKr)−1 ∈ Λ. By Corollary
1.2.9, E with the minimal topology making the Φi continuous has a unique Λ(S × Kr)-
structure containing each (Vx, ψx), and ifM is second countable Hausdorff, so is E. Since
φx ◦ π ◦ ψ−1

x : φx(Vx) × Kr → φx(Vx) is equal to idφx(Vx) ×∗Kr , π is a Λ-surjection by
Remark 1.2.2, and φx ◦ Φi ◦ ψ−1

x = idφx(Vx)×Kr , so Φi are Λ-isomorphisms.

Remark 1.2.23. The condition Φj ◦ Φ−1
i is a Λ-map is met if there is a Λ-map gij :

Ui ∩ Uj → GL(n,K) such that Φj ◦ Φ−1
i (p, v) = (p, gij(p)v).

Corollaries 1.2.24 and 1.2.28 below follow from Proposition 1.2.22.

Corollary 1.2.24. Let E and F be K-vector bundles over M . We have K-vector bundles
E∗, E ⊕ F , E ⊗ F ,

∧nE, and SymnE over M , with fibres E∗
x, Ex ⊕ Fx, Ex ⊗ Fx,∧nEx, and SymnEx, and given sections s, s1, . . . , sn ∈ Γ(E,U) and t ∈ Γ(F,U), s∗ ∈

Γ(E∗, U), s ⊕ t ∈ Γ(E ⊕ F,U), s ⊗ t ∈ Γ(E ⊗ F,U), s1 ∧ · · · ∧ sn ∈ Γ(
∧nE,U), and

s1 ⊙ · · · ⊙ sn ∈ Γ(SymnE,U) respectively. If K = C has a conjugation a 7→ ā which
is a field automorphism, we also have Ē with fibres Ēx, where Ēx is a copy of Ex with
elements denoted v̄ for v ∈ Ex such that z · v̄ = z̄ · v for z ∈ C.
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Remark 1.2.25. If K is a finite field extension of L, E is a K-vector bundle, and F is a
L-vector bundle, then E ⊗ F is naturally a K-vector bundle.

Remark 1.2.26. A set of sections s1, . . . , sr ∈ Γ(E,U) is a local frame of E over U if
it is a basis at each x ∈ U , and the set of dual sections s1, . . . , s1 ∈ Γ(E∗, U) are the
associated local coordinates.

Remark 1.2.27. A section s ∈ Γ(E∗ ⊗ E) is a vector bundle morphism s : E → E
covering idM , for a K-vector bundle E over M . In particular, the λ-eigenspaces of s for
λ ∈ K form a subbundle of E if s has constant λ-geometric multiplicity.

Corollary 1.2.28. Given a Λ-map f : M → N , and a K-vector bundle E over N , we
have the pullback bundle f ∗E =

⊔
x∈M Ef(x) over M , such that g : f ∗E → E which is the

identity on each fibre is a K-vector bundle morphism covering f .

Definition 1.2.29. A Riemannian metric (resp. Hermitian metric) on a R-vector bundle
(resp. C-vector bundle) E is a section h ∈ Γ(E∗ ⊗ E∗) (resp. Γ(E∗ ⊗ Ē∗)) such that
h(v, v) > 0 for all v ̸= 0 and h(v, w) = h(w, v) (resp. h(v, w) = h(w, v)).

1.3 Cotangent (tangent) bundle and connections

Tangent vectors are often defined as operators on the space of smooth functions satisfying
the product rule, notably in Lee [1], and cotangent vectors are defined as the dual. This
definition is simple, but somewhat abstract is the sense that it is harder to visualize
cotangent vectors geometrically. This section uses a direct construction of the cotangent
bundle using sheaf theory, defining cotangent spaces as the quotient of the space of germs
of differentiable functions by germs of functions constant to first order at the point. The
approach adds complications but has the advantage of being more intuitive.

Sheaf theory

Only the theory essential for the construction of the cotangent bundle is presented. The
interested reader may consult [8] for a more elaborate treatment.

For our purposes, a ring will be a commutative ring.

Definition 1.3.1. A presheaf of rings (resp. abelian groups) F on a topological space
M consists of:

1. for each open subset U ⊆M , a ring (resp. abelian group) F(U);

2. for each pair V ⊆ U ⊆ M of open subsets, a ring (resp. group) homomorphism
ρU,V : F(U) → F(V ), called the restriction map, such that ρU,U = idF(U), and
ρU,W = ρV,W ◦ ρU,V for open subsets W ⊆ V ⊆ U ⊆M .

Let A be a presheaf of rings on a topological space M , with restriction maps resU,V . A
presheaf of A-modules on M is a presheaf of abelian groups F on M such that F(U)
is a A(U)-module for each open subset U ⊆ S, and the restriction maps ρU,V satisfy
ρU,V (a · s) = resU,V (a) · ρU,V (s) for all a ∈ A(U) and s ∈ F(U) for open subsets V ⊆ U ⊆
M .
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Definition 1.3.2. Let A be a presheaf of rings on a topological spaceM and F a presheaf
of A-modules with restriction maps ρU,V . A presheaf of A-modules G is a sub-presheaf of
A-modules of F if G(U) is a A(U)-submodule of F(U) and ρU,V (G(U)) ⊆ G(V ) for every
open subsets V ⊆ U ⊆M where the restriction maps of G are ρU,V |G(U) : G(U) → G(V ).

Definition 1.3.3. Let A be a presheaf of rings on a topological space M and F ,G be
presheaves of A-modules with restriction maps ρU,V , ρ

′
U,V respectively. The direct sum

F ⊕ G is the presheaf of A-modules such that (F ⊕ G)(U) = F(U) ⊕ G(U) with the
restriction maps being ρU,V ⊕ ρ′U,V given by s ⊕ t 7→ ρU,V (s) ⊕ ρ′U,V (t). The tensor
product F ⊗A G is the presheaf of A-modules such that (F ⊗A G)(U) = F(U)⊗A(U) G(U)
with the restriction maps being ρU,V ⊗ ρ′U,V given by s ⊗ t 7→ ρU,V (s) ⊗ ρ′U,V (t). If
G is a sub-presheaf of A-modules of F , the quotient sheaf F/G is the presheaf of A-
modules such that (F/G)(U) = F(U)/G(U) and the restriction maps being ρ̃U,V given
by s+ G(U) 7→ ρU,V (s) + G(V ).

Definition 1.3.4. A directed system of rings (resp. abelian groups) is a index family
{Xi}i∈I of rings (resp. abelian groups) with a partial-order ≤ on I such that for each
i, j ∈ I there is k ∈ I such that i ≤ k and j ≤ k, and a ring (resp. group) homomorphism
fij : Xi → Xj for each i, j ∈ I with i ≤ j, such that fii = idXi

, and fik = fjk ◦ fij
for i, j, k ∈ I with i ≤ j ≤ k. The direct limit of the directed system of rings (resp.
abelian groups), denoted lim−→i∈I Xi, is the ring (resp, abelian group) with underlying set⊔

i∈I Xi/ ∼ where ∼ the the equivalence relation given by xi ∼ xj, where x ∈ Xi and
xj ∈ Xj for some i, j ∈ I, if and only if there is k ∈ I such that i ≤ k and j ≤ k,
and fik(xi) = fjk(xj), with addition given by [xi]∼ + [xj]∼ = [fik(xi) + fjk(xj)]∼, and
multiplication given by [xi]∼[xj]∼ = [fik(xi)fjk(xj)]∼ for xi ∈ Xi, xj ∈ Xj, and i ≤ k,
j ≤ k, i, j, k ∈ I. For i ∈ I, the canonical map fi : Xi → lim−→i∈I Xi is fi(xi) = [xi]∼.

Proposition 1.3.5. The ring (resp. group) structure on lim−→i∈I Xi is well-defined and

gives a ring (resp. abelian group), and the canonical maps fi are ring (resp. group)
homomorphisms.

Proof. Let xi ∈ Xi, xj ∈ Xj, xk ∈ Xj, xl ∈ Xl such that there is r, s ∈ I, i, j ≤ r,
k, l ≤ s, such that fir(xi) = fjr(xj) and fks(xk) = fls(xl), then there is t ∈ I, r, s ≤ t,
so fit(xi)fkt(xk) = frt(fir(xi))fst(fks(xk)) = frt(fjr(xj))fst(fls(xl)) = fjt(xj)flt(xl), so
the multiplication is well-defined. Addition is checked similarly. The other ring (resp.
abelian group) axioms follow from Xi being rings (resp. abelian groups) and the fij being
ring (resp. group) homorphisms. Given xi, yi ∈ Xi, we have [xiyi]∼ = [fii(xi)fii(yi)]∼ =
[xi]∼[yi]∼, and similarly for addition, so fi is a ring (resp. group) homomorphism.

Definition 1.3.6. Given a presheaf F of rings (resp. abelian groups) on a topological
space M , the stalk of F at x ∈ M is the direct limit Fx = lim−→U∋xF(U) of the directed

system consisting of F(U) over open subsets U ∋ x of M , with the partial-order ⊇ and
the restriction maps. Denote sx = [s]∼ for s ∈ F(U). Elements of the form sx are
sometimes called germs at x.

Proposition 1.3.7. For a presheaf of rings A on a topological space M and a presheaf of
A-modules F on M , Fx is an Ax-module by the action ax ·mx = ρW (resU,W (a) ·ρV,W (m))
for a ∈ A(U), m ∈ F(V ), where U, V ⊇ W ∋ x are open subsets of M , and ρW satisfies
ρW (a · s) = resW (a) · ρW (s) for all a ∈ A(W ) and s ∈ F(W ), where resW , ρW are the
canonical maps.
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Proof. Similar to Proposition 1.3.5.

Proposition 1.3.8. Given a presheaf of rings A on a topological space M , a presheaf of
A-modules F , and a sub-presheaf of A-modules G of F , Gx is a Ax-submodule of Fx for
each x ∈M .

Proof. Let ρW be the canonical maps to Fx, then ρW (G(W )) = Gx for each W ∋ x, so Gx

is a submodule of Fx by Proposition 1.3.5 and Proposition 1.3.7.

Proposition 1.3.9. Given a presheaf of rings A on a topological spaceM , and presheaves
of A-modules F ,G, (F ⊕ G)x = Fx ⊕ Gx and (F ⊗A G)x = Fx ⊗Ax Gx, and if G is a sub-
presheaf of A-modules of F , then (F/G)x = Fx/Gx.

Proof. We write s ∼ t for the relation that there is some restriction map which maps s, t
to the same element. By the definition, we have s ⊕ s′ ∼ t ⊕ t′ if and only if s ∼ t and
s′ ∼ t′, so we may identify (F ⊕G)x = Fx⊕Gx, with the canonical maps ρW ⊕ ρ′W , which
gives the Ax-module structure. Similarly, s⊗A(U) s

′ ∼ t⊗A(V ) t
′ if and only if s ∼ t and

s′ ∼ t′, so we may identify (F ⊗A G)x = Fx ⊗Ax Gx, with canonical maps ρW ⊗ ρ′W . We
have s+G(U) ∼ t+G(V ) if and only if ρU,W (s)−ρV,W (t) ∈ G(W ) for some W ⊆ U, V , so
we may identify (F/G)x = Fx/Gx, with canonical map F(W )/G(W ) → Fx/Gx induced
from ρW : F(W ) → Fx.

Example 1.3.10. A presheaf F may be defined with F(U) consisting of functions on U ,
with the restriction maps ρU,V given by sending f to f |V . Some examples are:

1. The presheaf of Cr-functions Cr(−) on a differentiable manifold of class Ck, where
r ≤ k, r, k ∈ N+ ∪ {∞}.

2. The presheaf of holomorphic functions H(−) on a complex manifold.

3. The presheaf of constant functions R(−) on a differentiable manifold of class Cr, or
C(−) on a complex manifold.

Cotangent bundle

When constructing structures on differentiable manifolds, the property of being r-times
differentiable is often unstable. For example, the tangent bundle of a Cr manifold is
Cr−1, and a differentiable vector field sends Cr functions to Cr−1 functions. Therefore
we will only work with the C∞ case eventually, although some results will still be stated
in general when permitted.

Proposition 1.3.11. Given a differentiable manifold of class Cr (resp. complex mani-
fold) M where r ≥ 0, the stalk Cr

x (resp. Hx) is a R-vector space (resp. C-vector space)
for each x ∈M .

Proof. Given x ∈M , the sheaf of rings R(−) with restriction maps resU,V has resU,W (f) =
resV,W (g) for f ∈ R(U), g ∈ R(V ), and U, V ⊇ W ∋ x, if and only if f(x) = g(x), so the
stalk of R(−) at x is R. The presheaf Cr(−) is a presheaf of R(−)-modules, so Cr

x is a
R-vector space by Proposition 1.3.7. Similarly for Hx.

Proposition 1.3.12. The subset K of Cr
x consisting of those fx ∈ C∞

x , where f ∈ C∞(U)
with x ∈ U , such that df◦γ

dt
|t=0 = 0, for all C1 curves γ passing x at 0, where r ≥ 1, is a

R-subspace. The subset L of Hx consisting of those fx ∈ Hx, where f ∈ H(U) with x ∈ U ,
such that df◦γ

dz
|z=0 = 0, for all holomorphic curves γ passing x at 0, is a C-subspace.
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Proof. The functional d(−)◦γ
dt

|t=0 on Cr
x is well-defined and R-linear, for a fixed C1 curve

γ passing x at 0, so its kernel Kγ is a R-subspace. As the intersection of Kγ over all γ, K
is a R-subspace. The case for L is similar.

Definition 1.3.13. The cotangent space at x ∈M of a differentiable manifoldM of class
Cr is the quotient R-vector space T ∗

xM = Cr
x/K. The holomorphic cotangent space at

x ∈ M of a complex manifold M is the quotient C-vector space H∗
xM = Hx/L. Denote

dfx = fx + K (resp. dfx = fx + L) for f ∈ Cr(U) (resp. f ∈ H(U)) where U ∋ x is an
open subset of M .

Proposition 1.3.14. There is a natural C-linear inclusion H∗
xM ↪→ T ∗

xM ⊗R C for a
complex manifold M given by dfx 7→ dux + idvx where f = u+ iv.

Proof. Since H∗
xM = Hx/L, and C∞(U)⊗ C quotients to T ∗

xM ⊗ C by taking the stalk
at x then modding out K ⊗ C, the inclusion H(U) ⊆ C∞(U) ⊗ C induces a linear
injection H∗

xM ↪→ T ∗
xM ⊗R C. Specifically, the identification f 7→ u+ iv gives a natural

inclusion H(U) ⊆ C∞(U) ⊗ C for each U ∋ x, realizing H(−) as a sub-presheaf of
the presheaf of C(−)-modules C∞(−) ⊗R(−) C(−), which passes to a C-linear inclusion
Hx ↪→ C∞

x ⊗ C given by fx 7→ ux + ivx. Since L ⊆ K ⊗R C, we are able to get a
C-linear map H∗

xM → T ∗
xM ⊗R C between the quotients, given by dfx 7→ dux + idvx,

where dux = ux + K ⊗R C and similarly for dvx. Suppose f = u + iv ∈ H(U) and
ux, vx ∈ K, then f ∈ L necessarily, so the above map is injective. Another way to say
this is L = Hx ∩ (K ⊗R C).

Proposition 1.3.15. Given f 1
x , . . . , f

k
x ∈ Cr

x (resp. Hx), and a Cr (resp. holomorphic)
function g on U , where r ≥ 1, U ∋ y is an open subset of Rk (resp. Ck) and y =
(f 1(x), . . . , fk(x)), there is a well-defined hx = g(f 1, . . . , fk)x ∈ Cr

x (resp. Hx) such that
dhx = ∂g

∂f l (y)df
l
x, with

∂g
∂f l denoting the partial derivative of g in the l-th variable.

Proof. Let f 1, . . . , fk : W → R such that f l
x are the germs we are given. Define h(p) =

g(f 1(p), . . . , fk(p)) on some V ∋ x, then hx ∈ Cr
x. For every C

1 curve γ passing x at 0, the

chain rule states dh◦γ
dt

|t=0 = ∂g
∂f l (y)

df l◦γ
dt

|t=0, so by linearity we have hx − ∂g
∂f l (y)f

l
x ∈ Kγ.

Thus hx − ∂g
∂f l (y)f

l
x ∈ K. The holomorphic case is verbatim using the chain rule for

holomorphic maps.

Corollary 1.3.16 (Product rule). Given fx, gx ∈ T ∗
xM (resp. H∗

xM), we have d(fg)x =
g(x)dfx + f(x)dgx.

Corollary 1.3.17. If M is a n-dimensional differentiable manifold of class Cr (resp. 2n-
dimensional complex manifold), where r ≥ 1, given a Cr-chart (resp. holomorphic chart)
(U,φ) with U ∋ p, let x1, . . . , xn (resp. z1, . . . , zn) be the associated local coordinates (resp.
local holomorphic coordinates), then dx1p, . . . , dx

n
p (resp. dz1p , . . . , dz

n
p ) form a basis for

T ∗
pM (resp. H∗

pM), so we get bijections ΦU : EU → U × Kr for EU =
⊔

x∈U T
∗M and

K = R (resp. EU =
⊔

x∈U H
∗M and K = C) by sending (p, df) to (p, ∂f

∂xi ei) (resp.

(p, ∂f
∂zi
ei)), such that ΦV ◦ Φ−1

U are Cr−1-maps (resp. holomorphic maps).

Proof. As a direct consequence of Proposition 1.3.15, this is a spanning set. Given ci such

that cix
i
p ∈ K, where xip are germs, we have d(cix

i◦γ)
dt

|t=0 = 0 for any C1 curve passing 0
at p. Let ei be the standard basis on Rn and let γk(t) = φ−1(xi(p)ei + tek), where (U,φ)

is the chart giving the local coordinates. Then 0 =
d(cix

i
p◦γk)
dt

|t=0 = ck. So it is linearly
independent. The same goes for the holomorphic case.
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Remark 1.3.18. From Corollary 1.3.17, dimT ∗
xM = dimM and 2 dimCH

∗
xM = dimM .

So given a complex manifold M , the vector space H∗
xM has half the C-dimension of

T ∗
xM ⊗ C.

Definition 1.3.19. The cotangent bundle (resp. holomorphic cotangent bundle) T ∗M
(resp. H∗M) of a Cr manifold (resp. complex manifold) M is the vector bundle given by
the above bijections ΦU via the vector bundle chart lemma. The tangent bundle (resp.
holomorphic tangent bundle) TM (resp. HM) of M is the dual vector bundle of T ∗M
(resp. H∗M).

Remark 1.3.20. The tangent or cotangent bundle of a differentiable manifold of class
Cr is a differentiable manifold of class Cr−1.

Definition 1.3.21. A differential n-form (resp. holomorphic n-form) over U ⊆ M is
a section ω ∈ Γ(

∧n T ∗M,U) (resp. Γ(
∧nH∗M,U)). A vector field (resp. holomorphic

vector field) over an open subset U ⊆M is a section X ∈ Γ(TM,U) (resp. Γ(HM,U)).

From now on, we will only work with the C∞ case.

Remark 1.3.22. Given f ∈ C∞(U) (resp. H(U)), its differential df ∈ Γ(T ∗M,U) (resp.
Γ(H∗M,U)) is the section x 7→ dfx, which is C∞ (resp. holomoprhic) by Corollary 1.3.17.
Given some X ∈ Γ(TM,U) (resp. Γ(HM,U)), denote X(df) ∈ C∞(U) (resp. H(U)) by
Xf . We see X is a linear operator on C∞(U) (resp. H(U)) satisfying the product rule,
X(fg) = fXg + gXf .

Remark 1.3.23. Given a Cr-chart (holomorphic chart) on U ⊆M with associated local
Cr-coordinates x1, . . . , xn (resp. local holomorphic coordinates z1, . . . , zn), the associ-
ated coordinate frames of T ∗M and TM (resp. H∗M and HM) over U are the local
frame dx1, . . . dxn (resp. dz1, . . . dzn) and its dual frame, denoted ∂

∂x1 , . . . ,
∂

∂xn (resp.
∂

∂z1
, . . . , ∂

∂zn
), respectively.

Remark 1.3.24. Let M be a complex manifold with local holomorphic coordinates
z1, . . . , zn and local C∞-coordinates x1, . . . , xn, y1, . . . , yn which are identified via zl =
xl + iyl. We have the holomorphic coordinate frame dz1, . . . , dzn for H∗M , where dzl =
dxl+idyl. We may extend dz1, . . . , dzn to a frame dz1, . . . , dzn, dz̄1, . . . , dz̄n for T ∗M⊗C,
where dz̄l = dxl − idyl and dz̄l is called the complex conjugate of dzl. More generally,
given ω = σ + iτ ∈ T ∗

xM ⊗ C for σ, τ ∈ T ∗
xM , its complex conjugate is ω̄ = σ − iτ . The

dual of the frame dz̄1, . . . dz̄n is denoted ∂
∂z̄1
, . . . , ∂

∂z̄n
. We have ∂

∂zl
= 1

2

(
∂
∂xl − i ∂

∂yl

)
and

∂
∂z̄l

= 1
2

(
∂
∂xl + i ∂

∂yl

)
by direct computation, and consequently f ∈ H(U) if and only if

∂
∂z̄l
f = 0 for f ∈ C∞(U)⊗ C by Definition 1.1.6.

Remark 1.3.25. We write T ∗
CM = T ∗M ⊗ C and TCM = TM ⊗ C.

Proposition 1.3.26. The set of linear operators X on C∞(U) (resp. H(U), C∞(U)⊗C)
such that X(fg) = gXf + fXg may be identified with Γ(T ∗M,U) (resp. Γ(H∗M,U),
Γ(T ∗

CM,U)).

Proof. Given a linear operator X on C∞(U) (resp. H(U)) satisfying the product rule.
Suppose f ∈ C∞(U) (resp. H(U)) such that dfx = 0, then ∂f

∂xl |x = 0, so Xf |x = 0 by
Taylor’s theorem (resp. Osgood’s lemma) and the product rule. Thus X passes through
the quotient to a smooth section in Γ(TM,U) (resp. Γ(HM,U)). The statement follows
from Remark 1.3.22.
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Remark 1.3.27. The Lie bracket on Γ(TM,U) (resp. Γ(HM,U), Γ(T ∗
CM)) is defined

[X, Y ] = XY − Y X. One may check [X, Y ] is linear and satisfies the product rule, and
that the Jacobi identity, [X, [Y, Z]]+[Y, [Z,X]]+[Z, [X, Y ]] = 0 holds. In local coordinates
X = X i ∂

∂xi
, Y = Y i ∂

∂xi
, we have

[X, Y ]f =

(
Xj ∂

∂xj

)(
Y i ∂

∂xi
f

)
−
(
Y j ∂

∂xj

)(
X i ∂

∂xi
f

)
=Xj

(
∂

∂xj
Y i

)
∂

∂xi
f +Xj

(
∂

∂xj
∂

∂xi
f

)
Y i

− Y j

(
∂

∂xj
X i

)
∂

∂xi
f − Y j

(
∂

∂xj
∂

∂xi
f

)
X i

=

(
Xj ∂

∂xj
Y i − Y j ∂

∂xj
X i

)
∂

∂xi
f .

Remark 1.3.28. Given a C1 curve (resp. holomorphic curve) γ passing x at t0 (resp. z0),

the operator d(−)◦γ
dt

|t=t0 (resp. d(−)◦γ
dz

|z=z0) satisfies the product rule, so it is an element
of TxM (resp. HxM). We denote it as γ′(t0) (resp. γ

′(z0)).

Remark 1.3.29. We write Ωp(M) = Γ(
∧p T ∗M). Define d : Ω1(M) → Ω2(M) via

d(df) = 0 where df is the differential of f for f ∈ C∞(M), and extending to Ωp(M)
by following d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ for α ∈ Ωp(M). This is called the
exterior derivative and it is the coboundary map of the cochain complex Ω•(M), the pth
cohomology of which is the pth de Rham cohomology Hp

dR(M) on M . In particular, d on
Ω1(M) extends by C-linearity to d : Ω1

C(M) → Ω2
C(M), which extends to coboundary

maps of Ω•
C(M). For a ω ∈ Ωk

C(M), we have explicitly

dω(X0, . . . , Xk) =
∑
i

Xiω(X0, . . . , X̂i, . . . , Xk)

−
∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . X̂j, . . . , Xk) .

The Poincaré lemma states that Hp
dR(U) = 0 for any star-shaped U ⊆ Rn and p ≥ 1.

This implies that every closed real p-form is locally exact, meaning if dω = 0 then there is
a section τ over some neighbourhood such that dτ = ω. A proof is found in [1, Theorem
17.14].

Definition 1.3.30. Given a C∞ map f : M → N , for differentiable manifolds M,N of
class C∞, the pullback is the R-vector bundle morphism f ∗ : f ∗(T ∗N) → T ∗M define by
f ∗(dgf(x)) = d(g ◦ f)x on each T ∗

f(x)N for g ∈ C∞(U), f(x) ∈ U ⊆ N . The pushforward

is the R-vector bundle morphism f∗ : TM → f ∗(TN) defined by f∗(Xp)g = Xp(g ◦ f)
on TpM for g ∈ C∞(U), f(p) ∈ U ⊆ N . The map f is an immersion if f∗ has constant
nullity 0, and a submersion if f∗ has constant rank dimN .

Definition 1.3.31. Let M,N be differentiable manifolds of class C∞, then N is an
immersed submanifold of M if there is an immersion ι : N → M , and an embedded
submanifold (we will just call it a submanifold) ofM if ι is additionally a homeomorphism
onto its image. The codimension of N in M is dimM − dimN .

Definition 1.3.32. A subbundle ∆ of TM (resp. TCM) is involutive if it is closed under
Lie brackets. A subbundle ∆ of TM is integrable if for each x ∈M there is a submanifold
N ∋ x of M such that ∆p = TpN for all p ∈ N , where N is called an integral manifold of
∆.
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Remark 1.3.33 (Frobenius theorem). A subbundle ∆ of TM is involutive if and only if
it is integrable. We will also say an integrable subbundle of TCM to mean an involutive
subbundle of TCM . A proof is found in [1, Theorem 19.12].

Definition 1.3.34. A connection on a K-vector bundle E over a differentiable manifold
M of class C∞ is a K-linear map ∇ : Γ(E) → Γ(T ∗M ⊗ E) satisfying the Leibniz rule,
∇(fs) = f∇(s) + df ⊗ s for f ∈ Cr(M), s ∈ Γ(E), for a finite field extension K of R, or
just K = R,C.

Remark 1.3.35. A connection ∇ is determined locally, meaning ∇Xs|p depends only
on the value of s ∈ Γ(E) on a neighbourhood of p, and we may define the restriction
∇ : Γ(E,U) → Γ(T ∗M ⊗ E,U) to some open subset U ⊆M .

Remark 1.3.36. GivenK-vector bundles E,F with connections∇, we have an associated
connection ∇ on E∗, E ⊕ F , E ⊕ F ,

∧nE and SymnE defined respectively by:

1. ∇X(ω)(s) = X(ω(s))− ω(∇Xs) for ω ∈ Γ(E∗), s ∈ Γ(E), X ∈ Γ(TM),

2. ∇(s⊕ t) = ∇(s)⊕∇(t) for s ∈ Γ(E) and t ∈ Γ(F ),

3. ∇(s⊗ t) = ∇(s)⊗ t+ s⊗∇(t) for s ∈ Γ(E) and t ∈ Γ(F ),

4. ∇(s1 ∧ · · · ∧ sn) =
∑n

i=1 s1 ∧ · · · ∧ ∇(si) ∧ · · · ∧ sn for s1, . . . , sn ∈ Γ(E),

5. ∇(s1 ⊙ · · · ⊙ sn) =
∑n

i=1 s1 ⊙ · · · ⊙ ∇(si)⊙ · · · ⊙ sn for s1, . . . , sn ∈ Γ(E).

If k 7→ k̄ is an involution on K that is a field automorphism (or just conjugation on
K = C), we may also define ∇ on Ē by ∇X s̄ = ∇Xs. One may check that 3 to 5 above
is well-defined.

Definition 1.3.37. A connection∇ on a K-vector bundle E equipped with a Riemannian
metric (resp. Hermitian metric) h is h-compatible if ∇h = 0.

Definition 1.3.38. A connection ∇ on TM is torsion-free if ∇XY −∇YX = [X, Y ].

1.4 Riemannian manifolds

Everything in this section can be found in [2].

Definition 1.4.1. A Riemannian manifold is a differentiable manifold M of class C∞

equipped with a Riemannian metric g on TM .

Remark 1.4.2 (Fundamental theorem of Riemannian geometry). There exists a unique
Levi-Civita connection ∇ on a Riemannian manifold (M, g) that is torsion-free and g-
compatible.

Definition 1.4.3. The curvature tensor R ∈ Γ(T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ TM) is given by
R(X, Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ], and the associated tensor R ∈ Γ(T ∗M ⊗ T ∗M ⊗
T ∗M ⊗ T ∗M) is given by R(X, Y, Z,W ) = g(R(X, Y )Z,W ).

Remark 1.4.4. The curvature tensor R has the following symmetries and identities:

1. (skew symmetry) R(X, Y ) = −R(Y,X),
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2. (skew symmetry) R(X, Y, Z,W ) = −R(X, Y,W,Z),

3. (interchange symmetry) R(X, Y, Z,W ) = R(Z,W,X, Y ),

4. (first Bianchi identity) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

5. (second Bianchi identity) (∇XR)(Y, Z) + (∇YR)(Z,X) + (∇ZR)(X, Y ) = 0.

Remark 1.4.5. Given a K-vector space V , there is a canonical identification V ∗ ⊗ V =
End(V ). In particular, we may define tr : V ∗ ⊗ V → K.

Definition 1.4.6. The Ricci curvature tensor Ric ∈ Γ(T ∗M⊗T ∗M) is given by Ric(X, Y ) =
trR(−, X)Y and the associated tensor Ric ∈ Γ(T ∗M ⊗ TM) is given by g(Ric(X),−) =
Ric(X,−). The scalar curvature Rs ∈ C∞(M) is given by Rs(x) = trRicx(−).

Remark 1.4.7. Given a local g-orthonormal frame X1, . . . , Xn ∈ Γ(TM,U), we have
Ric(X, Y ) =

∑n
i=1R(Xi, X, Y,Xi), which by the symmetries of R shows that Ric is

symmetric. Also, Rs(x) =
∑n

i=1Ric(Xi, Xi).

Definition 1.4.8. We write Ric ≥ k for k ∈ R if all eigenvalues λ of Ric(−) satisfies
λ ≥ k. A Riemannian manifold (M, g) is Einstein with Einstein constant k ∈ R if
Ric(X) = kX for all X ∈ Γ(TM). This means Ric(X, Y ) = kg(X, Y ) for all X ∈ Γ(TM)
by Definition 1.4.6.

Definition 1.4.9. The sectional curvature K of M is a real function on the fibre bundle
Gr(2,M) of 2-dimensional subspaces of TxM given by K(σ) = R(X, Y, Y,X) for any
orthonormal basis X, Y of σ ⊆ TxM .

Definition 1.4.10. Let (M, g) be a Riemannian manifold. A Riemannian submanifold
(N, g) of (M, g) is a submanifold N of M equipped with the induced Riemannian metric
from g. The normal bundle T⊥N over N is defined by T⊥

x N = (TxN)⊥ where ⊥ indicates
the g-orthogonal complement in TM . The second fundamental form of N is II ∈ Γ(T ∗N⊗
T ∗N ⊗ T⊥N) given by II(X, Y ) = (∇XY )⊥, where ⊥ indicates the orthogonal projection
onto T⊥N .

Remark 1.4.11 (Gauss-Codazzi formula). Let N ⊆M be a submanifold of (M, g), RN

be the Riemann curvature tensor on N , and II be the second fundamental form of N . We
have II(X, Y ) − II(Y,X) = [X, Y ]⊥ = 0 since [X, Y ] ∈ Γ(TN) for X, Y ∈ Γ(TN). Hence
II is symmetric. Moreover, we have the Gauss-Codazzi formula:

RN(X, Y, Z,W ) = R(X, Y, Z,W ) + g(II(X,W ), II(Y, Z))− g(II(X,Z), II(Y,W )) .

Definition 1.4.12. A C∞ curve γ : I → M on a Riemannian manifold is a geodesic if
∇γ′(t)γ

′(t) = 0 for all t ∈ I.

Remark 1.4.13. The tangent vector ∇γ′(t)γ
′(t) is defined by extending γ′(s) for s ∈

(t− ε, t+ ε), for some ε > 0 to a C∞ section over a neighbourhood of γ(t). The result is
indeed independent of the choice of extension.

Remark 1.4.14. Given a v ∈ TxM , there is a unique geodesic γ : (−ε, ε) → M such
that γ(0) = x and γ′(0) = v, for ε > 0 small enough.
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Definition 1.4.15. The exponential map expx : U ⊆ TxM → M at x ∈ M is given by
expx(v) = γv(1), where γv is the unique geodesic with γ

′
v(0) = v, and U is a neighbourhood

of 0 where γv(1) is defined for all v ∈ U .

Remark 1.4.16. For small enough U , expx is a C∞-diffeomoprhism. Given a basis
v1, . . . , vn of TxM with dual basis v1, . . . , vn, we have the chart exp−1

x : expx(U) 7→ U ⊆
TxM ∼= Rn, and vi = vi ◦ exp−1

x are the associated local coordinates. Local coordinates
associated with charts arising this way are called normal coordinates.

Proposition 1.4.17 (First and second variation of length). Suppose V,W are subman-
ifolds of a complete Riemannian manifold (M, g), and γ a shortest geodesic joining V
and W , where X is a unit parallel field, and cα(t) a smooth variation of c0(t) = γ(t) and
∂
∂α
cα(t)|α=0 = Xγ(t). Denoting Tcα(t) =

∂
∂t
cα(t), and let L(α) =

∫ l

0

√
g(Tcα(t), Tcα(t))dt be

the arc length of γ, then the first and second variations of length for γ with variational
field X are

L′
X(0) =

∂

∂α
L(α)|α=0 = 0 ,

L′′
X(0) =

∂2

∂α2
L(α)|α=0 = gq(∇XX,T )− gp(∇XX,T )−

∫ l

0

R(T,X,X, T )dt .

If cα(t0) is a geodesic for constant t0, then L
′′
X(0) = −

∫ l

0
R(T,X,X, T )dt.

1.5 Kähler metrics

The goal in this section is be to give a basic understanding of Kähler manifolds.

Almost complex structures

A Kähler manifold has a Hermitian structure and a complex structure. We start by
defining a complex structure.

Definition 1.5.1. Given a differentiable manifold M of class C∞, an almost complex
structure on M is a section J ∈ Γ(T ∗M ⊗ TM) such that J2 = −1 as a section of
End(TM). The pair (M,J) is called an almost complex manifold.

Remark 1.5.2. An almost complex structure has a unique extension J ∈ Γ(T ∗
CM⊗TCM).

Since J2 = −1, the only possible eigenvalues of J are i,−i, JX is linearly independent
to X for X ∈ TpM , and J is a non-singular endomorphism at each point.

Definition 1.5.3. Let T 0,1M be the subbundle of i-eigenspaces of J and T 1,0M be the
subbundle of −i-eigenspace of J .

Proposition 1.5.4. We have TCM = T 0,1M ⊕ T 1,0M , and T 0,1M = {X + iJX : X ∈
TM} and T 1,0M = {X − iJX : X ∈ TM}, so T 0,1M and T 1,0M are indeed subundles.

Proof. Let n = dimM . Since J2 = −1, J does not have real eigenvalues, so X, JX are
linearly independent for every X ∈ TM . Also by J2 = −1, if X1, JX1, . . . , Xr, JXr, Y are
linearly independent, then so areX1, JX1, . . . , Xr, JXr, JY , thus we can find by induction
a basis for TxM of the form X1, JX1, . . . , Xn, JXn. Clearly X + iJX and X − iJX is
a −i-eigenvector and i-eigenvector respectively for any X ∈ TM , and X1 + iJX1, X1 −
iJX1, . . . , Xn + iJXn, Xn − iJXn is a C-basis for (TCM)x. Hence we get the desired
decomposition of TCM and explicit descriptions of T 0,1M and T 1,0M . Each of these has
R-rank n, so they are indeed subbundles.
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Remark 1.5.5. An almost complex manifold (M,J) is always even dimensional since
TpM is the direct sum of invariant subspaces spanR(X, JX) for X ∈ TpM .

Remark 1.5.6. Similarly, we can consider J to be a section of End(T ∗
CM) where J2 = −1,

and do the above constructions with T ∗
CM verbatim. Particularly, Jω = J(−, ω) =

ω(J(−)) = ω ◦ J , where the last two J are considered to be a section of End(TCM).

Definition 1.5.7. Let
∧

1,0M and
∧

0,1M be the subbundle of T ∗
CM of −i-eigenspaces

and i-eigenspaces of J respectively.

Proposition 1.5.8. We have T ∗
CM =

∧
1,0M ⊕

∧
0,1M ,

∧
1,0M = {ω − iJω : ω ∈ T ∗M}

and
∧

0,1M = {ω + iJω : ω ∈ T ∗M}, and T 0,1M and T 1,0M is the annihilator of
∧

1,0M
and

∧
0,1M respectively.

Proof. Suppose X ∈ T 0,1
p M and ω ∈

∧
1,0
p M , then J(X,−) = iX(−) and J(−, ω) =

−i(−)(ω) as they are eigenvectors, so iX(ω) = J(X,ω) = −iX(ω), thus X(ω) = 0.
Similarly for X ∈ T 1,0

p M and ω ∈
∧

0,1
p M .

Definition 1.5.9. A complex k-form is a section of
∧k T ∗

CM and a (p, q)-form is a section
of
∧

p,qM , where
∧

p,0M =
∧p(

∧
1,0M),

∧
0,qM =

∧q(
∧

0,1M), and
∧

p,qM =
∧

p,0M ⊗∧
0,qM .

Remark 1.5.10. We have
∧k T ∗

CM =
⊕

p+q=k

∧
p,qM , where

∧
p,q
x M is identified with

the space generated by pure tensors σ ∧ τ for σ ∈
∧

p,0
x M and τx ∈

∧
0,qM . Write∧

T ∗
CM =

⊕n
k=0

∧k T ∗
CM , and

∧
0,0M = RM ⊗ C, where RM is the trivial vector bundle.

Proposition 1.5.11. A complex k-form ω is a (p, q)-form if and only if ω(X1, . . . , Xk) =
0 whenever there are p+ 1 sections of T 0,1M or q + 1 sections of T 1,0M in X1, . . . , Xk.

Proof. We prove the forward direction on pure tensors σ ⊗ τ for σ ∈
∧

p,0
x M and τ ∈∧

0,q
x M . If X1, . . . , Xk ∈ (TCM)x has p + 1 elements of T 0,1

x M or q + 1 elements of
T 1,0
x M , then σ ⊗ τ(X1, . . . , Xk) = σ(X1, . . . , Xp)τ(Xp+1, . . . , Xk) has at least one Xi ∈
T 0,1
x M in the arguments of σ or at least one Xi ∈ T 1,0

x M in the arguments of τ , so
σ ⊗ τ(X1, . . . , Xk) = 0. For the backwards direction, consider a complex k-form ω =
ω1 ∧ · · · ∧ ωk that is a pure tensor satisfying the condition, such that each ωi is either in∧

1,0
x M or

∧
0,1
x M , then the condition implies there are exactly p-many ωi ∈

∧
1,0
x M and

q-many ωi ∈
∧

1,0
x M in ω1, . . . , ωk.

Remark 1.5.12. For σ ∈
∧

p,q
x M and τ ∈

∧
r,s
x M , we have σ ∧ τ ∈

∧
p+r,q+s
x M , where∧

a,bM = 0 if a + b > dimM = 2n or max{a, b} > n. Given a pure complex k-form
ω = ω1 ∧ · · · ∧ ωk, its complex conjugate is ω̄ = ω̄1 ∧ · · · ∧ ω̄k, and we may extend this
definition by linearity to all complex k-forms. In particular, ω̄ ∈

∧
q,pM for ω ∈

∧
p,qM ,

and d commutes with complex conjugation.

Proposition 1.5.13. We have d(
∧

p,qM) ⊆
∧

p+2,q−1M⊕
∧

p+1,qM⊕
∧

p,q+1M⊕
∧

p−1,q+2M
for an almost complex manifold.

Proof. By Remark 1.5.10, d(
∧

0,0M) ⊆
∧

1,0M ⊕
∧

0,0M and d(
∧

1,0M) , d(
∧

0,1M) ⊆∧
0,2M ⊕

∧
1,1M ⊕

∧
0,2M . The statement follows from d(σ ∧ τ) = dσ ∧ τ − σ ∧ dτ for

complex 1-form σ and complex k-form τ , and induction.
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Definition 1.5.14. The linear operators ∂ :
∧

p,qM →
∧

p+1,qM and ∂̄ :
∧

p,qM →∧
p,q+1M are defined as ∂ = πp+1,q ◦ d and ∂̄ = πp,q+1 ◦ d where πp,q :

∧
T ∗
CM →

∧
p,qM is

the projection map, for an almost complex manifold M . One can check that ∂, ∂̄ satisfy
Leibniz’s rule.

Definition 1.5.15. The Nijenhuis tensor NJ ∈ Γ(T ∗M ⊗ T ∗M ⊗ TM) is given by
NJ(X, Y ) = [X, Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ] for an almost complex manifold
(M,J).

Proposition 1.5.16. The Nijenhuis tensor NJ is a tensor.

Proof. In local coordinates, by Remark 1.3.27, we have [X, Y ] = ∂XY − ∂YX, where
∂X is given by component-wise differentiation, for example, ∂XY = Xj ∂

∂xj (Y
i) ∂

∂xi . We
may also apply ∂X component-wise to J , which is a matrix of functions under the local
coordinates, to get another matrix of functions. Then

[X, Y ] =∂XY − ∂YX ,

[JX, JY ] =∂JX(JY )− ∂JY (JX)

=(∂JXJ)Y + J∂JX(Y )− (∂JY J)X − J∂JY (X) ,

J [JX, Y ] =J∂JX(Y )− J∂Y (JX)

=J∂JX(Y )− (∂Y J)(JX) + ∂YX ,

J [X, JY ] =(∂XJ)(JY )− ∂XY − J∂JY (X) ,

thus

NJ(X, Y ) = (∂JY J)X − (∂JXJ)Y + (∂XJ)(JY )− (∂Y J)(JX) ,

which satisfies NJ(fX, gY ) = fgNJ(X, Y ) for X, Y ∈ Γ(TM) and f, g ∈ C∞(M).

Remark 1.5.17. Given a complex manifold M , and a holomorphic chart (U, ϕ) with
associated local coordinates z1, . . . , zn, and local C∞-coordinates x1, . . . , xn, y1, . . . , yn

where zl = xl + iyl, we may define a natural complex structure J by J( ∂
∂xi ) =

∂
∂yi

and

J( ∂
∂yi

) = − ∂
∂xi . This is the same as J = φ−1

∗ ◦ jn ◦ φ∗, so given another holomorphic

chart (V, ψ), we have φ−1
∗ ◦ jn ◦ φ∗ = ψ−1

∗ ◦ ψ∗ ◦ φ−1
∗ ◦ jn ◦ φ∗ ◦ ψ−1

∗ ◦ ψ∗ = ψ−1
∗ ◦ jn ◦

ψ∗ ◦ φ−1
∗ ◦ φ∗ ◦ ψ−1

∗ ◦ ψ∗ = ψ−1
∗ ◦ jn ◦ ψ∗ by Definition 1.1.6 since ψ∗ ◦ φ−1

∗ = (ψ ◦ φ−1)∗ is
holomorphic, thus J is well-defined. Then dz1, . . . , dzn and dz̄1, . . . , dz̄n is a local frame
for
∧

1,0M and
∧

0,1M respectively. From Remark 1.3.24, a function f ∈ C∞(U) ⊗ C is
holomorphic if and only if Zf = 0 for all Z ∈ T 0,1M if and only if df ∈

∧
1,0M . Given

two complex manifolds (M,J) and (N, J ′), a C∞-map f :M → N is holomorphic if and
only if f∗ ◦ J = J ′ ◦ f∗, where J, J ′ are viewed as operators on the tangent spaces. A
complex structure is an almost complex structure arising from a holomorphic structure
this way. We see that H∗M =

∧
1,0M under the identification in Proposition 1.3.14, by

Corollary 1.3.17 and Remark 1.3.24.

Proposition 1.5.18. Given an almost complex manifold (M,J), the following are equiv-
alent:

1. J is a complex structure;

2. T 0,1M is involutive;
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3. d = ∂ + ∂̄;

4. ∂̄2 = 0;

5. NJ = 0.

Proof. (1 =⇒ 2) Given Z,W ∈ T 0,1
x M , written in local coordinates Z = Z l ∂

∂z̄l
and

W = W l ∂
∂z̄l

, then [Z,W ] ∈ T 0,1
x M by the local coordinate expression in Remark 1.3.27.

(2 =⇒ 1) This is a deep theorem of Newlander and Nirenberg. A proof may be
found in [5, Chapter 2].

(2 ⇐⇒ 3) Given ω ∈ Γ(
∧

1,0M), and Z,W ∈ Γ(T 0,1M), dω(Z,W ) = Zω(W ) +
Wω(Z)− ω([Z,W ]) = 0, thus dω ∈ Γ(

∧
1,1M ⊕

∧
0,2M), so d = ∂ + ∂̄ on Γ(

∧
1,0M), and

on Γ(
∧

0,1M) as well since d commutes with complex conjugation. The rest follows by
induction as in Proposition 1.5.13. On the other hand, if d = ∂ + ∂̄, then ω([Z,W ]) = 0,
so T 0,1M is integrable.

(3 =⇒ 4) Since d2 = ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2, where each term maps to a different space,
so ∂2 = 0, ∂̄2 = 0, and ∂∂̄ + ∂̄∂ = 0.

(4 =⇒ 3) Let ei be a local frame for
∧

1,0M . Given a function F on a neighbourhood
of x, write dF = fie

i + giē
i, so ∂F = fie

i. Then 0 = ∂̄2F = π0,2d∂̄F = π0,2 d(d− ∂)F =
−π0,2d∂F = −π0,2 d(fie

i), so the (0, 2)-part of d(fiei) vanishes. Then dωx ∈
∧

1,1
x M ⊕∧

0,2
x M for all (1, 0)-forms ω.
(2 ⇐⇒ 5) Let X, Y ∈ TM , and Z = [X + iJX, Y + iJY ] = [X, Y ] + i[X, JY ] +

i[JX, Y ]− [JX, JY ]. Then

Z − iJZ

=[X, Y ] + i[X, JY ] + i[JX, Y ]− [JX, JY ]− iJ [X, Y ] + J [X, JY ] + J [JX, Y ] + iJ [JX, JY ]

=NJ(X, Y )− iJNJ(X, Y ) .

So Z ∈ T 0,1M if and only if NJ = 0.

Complex structures

We list some facts about complex structures. In this subsection, M will be a complex
manifold.

Proposition 1.5.19. A smooth complex function f : U → C defined locally on M is
holomorphic if and only if Zf = 0 for every Z of type (0, 1), if and only if df is type
(1, 0).

Proof. The second equivalence is clear. For the first equivalence, using a local holomor-
phic coordinate, f is holomorphic if and only if (JX)f = iXf for all X, if and only if
i(X + iJX)f = 0 for all X.

Definition 1.5.20. A vector field Z ∈ Γ(T 0,1M) is holomorphic of Z(f) ∈ H(U) for
every f ∈ H(U), U ⊆ M an open subset. A (p, 0)-form ω is holomorphic if ∂̄ω = 0. A
real vector field X ∈ Γ(TM) is holomorphic if X − iJX is holomorphic.

Proposition 1.5.21. A real vector field X is holomorphic if and only if LXJ = 0, if and
only if the flow of X are holomorphic transformations.
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Proof. The last two statements are logically equivalent. For the first equivalence, suppose
X, Y are vector fields where X is real holomorphic, and f is a locally defined holomorphic
function. Note Z is (0, 1) if and only if Zf = 0 for any locally defined holomorphic
f . Thus (X + iJX)f = 0, so (X − iJX)f = 2Xf , then Xf is holomorphic. Hence
(Y + iJY )(Xf) = 0 and (Y + iJY )f = 0, so [Y + iJY,X]f = 0. Since f was arbitrary,
[Y + iJY,X] is type (0, 1), so [Y,X] + i[JY,X] = [Y + iJY,X] = [Y,X] + iJ [Y,X], thus
[JY,X] = J [Y,X]. Then (LXJ)Y = LX(JY )− JLXY = [JY,X]− J [Y,X] = 0.

Similarly, suppose for all Y , [JY,X]− J [Y,X] = (LXJ)Y = 0. Then [Y + iJY,X] is
(0, 1), thus for any holomorphic f , we have (Y + iJY )(Xf)−X(Y + iJY )f = 0. Since
(Y + iJX) is (0, 1), X(Y + iJY )f = 0, thus (Y + iJY )(Xf) = 0. So Xf is holomorphic
since Y was arbitrary. Then 2Xf = (X + iJX)f + (X − iJX)f = (X − iJX)f is
holomorphic, thus X is real holomorphic.

Proposition 1.5.22 (∂̄-Poincaré lemma). For a (0, 1)-form ω such that ∂̄ω = 0, there
exists locally a function f such that ∂̄f = ω.

A proof of the ∂̄-Poincaré lemma is in [3, p. 25].

Proposition 1.5.23 (local i∂∂̄-lemma). Let ω be a real 2-form of type (1, 1) on a complex
manifoldM , then ω is closed if and only if ω = i∂∂̄u for some locally defined real function
u.

Proof. Suppose ω = i∂∂̄u, then dω = 0 as d
(
∂∂̄
)
= ∂2∂̄+ ∂∂̄2 = 0. Suppose ω is a closed

real (1, 1)-form. By the Poincaré lemma in Remark 1.3.29, there is a local real 1-form
τ such that dτ = ω. Decompose τ = τ 1,0 + τ 0,1, then τ 0,1 = τ 1,0 since τ is real. By
ω = dτ = ∂τ 1,0 + ∂̄τ 0,1 + (∂̄τ 1,0 + ∂τ 0,1), we have ∂τ 1,0 = ∂τ 0,1 = 0 as ω is type (1, 1).
The ∂̄-Poincaré lemma gives a local function f such that ∂̄f = τ 0,1, so τ 1,0 = ∂f̄ . Thus
ω = ∂̄τ 1,0 + ∂τ 0,1 = ∂̄∂f̄ + ∂∂̄f = i∂∂̄(2 Im f).

Non-degenerate 2-forms with complex structure

One way to look at Kähler manifolds is as a manifold with a closed non-degenerate 2-form
with a compatible complex structure J .

Definition 1.5.24. Let ω be a non-degenerate 2-form over a C∞-manifoldM . An almost
complex structure J onM is ω-tame if ω(X, J(X)) > 0 for all X ∈ TM , and ω-compatible
if it is ω-tame and ω(X, Y ) = ω(JX, JY ).

Proposition 1.5.25. Let ω be a J-compatible non-degenerate 2-form on an almost com-
plex manifold (M,J), the Riemannian metric g(−,−) = ω(−, J(−)) and its Levi-Civita
connection ∇ satisfies

(∇XJ)J + J(∇XJ) = 0 ,

g((∇XJ)Y, Z) + g(Y, (∇XJ)Z) = 0 ,

dω(X, Y, Z) = g((∇XJ)Y, Z) + g((∇Y J)Z,X) + g((∇ZJ)X, Y ) .

If ω is closed, then
(∇JXJ) = −J(∇XJ) .
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Proof. The first identity follows from differentiating J2 = −1. By differentiating g(JY, Z)+
g(Y, JZ) = 0, we get

0 =g(∇X(JY ), Z) + g(JY,∇XZ) + g(∇XY, JZ) + g(Y,∇X(JZ))

=g(∇X(JY ), Z)− g(Y, J(∇X(Z)))− g(J(∇XY ), Z) + g(Y,∇X(JZ))

=g((∇XJ)Y, Z) + g(Y, (∇XJ)Z) .

With ω(X, Y ) = −g(X, JY ) and the second identity, we have

dω(X, Y, Z) =Xω(Y, Z)− Y ω(X,Z) + Zω(X, Y )− ω([X, Y ], Z)− ω([Y, Z], X) + ω([X,Z], Y )

=Xω(Y, Z)− Y ω(X,Z) + Zω(X, Y )

− ω(∇XY −∇YX,Z)− ω(∇YZ −∇ZY,X) + ω(∇XZ −∇ZX, Y )

=−Xg(Y, JZ) + Y g(X, JZ)− Zg(X, JY )

+ g(∇XY −∇YX, JZ) + g(∇YZ −∇ZY, JX)− g(∇XZ −∇ZX, JY )

=− g(∇XY, JZ) + g(∇YX, JZ)− g(∇ZX, JY )

− g(Y,∇X(JZ)) + g(X,∇Y (JZ))− g(X,∇Z(JY ))

+ g(∇XY −∇YX, JZ) + g(∇YZ −∇ZY, JX)− g(∇XZ −∇ZX, JY )

=− g(Y,∇X(JZ)) + g(X,∇Y (JZ))− g(X,∇Z(JY ))

+ g(∇YZ −∇ZY, JX)− g(∇XZ, JY )

=− g(Y, (∇XJ)Z) + g((∇Y J)Z,X)− g(X, (∇ZJ)Y )

=g((∇XJ)Y, Z) + g((∇Y J)Z,X) + g((∇ZJ)X, Y ) .

For X ∈ Γ(TM), define τX(Y, Z) = g((∇XJ)Y, Z). The second identity shows that τX is
a 2-form. Using the first identity we get

τX(Y, Z) + τX(JY, JZ) = 0 .

By the third identity and dω = 0,

τX(Y, Z) + τY (Z,X) + τZ(X, Y ) = 0 ,

then applying this to τX(Y, Z) and τX(JY, JZ) gives

2τX(Y, Z) = τX(Y, Z)− τX(JY, JZ) = −τY (Z,X)− τZ(X, Y ) + τJY (JZ,X) + τJZ(X, JY ) .

Replacing X, Y with JX, JY ,

2τJX(JY, Z) =− τJY (Z, JX)− τZ(JX, JY )− τY (JZ, JX)− τJZ(JX, Y )

=− τJY (JZ,X) + τZ(X, Y ) + τY (Z,X)− τJZ(X, JY )

=− 2τX(Y, Z) ,

which gives the last identity.

Corollary 1.5.26. Let ω be a J-compatible non-degenerate 2-form on an almost complex
manifold (M,J), defining the Riemannian metric g(−,−) = ω(−, J(−)) and its Levi-
Civita connection ∇. The following are equivalent:

1. ∇J = 0;
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2. J is integrable and ω is closed.

Proof. We use Proposition 1.5.25. Using [X, Y ] = ∇XY −∇YX, ∇X(JY ) = (∇XJ)Y +
J∇XY and the first identity,

NJ(X, Y ) =[X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

=∇XY −∇YX + J∇JXY − J∇Y (JX)

+ J∇X(JY )− J∇JYX −∇JX(JY ) +∇JY (JX)

=− (∇JXJ)Y + (∇JY J)X − (∇XJ)JY + (∇Y J)JX .

Then∇J = 0 implies NJ = 0 and dω = 0 by the above and the third identity respectively,
since ∇XJ = 0. Using the first three identities,

g(NJ(X, Y ), Z) =− g((∇JXJ)Y + (∇JY J)X − (∇XJ)JY + (∇Y J)JX,Z)

=− g((∇JXJ)Y, Z)− g((∇Y J)Z, JX)− g((∇ZJ)JX, Y )

− g((∇XJ)JY, Z)− g((∇JY J)Z,X)− g((∇ZJ)X, JY )− 2g(J(∇ZJ)X, Y )

=− dω(JX, Y, Z)− dω(X, JY, Z)− 2g(J(∇ZJ)X, Y ) ,

so if NJ = 0 and dω = 0, then ∇J = 0.

Holomorphic vector bundles

We introduce Chern connections for the purpose of characterizing Kähler manifolds. Fix
M to be a be a complex manifold.

Definition 1.5.27. Let E → M be a C-vector bundle. An operator ∂̄E :
∧p,q E →∧p,q+1E, where

∧p,q E =
∧p,qM ⊗ E, is a pre-holomorphic structure on E if it satisfies

the Leibniz rule ∂̄E(fs) = ∂̄(f) ⊗ s + f∂̄E(s). If ∂̄E is additionally a coboundary map,
i.e. ∂̄2E = 0, it is a holomorphic structure.

Definition 1.5.28. A complex vector bundle E →M is holomorphic if there exists local
trivializations Ψα, where (Ψα ◦ Ψ−1

β )(x) = (x, gαβ(x)v), such that the transition maps
gαβ : Uα ∩ Uβ → GL(n,C) are holomorphic.

Remark 1.5.29. Given a pre-holomorphic vector bundle (E, ∂̄E), a section σ ∈ Γ(E) is
called holomorphic if ∂̄Eσ = 0.

Proposition 1.5.30. A complex bundle is holomorphic if and only if it has a holomorphic
structure. More specifically, there is a canonical holomorphic structure for every holo-
morphic bundle E, and for every holomorphic structure ∂̄E, there are trivializations of E
with holomorphic transition maps such that ∂̄E is the canonical holomorphic structure.

Proof. Given a holomorphic vector bundle E, let ∂̄E be defined component-wise under
local frames by ∂̄E(s) = ∂̄(si) ⊗ ei, where ∂̄ = π0,1 ◦ d. Suppose s = siei = tjfj, and
si = gijt

j, so gijei = fj. Then ∂̄E(s) = ∂̄(si) ⊗ ei = ∂̄(gijt
j) ⊗ ei = gij ∂̄(t

j) ⊗ ei = ∂̄(tj)fj
since ∂̄gij = 0 as E is holomorphic, thus ∂̄E it is well-defined. The other direction appeals
to the Newlander-Nirenberg theorem, and a proof can be found in [6].

Remark 1.5.31. For every connection ∇ on E, we have ∇1,0 : Γ(E) → Γ(
∧

1,0E) and
∇0,1 : Γ(E) → Γ(

∧
0,1E) given by ∇1,0 = π1,0 ◦ ∇ and ∇0,1 = π0,1 ◦ ∇ where πp,q :

T ∗
CM ⊗ E →

∧
p,qE is the projection map. The operator ∇0,1 is a pre-holomorphic

structure. If∇0,1 is a coboundary map, then E is holomorphic with canonical holomorphic
structure ∂̄E = ∇0,1.
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Proposition 1.5.32. Given a complex vector bundle E with a holomorphic structure ∂̄E,
and a Hermitian fibre metric h on E, there exists a unique h-compatible connection ∇
on E such that ∇0,1 = ∂̄E.

Proof. Fix some local frame e1, . . . , en, then H = (hij) is a matrix of functions with
hij = h(ei, ej). Suppose there is a h-compatible connection ∇ such that ∇0,1 = ∂̄E. With
respect to this local frame, we have ∇ = d+A for some matrix of 1-forms A = (aij), where
d act component-wise. By h-compatibility, dh(ei, ej) = h((d+A)ei, ej)+h(ei, (d+A)ej) =
h(Aei, ej) + h(ei, Aej) = h(aliel, ej) + h(ei, a

m
j em), so dhij = alih

l
j + āmj h

i
m, thus

dH = A⊺H +HĀ .

Decompose d = ∂ + ∂̄, where ∂, ∂̄ = ∂̄E acts component-wise, then ∇1,0 = ∂ + A by
∇0,1 = ∂̄E. Since ∂ maps to (1, 0) forms, A is a matrix of (1, 0)-forms. Then ∂H = A⊺H

and ∂̄H = HĀ. Since ∂H + ∂̄H = dH = dH̄ = ∂H̄ + ∂̄H̄, by comparing types we get

∂̄H = ∂H̄, so H̄A = ∂H̄. Hence

A = H̄−1(∂H̄) .

This shows uniqueness. Now for existence, we define ∇ locally with the above A with
respect to some local frame. Since ∂H̄ is type (1, 0), we see that A is a matrix of (1, 0)-
forms. But ∂ also maps to (1, 0)-forms, so ∇0,1 = ∂̄. Also ∂̄H = HĀ by H̄A = ∂H̄ and

∂̄H = ∂H̄. Since h is Hermitian, we have H⊺ = H̄, so A⊺ = (∂H̄⊺)(H̄⊺)−1 = (∂H)H−1,
thus ∂H = A⊺H. Hence ∇ is h-compatible. By uniqueness, we obtain a well-defined
connection.

Definition 1.5.33. The Chern connection of a pre-holomorphic structure ∂̄ on a Hermi-
tian vector bundle (E, h) is the unique h-compatible connection ∇ such that ∇0,1 = ∂̄.

Kähler manifolds

Next, we define and give two characterizations of Kähler manifolds.

Definition 1.5.34. Given a Riemannian metric h on an almost complex manifold (M,J),
its fundamental form is ω(X, Y ) = g(JX, Y ). A Hermitian metric on an almost complex
manifold (M,J) is Riemannian metric such that its fundamental form is J-compatible.
A Hermitian metric on a complex manifold (M,J) with closed fundamental form is a
Kähler metric, and (M,J) with a Kähler metric is a Kähler manifold.

Proposition 1.5.35. A Hermitian metric on an almost complex manifold g on (M,J)
is Kähler if and only if ∇J = 0 for the Levi-Civita connection ∇ of h.

Proposition 1.5.35 follows from Corollary 1.5.26.

Remark 1.5.36. A Hermitian metric on a complex manifold is Kähler if and only if
there locally exists u such that ω = i ∂2u

∂z∂z̄
. The functions u are called Kähler potentials.

Remark 1.5.37. The tangent bundle TM can be made into a complex vector bundle
with scalar multiplication of i given by iX = JX. We can then identify TM with T 1,0M
by X 7→ 1

2
(X − iJX) as C-vector bundles, preserving the action of J .
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Proposition 1.5.38. The holomorphic structure on the complex bundle TM ∼= T 1,0M
for a complex manifold (M,J) with a Hermitian metric on a complex manifold g is given
by ∂̄XY = 1

2
(∇XY + J∇JXY − J(∇Y J)X), where ∇ is the Levi-Civita connection of g.

Proof. By Proposition 1.5.30, it suffices to show that the above defined ∂̄Y is a TM -
valued (0, 1)-form for all Y , ∂̄ is a linear operator satisfying Leibniz rule, and ∂̄Y = 0 for
all holomorphic Y . To show ∂̄Y is of type (0, 1), note that

∂̄X+iJXY =∂̄XY + i∂̄JXY

=
1

2
(∇XY + J∇JXY − J(∇Y J)X + i∇JXY + iJ∇J2XY − iJ(∇Y J)(JX))

=
1

2
(∇XY + J∇JXY − J(∇Y J)X + i∇iXY + iJ∇iJXY − iJ(∇Y J)(iX))

=
1

2
(∇XY + J∇JXY − J(∇Y J)X −∇XY − J∇JXY + J(∇Y J)(X))

=0 .

Also

∂̄X(fY ) =
1

2
(∇X(fY ) + J∇JX(fY )− J(∇fY J)X)

=
1

2
((Xf)Y + f∇XY + J((JX)f)Y + fJ∇JXY − fJ(∇Y J)X)

=
1

2
((Xf)Y + i((JX)f)Y + f∇XY + fJ∇JXY − fJ(∇Y J)X)

=
1

2
((X + iJX)fY + f∇XY + fJ∇JXY − fJ(∇Y J)X)

=∂̄X(f)Y + f∂̄XY ,

so ∂̄ satisfies the Leibniz rule. Since ∂̄ is a C-linear in the second entry and C∞(U)-linear
in the first, it is an operator. Finally, if Y is holomorphic, then by Proposition 1.5.21,

0 =(LY J)X

=J [X, Y ]− [JX, Y ]

=J∇XY − J∇YX −∇JXY +∇Y (JX)

=J∇XY − J∇YX −∇JXY + (∇Y J)X + J∇YX

=J∇XY −∇JXY + (∇Y J)X

=J∂̄XY .

Proposition 1.5.39. Given an almost complex manifold (M,J) with a Hermitian metric
on an almost complex manifold g, the Chern connection of the complex bundle TM with
Hermitian metric h = g − iω is the Levi-Civita connection of g via the identification
TM ∼= T 1,0M in Remark 1.5.37, if and only if g is Kähler.

Proof. Suppose the Levi-Civita connection ∇ is the Chern connection, then ∇ is a com-
plex connection on TM , so (∇J)Y = ∇(JY ) − J∇Y = ∇(iY ) − i∇Y = 0. Thus
∇J = 0, hence h is Kähler by Proposition 1.5.35. Suppose h is Kähler, then (M,J)
is complex, and the Levi-Civita connection ∇ is g-compatible and ∇J = 0. Thus
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(∇ω)(X, Y ) = g(J∇X, Y )+g(JX,∇Y ) = g(∇(JX), Y )+g(JX,∇Y ) = (∇g)(JX, Y ) by
∇J = 0, so ∇ω = ∇g = 0, hence ∇ is h-compatible. It remains to show that ∇0,1 = ∂̄TM .
By Proposition 1.5.38 and ∇J = 0,

∇0,1
X Y =∇ 1

2
(X+iJX)Y =

1

2
(∇XY + i∇JXY ) =

1

2
(∇X + J∇JX) = (∂̄TM)XY ,

where X is a vector field and Y is a section of the complex bundle.

Fubini-Study metric

The following is an important example.
Let CPn = (Cn+1 \ {0})/ ∼ where u ∼ v if and only if u = cv for some c ∈ C \ {0}.

Denote [z0 : · · · : zm] = [(z0, . . . , zn)]∼, and let Ui = {[z0, . . . , zn] : zi ̸= 0}. Define
ϕi : Ui → Cn by ϕi([z0, . . . , zn]) = (z0/zi, . . . , zi−1/zi, zi+1/zi, . . . , zn/zi), then, for i < j,

(ϕi ◦ ϕ−1
j )(w1, . . . , wn) =

(
w1

wi

, . . . ,
wi−1

wi

,
wi+1

wi

, . . . ,
wj

wi

,
1

wi

,
wj+1

wi

, . . .
wn

wi

)
,

which is holomorphic. Thus the ϕi defines a holomorphic structure on CPn, giving CPn

a complex structure J .
Define the projection map π : Cn+1 \ {0} → CPn and the 2-form ρFS on Cn+1 \ {0}

by

ρFS =
1

2(
∑

m z̄
mzm)2

∑
j ̸=k

(z̄jzjdz̄k ∧ dzk − z̄jzkdz̄j ∧ dzk) ,

and define the 2-form ωFS on CPn, called the Fubini-Study form, by

(ωFS)x(X, Y ) = (ρFS)x(u, v)

for u, v ∈ Cn+1 = Tz(Cn+1 \ {0}) such that π(z) = x, π∗u = X and π∗v = Y , i.e.
π∗ωFS = ρFS. The associated metric is called the Fubini-Study metric. One can check
that ωFS can be written on the open sets ϕj(Uj) as

ωFS =
i

2
∂∂̄fj , fj(z) = log

(∑
m z̄

mzm

z̄jzj

)
,

so ωFS is closed. One can also check that the restriction of ρFS to the unit sphere is the
standard symplectic form

∑
m dxm ∧ dym, so ωFS is non-degenerate. One can moreover

check that J is ωFS-compatible. Hence the Fubini-Study metric is a Kähler metric.

2 Holomorphic sectional curvature

For a Kähler manifold (M,h), by [4, Prop. 4.5, Ch. IX] we have R(X, Y )JZ =
JR(X, Y )Z, which gives

R(X, Y, JZ, JT ) = R(X, Y, Z, T ) = R(JX, JY, Z, T ) .

This identity together with the symmetries and identities in Remark 1.4.4 will be used
freely throughout the section.
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2.1 Bisectional curvature

Holomorphic bisectional curvature is a variation of the usual sectional curvature in the
setting of Kähler manifolds.

Definition 2.1.1. A plane σ in TpM , p ∈M is holomorphic if it is J-invariant.

Definition 2.1.2. The restriction of K to holomorphic planes is called the holomorphic
sectional curvature, and denoted H. Given a vector X ∈ σ we write H(X) = H(σ). For
holomorphic planes σ, σ′, the holomorphic bisectional curvature is defined

H(σ, σ′) = R(X, JX, JY, Y ) ,

for any unit vectors X ∈ σ and Y ∈ σ′.

Remark 2.1.3. Given a holomorphic plane σ and some non-zero (resp. unit) vector
X ∈ σ, one can check that the pair X, JX is an orthogonal (orthonormal) basis. Recall
that the sectional curvature K of a plane in the tangent space is defined to be K(σ) =
R(X, Y, Y,X) for any orthonormal basis X, Y of σ. So for a unit vector X ∈ σ, where
σ is holomorphic, we have H(X) = R(X, JX, JX,X). Since H(σ, σ) = H(σ), and using
the first Bianchi identity,

R(X, JX, JY, Y ) =−R(JY,X, JX, Y )−R(JX, JY,X, Y )

=R(X, JY, JY,X) +R(Y,X,X, Y ) = K(X, JY ) +K(Y,X) ,

so holomorphic sectional curvature H(−) has less information than holomorphic bisec-
tional curvature H(−,−), which in turn has less information than sectional curvature
K.

Proposition 2.1.4 ([4, Prop. 7.3, Ch. IX]). If a Kähler manifold (M, g) has constant
holomorphic sectional curvature c, then

R(X, Y, Z,W ) =
c

4
(−g(X,Z)g(Y,W ) + g(X,W )g(Y, Z)

− g(X, JZ)g(Y, JW ) + g(X, JW )g(Y, JZ)− 2g(X, JY )g(Z, JW )) ,

from which it follows that

R(X, JX, JY, Y ) =
c

2
(g(X,X)g(Y, Y ) + g(X, Y )2 + g(X, JY )2) .

Remark 2.1.5. Given constant holomorphic sectional curvature, let X ∈ σ and Y ∈ σ′

be unit vectors, we have g(Y, JY ) = 0. Then there is an orthonormal basis of TxM
of the form X1 = Y,X2 = JY,X3, . . . , Xn, so 1 = g(X,X) =

∑
a g(X,Xa)

2. Thus
g(X, Y )2 + g(X, JY )2 ≤ 1. It follows that R(σ, σ′) is between c

2
and c.

Proposition 2.1.6 ([4, Prop. 7.4, Ch. IX]). For any c > 0, the projective space CPn

with the Kähler form 4
c
ωFS has constant holomorphic sectional curvature c, where ωFS is

the Fubini-Study form.

Proposition 2.1.7 ([4, Prop. 7.9, Ch. IX]). Two simply connected complete Kähler
manifolds with constant holomorphic sectional curvature c are holomorphically isometric.
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Remark 2.1.8. Using Propositions 2.1.6, 2.1.7 and Synge’s theorem, any connected
compact Kähler manifold with positive constant sectional curvature is holomorphically
isometric to CPn with the Fubini-Study metric up to a positive scalar.

We end this section with a look at complex submanifolds. Given a complex submani-
fold N ⊆M , where (M,J, g) is a Kähler manifold, denote the induced Riemann curvature
on N by RN . Let II be the second fundamental form of N , then from Remark 1.4.11, II
is symmetric and we have the Gauss-Codazzi formula giving

RN(X, Y, Z,W ) = R(X, Y, Z,W ) + g(II(X,W ), II(Y, Z))− g(II(X,Z), II(Y,W )) .

Since ∇J = 0 and TN, T⊥N are J-invariant, II(X, JY ) = (∇X(JY ))⊥ = (J∇XY )⊥ =
J(∇XY )⊥ = JII(X, Y ), so

RN(X, JX, JY, Y ) = R(X, JX, JY, Y )− ∥II(X, Y )∥2 − ∥II(X, JY )∥2 .

Hence the holomorphic bisectional curvature of N is less than that of M .

2.2 Frankel conjecture in dimension two

We prove Frankel’s conjecture for Kähler surfaces.

Theorem 2.2.1. Let M be a connected compact Kähler manifold with positive holomor-
phic bisectional curvature, and let V,W be compact complex submanifolds. If dimV +
dimW ≥ dimM , then V and W have non-empty intersection.

Proof. Suppose V ∩W = ∅. Let γ : [0, l] →M be a shortest geodesic between V and W ,
which exists since M is compact thus complete, with γ(0) = p ∈ V and γ(l) = q ∈ W .
Since γ is shortest, γ is orthogonal to TpV and TqW , as if γ is not orthogonal to TpV and
TqW , we can deform it to get a shorter path. Parallel transport along γ defines a linear
map from TpV to TqM , then by denoting its image subspace as B, B and TqW are both
orthogonal to γ since parallel transport preserves the metric. So by dimV + dimW ≥
dimM , B ∩ TqW ̸= ∅. Thus we may find a unit parallel field X along γ such that
Xp ∈ TpV andXq ∈ TqW . Since JX is also unit and parallel as J preserves g and∇J = 0,
and JXp ∈ TpV , JXq ∈ TqW as V,W are complex submanifolds. By Proposition 1.4.17
and denoting T = γ′, the second variation of length for γ with variational fields X and
JX respectively are

L′′
X(0) = gq(∇XX,T )− gp(∇XX,T )−

∫ l

0

R(T,X,X, T )dt ,

L′′
JX(0) = gq(∇JX(JX), T )− gp(∇JX(JX), T )−

∫ l

0

R(T, JX, JX, T )dt .

We have

g(∇XX +∇JX(JX), T ) =g(J∇XX + J∇JX(JX), JT )

=g(∇X(JX)−∇JXX, JT )

=g([JX,X], JT ) ,
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where g([JX,X], JT ) = −g(J [JX,X], T ) = 0 at p and q since V,W are complex sub-
manifolds so [JX,X]p ∈ TpV , J [JX,X]p ∈ TpV and T is orthogonal to TpV and similarly
at q. Thus by the first Bianchi identity,

L′′
X(0) + L′′

JX(0) =−
∫ l

0

(R(T,X,X, T ) +R(T, JX, JX, T ))dt

=−
∫ l

0

R(T, JT,X, JX)dt < 0 ,

since bisectional curvature is positive. Hence L′′
X(0) or L′′

JX(0) is negative, but γ is
shortest, a contradiction.

Starting here, we expect more sophistication in algebraic geometry, Chern classes and
Hodge theory from the reader. A reference for the first is [3], and a reference for the last
two is [6].

Given a local orthonormal frame X1, . . . , Xn, we write Rabcd = R(Xa, Xb, Xc, Xd),
Rab = Ric(Xa, Xb). Suppose the local frame has the form X1, . . . , Xn, JX1, . . . , JXn, we
write Rii∗j∗j = R(Xi, JXi, JXj, Xj), etc. When summing over the indices, a, b, c runs
through all sections, while i, j, k only runs through the first half X1, . . . , Xn.

Proposition 2.2.2. Using the above convention, we have

Ric(X, Y ) =
1

2

∑
a

R(Xa, JXa, JY,X) =
∑
i

R(Xi, JXi, JY,X) .

In particular, Rij = Rkk∗i∗j, so positive bisectional curvature implies positive definite
Ricci curvature.

Proof. Using the first Bianchi identity,

Ric(X, Y ) =
∑
a

R(Xa, X, Y,Xa)

=
∑
a

R(Xa, X, JY, JXa)

=
∑
a

(−R(X, JY,Xa, JXa)−R(JY,Xa, X, JXa))

=
∑
a

(R(JY,X,Xa, JXa)−R(JXa, Y,X, JXa))

=
∑
a

R(JY,X,Xa, JXa)− Ric(X, Y ) .

so Ric(X, Y ) = 1
2

∑
aR(Xi, JXi, JY,X).

Corollary 2.2.3. We have Ric(X, Y ) = Ric(JX, JY ) for any vector fields X, Y .

Proof. Follows from Proposition 2.2.2.

Definition 2.2.4. The Ricci form of a Kähler manifold M is defined as ρ(−,−) =
Ric(J(−),−).
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Definition 2.2.5. A (1, 1)-form σ is positive if σ(X, JX) > 0 for any X ∈ TM . A
holomorphic line bundle L over a complex manifold is positive if there exists a metric
on L where the Chern connection has a curvature form Θ such that i

2π
Θ is a positive

(1, 1)-form. On the other hand, L is negative if L−1 = L∗ is positive.

Proposition 2.2.6 ([3, p.148]). Given any real closed representative σ of type (1, 1) for
the first Chern class of a holomorphic line bundle L, there exists a metric on L such that
the curvature form Θ of the Chern connection satisfies σ = i

2π
Θ. Thus L is positive if

and only if its Chern connection can be represented by a positive form.

Proposition 2.2.7 ([6]). The first Chern class of TM ∼= T 1,0M for any compact Kähler
manifold is represented by 1

2π
ρ, where ρ is the Ricci form.

Proposition 2.2.8 ([6]). For any complex vector bundle E over a complex manifold M
of rank k, the first Chern classes of E and

∧k E are the same for k ≥ 1.

Remark 2.2.9. For any compact Kähler manifold M of dimension 2n with positive
bisectional curvature, let ρ be the Ricci form. Since bisectional curvature is positive,
Ric is positive definite by Proposition 2.2.2, thus ρ is positive. The first Chern class of∧n(T 1,0M) has the representative 1

2π
ρ by Propositions 2.2.7 and 2.2.8, so the curvature

form of
∧n(T 1,0M) is Θ = −iρ by Propositions 2.2.6, thus iΘ = ρ. Hence

∧n(T 1,0M) is
positive, so

∧
n,0M = (

∧n(T 1,0M))∗ is negative.

Definition 2.2.10. An algebraic Kähler manifold is a Kähler manifold which is also pro-
jective variety. The canonical line bundle of an algebraic Kähler manifold M of complex
dimension n is the line bundle KM =

∧n,0M of (n, 0)-forms. The anti-canonical bundle
K−1

M = K∗
M is the inverse line bundle of KM , which happens to be the dual bundle. The

ith plurigenus of M is the complex dimension Pi = dimΓ(M,Ki
M) = dimH0(M,Ki

M)
of the vector space of global holomorphic sections of the ith tensor power of KM . The
arithmetic genus of M is pa =

∑n−1
j=0 (−1)jhn−j,0, where hp,q denotes the Hodge numbers

of M .

Definition 2.2.11. A ruled surface is the total space S of a holomorphic fibre bundle
where the fibres are CP1 and the base space is a non-singular complex algebraic curve.

Lemma 2.2.12 (Castelnuovo-Andreotti, [11, Theorem 49]). Given a algebraic Kähler
surface M , if P2 = pa = 0, then M is either CP2 or a ruled surface.

Theorem 2.2.13 (Kodaira’s embedding). Given a compact Kähler manifold and a holo-
morphic line bundle L over M , if L is positive, then there is a holomorphic embedding of
M into some complex projective space.

Theorem 2.2.14 (Chow’s theorem). A closed holomorphic submanifold of a complex
projective space is an algebraic subvariety.

Theorems 2.2.13 and 2.2.14 can be found in [6] and [7, Prop 5.1] respectively.

Theorem 2.2.15 (Kodaira-Nakano vanishing). If L is a positive line bundle over a
compact Kähler manifold of complex dimension n, then Hq(M,Kp

M⊗L) = 0 for p+q > n.

Theorem 2.2.16 (Serre duality). If L is a holomorphic vector bundle over a compact
Kähler manifold of complex dimension n, then Hq(M,E) = Hn−q(M,Kp

M ⊗ E∗)∗.
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Theorems 2.2.15 and 2.2.16 can be found in [3] on p.103 and p.154 respectively. Us-
ing Serre duality and Kodaira-Nakano vanishing theorem, one obtains a dual version of
Kodaira-Nakano vanishing theorem.

Theorem 2.2.17 (dual Kodaira-Nakano vanishing). If L is a negative line bundle over a
compact Kähler manifold of complex dimension n, then Hq(M,Kp

M⊗L) = 0 for p+q < n.

We can now prove the Frankel conjecture for Kähler surfaces.

Theorem 2.2.18. A compact Kähler surface M with positive holomorphic bisectional
curvature is biholomorphically equivalent to CP2.

Proof. If the bisectional curvature is positive, K−1
M is positive and KM is negative by

Remark 2.2.9. Then from Kodaira’s embedding theorem and Chow’s theorem, M is
algebraic. Using both versions of Kodaira-Nakano vanishing theorem, by letting L = K−1

M

and L = KM respectively, we have H0(M,Kd
M) = 0 for all d ≥ 0, so the plurigenus Pi = 0

for i ≥ 0 all vanishes. Since M is Kähler, it is even dimensional and orientable, and it
is compact, so by Synge’s theorem M is simply connected. Since it is simply connected,
the first cohomology group vanishes. By Kählerity, dimH1(M) = h1,0 + h0,1, so the
Hodge number h1,0 = 0 vanishes. Note that P1 = dimH0(M,KM) = dimΓ(M,KM) is
the dimension of the space of global sections of KM =

∧
2,0M , thus h2,0 = 0. Then the

arithmetic genus ga = h2,0 − h1,0 = 0 vanishes. As P2 = 0, by the surface classification
theorem of Castelnuovo-Andreotti, M is either a ruled surface or CP2. The fibres of a
ruled surface are disjoint compact complex dimension 1 submanifolds, so we eliminate
this possibility with Theorem 2.2.1. Therefore M is CP2.

2.3 Kähler-Einstein manifolds

We prove the Frankel conjecture when the metric is Einstein.

Lemma 2.3.1. Given a tensor T ∈ Γ(T ∗M⊗T ∗M) on a Kähler manifold (M,J, g), such
that T (X, Y ) = T (Y,X) and T (X, Y ) = T (JX, JY ), there exists a local orthonormal
frame X1, . . . , Xn, JX1, . . . , JXn near x ∈ M such that T (Xi, Xj) = 0 at x for i ̸= j.
Moreover, we may choose any X1 satisfying T (X1,−) = λg(X1,−) at x, for λ ∈ R.

Proof. Since T is symmetric, T is orthogonally diagonalizable as a linear operator on
TxM , so there exists an orthogonal basis for TxM consisting of of T -eigenvectors. An
eigenvector of T is any X ∈ TxM satisfying T (X,−) = λg(X,−) for some λ ∈ R. So
given a T -eigenvector X with eigenvalue λ, we have

T (JX, Y ) = −T (X, JY ) = −λg(X, JY ) = λg(JX, Y ) ,

thus the eigenspaces of T are J-invariant. Then starting with any eigenvector X1, we
can obtain by induction a set of orthogonal basis of the form X1, . . . , Xn, JX1, . . . , JXn

of T -eigenvector. We can then extend them to a local frame.

Lemma 2.3.2. For an Einstein manifold with Ricci curvature Ric(X, Y ) = kg(X, Y ),
under an orthogonal frame, we have∑

α

1

2
∇α∇αR1221 =

∑
a,b

(R2
1av2 −R2

12ab +R1ab1R2ab2) + kR1221 .
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Proof. Fix an orthonormal frame. By the second Bianchi identity,∑
a

(∇a∇aR1221 +∇a∇1R2a21 +∇a∇2Ra121) = 0 .

The Ricci identity given in [13] states

∇a∇rRsa21 =∇r∇aRsa21 −RarsmRma21 −RaramRsm21 −Rar2mRsam1 −Rar1mRsa2m .

The Einstein condition implies

RaramRsm21 = −RrmRsm21 = −kgrmRsm21 = −kRsr21 ,

and with the the second Bianchi identity

∇aRsa21 = −∇2Rsa1a −∇1Rsaa2 = ∇2Rs1 −∇1Rs2 = ∇2kgs1 −∇1kgs2 = 0 .

So plugging in r = 1, s = 2 and r = 2, s = 1 respectively,

∇a∇1R2a21 =−Ra12mRma21 + kR2121 −Ra12mR2am1 −Ra11mR2a2m ,

∇a∇2Ra121 =Ra21mRma21 − kR1221 +Ra22mR1am1 +Ra21mR1a2m .

Combining these,∑
a

∇a∇aR1221 = 2kR1221+Ra12mRma21 +Ra12mR2am1 +Ra11mR2a2m

−Ra21mRma21 −Ra22mR1am1 −Ra21mR1a2m

= 2kR1221+2Ra12mRma21 + 2Ra12mR2am1 − 2Ra22mR1am1

= 2kR1221+2(Ram21 +Ra21m)(Rma21 +R2am1)− 2R2am2R1am1

= 2kR1221+2(R2
a21m −R2

am21)− 2R2am2R1am1 ,

where the second equality is by symmetries, switching the roles of indices, and the third
equality by first Bianchi identity.

Lemma 2.3.3. Let X, JX, Y, JY be orthonormal vectors and a, b ∈ R such that a2+b2 =
1, then

H(aX + bY ) +H(aX − bY ) +H(aX + bJY ) +H(aX − bJY )

=4(a4H(X) + b4H(Y ) + 4a2b2R(X, JX, JY, Y )) .

Proof. By definition H(X) = R(X, JX, JX,X) and H(X, Y ) = R(X, JX, JY, Y ), so
H(JX, Y ) = H(X, JY ) = H(X, Y ). Using H(X, Y ) = K(X, Y ) +K(X, JY ) in Remark
2.1.3, one computes that

H(aX + bY ) +H(aX − bY )

=R(aX + bY, aJX + bJY, aJX + bJY, aX + bY )+

R(aX − bY, aJX − bJY, aJX − bJY, aX − bY )

=2(a4H(X) + b4H(Y ) + 6a2b2H(X, Y )− 4a2b2K(X, Y )) ,

and, replacing Y with JY , we also get

H(aX + bJY ) +H(aX − bJY )

=2(a4H(X) + b4H(Y ) + 6a2b2H(X, Y )− 4a2b2K(X, JY )) .

The result follows from H(X, Y ) = K(X, Y ) +K(X, JY ).
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Lemma 2.3.4 ([12, 7.4]). Given a Kähler manifold of dimension n, the scalar curvature
at p is given by

R(p) =
n(n+ 1)

Vol(S2n−1)

∫
Sp

H(X)dX ,

where Sp is the unit sphere is TpM , vol(S2n−1) is the volume of the standard (2n − 1)-
sphere in Euclidean space, and dX is the canonical measure on Sp.

Theorem 2.3.5. A n-dimensional compact connected Kähler–Einstein manifold with
positive holomorphic bisectional curvature is holomorphically isometric to CPn with the
Fubini-Study metric up to a positive scalar.

Proof. Let UM denote the fibre bundle of unit tangent vectors of M . Since UM is
compact, H has a maximum as a function on UM . Suppose H obtains a maximum
at the unit vector v ∈ TxM , let H1 = H(v). We see that H restricted to TxM is the
associated quadratic form of the symmetric tensor T (−,−) = R(v, Jv, J(−),−). We
may associate T with an operator P on TxM given by g(P (Y ),−) = T (Y,−). Since T
is symmetric, g(P (X), Y ) = g(X,P (Y )). Suppose Y ∈ TxM is a unit vector orthogonal
to v, then Y may be identified with a unit vector in Tv(TxM), so there is a curve γ
on the unit sphere of TxM passing v at 0 with γ′(0) = Y . Differentiating H(γ(t)) =
T (γ(t), γ(t)) = g(P (γ(t)), γ(t)) at t = 0, by maximality of H at v,

0 =
d

dt

∣∣∣∣
t=0

H(γ(t))

=g

(
d

dt

∣∣∣∣
t=0

P (γ(t)), γ(0)

)
+ g

(
P (γ(0)),

d

dt

∣∣∣∣
t=0

γ(t)

)
=g(P (Y ), v) + g(Y, P (v))

=2g(P (v), Y ) .

Thus T (v, Y ) = g(P (v), Y ) = 0 for all unit Y such that g(X, Y ) = 0, so v is an eigenvector
of T , i.e. T (v,−) = H1g(v,−). Now by applying Lemma 2.3.1 to T , we can choose an
orthonormal frame X1, . . . , Xn, JX1, . . . , JXn such that R11∗ai = 0 at x for a ̸= i∗ and
(X1)x = v. Let k ∈ R such that Ric(−,−) = kg(−,−). Let Q =

(
1
2

∑
a∇a∇aR11∗1∗1

)
|x,

then by Lemma 2.3.1, with 2 = 1∗, and evaluating everything at x,

Q =
∑
a,b

(R2
1ab1∗ −R2

11∗ab +R1ab1R1∗ab1∗) + kH1

=
∑

a,b ̸=1,1∗

(R2
1ab1∗ −R2

11∗ab +R1ab1R1∗ab1∗)−H2
1 + kH1

=− 2
∑
i ̸=1

R2
11∗i∗i +

∑
a,b ̸=1,1∗

(R2
1ab1∗ +R1ab1R1∗ab1∗)−H2

1 + kH1

=− 2
∑
i ̸=1

R2
11∗i∗i +

∑
i,j ̸=1

((R1ij1 +R1i∗j∗1)
2 + (R1ij∗1 −R1i∗j1)

2)−H2
1 + kH1

≥− 2
∑
i ̸=1

R2
11∗i∗i −H2

1 + kH1 ,
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where we have used the fact that R2
1ab1∗ = R2

1ab∗1 = R2
1ab1 after summing over b, so∑

ab ̸=1,1∗

(R2
1ab1∗ +R1ab1R1∗ab1∗) =

∑
a,b ̸=1,1∗

(R2
1ab1 +R1ab1R1a∗b∗1)

=
∑
i,j ̸=1

(R2
1ij1 +R2

1i∗j∗1 +R2
1i∗j1 +R2

1ij∗1

+R1ij1R1i∗j∗1 +R1i∗j∗1R1ij1 −R1i∗j1R1ij∗1 −R1ij∗1R1i∗j1)

=
∑
i,j ̸=1

((R1ij1 +R1i∗j∗1)
2 + (R1ij∗1 −R1i∗j1)

2) .

But k = R11 =
∑

iR11∗i∗i = H1 +
∑

i ̸=1R11∗i∗i at x by Proposition 2.2.2, so

Q ≥ −2
∑
i ̸=1

R2
11∗i∗i −H2

1 +

(
H1 +

∑
i ̸=1

R11∗i∗i

)
H1 =

∑
i ̸=1

R11∗i∗i(H1 − 2R11∗i∗i) .

For each i ̸= 1, let aX + bY ∈ TxM be a unit vector where X = X1 and Y = Xi. Using
Lemma 2.3.3 and maximality of H1,

4H1 ≥ 4(a4H(X) + b4H(Y ) + 4a2b2R11∗i∗i) ,

thus moving the first term over,

(1 + a2)b2H1 = (1 + a2)(1− a2)H1 ≥ b4H(Y ) + 4a2b2R1i∗i∗1 ,

so H1 ≥ 2R11∗i∗i by cancelling b2 and setting a = 1. Hence Q ≥ 0. But Q ≤ 0
by maximality of H1, hence Q = 0. Since R11∗i∗i > 0 we have H1 = 2R11∗i∗i. Thus
k = H1 +

1
2
(n − 1)H1 = 1

2
(n + 1)H1. Then for each p ∈ M , the scalar curvature is

R(p) = Raa = 2nk = n(n+ 1)H1, combining this with Lemma 2.3.4,∫
Sp

(H1 −H(X))dX = 0 ,

so H(X) = H1 > 0 for all X ∈ UpM . The result follows from Remark 2.1.8.

References

[1] John M. Lee, Introduction to Smooth Manifolds, Springer Science & Business Media,
2013.

[2] Peter Petersen, Riemannian Geometry, Springer, 3rd edition, 2016.

[3] P. Griffith, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.

[4] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Inter-
science Publishers, John Wiley & Sons, New York-London- Sydney, 1969.

[5] S.K. Donaldson, P. Kronheimer. The Geometry of Four-Manifolds. Clarendon Press,
Oxford, 1990.

[6] Andrei Moroianu. Lectures on Kähler Geometry. Cambridge University Press, 2007.

33
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