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Abstract

Elliptic partial differential operators have become an important class of operators
in modern differential geometry, due in part to the Atiyah-Singer index theorem,
which states that the index of an elliptic operator (defined in terms of the analytic
properties of the operator) is equal to its topological index (defined purely in
terms of topological data). In this paper, we give an introduction to the theory
of elliptic partial differential operators on manifolds, with the main focus being
to prove a generalised version of the Hodge-Decomposition theorem for elliptic
partial differential operators.
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1. Introduction
Elliptic partial differential operators have become an important class of operators
in modern differential geometry, due in part to the Atiyah-Singer index theorem,
which states that the index of an elliptic operator (defined in terms of the analytic
properties of the operator) is equal to its topological index (defined purely in
terms of topological data). In this paper, we give an introduction to the theory
of elliptic partial differential operators on manifolds, with the main focus being
to prove a generalised version of the Hodge-Decomposition theorem for elliptic
partial differential operators.

This paper is divided into five parts. We begin with a summary of the theory
that we need from differential geometry and functional analysis in Section 2. Then
in Section 3 we introduce elliptic partial differential operators on vector bundles.
We define the symbol of a partial differential operator, we define what it means
for an operator to be elliptic, and we prove the existence of the formal adjoint of
a partial differential operator. In Section 4 we digress to pursue essentials of the
theory of pseudodifferential operators on complex-valued functions of several real
variables. The main result from this section is the existence of a parametrix for
an elliptic partial differential operator, which we use to prove various properties
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of elliptic partial differential operators. In Section 5, we globalise the results from
the previous section to vector bundles, and then prove a decomposition theorem
for elliptic partial differential operators, which states that the any section of a
bundle can be written uniquely as a sum of two sections, one in the image of
the operator, and the other in the kernel of its adjoint. From this we derive the
Hodge-Decomposition theorem as a corollary.

2. Background

Vector Bundles
Let 𝑀 be a smooth manifold, and let 𝕂 denote either ℝ or ℂ. For an integer
𝑝 ≥ 0, a 𝕂𝑝-vector bundle over 𝑀 consists of a smooth manifold 𝐸 and a
surjective smooth submersion 𝜋 : 𝐸 → 𝑀 such that for each 𝑥 ∈ 𝑀 , the fibre
𝐸𝑥 := 𝜋−1(𝑥) has the structure of a 𝑝-dimensional vector space over 𝕂, and such
that for each 𝑥 ∈ 𝐸 , there is a neighbourhood 𝑈 of 𝑥 as well as a diffeomorphism
𝐸 |𝑈 := 𝜋−1(𝑈) → 𝑀 ×𝕂𝑝 which preserves fibres and is a linear isomorphism on
each fibre. Such a diffeomorphism is called a local trivialisation; 𝑝 is called the
rank of the vector bundle. Note that for each 𝑝, the manifold 𝕂

𝑝

𝑀
:= 𝑀 × 𝕂𝑝 is a

𝕂𝑝-vector bundle over 𝑀 called the trivial 𝕂𝑝-vector bundle over 𝑀 . A section
of 𝐸 is a smooth map 𝑢 : 𝑀 → 𝐸 such that 𝑢𝑥 := 𝑢(𝑥) ∈ 𝐸𝑥 for each 𝑥 ∈ 𝑀 .

Given two vector bundles 𝐸 and 𝐹 over 𝑀 , we can form their direct sum 𝐸 ⊕ 𝐹
and tensor product 𝐸 ⊗ 𝐹, which are again vector bundles over 𝑀 having fibres
(𝐸 ⊕ 𝐹)𝑥 = 𝐸𝑥 ⊕ 𝐹𝑥 and (𝐸 ⊗ 𝐹)𝑥 = 𝐸𝑥 ⊗ 𝐹𝑥 , respectively. For each nonnegative
integer 𝑘 , we can form the 𝑘 th symmetric power 𝛴 𝑘 (𝐸) of 𝐸 as well as its 𝑘 th

exterior power 𝛬𝑘 (𝐸). These are again vector bundles over 𝐸 , and they have
fibres (𝛴 𝑘 (𝐸))𝑥 = 𝛴 𝑘 (𝐸𝑥) and (𝛬𝑘 (𝐸))𝑥 = 𝛬𝑘 (𝐸𝑥), respectively. We also denote
the conjugate vector bundle of 𝐸 by �̄� .

A fibre metric on 𝐸 is a section of ℎ of 𝐸∗ ⊗ �̄�∗ such that for each 𝑥 ∈ 𝑀 , the
induced map ℎ𝑥 : 𝐸𝑥 × 𝐸𝑥 → 𝕂 is an inner product. When 𝕂 = ℝ, we can view ℎ

as a section of 𝛴2(𝐸).

Riemannian Manifolds
Let 𝑀 be a compact oriented manifold of dimension 𝑛 endowed with a Riemannian
metric 𝑔 (a fibre metric on the tangent bundle 𝑇𝑀).
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The metric 𝑔 provides us with canonical bundle isomorphisms ♭ : 𝑇𝑀 → 𝑇∗𝑀
and ♯ := ♭−1 : 𝑇∗𝑀 → 𝑇𝑀 called the musical isomorphisms defined by 𝜉♭ =

𝑔𝑥 (·, 𝜉) for 𝜉 ∈ 𝑇∗
𝑥 𝑀 . By declaring ♭ to be an isometry on each fibre, this induces

a fibre metric on 𝑇∗𝑀 , which we also denote by 𝑔. In turn, this induces a fibre
metric on 𝛬𝑘 (𝑇∗𝑀), again denoted by 𝑔, given on irreducibles by

𝑔𝑥 (𝜉1 ∧ · · · ∧ 𝜉𝑘 , 𝜁1 ∧ · · · ∧ 𝜁𝑘 ) = det[𝑔𝑥 (𝜉𝑖, 𝜁 𝑗 )]𝑖 𝑗
The metric 𝑔 allows us to define a canonical top form vol𝑔 on 𝑀 , called the
Riemannian volume form, given in any positively-oriented local coordinate chart
𝑥 by

√︁
det 𝑔𝑑𝑥1 ∧ · · · ∧ 𝑑𝑥𝑛. If 𝑓 ∈ 𝐶∞(𝑀), we define the integral of 𝑓 over 𝑀 by∫

𝑀

𝑓 =

∫
𝑀

𝑓 vol𝑔 .

Banach Spaces
A Banach space is a vector space 𝑋 together with a norm ∥·∥ whose induced norm
topology is complete. Given Banach spaces 𝑋 and 𝑌 , a linear operator 𝑇 : 𝑋 → 𝑌

is bounded if there is a positive constant 𝐶 such that ∥𝑇𝑥∥ ≤ 𝐶∥𝑥∥ for all 𝑥 ∈ 𝑋 .
Recall that 𝑇 is bounded if and only it is continuous, and that if 𝑇 is bounded, its
operator norm is

∥𝑇 ∥ = inf{𝐶 > 0 : ∥𝑇𝑥∥ ≤ 𝐶∥𝑥∥ for all 𝑥 ∈ 𝑋}

= sup
{
∥𝑇𝑥∥
∥𝑥∥ : 𝑥 ≠ 0

}
= sup{∥𝑇𝑥∥ : ∥𝑥∥ = 1}.

We denote the space of bounded linear operators from 𝑋 to 𝑌 by B(𝑋,𝑌 ), which
we make it into a Banach space by equipping it with the operator norm. The dual
of 𝑋 is the space 𝑋∗ := B(𝑋,𝕂) consisting of all bounded linear functionals on
𝑋 .

Among the many kinds of operators studied in functional analysis, there are
two that will be especially important in our discussion in this paper; these are
the compact operators and the Fredholm operators. An operator 𝑇 ∈ B(𝑋,𝑌 ) is
compact if𝑇 maps bounded subsets of 𝑋 to precompact subsets of𝑌 . Equivalently,
𝑇 takes bounded sequences in 𝑋 to sequences with convergent subsequences in 𝑌 .
In contrast, 𝑇 is Fredholm if it is invertible modulo compact operators, which is
to say there are operators 𝑆 ∈ B(𝑋,𝑌 ), 𝐾 ∈ B(𝑋, 𝑋) and 𝐾′ ∈ B(𝑌,𝑌 ) with 𝐾
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and 𝐾′ compact such that
𝑆𝑇 = id𝑋 −𝐾 and 𝑇𝑆 = id𝑌 −𝐾′.

Equivalently, 𝑇 has closed image, finite-dimensional kernel and finite-dimensional
cokernel:
Proposition 2.1. A bounded linear operator 𝑇 : 𝑋 → 𝑌 is Fredholm if and only if
ker𝑇 and coker𝑇 := 𝑌/im𝑇 are finite-dimensional.
Proof. The proof of this fact requires some care. See for instance Theorem 5.1 in
[GGK90]. □

Finally, it will be useful to know the (Banach space) dual of a bounded linear
operator, as well as how the image and kernel of the operator are related to the
image and kernel of the dual. Given 𝑇 ∈ B(𝑋,𝑌 ), the dual of 𝑇 is the operator
𝑇∗ ∈ B(𝑌 ∗, 𝑋∗) defined by 𝑇†𝛼 = 𝛼 ◦ 𝑇 . Given a subset 𝑆 of 𝑋 , the annihilator
of 𝑆 is the subspace 𝑆◦ of 𝑋∗ defined by

𝑆◦ = {𝛼 ∈ 𝑋∗ : 𝛼(𝑥) = 0 for all 𝑥 ∈ 𝑆},
and given a subset 𝑆 of 𝑋∗, the preannihiliator of 𝑆 is the subspace 𝑆◦ of 𝑋 defined
by

𝑆◦ = {𝑥 ∈ 𝑋 : 𝛼(𝑥) = 0 for all 𝛼 ∈ 𝑆}.
We have the following:
Proposition 2.2. Let 𝑋 and 𝑌 be Banach spaces.
(a) If 𝐴 is a linear subspace of 𝑋 , then (𝐴◦)◦ = �̄�.
(b) If 𝑇 ∈ B(𝑋,𝑌 ), then ker𝑇† = (im𝑇)◦, and hence (ker𝑇†)◦ = im𝑇 .

Proof. For the forward inclusion in (a), if 𝑥 ∉ �̄� then by the Hahn-Banach Theorem,
there is a linear functional 𝛼 ∈ 𝑋∗ with 𝛼 = 0 on �̄� and 𝛼(𝑥) ≠ 0, which is to say
𝑥 ∉ (𝐴◦)◦. For the reverse inclusion, assume 𝑥 ∈ �̄�, and choose a net (𝑥𝜆) in 𝐴
converging to 𝑥. Then for any 𝛼 ∈ 𝐴◦, 𝛼(𝑥) = lim𝜆 𝛼(𝑥𝜆) = 0, so 𝑥 ∈ (𝐴◦)◦.

Next, for the first part of (b), observe that 𝛼 ∈ ker𝑇† ⇔ 𝛼 ◦ 𝑇 = 0 ⇔ 𝛼 =

0 on im𝑇 ⇔ 𝛼 ∈ (im𝑇)◦. The second part of (b) now follows immediately from
(a). □

Hilbert Spaces
A Hilbert space is an inner product space (𝐻, ⟨·, ·⟩) whose induced norm topology
is complete. Every Hilbert space is a Banach space with its induced norm, so
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all results in the previous section apply to Hilbert spaces as well. We need the
following two additional results specific to Hilbert spaces.
Proposition 2.3 (The Riesz Representation Theorem). Let𝐻 be a Hilbert space.
The map 𝐻 → 𝐻∗ sending 𝑦 ↦→ ⟨·, 𝑦⟩ is a linear isomorphism.
Proof. That this map is linear follows immediately from linearity of ⟨·, ·⟩ in its
first argument. Injectivity follows easily: if we are given 𝑦, 𝑧 ∈ 𝐻 satisfying
⟨·, 𝑦⟩ = ⟨·, 𝑧⟩, then 0 = ⟨·, 𝑦 − 𝑧⟩, so 0 = ⟨𝑦 − 𝑧, 𝑦 − 𝑧⟩ = ∥𝑦 − 𝑧∥2, and therefore
𝑦 = 𝑧.

Next we prove surjectivity. Let 𝛼 ∈ 𝐻∗. Since 𝛼 is continuous, ker𝛼 is closed,
so we may write 𝐻 = ker𝛼 ⊕ (ker𝛼)⊥. If 𝛼 = 0, then 𝛼 = ⟨·, 0⟩. Otherwise 𝛼 ≠ 0,
so we can find 𝑦 ∈ (ker𝛼)⊥ nonzero. By normalising if necessary, we may assume
that ∥𝑦∥ = 1. Put 𝑧 = 𝛼(𝑦)𝑦. Then ∥𝑧∥ = |𝛼(𝑦) |, and so 𝛼(𝑧) = |𝛼(𝑦) |2 = ∥𝑧∥2.
For any 𝑥 ∈ 𝐻,

⟨𝑥, 𝑧⟩ =
〈
𝑥 − 𝛼(𝑥)

∥𝑧∥2 𝑧, 𝑧

〉
+

〈
𝛼(𝑥)
∥𝑧∥2 𝑧, 𝑧

〉
=

〈
𝑥 − 𝛼(𝑥)

∥𝑧∥2 𝑧, 𝑧

〉
+ 𝛼(𝑥).

Since 𝑧 ∈ (ker𝛼)⊥, and since 𝛼(𝑥 − 𝛼(𝑥)𝑧/∥𝑧∥2) = 𝛼(𝑥) − 𝛼(𝑥)𝛼(𝑧)/∥𝑧∥2 = 0, it
follows that ⟨𝑥 − 𝛼(𝑥)𝑧/∥𝑧∥2, 𝑧⟩ = 0, and hence ⟨𝑥, 𝑧⟩ = 𝛼(𝑥) for all 𝑥 ∈ 𝐻. □

Corollary 2.4. Let 𝑇 : 𝐻 → 𝐾 be a linear map of Hilbert spaces. There is a
unique linear map 𝑇∗ : 𝐾 → 𝐻 such that ⟨𝑇𝑥, 𝑦⟩ = ⟨𝑥, 𝑇∗𝑦⟩ for all 𝑥 ∈ 𝐻 and
𝑦 ∈ 𝐾 . The map 𝑇∗ is called the adjoint of 𝑇 .
Proof. Uniqueness follows by essentially the same argument as in the previous
proof. We now prove existence. First we do this for the case where 𝐾 = 𝐻.
Given 𝑦 ∈ 𝐻, ⟨𝑇 (·), 𝑦⟩ ∈ 𝐻∗, so by the previous proposition, ⟨𝑇 (·), 𝑦⟩ = ⟨·, 𝑧𝑦⟩
for a unique 𝑧𝑦 ∈ 𝐻. Define 𝑇∗ by 𝑇∗𝑦 = 𝑧𝑦 for each 𝑦. Then 𝑇∗ satisfies the
desired property ⟨𝑇𝑥, 𝑦⟩ = ⟨𝑥, 𝑇∗𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻. That 𝑇∗ is linear follows from
uniqueness of each 𝑧𝑦 and linearity of ⟨·, ·⟩.

Now we prove the general case. Form the Hilbert space 𝐻 ⊕ 𝐾 equipped
with inner product ⟨𝑥 ⊕ 𝑦, 𝑥′ ⊕ 𝑦′⟩ = ⟨𝑥, 𝑥′⟩ + ⟨𝑦, 𝑦′⟩, and consider the linear map
𝑇 ′ : 𝐻 ⊕ 𝐾 → 𝐻 ⊕ 𝐾 defined by 𝑆(𝑥 ⊕ 𝑦) = 0 ⊕ 𝑇𝑥. By our argument in the
preceding paragraph, there is a unique linear map 𝑆∗ : 𝐻 ⊕ 𝐾 → 𝐻 ⊕ 𝐾 with the
property that

⟨𝑆(𝑥 ⊕ 𝑦), 𝑥′ ⊕ 𝑦′⟩ = ⟨𝑥 ⊕ 𝑦, 𝑆∗(𝑥′ ⊕ 𝑦)⟩
for all 𝑥, 𝑥′ ∈ 𝐻 and 𝑦, 𝑦′ ∈ 𝐾 . Note that

⟨𝑆(𝑥 ⊕ 𝑦), 𝑥′ ⊕ 𝑦′⟩ = ⟨0 ⊕ 𝑇𝑥, 𝑥′ ⊕ 𝑦′⟩ = ⟨𝑇𝑥, 𝑦′⟩.
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If 𝜋𝐻 : 𝐻 ⊕ 𝐾 → 𝐻 and 𝜋𝐾 : 𝐻 ⊕ 𝐾 → 𝐾 are the natural projection maps, then
⟨𝑥 ⊕ 𝑦, 𝑆∗(𝑥′ ⊕ 𝑦′)⟩ = ⟨𝑥, 𝜋𝐻 (𝑆∗(𝑥′ ⊕ 𝑦′)⟩ + ⟨𝑦, 𝜋𝐾 (𝑆∗(𝑥′ ⊕ 𝑦′)⟩.

If we take 𝑥′ = 0 and 𝑦 = 0, then
⟨𝑇𝑥, 𝑦′⟩ = ⟨𝑥, 𝜋𝐻 (𝑆∗(0 ⊕ 𝑦′)⟩,

so 𝑦′ ↦→ 𝜋𝐻 (𝑆∗(0 ⊕ 𝑦′)) is the adjoint of 𝑇 . □

Multi-Indices
It is customary to index differential operators by so-called multi-indices, as they
provide a concise way to write down these operators. In the context of ℝ𝑛, or more
generally an 𝑛-dimensional manifold, a multi-index is an 𝑛-tuple 𝛼 = (𝛼1, . . . , 𝛼𝑛)
of non-negative integers. We define the order of a multi-index 𝛼 to be the sum
|𝛼 | = 𝛼1 + · · · + 𝛼𝑛, and we define its factorial to be the product 𝛼! = 𝛼1! · · · 𝛼𝑛!.
We also define the binomial coefficients(

𝛼

𝛽

)
=

𝛼!
𝛽!(𝛼 − 𝛽)!

for multi-indices 𝛼 and 𝛽, as well as the multinomial coefficients(
𝛼

𝛽1, . . . , 𝛽𝑚

)
=

𝛼!
𝛽1! · · · 𝛽𝑚!

for multi-indices 𝛼, 𝛽1, . . . , 𝛽𝑚. We impose a partial order on multi-indices by
declaring 𝛽 ≤ 𝛼 if and only if 𝛽𝑖 ≤ 𝛼𝑖 for each 𝑖 = 1, . . . , 𝑛. Given 𝑥 ∈ ℝ𝑛, we
put 𝑥𝛼 = 𝑥

𝛼1
1 · · · 𝑥𝛼𝑛𝑛 . Analogously we define

𝜕𝛼 = 𝜕𝛼𝑥 =
𝜕 |𝛼 |

𝜕𝑥𝛼
=

𝜕𝛼1+···+𝛼𝑛

𝜕𝑥
𝛼1
1 · · · 𝜕𝑥𝛼𝑛𝑛

.

Note that

𝜕
𝛽
𝑥 𝑥

𝛼 =

{
𝛼!
𝛽!𝑥

𝛼−𝛽 if 𝛽 ≤ 𝛼
0 otherwise.

(2.1)

The Leibniz rule for the derivative of the product of two functions 𝑓 , 𝑔 : ℝ𝑛 → ℝ

can be stated as

𝜕𝛼 ( 𝑓 𝑔) =
∑︁
𝛽≤𝛼

(
𝛼

𝛽

)
𝜕𝛽 𝑓 𝜕𝛼−𝛽𝑔.
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More generally, if we have functions 𝑓1, . . . , 𝑓𝑚, then

𝜕𝛼 ( 𝑓1 · · · 𝑓𝑚) =
∑︁

𝛽1+···+𝛽𝑚=𝛼

(
𝛼

𝛽1, . . . , 𝛽𝑚

)
𝜕𝛽1 𝑓1 · · · 𝜕𝛽𝑚 𝑓𝑚 .

We also have Taylor’s Theorem: if 𝑓 : ℝ𝑛 → ℝ is a smooth function, then

𝑓 (𝑥 + 𝑦) =
∑︁
|𝛼 |<𝑘

1
𝛼!
𝜕𝛼 𝑓 (𝑥)𝑦𝛼 + 𝑘

∫ 1

0
(1 − 𝑡)𝑘−1

∑︁
|𝛼 |=𝑘

1
𝛼!
𝜕𝛼 𝑓 (𝑥 + 𝑡𝑦)𝑦𝛼 𝑑𝑡

Finally, we introduce the following bit of non-standard notation: for a multi-index
𝛼, we put

𝛼1, . . . , 𝛼 |𝛼 | = 1, . . . , 1︸   ︷︷   ︸
𝛼1 times

, . . . , 𝑛, . . . , 𝑛︸   ︷︷   ︸
𝛼𝑛 times

,

so that
𝜕 |𝛼 |

𝜕𝑥𝛼
=

𝜕

𝜕𝑥𝛼
1 · · ·

𝜕

𝜕𝑥𝛼
|𝛼 | .

3. Elliptic Partial Differential Operators

Partial Differential Operators
Let 𝑀 be a smooth manifold of dimension 𝑛, and let 𝐸 and 𝐹 be 𝕂-vector bundles
over 𝑀 of ranks 𝑝 and 𝑞, respectively.
Definition. A linear map 𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) is a partial differential operator of
order𝑚, where𝑚 is a nonnegative integer, if each point of 𝑀 has a neighbourhood
𝑈 over which is defined

(a) a local coordinate system 𝑥 : 𝑈 → ℝ𝑛;
(b) local trivialisations 𝐸 |𝑈 → 𝑈 × 𝕂𝑝 and 𝐹 |𝑈 → 𝑈 × 𝕂𝑞 for 𝐸 and 𝐹 with

induced local frames 𝑒1, . . . , 𝑒𝑝 and 𝑓1, . . . , 𝑓𝑞, respectively; and
(c) smooth matrix valued functions 𝐴𝛼 : 𝑈 → 𝕂𝑞×𝑝 for each |𝛼 | ≤ 𝑚, with

𝐴𝛼 ≠ 0 for some 𝛼 with |𝛼 | = 𝑚,
and such that with respect to this coordinate system and these trivialisations, if
𝑢 ∈ 𝛤 (𝐸) is given on𝑈 by 𝑢 =

∑
𝑖 𝑢𝑖 𝑓𝑖, then 𝑃𝑢 =

∑
𝑖 𝑣𝑖 𝑓𝑖 on𝑈 where

(𝑣1(𝑥), . . . , 𝑣𝑞 (𝑥)) =
∑︁
|𝛼 |≤𝑚

𝐴𝛼 (𝑥) 𝜕
|𝛼 |

𝜕𝑥𝛼
(𝑢1(𝑥), . . . , 𝑢𝑝 (𝑥)). (3.1)
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Essentially, a partial differential operator is a linear map taking sections of 𝐸
to sections of 𝐹 that acts like an ordinary differential operator in coordinates. We
usually abuse notation by writing 𝑃 =

∑
|𝛼 |≤𝑚 𝐴

𝛼𝜕 |𝛼 |/𝜕𝑥𝛼 rather than writing out
all of (3.1).

One might ask whether there is a nice coordinate-free definition of a partial
differential operator; for example, since the expressions 𝐴𝛼 ⊗ 𝜕 |𝛼 |/𝜕𝑥𝛼 are local
sections of the bundle Hom(𝐸, 𝐹) ⊗ 𝛴 |𝛼 | (𝑇𝑀), one could ask whether 𝑃 can be
viewed as a global section of a direct sum of these bundles. The answer to this
question in general is no because the coefficients 𝐴𝛼 do not transform in the correct
way under changing local coordinates and local trivialisations. However, if we
look only at the terms with |𝛼 | = 𝑚, we do actually get a well-defined section of
the bundle Hom(𝐸, 𝐹) ⊗ 𝛴𝑚 (𝑇𝑀).
Proposition 3.1. The local expressions∑︁

|𝛼 |=𝑚
𝐴𝛼 ⊗ 𝜕 |𝛼 |

𝜕𝑥𝛼
(3.2)

determine a well-defined global section𝜎(𝑃) of the bundle Hom(𝐸, 𝐹)⊗𝛴𝑚 (𝑇𝑀).
𝜎(𝑃) is called the principal symbol of the operator 𝑃.
Proof. We must show that the expressions in (3.2) are unchanged when we change
local coordinates and local trivialisations. First change local trivialisations via
transition functions 𝑔 : 𝑈 → GL(𝑝,𝕂) and ℎ : 𝑈 → GL(𝑞,𝕂) for 𝐸 and 𝐹,
respectively. Then, by the Leibniz rule, 𝑃 takes the form

𝑃 = ℎ

( ∑︁
|𝛼 |≤𝑚

𝐴𝛼
𝜕 |𝛼 |

𝜕𝑥𝛼

)
𝑔−1 =

∑︁
|𝛼 |≤𝑚

𝐵𝛼
𝜕 |𝛼 |

𝜕𝑥𝛼

where each 𝐵𝛼 is a 𝑞 × 𝑝 matrix of smooth functions depending on the 𝐴𝛼, ℎ and
the derivatives of 𝑔−1 up to order 𝑚. Notice the only order 𝑚 derivatives that show
up in the above come from 𝜕 |𝛼 |/𝜕𝑥𝛼𝑔−1 terms where |𝛼 | = 𝑚 and 𝜕 |𝛼 |/𝜕𝑥𝛼 does
not differentiate 𝑔−1 after applying the Leibniz rule. Therefore

𝐵𝛼 = ℎ𝐴𝛼𝑔−1 for |𝛼 | = 𝑚,
which is the correct transformation law to make (3.2) well-defined.

Next, we show the local expressions are unchanged when we change local
coordinates. Let 𝑦 = 𝑦(𝑥) be a change of local coordinates. For good measure, we
include here a derivation of the transformation law for going between the two local
frames {𝜕𝑚/𝜕𝑥𝛼} |𝛼 |=𝑚 and {𝜕𝑚/𝜕𝑦𝛼} |𝛼 |=𝑚 for 𝛴𝑚 (𝑇𝑀). By the transformation
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law
𝜕

𝜕𝑥𝑖
=

𝑛∑︁
𝑗=1

𝜕𝑦 𝑗

𝜕𝑥𝑖

𝜕

𝜕𝑦 𝑗
, (3.3)

we have
𝜕𝑚

𝜕𝑥𝛼
=

𝜕

𝜕𝑥𝛼1
· · · 𝜕

𝜕𝑥𝛼𝑚
=

(∑︁
𝑖1

𝜕𝑦𝑖1

𝜕𝑥𝛼1

𝜕

𝜕𝑦𝑖1

)
· · ·

(∑︁
𝑖𝑚

𝜕𝑦𝑖𝑚

𝜕𝑥𝛼𝑚

𝜕

𝜕𝑦𝑖𝑚

)
=

∑︁
𝑖1,...,𝑖𝑚

𝜕𝑦𝑖1

𝜕𝑥𝛼1
· · ·

𝜕𝑦𝑖1

𝜕𝑥𝛼1

𝜕𝑚

𝜕𝑦𝑖1 · · · 𝜕𝑦𝑖𝑚
as a section of 𝛴𝑚 (𝑇𝑀). What we want to do is to write the above sum in the
form

∑
|𝛽 |=𝑚 𝑐𝛼𝛽𝜕

𝑚/𝜕𝑦𝛽. Notice that for a given multi-index 𝛽 with |𝛽 | = 𝑚,
𝜕𝑚/𝜕𝑦𝛽 := 𝜕𝑚/𝜕𝑦𝛽1 · · · 𝜕𝑦𝛽𝑚 = 𝜕𝑚/𝜕𝑦𝑖1 · · · 𝜕𝑦𝑖𝑚 if and only if 𝑖1, . . . , 𝑖𝑚 is a
permutation of 𝛽1, . . . , 𝛽𝑚. Therefore

𝑐𝛼𝛽 =
∑︁
𝜎∈𝑆𝑚

𝜕𝑦𝜎(𝛽1)
𝜕𝑥𝛼1

· · ·
𝜕𝑦𝜎(𝛽𝑚)
𝜕𝑥𝛼𝑚

. (3.4)

Now let us see how the local representation for 𝑃 changes. By (3.3), 𝑃 takes the
form

𝑃 =
∑︁
|𝛼 |≤𝑚

𝐴𝛼

(∑︁
𝑖1

𝜕𝑦𝑖1

𝜕𝑥𝛼1

𝜕

𝜕𝑦𝑖1

)
· · ·

(∑︁
𝑖 |𝛼 |

𝜕𝑦𝑖 |𝛼 |

𝜕𝑥𝛼 |𝛼 |

𝜕

𝜕𝑦𝑖 |𝛼 |

)
=

∑︁
|𝛼 |≤𝑚

𝐶𝛼
𝜕 |𝛼 |

𝜕𝑦𝛼

where each 𝐶𝛼 is a smooth function 𝑈 → 𝕂𝑞×𝑝 depending on the 𝐴𝛼 and the
𝑥𝑖-derivatives of the 𝑦 𝑗 up to order 𝑚. By the Leibniz rule, the order 𝑚 terms in
the above are exactly∑︁

|𝛼 |=𝑚

∑︁
𝑖1,...,𝑖𝑚

𝐴𝛼
𝜕𝑦𝑖1

𝜕𝑥𝛼1
· · ·

𝜕𝑦𝑖𝑚

𝜕𝑥𝛼𝑚

𝜕𝑚

𝜕𝑦𝑖1 · · · 𝜕𝑦𝑖𝑚
=

∑︁
|𝛼 |=𝑚

∑︁
|𝛽 |=𝑚

𝑐𝛼𝛽
𝜕𝑚

𝜕𝑦𝛽
,

where the equality follows from essentially the same argument we used to prove
(3.4). Hence

𝐶𝛽 =
∑︁
|𝛼 |=𝑚

𝑐𝛼𝛽𝐴
𝛼 for |𝛼 | = 𝑚.

By the above and (3.4),∑︁
|𝛽 |=𝑚

𝐶𝛽 ⊗ 𝜕𝑚

𝜕𝑦𝛽
=

∑︁
|𝛽 |=𝑚

∑︁
|𝛼 |=𝑚

𝑐𝛼𝛽𝐴
𝛼 ⊗ 𝜕𝑚

𝜕𝑦𝛽
=

∑︁
|𝛼 |=𝑚

𝐴𝛼 ⊗ 𝜕𝑚

𝜕𝑥𝛼
,
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which proves (3.2) is well-defined. □

Remark. Although the bundles Hom(𝐸, 𝐹) ⊗ 𝛴𝑚 (𝑇𝑀) do not lend themselves
to a coordinate-free definition of partial differential operators, there is a way to
define partial differential operators in a coordinate free way if the vector bundles 𝐸
is equipped with a connection ∇. Specifically, one can define a partial differential
operator of order 𝑚 to be a map 𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) of the form

𝑃 =

𝑚∑︁
𝑗=1

𝐴 𝑗 · ∇ 𝑗

where 𝐴 𝑗 ∈ 𝛤 (Hom(𝐸, 𝐹)⊗(𝑇𝑀)⊗ 𝑗 ) for each 𝑗 , ∇ 𝑗 : 𝛤 (𝐸) → 𝛤 ((𝑇∗𝑀)⊗ 𝑗⊗𝐸) is
the induced connection for each 𝑗 , and · is natural pairing of Hom(𝐸, 𝐹) ⊗ (𝑇𝑀)⊗ 𝑗
with (𝑇∗𝑀)⊗ 𝑗 ⊗ 𝐸 (the Hom(𝐸, 𝐹) component pairs with the 𝐸 component, and
the (𝑇𝑀)⊗ 𝑗 component pairs with the (𝑇∗𝑀)⊗ 𝑗 component). Viewed in this way,
it is easy to define the symbol of 𝑃: it is just 𝜎(𝑃) = 𝐴𝑚. Of course, now one has
to check that the symbol does not depend on the choice of connection, so this will
not circumvent the calculation in Proposition 3.1!

For our purposes, this alternative definition will just get in the way, and we will
not mention it again. Keep in mind, however, that partial differential operators
often come up in this alternative form in the literature.

Given vector spaces 𝑉 and𝑊 as well as a covector 𝛼 ∈ 𝑉∗, the map
𝑉 ×𝑉𝑚 → 𝑊

(𝑤, 𝑣1, . . . , 𝑣𝑚) ↦→ 𝑤𝛼(𝑣1) . . . 𝛼(𝑣𝑚)
is multilinear in 𝑤, 𝑣1, . . . , 𝑣𝑚 and symmetric in 𝑣1, . . . , 𝑣𝑚, so it descends to a
map 𝑊 × 𝛴𝑚 (𝑉) → 𝑊 that sends 𝑤 ⊗ 𝑣1 · · · 𝑣𝑚 to 𝑤𝜎(𝑣1) · · · 𝛼(𝑣𝑚). Conse-
quently, given a covector 𝜉 ∈ 𝑇∗

𝑥 𝑀 , we can evaluate 𝜎(𝑃) at 𝜉 to get a linear map
𝜎𝜉 (𝑃) : 𝐸𝑥 → 𝐹𝑥 . Explicitly, with respect to local coordinates and trivialisations
as in (3.1), if 𝜉 =

∑
𝑖 𝜉𝑖𝑑𝑥𝑖 |𝑥 , then

𝜎𝜉 (𝑃) =
∑︁
|𝛼 |=𝑚

𝐴𝛼 (𝑥)𝜉𝛼

where 𝜉𝛼 := 𝜉𝛼1
1 · · · 𝜉𝛼𝑛𝑛 .

Definition. A differential operator 𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) is elliptic if for each 𝑥 ∈ 𝑀
and each nonzero 𝜉 ∈ 𝑇∗

𝑥 𝑀 , the map 𝜎𝜉 (𝑃) : 𝐸𝑥 → 𝐹𝑥 is a linear isomorphism.
Note that for 𝑃 to be elliptic, 𝐸 and 𝐹 must have the same rank. Another way

to look at the symbol is as follows. Via the projection 𝜋 : 𝑇∗𝑀 → 𝑀 , the bundles
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𝐸 and 𝐹 on 𝑀 pull back to bundles 𝜋∗𝐸 and 𝜋∗𝐹 on 𝑇∗𝑀 , so we may view the
symbol of 𝑃 as a bundle map 𝜎(𝑃) : 𝜋∗𝐸 → 𝜋∗𝐹. Thus, the operator 𝑃 is elliptic
if and only if 𝜎(𝑃) is an isomorphism away from the zero section. The principal
symbol behaves nicely when viewed as a map from partial differential operators
to bundle maps:
Proposition 3.2. Let 𝑃, 𝑃′ : 𝛤 (𝐸) → 𝛤 (𝐹) and 𝑄 : 𝛤 (𝐹) → 𝛤 (𝐿) be partial
differential operators, suppose 𝑃 and 𝑃′ have the same order, and let 𝑡, 𝑡′ ∈ 𝕂.
Then

𝜎(𝑡𝑃 + 𝑡′𝑃′) = 𝑡𝜎(𝑃) + 𝑡′𝜎(𝑃′),
and

𝜎(𝑄 ◦ 𝑃) = 𝜎(𝑄) ◦ 𝜎(𝑃).
Proof. Let 𝜉 ∈ 𝑇∗𝑀 , let 𝑚 be the order of 𝑃 and 𝑃′, and let 𝑚′ be the order of 𝑄.
With respect to local trivialisation and local coordinates, write

𝑃 =
∑︁
|𝛼 |≤𝑚

𝐴𝛼
𝜕 |𝛼 |

𝜕𝑥𝛼
, 𝑃′ =

∑︁
|𝛼 |≤𝑚

𝐵𝛼
𝜕 |𝛼 |

𝜕𝑥𝛼
and 𝑄 =

∑︁
|𝛽 |≤𝑚′

𝐶𝛽
𝜕 |𝛽 |

𝜕𝑥𝛽
.

The first identity follows easily, since

𝑡𝑃 + 𝑡′𝑃′ =
∑︁
|𝛼 |≤𝑚

(𝑡𝐴𝛼 + 𝑡′𝐵𝛼) 𝜕
|𝛼 |

𝜕𝑥𝛼
,

implies

𝜎𝜉 (𝑡𝑃 + 𝑡′𝑃′) =
∑︁
|𝛼 |=𝑚

(𝑡𝐴𝛼 + 𝑡′𝐵𝛼)𝜉𝛼 = 𝑡𝜎𝜉 (𝑃) + 𝑡′𝜎𝜉 (𝑃′).

For the second identity, observe that by the Leibniz rule,

𝑄 ◦ 𝑃 =
∑︁

|𝛽 |≤𝑚′

𝐶𝛽
𝜕 |𝛽 |

𝜕𝑥𝛽

( ∑︁
|𝛼 |≤𝑚

𝐴𝛼
𝜕 |𝛼 |

𝜕𝑥𝛼

)
=

∑︁
|𝛽 |≤𝑚′

∑︁
|𝛼 |≤𝑚

∑︁
𝛾≤𝛽

(
𝛽

𝛾

)
𝐶𝛽
𝜕 |𝛾 |𝐴𝛼

𝜕𝑥𝛾
𝜕 |𝛼+𝛽−𝛾 |

𝜕𝑥𝛼+𝛽−𝛾
.

The highest order terms in this sum correspond to those multi-indices 𝛼, 𝛽 and 𝛾
with |𝛽 | = 𝑚′, |𝛼 | = 𝑚 and 𝛾 = 𝛽, so the highest order terms are∑︁

|𝛽 |=𝑚′

∑︁
|𝛼 |=𝑚

𝐶𝛽𝐴𝛼
𝜕 |𝛼+𝛽 |

𝜕𝑥𝛼+𝛽
.
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Hence
𝜎𝜉 (𝑄 ◦ 𝑃) =

∑︁
|𝛽 |=𝑛

∑︁
|𝛼 |=𝑚

𝐶𝛽𝐶𝛼𝜉𝛼+𝛽 = 𝜎𝜉 (𝑄) ◦ 𝜎𝜉 (𝑃).

□

Example 3.3. Consider the exterior derivative 𝑑 : 𝛺𝑘 (𝑀) → 𝛺𝑘+1(𝑀) on 𝑘-
forms. If 𝜂 ∈ 𝛺𝑘 (𝑀) is given in a coordinate chart 𝑥 : 𝑈 → ℝ𝑛 by

𝜂 =
∑︁

𝑖1<···<𝑖𝑘
𝜂𝑖1···𝑖𝑘𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 ,

then

𝑑𝜂 =
∑︁

𝑖1<···<𝑖𝑘

𝑘+1∑︁
𝑗=1

𝜕𝜂𝑖1...𝑖𝑘

𝜕𝑥 𝑗
𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖1 ∧ · · · 𝑑𝑥𝑖𝑘

=
∑︁

𝑖1<···<𝑖𝑘+1

𝑘+1∑︁
𝑗=1

(−1) 𝑗−1
𝜕𝜂

𝑖1···𝑖 𝑗 ···𝑖𝑘+1

𝜕𝑥𝑖 𝑗
𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘+1

on 𝑈. Thus, if for each 𝑗 = 0, . . . , 𝑛, we let 𝑒𝑖1···𝑖 𝑗 (1 ≤ 𝑖1 < · · · < 𝑖 𝑗 ≤ 𝑛) be the
standard basis vectors for 𝛬 𝑗 (ℝ) = ℝ(𝑛𝑗) , then

𝑑 =
∑︁

𝑖1<···<𝑖𝑘
𝑒𝑖1···𝑖𝑘+1

𝑛∑︁
𝑗=1

(−1) 𝑗−1𝑒ᵀ
𝑖1···𝑖 𝑗 ···𝑖𝑘+1

𝜕

𝜕𝑥𝑖 𝑗

on 𝑈, so 𝑑 is a partial differential operator of first order (note each of the terms
𝑒𝑖1···𝑖𝑘+1𝑒

ᵀ
𝑖1···𝑖 𝑗 ···𝑖𝑘+1

is an
( 𝑛
𝑘+1

)
×

(𝑛
𝑘

)
matrix). Moreover, for any 𝜉 ∈ 𝑇∗

𝑥 𝑀 and any

𝜉 ∈ 𝛬𝑘 (𝑇∗
𝑥 𝑀), if =

∑
𝑖 𝜉𝑖𝑑𝑥𝑖 |𝑥 and

𝜁 =
∑︁

𝑖1<···<𝑖𝑘
𝜁𝑖1···𝑖𝑘𝑑𝑥𝑖1 |𝑥 ∧ · · · ∧ 𝑑𝑥𝑖𝑘 |𝑥 ,

12



then

𝜎𝜉 (𝑑) (𝜁) =
∑︁

𝑖1<···<𝑖𝑘+1

𝑒𝑖1···𝑖𝑘+1

𝑘+1∑︁
𝑗=1

(−1) 𝑗−1𝜉𝑖 𝑗 𝜁𝑖1···𝑖 𝑗 ···𝑖𝑘

=
∑︁

𝑖1<···𝑖𝑘+1

𝑘+1∑︁
𝑗=1

(−1) 𝑗−1𝜉𝑖 𝑗 𝜁𝑖1···𝑖 𝑗 ···𝑖𝑘𝑑𝑥𝑖1 ∧ · · · ∧ 𝑑𝑥𝑖𝑘+1

=
∑︁
𝑖1<...𝑖𝑘

𝑛∑︁
𝑗=1
𝜉 𝑗 𝜁𝑖1···𝑖𝑘𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖1 ∧ · · · 𝑑𝑥𝑖𝑘

= 𝜉 ∧ 𝜁 .
Thus 𝑑 is highly nonelliptic: given any 𝜉 ∈ 𝑇∗

𝑥 𝑀 nonzero, we can choose a basis
𝜉1, . . . , 𝜉𝑛 for 𝑇∗𝑀 with 𝜉1 = 𝜉, so that 𝜎𝜉 (𝑑) (𝜁) = 0 where 𝜁 := 𝜉1 ∧ · · · ∧ 𝜉𝑛 ≠ 0.

𝐿2 Spaces and Formal Adjoints
Now assume the manifold 𝑀 is compact, and equip the vector bundle 𝐸 with a
fibre metric ⟨·, ·⟩𝐸 . The fibre metric provides us with a natural inner product on
𝛤 (𝐸) defined by

⟨𝑢, 𝑣⟩𝐿2 (𝐸) =

∫
𝑀

⟨𝑢, 𝑣⟩𝐸 ,

called the 𝐿2-inner product on 𝐸 . We denote its corresponding norm by ∥·∥𝐿2 (𝐸) ,
and we denote the completion of 𝛤 (𝐸) with respect to this norm by 𝐿2(𝐸). Thus,
𝐿2(𝐸) is a Hilbert space.
Proposition 3.4. The equivalence class of the 𝐿2-norm on a compact manifold is
independent of the choice of fibre metric used to define it.
Proof. Let ⟨·, ·⟩′

𝐸
be another fibre metric on 𝐸 , and denote its corresponding

𝐿2-norm by ∥·∥′
𝐿2 (𝐸) . We must show there are positive constants 𝑐 and 𝐶 such that

𝑐∥𝑢∥′
𝐿2 (𝐸) ≤ ∥𝑢∥𝐿2 (𝐸) ≤ 𝐶∥𝑢∥′𝐿2 (𝐸)

for all 𝑢 ∈ 𝛤 (𝐸). Choose a finite cover 𝑈1, . . . ,𝑈𝑁 of 𝑀 by open sets such
that for each ℓ, �̄�ℓ is compact and contained in the domain of a coordinate chart
𝑥ℓ : 𝑉ℓ → ℝ𝑛 over which there is a local trivialisation 𝜑ℓ : 𝐸 |𝑉ℓ → 𝑉ℓ × 𝕂𝑝. Also
choose a partition of unity 𝜒1, . . . , 𝜒𝑁 subordinate to the cover𝑈1, . . . ,𝑈𝑁 .
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Fix an index ℓ, and consider the map
�̄�ℓ × 𝑆 → ℝ

(𝑝, 𝑧) ↦→
��𝜑−1
ℓ (𝑝, 𝑧)

��
𝐸𝑝

where 𝑆 := {𝑧 ∈ 𝕂𝑝 : |𝑧 | = 1} is the unit sphere in 𝕂𝑝. Since this map is smooth,
and since �̄�ℓ × 𝑆 is compact, it attains a minimum 𝑐ℓ and a maximum 𝐶ℓ. Note
that 𝐶ℓ ≥ 𝑐ℓ > 0 since |𝜑−1

ℓ
(𝑝, 𝑧) |𝐸𝑝

= 0 ⇒ 𝜑−1
ℓ
(𝑝, 𝑧) = 0 ⇒ 𝑧 = 0. Since

𝜑−1
ℓ
(𝑝, 𝑧) = |𝑧 |𝜑−1

ℓ
(𝑝, 𝑧/|𝑧 |) for 𝑧 ≠ 0, we have 𝑐ℓ |𝑧 | ≤ |𝜑−1

ℓ
(𝑝, 𝑧) |𝐸𝑝

≤ 𝐶ℓ |𝑧 | for
all 𝑝 ∈ 𝑈ℓ and 𝑧 ∈ 𝕂𝑟 . By the same argument, there are constants 𝐶′

ℓ
≥ 𝑐′

ℓ
> 0

such that 𝑐′
ℓ
|𝑧 | ≤ |𝜑−1

ℓ
(𝑝, 𝑧) |′

𝐸𝑝
≤ 𝐶′

ℓ
|𝑧 | for all 𝑝 ∈ 𝑈ℓ and 𝑧 ∈ 𝕂𝑝. Hence for any

𝑢 ∈ 𝛤 (𝐸),
𝑐ℓ

𝐶′
ℓ

|𝑢 |′𝐸 ≤ |𝑢 |𝐸 ≤ 𝐶ℓ

𝑐′
ℓ

|𝑢 |′𝐸 on 𝐸 |𝑈ℓ
.

Now by definition

∥𝑢∥2
𝐿2 (𝐸) =

∑︁
ℓ

∫
𝑈ℓ

𝜒ℓ |𝑢 |2𝐸 vol𝑔ℓ and ∥𝑢∥′2
𝐿2 (𝐸) =

∑︁
ℓ

∫
𝑈ℓ

𝜒ℓ |𝑢 |′2𝐸 vol𝑔ℓ ,

so by our work above∑︁
ℓ

𝑐2
ℓ

𝐶′
ℓ

∫
𝑈ℓ

𝜒ℓ |𝑢 |′2𝐸 vol𝑔ℓ ≤ ∥𝑢∥2
𝐿2 (𝐸) ≤

∑︁
ℓ

𝐶2
ℓ

𝑐′2
ℓ

∫
𝑈ℓ

𝜒ℓ |𝑢 |′2𝐸 vol𝑔ℓ .

Thus, for 𝑐 = min{𝑐ℓ/𝐶′
ℓ

: ℓ = 1, . . . , 𝑁} and 𝐶 = max{𝐶ℓ/𝑐′ℓ : ℓ = 1, . . . , 𝑁}, we
have 𝑐∥𝑢∥′

𝐿2 (𝐸) ≤ ∥𝑢∥𝐿2 (𝐸) ≤ 𝐶∥𝑢∥′𝐿2 (𝐸) . □

Now equip 𝐹 with a fibre metric ⟨·, ·⟩𝐹 , so that 𝛤 (𝐹) is equipped with an
𝐿2-inner product ⟨·, ·⟩𝐿2 (𝐹) .
Proposition 3.5. Let 𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) be a partial differential operator of order
𝑚. There is a unique linear operator 𝑃∗ : 𝛤 (𝐹) → 𝛤 (𝐸) such that

⟨𝑃𝑢, 𝑣⟩𝐿2 (𝐹) = ⟨𝑢, 𝑃∗𝑣⟩𝐿2 (𝐸) (3.5)

for all 𝑢 ∈ 𝛤 (𝐸) and 𝑣 ∈ 𝛤 (𝐹). Moreover, 𝑃∗ is an 𝑚th order partial differential
operator with symbol

𝜎(𝑃∗) = (−1)𝑚𝜎(𝑃)∗.
Consequently, 𝑃 is elliptic if and only if 𝑃∗ is elliptic.
Proof. Uniqueness follows easily: if 𝑄,𝑄′ : 𝛤 (𝐹) → 𝛤 (𝐸) are linear operators
such that ⟨𝑢, 𝑄𝑣⟩𝐿2 (𝐸) = ⟨𝑃𝑢, 𝑣⟩𝐿2 (𝐹) = ⟨𝑢, 𝑄′𝑣⟩𝐿2 (𝐸) for all 𝑢 ∈ 𝛤 (𝐸) and 𝑣 ∈
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𝛤 (𝐹), then 0 = ⟨𝑢, (𝑄 − 𝑄′)𝑣⟩𝐿2 (𝐸) for all 𝑢 and 𝑣, so by taking 𝑢 = (𝑄 − 𝑄′)𝑣,
we get 𝑄 = 𝑄′.

Next we prove existence. Choose a cover of 𝑀 by local coordinate charts
𝑥ℓ : 𝑈ℓ ∼−→ ℝ𝑛 for ℓ = 1, . . . , 𝑁 over each of which are defined orthonormal local
frames 𝑒ℓ1, . . . , 𝑒

ℓ
𝑝 and 𝑓 ℓ1 , . . . , 𝑓

ℓ
𝑞 for 𝐸 and 𝐹, respectively. Let 𝑢 ∈ 𝛤 (𝐸) and

𝑣 ∈ 𝛤 (𝐹) be arbitrary. On each 𝑈ℓ, write 𝑃 =
∑

|𝛼 |≤𝑚 𝐴
𝛼
ℓ
𝜕 |𝛼 |/𝜕𝑥𝛼, 𝑢 =

∑
𝑖 𝑢
ℓ
𝑖
𝑒ℓ
𝑖

and 𝑣 =
∑
𝑗 𝑣
ℓ
𝑗
𝑓 ℓ
𝑗
. Also set 𝑢ℓ = (𝑢ℓ1, . . . , 𝑢

ℓ
𝑝) and 𝑣ℓ = (𝑣ℓ1, . . . , 𝑣

ℓ
𝑞). Then

⟨𝑃𝑢, 𝑣⟩𝐿2 (𝐹) =
∑︁
ℓ

⟨𝑃𝑢, 𝜒ℓ𝑣⟩𝐿2 (𝐹)

=
∑︁
ℓ

∫
𝑈ℓ

∑︁
|𝛼 |≤𝑚

(
𝐴𝛼ℓ
𝜕 |𝛼 |𝑢ℓ

𝜕𝑥𝛼

)ᵀ
𝜒ℓ �̄�

ℓ vol𝑔ℓ

=
∑︁
ℓ

∫
𝑈ℓ

(𝑢ℓ)ᵀ 1√︁
det 𝑔ℓ

∑︁
|𝛼 |≤𝑚

(−1) |𝛼 | 𝜕
|𝛼 |

𝜕𝑥𝛼

(√︁
det 𝑔ℓ (𝐴𝛼ℓ )

ᵀ𝜒ℓ �̄�
ℓ
)

vol𝑔ℓ

=
∑︁
ℓ

∫
𝑈ℓ

(𝑢ℓ)ᵀ𝑃∗
ℓ
𝑣 vol𝑔ℓ ,

where the third line follows by integration by parts (there are no boundary terms
because 𝑥ℓ (𝑈) = ℝ𝑛), and in the final line we have defined 𝑃∗

ℓ
: 𝛤 (𝐹) → 𝛤 (𝐸) by

𝑃∗
ℓ𝑣 =

1√︁
det 𝑔ℓ

∑︁
|𝛼 |≤𝑚

(−1) |𝛼 | 𝜕
|𝛼 |

𝜕𝑥𝛼

(√︁
det 𝑔ℓ ( �̄�𝛼ℓ )

ᵀ𝜒ℓ𝑣
ℓ
)
. (3.6)

Note that the above makes sense as a global operator because the right-hand side
is supported in𝑈ℓ. If we put 𝑃∗ =

∑
ℓ 𝑃

∗
ℓ
, then

⟨𝑃𝑢, 𝑣⟩𝐿2 (𝐹) =
∑︁
ℓ

∫
𝑈ℓ

(𝑢ℓ)ᵀ𝑃∗
ℓ
𝑣ℓ vol𝑔ℓ =

∑︁
ℓ

⟨𝑢, 𝑃∗
ℓ𝑣⟩𝐿2 (𝐸) = ⟨𝑢, 𝑃∗𝑣⟩𝐿2 (𝐸) ,

which proves existence. Also, 𝑃∗ is clearly an𝑚th order partial differential operator.
Finally, we compute 𝜎(𝑃∗). By the Leibniz rule, the terms in (3.6) taking 𝑚th

order derivatives of 𝑣 are exactly
1√︁

det 𝑔ℓ

∑︁
|𝛼 |=𝑚

(−1)𝑚
√︁

det 𝑔ℓ ( �̄�𝛼ℓ )
ᵀ𝜒ℓ

𝜕 |𝛼 |𝑣ℓ

𝜕𝑥𝛼
= 𝜒ℓ (−1)𝑚

∑︁
|𝛼 |=𝑚

( �̄�𝛼ℓ )
ᵀ 𝜕

|𝛼 |𝑣ℓ

𝜕𝑥𝛼
.

Hence
𝜎(𝑃∗) =

∑︁
ℓ

𝜎(𝑃∗
ℓ ) =

∑︁
ℓ

𝜒ℓ (−1)𝑚𝜎(𝑃)∗ = (−1)𝑚𝜎(𝑃)∗.

15



This completes the proof. □

The operator 𝑃∗ in the preceding proposition is called the formal adjoint of
𝑃. The word “formal” is here to emphasise that 𝑃∗ as an operator 𝛤 (𝐹) → 𝛤 (𝐸)
is not an actual adjoint of 𝑃, since 𝛤 (𝐸) and 𝛤 (𝐹) are not Hilbert spaces in
general. Of course, 𝑃 and 𝑃∗ naturally extend to operators 𝑃 : 𝐿2(𝐸) → 𝐿2(𝐹)
and 𝑃∗ : 𝐿2(𝐹) → 𝐿2(𝐸) where 𝑃∗ really is the Hilbert space adjoint of 𝑃. Also,
note that the identity (3.5) extends to an identity

⟨𝑃𝑢, 𝑣⟩𝐿2 (𝐹) = ⟨𝑢, 𝑃∗𝑣⟩𝐿2 (𝐸)

valid for all 𝑢 ∈ 𝐿2(𝐸) and 𝑣 ∈ 𝐿2(𝐹).
Example 3.6. Endow 𝑀 with a Riemannian metric 𝑔. Recall that 𝑔 induces a
fibre metric on 𝛬(𝑇∗𝑀), so we have an 𝐿2-inner product on 𝛺(𝑀) defined by

⟨𝜔, 𝜂⟩ =
∫
𝑀

𝑔(𝜔, 𝜂).

Also recall, from Example 3.3, that 𝑑 is a first order partial differential operator.
In this example, we shall compute the formal adjoint of 𝑑 with respect to this
𝐿2-inner product.

There is a unique linear operator ∗ : 𝛺𝑘 (𝑀) → 𝛺𝑛−𝑘 (𝑀), called the Hodge
star operator, with the property that 𝜔 ∧ ∗𝜂 = 𝑔(𝜔, 𝜂) vol𝑔 for all 𝜔, 𝜂 ∈ 𝛺𝑘 (𝑀).
With respect to any local orthonormal frame 𝑒1, . . . , 𝑒𝑛 for 𝑇∗𝑀 , ∗ is given by

∗(𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑘 ) = ±𝑒 𝑗1 ∧ · · · ∧ 𝑒 𝑗𝑛−𝑘
where 𝑖1 < · · · < 𝑖𝑘 , 𝑗1 < . . . < 𝑗𝑛−𝑘 , {𝑖1, . . . , 𝑖𝑘 , 𝑗1, . . . , 𝑗𝑛−𝑘 } = {1, . . . , 𝑛},
the plus sign is chosen if 𝑒𝑖1 , . . . , 𝑒𝑖𝑘 , 𝑒 𝑗1 , . . . , 𝑒 𝑗𝑛−𝑘 is positively oriented, and the
minus sign is chosen otherwise. It is straightforward to show that ∗∗ = (−1)𝑛(𝑛−𝑘) .

The main utility of the Hodge star operator, for us at least, is that it allows us
to rewrite the 𝐿2-inner product as follows: for 𝜔 ∈ 𝛺𝑘 (𝑀) and 𝜂 ∈ 𝛺ℓ (𝑀),

⟨𝜔, 𝜂⟩𝐿2 (𝛬(𝑇∗𝑀)) =

{∫
𝑀
𝜔 ∧ ∗𝜂 if 𝑘 = ℓ,

0 otherwise.

Observe that for 𝜔 ∈ 𝛺𝑘−1(𝑀) and 𝜂 ∈ 𝛺𝑘 (𝑀),
𝑑 (𝜔 ∧ ∗𝜂) = 𝑑𝜔 ∧ ∗𝜂 + (−1)𝑘−1𝜔 ∧ 𝑑∗𝜂

= 𝑑𝜔 ∧ ∗𝜂 + (−1)𝑘−1𝜔 ∧ (−1) (𝑘−1) (𝑛−𝑘+1)∗∗∗𝑑∗𝜂
= 𝑑𝜔 ∧ ∗𝜂 − 𝜔 ∧ ∗𝑑∗𝜂
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where we have defined 𝑑∗ : 𝛺𝑘 (𝑀) → 𝛺𝑘−1(𝑀) by
𝑑∗ = (−1) (𝑘−1) (𝑛−𝑘+1)+𝑘 = (−1)𝑛(𝑘+1)+1∗𝑑∗. (3.7)

By the Stokes Theorem,

⟨𝑑𝜔, 𝜂⟩𝐿2 (𝛬(𝑇∗𝑀)) =

∫
𝑀

𝑑𝜔 ∧ ∗𝜂 =

∫
𝑀

𝜔 ∧ ∗𝑑∗𝜂 = ⟨𝜔, 𝑑∗𝜂⟩𝐿2 (𝛬(𝑇∗𝑀)) .

Now if 𝜔 ∈ 𝛺𝑘 (𝑀) and 𝜂 ∈ 𝛺ℓ (𝑀) where ℓ ≠ 𝑘 + 1, then
⟨𝑑𝜔, 𝜂⟩𝐿2 (𝛬(𝑇∗𝑀)) = ⟨𝜔, 𝑑∗𝜂⟩𝐿2 (𝛬(𝑇∗𝑀)) = 0.

Hence 𝑑∗ is the formal adjoint of 𝑑 on 𝛺(𝑀); it is called the coexterior derivative.

4. The Local Analysis
In this section, we develop the essentials of the theory of pseudodifferential oper-
ators. First working only with complex-valued functions of several real variables,
we introduce the Sobolev spaces and the uniform spaces, and prove a theorem
by Sobolev that says when a given Sobolev space can be embedded inside a uni-
form space. Then we introduce the pseudodifferential operators, which are natural
extensions of partial differential operators, and derive their basic algebraic prop-
erties. In particular, we show that pseudodifferential operators naturally extend to
bounded linear operators on certain Sobolev spaces. We introduce a notion of el-
lipticity for pseudodifferential operators, and show that elliptic pseudodifferential
have inverses, called parametrices, up to infinitely smoothing operators.

Now equipped with a theory of pseudodifferential operators, and working over
vector bundles over a manifold, we choose a good system of trivialisations for
our vector bundles and coordinate charts for our manifold so that we may extend
our theory to vector bundles by pasting together the local results using a partition
of unity. We prove that elliptic partial differential operators on vector bundles
are elliptic in the sense of pseudodifferential operators, and use this to construct
parametrices for them. This is the main result from this section. Finally, we use the
existence of a parametrix to prove various properties of elliptic partial differential
operators.

The Fourier Transform
We being by recalling the classical Fourier transform in the sense of Schwarz. We
will be working with smooth functions defined on ℝ𝑛 and taking values in ℂ𝑝 for
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some 𝑝. We denote by 𝐶∞(ℂ𝑝) the set of all smooth functions ℝ𝑛 → ℂ𝑝, and we
define the Schwartz space S(ℂ𝑝) to consist of all functions 𝑢 ∈ 𝐶∞(ℂ𝑝) such that

sup
𝑥∈ℝ𝑛

��𝑥𝛽𝜕𝛼𝑢(𝑥)�� < ∞

for all multi-indices 𝛼 and 𝛽. Intuitively, functions belonging to S tend to zero
rapidly near infinity. The Fourier transform of 𝑢 ∈ S(ℂ𝑝) is the function �̂� : ℝ𝑛 →
ℂ𝑝 defined by

�̂�(𝜉) =
∫
ℝ𝑛

𝑒−𝑖𝑥·𝜉𝑢(𝑥) 𝑑𝑥.

The following proposition is a list of the basic properties of the Fourier transform
that we will need. Note that it will be useful to define the derivative operators
𝐷𝛼 = 𝑖−|𝛼 |𝜕𝛼 as well as the convolution of functions: the convolution of 𝜑 ∈ S(ℂ)
and 𝑢 ∈ S(ℂ𝑝) is the function 𝜑 ∗ 𝑢 ∈ S(ℂ𝑝) defined by

𝜑 ∗ 𝑢(𝑥) =
∫
ℝ𝑛

𝜑(𝑦)𝑢(𝑥 − 𝑦) 𝑑𝑦.

We also write ⟨𝑢, 𝑣⟩ =
∫
ℝ𝑛 𝑢𝑣

∗ for the 𝐿2-inner product on S.
Proposition 4.1.
(a) The Fourier transform defines a bijection S(ℂ𝑝) → S(ℂ𝑝) with inverse

�̌�(𝑥) = (2𝜋)−𝑛
∫
ℝ𝑛

𝑒𝑖𝑥·𝜉𝑢(𝜉) 𝑑𝜉.

(b) 𝐷𝛼
𝑥 𝑢 = 𝜉𝛼�̂� and 𝐷𝛼

𝜉
�̂� = �(−𝑥)𝛼𝑢 for all 𝑢 ∈ S(ℂ𝑝).

(c) �𝜑 ∗ 𝑢 = �̂��̂� and 𝜑𝑢 = (2𝜋)−𝑛�̂� ∗ �̂� for all 𝜑 ∈ S(ℂ) and 𝑢 ∈ S(ℂ𝑝).
(d) ⟨𝑢, 𝑣⟩ = ⟨�̂�, �̂�⟩ for all 𝑢, 𝑣 ∈ S(ℂ𝑝) (Plancherel’s Formula).

Proof. See Lemma 7.1.3, Theorem 7.1.3 and Theorem 7.1.6 in [Hör03]. Alterna-
tively, see Theorem 2 of Section 4.3 in [Eva10].

□

Sobolev Spaces and Uniform Spaces
For 𝑠 ∈ ℝ, we define the Sobolev 𝑠-norm on S(ℂ𝑝) by

∥𝑢∥𝑠 =
(∫

ℝ𝑛

(1 + |𝜉 |)2𝑠 |�̂�(𝜉) |2 𝑑𝜉
)1/2

. (4.1)
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We denote by 𝐿2
𝑠 (ℂ𝑝) the completion of S(ℂ𝑝) in this norm; thus 𝐿2

𝑠 is a Banach
space. The main reason to introduce these spaces is the following:
Proposition 4.2. For an integer 𝑘 ≥ 0, the Sobolev 𝑘-norm is equivalent to the
norm 𝑢 ↦→ (∑|𝛼 |≤𝑚

∫
ℝ𝑛 |𝜕𝛼𝑢 |2)1/2. Thus, a function 𝑢 ∈ 𝐶∞(ℂ𝑝) has integrable

derivatives of orders up to 𝑘 if and only if ∥𝑢∥𝑘 < ∞.
Proof. Proposition 4.1(b) implies

∫
ℝ𝑛 |𝜕𝛼𝑢 |2 =

∫
ℝ𝑛 |𝜉𝛼 |2 |𝑢 |2, so the result follows

by noting that 𝑐𝑘 (1 + |𝜉 |)2𝑘 ≤ ∑
|𝛼 |≤𝑘 |𝜉𝛼 |2 ≤ 𝐶𝑘 (1 + |𝜉 |)2𝑘 for some constants

𝑐𝑘 , 𝐶𝑘 > 0. □

Proposition 4.3. For any real numbers 𝑠 and 𝑠′, if 𝑠 ≥ 𝑠′, then the natural
inclusion 𝐿2

𝑠 (ℂ𝑝) ↩→ 𝐿2
𝑠′ (ℂ𝑝) is an embedding.

Proof. If 𝑠 ≥ 𝑠′, then (1 + |𝜉 |)2𝑠′ ≤ (1 + |𝜉 |)2𝑠, and so (4.1) implies ∥𝑢∥𝑠 ≤
∥𝑢∥𝑠′ . □

For an integer 𝑘 ≥ 0, we define 𝐶𝑘
𝑏
(ℂ𝑝) the set of all functions 𝑢 : ℝ𝑛 → ℂ𝑝

having bounded continuous derivatives up to order 𝑘 . We turn it into a Banach
space by equipping it with the norm

∥𝑢∥𝐶𝑘
𝑏
=

∑︁
|𝛼 |≤𝑘

sup|𝜕𝛼𝑢 |. (4.2)

We have the following theorem by Sobolev, which says that with a function 𝑢
with bounded Sobolev 𝑠-norm for large 𝑠 must have some degree of degree of
smoothness.
Proposition 4.4 (Sobolev Embedding Theorem). For each integer 𝑘 ≥ 0 and
each real number 𝑠 > 𝑘 + 𝑛/2, there is a constant 𝐶𝑘,𝑠 > 0 such that ∥𝑢∥𝐶𝑘

𝑏
≤

𝐶𝑘,𝑠∥𝑢∥𝑠 for all 𝑢 ∈ S(ℂ𝑝). Consequently, the natural inclusion 𝐿2
𝑠 (ℂ𝑝) ↩→

𝐶𝑘
𝑏
(ℂ𝑝) is an embedding for each such 𝑠 and 𝑘 .

Proof. The following proof is from Theorem 2.5 in [LM89]. Let 𝑢 ∈ S(ℂ𝑝), and
let 𝛼 be any multi-index. By Proposition 4.1(a), 𝑢(𝑥) = (2𝜋)−𝑛

∫
ℝ𝑛 𝑒

𝑖𝑥·𝜉 �̂�(𝜉) 𝑑𝜉,
so 𝐷𝛼𝑢(𝑥) = (2𝜋)−𝑛

∫
ℝ𝑛 𝑒

𝑖𝑥·𝜉𝜉𝛼�̂�(𝜉) 𝑑𝜉.

|𝜕𝛼𝑢(𝑥) | ≤ (2𝜋)−𝑛
∫
ℝ𝑛

(1 + |𝜉 |) |𝛼 | |�̂�(𝜉) | 𝑑𝜉

≤ (2𝜋)−𝑛
(∫

ℝ𝑛

(1 + |𝜉 |)2|𝛼 |−2𝑠 𝑑𝜉

)1/2 (∫
ℝ𝑛

(1 + |𝜉 |)2𝑠 |�̂�(𝜉) |2 𝑑𝜉
)1/2

= 𝐶𝛼,𝑠∥𝑢∥𝑠
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where the second line follows by Hölder’s inequality, and where in the last line
we have defined 𝐶𝛼,𝑠 = (

∫
ℝ𝑛 (1 + |𝜉 |)2|𝛼 |−2𝑠 𝑑𝜉)1/2. Note that 𝐶𝛼,𝑠 < ∞ because

2𝑠 − 2|𝛼 | ≥ 2𝑠 − 2𝑘 > 𝑛. It follows that ∥𝑢∥𝐶𝑘
𝑏
≤ (∑|𝛼 |≤𝑘 𝐶

2
𝛼,𝑠)1/2∥𝑢∥𝑠. □

Proposition 4.5 (Rellich Lemma). Let {𝑢ℓ}∞ℓ=1 be a bounded sequence of com-
pactly supported functions in 𝐿2

𝑠 (ℂ𝑝). Then for any 𝑠′ < 𝑠, {𝑢ℓ} has a subsequence
that is Cauchy in the norm ∥𝑠∥ and therefore converges in 𝐿2

𝑠 (ℂ𝑝).
Proof. See Theorem 2.6 in [LM89]. □

Pseudodifferential Operators
Pseudodifferential operators are a natural generalisation of partial differential op-
erators that arise when trying to find an approximate inverse to a partial differential
operator. For the purposes of this section, a partial differential operator of order
𝑚 will be a linear operator 𝑃(𝑥, 𝐷) : S(ℂ𝑝) → S(ℂ𝑞) of the form

𝑃(𝑥, 𝐷)𝑢(𝑥) =
∑︁
|𝛼 |≤𝑚

𝐴𝛼 (𝑥)𝐷𝛼𝑢(𝑥)

where 𝐴𝛼 is a smooth function ℝ𝑛 → ℂ𝑞×𝑝 for each 𝛼, and 𝐴𝛼 ≠ 0 for some 𝛼
with |𝛼 | = 𝑚. Given 𝑢 ∈ S(ℂ𝑝), using Proposition 4.1, we may write 𝑢(𝑥) =

(2𝜋)−𝑛
∫
ℝ𝑛 𝑒

𝑖𝑥·𝜉 �̂�(𝜉) 𝑑𝜉, so that by interchanging the order of differentiation and
integration,

𝑃(𝑥, 𝐷)𝑢(𝑥) = (2𝜋)−𝑛
∫
ℝ𝑛

∑︁
|𝛼 |≤𝑚

𝐴𝛼 (𝑥)𝐷𝛼
𝑥 (𝑒𝑖𝑥·𝜉 �̂�(𝜉)) 𝑑𝜉

= (2𝜋)−𝑛
∫
ℝ𝑛

𝑒𝑖𝑥·𝜉 𝑝(𝑥, 𝜉)�̂�(𝜉) 𝑑𝜉 (4.3)

where 𝑃(𝑥, 𝜉) :=
∑

|𝛼 |≤𝑚 𝐴
𝛼 (𝑥)𝜉𝛼. Switching the order of differentiation and

integration here is allowed because �̂� ∈ S(ℂ𝑝). Replacing 𝑃(𝑥, 𝜉) in (4.3) by a
more general function of (𝑥, 𝜉) defines a pseudodifferential operator.

For 𝑚 ∈ ℝ, a smooth function 𝑎 : ℝ𝑛 ×ℝ𝑛 → ℂ𝑞×𝑝 is called a symbol of order
𝑚 if for any two multi-indices 𝛼 and 𝛽, there is a constant 𝐶𝛼,𝛽 > 0 such that��𝜕𝛼𝜉 𝜕𝛽𝑥 𝑎(𝑥, 𝜉)�� ≤ 𝐶𝛼,𝛽 (1 + |𝜉 |)𝑚−|𝛼 | for all 𝑥, 𝜉 ∈ ℝ𝑛. (4.4)
We denote the set of all symbols of order𝑚 by 𝑆𝑚 (ℂ𝑞×𝑝), and we set 𝑆−∞(ℂ𝑞×𝑝) =
∩𝑚∈ℝ𝑆𝑚 (ℂ𝑞×𝑝) and 𝑆∞(ℂ𝑞×𝑝) = ∪𝑚∈ℝ𝑆𝑚 (ℂ𝑞×𝑝). Note that if 𝑎 ∈ 𝑆𝑚 (ℂ𝑞×𝑝) and
𝑏 ∈ 𝑆𝑚

′ (ℂ𝑟×𝑞), then 𝑎𝑏 ∈ 𝑆𝑚+ℓ (ℂ𝑟×𝑝) and 𝜕𝛼
𝜉
𝜕
𝛽
𝑥 𝑎 ∈ 𝑆𝑚−|𝛼 | (ℂ𝑞×𝑝). Also, the
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function 𝑝 in (4.3) is a symbol of order 𝑚 provided each 𝐴𝛼 is a bounded function
of 𝑥.

For the remainder of this section, we proceed largely as Hörmander in [Hör07],
and the proofs are much the same. The only difference is that we are working with
functions taking values in ℂ𝑞×𝑝, while Hörmander works with functions taking
values in ℂ.
Proposition 4.6. If 𝑎 ∈ 𝑆𝑚 (ℂ𝑞×𝑝), then the formula

𝑎(𝑥, 𝐷)𝑢(𝑥) = (2𝜋)−𝑛
∫
ℝ𝑛

𝑒𝑖𝑥·𝜉𝑎(𝑥, 𝜉)�̂�(𝜉) 𝑑𝜉. (4.5)

defines a bounded linear map 𝑎(𝑥, 𝐷) : S(ℂ𝑝) → S(ℂ𝑞).
The operator 𝑎(𝑥, 𝐷) in this proposition is called a pseudodifferential operator

of order 𝑚. We write Op 𝑆𝑚 (ℂ𝑞×𝑝) = {𝑎(𝑥, 𝐷) : 𝑎 ∈ 𝑆𝑚 (ℂ𝑞×𝑝)} for the space of
pseudodifferential operators of order 𝑚.
Proof. By the Leibniz rule,

𝐷𝛼
𝑥 𝑎(𝑥, 𝐷)𝑢(𝑥) = (2𝜋)−𝑛

∫
ℝ𝑛

𝑒𝑖𝑥·𝜉
(∑︁
𝛽≤𝛼

(
𝛼

𝛽

)
𝜉𝛼−𝛽𝑎(𝑥, 𝜉)𝐷𝛽

𝑥 𝑎(𝑥, 𝜉)
)
�̂�(𝜉) 𝑑𝜉

= (2𝜋)−𝑛
∑︁
𝛽≤𝛼

(
𝛼

𝛽

) ∫
ℝ𝑛

𝑒𝑖𝑥·𝜉 (𝐷𝛽
𝑥 𝑎(𝑥, 𝜉))𝜉𝛼−𝛽�̂�(𝜉) 𝑑𝜉.

The integrands in the above are absolutely integrable because we can bound
|𝐷𝛽

𝑥 𝑎(𝑥, 𝜉) | ≤ 𝐶𝛼 (1+ |𝜉 |)𝑚 and |𝜉𝛼−𝛽�̂�(𝜉) | ≤ 𝐶′
𝛼 (1+ |𝜉 |)−𝑚−𝑛−1 for some positive

constants 𝐶𝛼 and 𝐶′
𝛼. This justifies interchanging the order of integration and

differentiation and shows that 𝑎(𝑥, 𝐷)𝑢 ∈ S(ℂ𝑞). □

The following proposition provides a way to write a given symbol as a certain
kind of asymptotic sum.
Proposition 4.7. For each non-negative integer 𝑗 , let𝑚 𝑗 ∈ ℝ and 𝑎 𝑗 ∈ 𝑆𝑚 𝑗 (ℂ𝑞×𝑝).
Assume 𝑚 𝑗 → −∞ as 𝑗 → ∞, and set 𝑚′

𝑘
= max 𝑗≥𝑘 𝑚 𝑗 . Then there exists

𝑎 ∈ 𝑆𝑚′
0 (ℂ𝑞×𝑝) such that supp 𝑎 ⊆ ∪∞

𝑗=0 supp 𝑎 𝑗 and such that for every 𝑘

𝑎 −
∑︁
𝑗<𝑘

𝑎 𝑗 ∈ 𝑆𝑚
′
𝑘 (ℂ𝑞×𝑝).

The function 𝑎 is unique modulo 𝑆−∞(ℂ𝑞×𝑝), and it has the same property relative
to any rearrangement of the formal series

∑
𝑗 𝑎 𝑗 . We write 𝑎 ∼ ∑

𝑗 𝑎 𝑗 .
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Proof. Choose a cutoff function 𝜒 : ℝ𝑛 → [0, 1] in S(ℂ) equal to 0 in a neigh-
bourhood of 1. Then the function (𝑥, 𝜉) ↦→ 𝜒(𝜉) lies in 𝑆0(ℂ). We claim that for
every multi-index 𝛼, there is a constant 𝐶𝛼 > 0 such that��𝜕𝛼𝜉 (1 − 𝜒(𝜀𝜉))

�� ≤ 𝐶𝛼𝜀(1 + |𝜉 |) |𝛼 |−1.

For 𝛼 = 0, this is trivial. If 𝛼 ≠ 0, then��𝜕𝛼𝜉 (1 − 𝜒(𝜀𝜉))
�� = 𝜀 |𝛼 | ��(𝜕𝛼𝜒) (𝜀𝜉)��
≤ 𝐶𝛼𝜀 |𝛼 | (1 + |𝜀𝜉 |)1−|𝛼 |

= 𝐶𝛼𝜀(1 + |𝜉 |)1−|𝛼 |
(

1 + |𝜉 |
1/𝜀 + |𝜉 |

)|𝛼 |−1

≤ 𝐶𝛼𝜀(1 + |𝜉 |)1−|𝛼 |

where the second lines follows because 𝜒(𝜉) viewed as a function of (𝑥, 𝜉) is an
element of 𝑆0(ℂ) ⊆ 𝑆1(ℂ). It follows that we can find a sequence 𝜀 𝑗 → 0 such
that ��𝜕𝛼𝜉 𝜕𝛽𝑥 ((1 − 𝜒(𝜀 𝑗 |𝜉 |)𝑎 𝑗 (𝑥, 𝜉))

�� < 2− 𝑗 (1 + |𝜉 |)𝑚 𝑗+1−|𝛼 |

for all multi-indices 𝛼 and 𝛽 with |𝛼 | + |𝛽 | ≤ 𝑗 . Define 𝐴 𝑗 (𝑥, 𝜉) = (1 −
𝜒(𝜀 𝑗 |𝜉 |))𝑎 𝑗 (𝑥, 𝜉). Since 𝜒 has compact support, the sum 𝑎 =

∑
𝑗 𝐴 𝑗 is locally

finite, so 𝑎 ∈ 𝐶∞(ℂ𝑞×𝑝). Given multi-indices 𝛼 and 𝛽 as well as a non-negative
integer 𝑘 , we can find an integer 𝑁 large enough that 𝑁 ≥ |𝛼 | + |𝛽 | and that
𝑚′
𝑁
+ 1 ≤ 𝑚′

𝑘
. Observe that����𝜕𝛼𝜉 𝜕𝛽𝑥 (𝑎(𝑥, 𝜉) − ∑︁

𝑗<𝑁

𝐴 𝑗 (𝑥, 𝜉))
���� ≤ ∑︁

𝑗≥𝑁
2− 𝑗 (1 + |𝜉 |)𝑚 𝑗+1−|𝛼 | ≤ (1 + |𝜉 |)𝑚′

𝑘
−|𝛼 |,

whence 𝑎 − ∑
𝑗<𝑁 𝐴 𝑗 ∈ 𝑆𝑚

′
𝑘 (ℂ𝑞×𝑝). Hence

𝑎 −
∑︁
𝑗<𝑘

𝑎 𝑗 = 𝑎 −
∑︁
𝑗<𝑁

𝐴 𝑗 +
∑︁

𝑘≤ 𝑗<𝑁
𝐴 𝑗 +

∑︁
𝑗<𝑘

(𝐴 𝑗 − 𝑎 𝑗 ) ∈ 𝑆𝑚
′
𝑘 (ℂ𝑞×𝑝)

because
∑
𝑘≤ 𝑗<𝑁 𝐴 𝑗 ∈ 𝑆𝑚

′
𝑘 (ℂ𝑞×𝑝) and

∑
𝑗<𝑘 (𝐴 𝑗 − 𝑎 𝑗 ) ∈ 𝑆−∞(ℂ𝑞×𝑝). □

We are interested in how pseudodifferential operators behave under taking
formal adjoints and composition. Before we proceed, it will be instructive to do
this for partial differential operators first.
Example 4.8. Let 𝑃(𝑥, 𝐷) : S(ℂ𝑝) → S(ℂ𝑞) be a partial differential operator of
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order 𝑚 given by 𝑃(𝑥, 𝐷) = ∑
|𝛼 |≤𝑚 𝐴

𝛼 (𝑥)𝐷𝛼. By integration by parts,

⟨𝑃(𝑥, 𝐷)𝑢, 𝑣⟩ =
∫
ℝ𝑛

∑︁
|𝛼 |≤𝑚

𝐴𝛼 (𝑥)𝐷𝛼𝑢(𝑥)𝑣(𝑥)∗ 𝑑𝑥

=

∫
ℝ𝑛

𝑢(𝑥)
∑︁
|𝛼 |≤𝑚

𝐷𝛼 (𝐴𝛼 (𝑥)∗𝑣(𝑥))∗

= ⟨𝑢, 𝑃∗(𝑥, 𝐷)𝑣⟩
where, by the Leibniz rule, 𝑃∗(𝑥, 𝐷) is given by

𝑃∗(𝑥, 𝐷) =
∑︁
|𝛼 |≤𝑚

∑︁
𝛽≤𝛼

(
𝛼

𝛽

)
𝐷𝛽𝐴𝛼 (𝑥)∗𝐷𝛼−𝛽.

Thus

𝑃∗(𝑥, 𝜉) =
∑︁
|𝛼 |≤𝑚

∑︁
𝛽≤𝛼

(
𝛼

𝛽

)
𝐷𝛽𝐴𝛼 (𝑥)∗𝜉𝛼−𝛽. (4.6)

Now let 𝑄(𝑥, 𝐷) : S(ℂ𝑞) → S(ℂ𝑟) be a partial differential operator of order
𝑚′ given by 𝑄(𝑥, 𝐷) = ∑

|𝛽 |≤𝑚′ 𝐵𝛽 (𝑥)𝐷𝛽. Using the Leibniz rule, we compute

𝑄𝑃(𝑥, 𝐷) =
∑︁

|𝛽 |≤𝑚′

𝐵𝛽 (𝑥)𝐷𝛽

( ∑︁
|𝛼 |≤𝑚

𝐴𝛼 (𝑥)𝐷𝛼

)
=

∑︁
|𝛽 |≤𝑚′

∑︁
|𝛼 |≤𝑚

∑︁
𝛾≤𝛽

(
𝛽

𝛾

)
𝐵𝛽 (𝑥) (𝐷𝛾𝐴𝛼 (𝑥))𝐷𝛼+𝛽−𝛾 .

Thus

𝑄𝑃(𝑥, 𝜉) =
∑︁

|𝛽 |≤𝑚′

∑︁
|𝛼 |≤𝑚

∑︁
𝛽≤𝛾

(
𝛽

𝛾

)
𝐵𝛽 (𝑥)𝐷𝛾

𝑥 𝐴
𝛼 (𝑥)𝜉𝛼+𝛽−𝛾 . (4.7)

We want to write the sum (4.7) in terms of 𝑃(𝑥, 𝜉) and 𝑄(𝑥, 𝜉). We can get the
𝐷
𝛾
𝑥 𝐴

𝛼 (𝑥)𝜉𝛼 terms simply via

𝐷
𝛾
𝑥𝑃(𝑥, 𝜉) =

∑︁
|𝛼 |≤𝑚

𝐷
𝛾
𝑥 𝐴

𝛼 (𝑥)𝜉𝛼 . (4.8)

For the 𝐵𝛽 (𝑥)𝜉𝛽−𝛾 terms, we use the identity (2.1) to get
𝑖 |𝛾 |

𝛾!
𝐷
𝛾

𝜉
𝑄(𝑥, 𝜉) =

∑︁
|𝛽 |≤𝑚′

𝛾≤𝛽

(
𝛽

𝛾

)
𝐵𝛽 (𝑥)𝜉𝛽−𝛾 . (4.9)

23



Multiplying (4.8) with (4.9), summing over 𝛾 and using (4.7) gives

𝑄𝑃(𝑥, 𝜉) =
∑︁
𝛾

𝑖 |𝛾 |

𝛾!
𝐷
𝛾
𝑥𝑃(𝑥, 𝜉)𝐷𝛾

𝜉
𝑄(𝑥, 𝜉). (4.10)

Before we proceed with the case of pseudodifferential operators, we prove the
following technical result. If 𝐴 is an 𝑛 × 𝑛 matrix with complex entries, we write
𝐴(𝜉) = 𝐴𝜉 · 𝜉 =

∑
𝑖, 𝑗 𝐴𝑖 𝑗𝜉𝑖𝜉 𝑗 for the quadratic form, and analogously we put

𝐴(𝐷) = 𝐴𝐷 · 𝐷 =
∑
𝑖, 𝑗 𝐴𝑖 𝑗𝐷𝑖𝐷 𝑗 .

Lemma 4.9. If 𝐴 is an 𝑛× 𝑛 matrix of complex numbers all with non-positive real
parts, then the formula

𝑒𝐴(𝐷)𝑢(𝑥) = (2𝜋)−𝑛
∫
ℝ𝑛

𝑒𝑖𝑥·𝜉𝑒𝐴𝜉 ·𝜉 �̂�(𝜉) 𝑑𝜉 (4.11)

defines a linear map 𝑒𝐴(𝐷) : S(ℂ) → S(ℂ). Moreover, if |𝐴| ≤ 1 and if ℓ is an
integer > 𝑛/2, then for every integer 𝑘 ≥ ℓ, there is a constant 𝐶𝑘 > 0 such that����𝑒𝐴(𝐷)𝑢(𝑥) − ∑︁

𝑗<𝑘

1
𝑗!
𝐴(𝐷) 𝑗𝑢(𝑥)

���� ≤ 𝐶𝑘 ∥𝑢∥𝐶ℓ+2𝑘
𝑏

(4.12)

whenever 𝑢 ∈ S(ℂ) and 𝑛𝑜𝑟𝑚𝑢𝐶ℓ+2𝑘
𝑏

< ∞. Moreover, if dist(𝑥, supp 𝑢) > 1, then
the sum in the above vanishes, and we have the stronger bound��𝑒𝐴(𝐷)𝑢(𝑥)�� ≤ 𝐶𝑘 |𝐴|𝑘+ℓ dist(𝑥, supp 𝑢)−𝑘 ∥𝑢∥𝐶ℓ+2𝑘

𝑏
. (4.13)

Proof. See Theorem 7.6.5 in Chapter 7 of [Hör03]. □

Given a symbol 𝑎 ∈ 𝑆𝑚 (ℂ𝑞×𝑝), by using the Fourier transform, we can write

𝑎(𝑥, 𝐷)𝑢(𝑥) = (2𝜋)−𝑛
∫
ℝ𝑛

∫
ℝ𝑛

𝑒𝑖(𝑥−𝑦)·𝜉𝑎(𝑥, 𝜉)𝑢(𝑦) 𝑑𝑦𝑑𝜉.

If we introduce the auxiliary function

𝐾 (𝑥, 𝑦) = (2𝜋)−𝑛
∫
ℝ𝑛

𝑒𝑖(𝑦−𝑥)·𝜉𝑎(𝑥, 𝜉) 𝑑𝜉, (4.14)

called the kernel of 𝑎, then 𝑎(𝑥, 𝐷) takes the form

𝑎(𝑥, 𝐷)𝑢(𝑥) =
∫
ℝ𝑛

𝐾 (𝑥, 𝑦)𝑢(𝑦) 𝑑𝑦. (4.15)

Note that 𝐾 (𝑥, 𝑦) is equal to (2𝜋)−𝑛�̂�(𝑥, 𝑦 − 𝑥) where �̂� is the Fourier transform
of 𝑎 in the 𝜉 variable, so using Fourier inversion (Proposition 4.1), we obtain

𝑎(𝑥, 𝜉) =
∫
ℝ𝑛

𝐾 (𝑥, 𝑥 − 𝑦)𝑒−𝑖𝑦·𝜉 𝑑𝑦. (4.16)
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This calculation tells us that we can define a pseudodifferential operator either by
a symbol or by a kernel.
Proposition 4.10. Let 𝑎 ∈ 𝑆𝑚 (ℂ𝑞×𝑝), and set 𝑏(𝑥, 𝜉) = 𝑒𝑖𝐷𝑥 ·𝐷 𝜉 𝑎∗(𝑥, 𝜉). Then
𝑏(𝑥, 𝐷) is the adjoint of 𝑎(𝑥, 𝐷) with respect to the 𝐿2-inner product, 𝑏 ∈
𝑆𝑚 (ℂ𝑝×𝑞), and 𝑏 has the asymptotic expansion

𝑏(𝑥, 𝜉) ∼
∞∑︁
𝑗=0

1
𝑗!
(𝑖𝐷𝑥 · 𝐷𝜉) 𝑗𝑎∗(𝑥, 𝜉) =

∑︁
𝛼

𝑖 |𝛼 |

𝛼!
𝐷𝛼
𝜉𝐷

𝛼
𝑥 𝑎

∗(𝑥, 𝜉) (4.17)

Notice the similarity between the expansion (4.17) and the formula for the
formal adjoint of a partial differential operator in (4.6).
Proof. This proof is adapted from Theorem 18.1.7 in [Hör07] to cover the case of
𝐶𝑞×𝑝-valued functions.

By viewing 𝑎(𝑥, 𝐷) as the integral operator (4.15), the equation
⟨𝑎(𝑥, 𝐷)𝑢, 𝑣⟩ = ⟨𝑢, 𝑏(𝑥, 𝐷)𝑣⟩

is satisfied when 𝑏(𝑥, 𝐷) has kernel 𝐾 (𝑦, 𝑥)ᵀ. Using (4.16), we compute the
symbol of 𝑏(𝑥, 𝐷):

𝑏(𝑥, 𝜉) =
∫
ℝ𝑛

𝐾 (𝑥 − 𝑦, 𝑥)ᵀ𝑒−𝑖𝑦·𝜉 𝑑𝑦

= (2𝜋)−𝑛
∫
ℝ𝑛

∫
ℝ𝑛

𝑒𝑖𝑦·(𝜂−𝜉)𝑎(𝑥 − 𝑦, 𝜂)ᵀ 𝑑𝑦𝑑𝜂

= (2𝜋)−𝑛
∫
ℝ𝑛

∫
ℝ𝑛

𝑒−𝑖𝑦·𝜂𝑎(𝑥 − 𝑦, 𝜉 − 𝜂)ᵀ 𝑑𝑦𝑑𝜂.

Notice that the above is the convolution of the functions (𝑥, 𝜉) ↦→ 𝑒−𝑖𝑥·𝜉 and
(𝑥, 𝜉) ↦→ 𝑎(𝑥, 𝜉)ᵀ. Since the Fourier transform of the function (𝑥, 𝜉) ↦→ (2𝜋)−𝑛𝑒𝑖𝑥·𝜉
is the function (𝑥, 𝜉) ↦→ 𝑒𝑖𝑥·𝜉 , Fourier inversion gives

𝑏(𝑥, 𝜉) = 𝑒𝑖𝐷𝑥 ·𝐷 𝜉 𝑎(𝑥, 𝜉)ᵀ.
Now we prove the expansion (4.17). Choose a smooth function 𝜒 : ℝ𝑛 → [0, 1]

such that 𝜒(𝜉) = 1 when |𝜉 | < 1/2 and 𝜒(𝜉) = 0 when |𝜉 | > 1. For each integer
𝜈 ≥ 0, set

𝑎𝜈 (𝑥, 𝜉) = 𝜒(𝜉/2𝜈)𝑎∗(𝑥, 𝜉), 𝑏𝜈 (𝑥, 𝜉) = 𝑒𝑖𝐷𝑥 ·𝐷 𝜉 𝑎𝜈 (𝑥, 𝜉).
Then 𝜒 ∈ 𝑆𝑚+ℓ (ℂ) implies 𝜕𝛼

𝜉
𝜕
𝛽
𝑥 𝑎𝜈 ∈ 𝑆𝑚 (ℂ𝑞×𝑝), so for some constant 𝐶𝛼𝛽,

|𝜕𝛽
𝜉
𝜕
𝛽
𝑥 𝑎𝜈 (𝑥, 𝜉) | ≤ 𝐶𝛼𝛽 (1 + |𝜉 |)𝑚−|𝛼 | ≤ 𝐶𝛼𝛽 (1 + 2𝜈) |𝑚 |
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whenever (𝑥, 𝜉) ∈ supp 𝑎𝜈. Hence Lemma 4.9 implies����𝑏𝜈 (𝑥, 𝜉) − ∑︁
𝑗<𝑘

1
𝑗!
(𝑖𝐷𝑥 · 𝐷𝜉) 𝑗𝑎𝜈 (𝑥, 𝜉)

���� < 𝐶𝑘2|𝑚 |𝜈

for some constant 𝐶𝑘 . Given 𝜉, denote by 𝜇 the smallest nonnegative integer such
that |𝜉 | ≤ 2𝜇+2. Then either 𝜇 = 0 and |𝜉 | ≤ 4 or 𝜇 > 0 and 2𝜇+1 < |𝜉 | ≤ 2𝜇+2.
In the latter case, observe that dist((𝑥, 𝜉), supp 𝑎𝜈) ≥ |𝜉 |/2 ≥ (1 + |𝜉 |)/4, so by
(4.13), ����𝑏𝜈 (𝑥, 𝜉) − ∑︁

𝑗<𝑘

1
𝑗!
(𝑖𝐷𝑥 · 𝐷𝜉) 𝑗𝑎𝜈 (𝑥, 𝜉)

���� < 𝐶′
𝑘 (1 + |𝜉 |) |𝑚 |−𝑘 (4.18)

for some constant 𝐶′
𝑘
. Set 𝐴𝜈 (𝑥, 𝜉) = 𝑎𝜈+1(𝑥, 𝜉) − 𝑎𝜈 (𝑥, 𝜉) and 𝐵𝜈 (𝑥, 𝜉) =

𝑏𝜈+1(𝑥, 𝜉) − 𝑏𝜈 (𝑥, 𝜉), so that

𝑎∗(𝑥, 𝜉) −𝑎𝜇 (𝑥, 𝜉) =
∑︁
𝜈≥𝜇

𝐴𝜈 (𝑥, 𝜉), 𝑏(𝑥, 𝜉) − 𝑏𝜇 (𝑥, 𝜉) =
∑︁
𝜈≥𝜇

𝐵𝜇 (𝑥, 𝜉). (4.19)

Since 𝑎𝜈 ∈ 𝑆𝑚 (ℂ𝑞×𝑝), and since 2𝜈−1 ≤ |𝜉 | ≤ 2𝜈+1 in supp 𝐴𝜈, it follows that
|𝜕𝛼𝜉 𝜕

𝛽
𝑥 𝐴𝜈 (𝑥, 𝜉) | ≤ 𝐶′

𝛼𝛽2
𝜈(𝑚−|𝛼 |)

for some constant 𝐶′
𝛼𝛽

. Since

𝐵𝜈 (𝑥, 2𝜈𝜉) = 𝑒𝑖𝐷𝑥 ·𝐷 𝜉 /2𝜈𝐴𝜈 (𝑥, 𝜉),
Lemma 4.9 gives�����𝐵𝜈 (𝑥, 2𝜈𝜉) − ∑︁

𝑗<𝑘

1
𝑗!
(𝑖𝐷𝑥 · 𝐷𝜉) 𝑗 𝐴𝜈 (𝑥, 2𝜈𝜉)

����� ≤ 𝐶′′
𝑘 2(𝑚−𝑘)𝜈

for some constant 𝐶′′
𝑘

. Thus�����𝐵𝜈 (𝑥, 𝜉) − ∑︁
𝑗<𝑘

1
𝑗!
(𝑖𝐷𝑥 · 𝐷𝜉) 𝑗 𝐴𝜈 (𝑥, 𝜉)

����� ≤ 𝐶′′
𝑘 2(𝑚−𝑘)𝜈 .

If we take 𝑘 > 𝑚 and sum over 𝜈 ≥ 𝜇, we obtain�����∑︁
𝜈≥𝜇

(
𝐵𝜈 (𝑥, 𝜉) −

∑︁
𝑗<𝑘

1
𝑗!
(𝑖𝐷𝑥 · 𝐷𝜉) 𝑗 𝐴𝜈 (𝑥, 𝜉)

)����� ≤ 𝐶′′
𝑘

∑︁
𝜈≥𝜇

2(𝑚−𝑘)𝜈

≤ 𝐶′′
𝑘 2(𝑚−𝑘)𝜈+1

≤ 𝐶′′′
𝑘 (1 + |𝜉 |)𝑚−𝑘 (4.20)
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for constants 𝐶′′
𝑘

and 𝐶′′′
𝑘

. By the triangle inequality,�����𝑏(𝑥, 𝜉) − ∑︁
𝑗<𝑘

1
𝑗!
(𝑖𝐷𝑥 · 𝐷𝜉) 𝑗𝑎∗(𝑥, 𝜉)

�����
≤

�����𝑏(𝑥, 𝜉) − 𝑏𝜇 (𝑥, 𝜉) − ∑︁
𝑗<𝑘

1
𝑗!
(𝑖𝐷𝑥 · 𝐷𝜉) 𝑗 (𝑎∗(𝑥, 𝜉) − 𝑎𝜇 (𝑥, 𝜉))

�����
+

�����𝑏𝜇 (𝑥, 𝜉) − ∑︁
𝑗<𝑘

1
𝑗!
(𝑖𝐷𝜉 · 𝐷𝜉) 𝑗𝑎𝜇 (𝑥, 𝜉)

�����.
The middle term in the above is by (4.19) equal to the left-hand side of (4.20).
Hence (4.18) and (4.20) together yield����𝑏(𝑥, 𝜉) − ∑︁

𝑗<𝑘

1
𝑗!
(𝑖𝐷𝑥 · 𝐷𝜉) 𝑗𝑎∗(𝑥, 𝜉)

���� ≤ 𝐶𝑘 (1 + |𝜉 |) |𝑚 |−𝑘

for a new constant 𝐶𝑘 . This proves the expansion is valid. □

Proposition 4.11. If 𝑎 ∈ 𝑆𝑚 and 𝑏 ∈ 𝑆𝑚′ , then

𝑎(𝑥, 𝐷)𝑏(𝑥, 𝐷) = 𝑐(𝑥, 𝐷)
where 𝑐 ∈ 𝑆𝑚+𝑚′ is given by

𝑏(𝑥, 𝜉) = 𝑒𝑖𝐷𝑦 ·𝐷𝜂𝑎(𝑥, 𝜂)𝑏(𝑦, 𝜉) |𝜂=𝜉,𝑦=𝑥
and has the asymptotic expansion

𝑏(𝑥, 𝜉) ∼
∞∑︁
𝑗=0

1
𝑗!
(𝑖𝐷𝑦 · 𝐷𝜂) 𝑗𝑎(𝑥, 𝜂)𝑏(𝑦, 𝜉) |𝜂=𝜉,𝑦=𝑥

=
∑︁
𝛼

𝑖 |𝛼 |

𝛼!
𝐷𝛼
𝜉 𝑎(𝑥, 𝜉)𝐷

𝛼
𝑥 𝑏(𝑥, 𝜉). (4.21)

Again notice the striking similarity between the expansion (4.21) and the
corresponding formula for partial differential operators (4.10).
Proof. The Fourier transform of 𝑏(𝑦, 𝐷)𝑢(𝑦) = (2𝜋)−𝑛

∫
ℝ𝑛 𝑒

𝑖𝑦·𝜉 �̂�(𝜉) 𝑑𝜉 is

𝜂 ↦→ (2𝜋)−𝑛
∬

ℝ2𝑛
𝑒𝑖𝑦·(𝜉−𝜂)𝑏(𝑦, 𝜉)�̂�(𝜉) 𝑑𝜉𝑑𝑦,

so

𝑎(𝑥, 𝐷)𝑏(𝑥, 𝐷)𝑢(𝑥) = (2𝜋)−𝑛
∭

ℝ3𝑛
𝑒𝑖𝑥·𝜂+𝑖𝑦·(𝜉−𝜂)𝑎(𝑥, 𝜂)𝑏(𝑦, 𝜉)�̂�(𝜉) 𝑑𝜉𝑑𝑦𝜂.
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Hence

𝑐(𝑥, 𝜉) =
∬

ℝ2𝑛
𝑒−𝑖(𝑥−𝑦)·(𝜉−𝜂)𝑎(𝑥, 𝜂)𝑏(𝑦, 𝜉) 𝑑𝑦𝑑𝜂

= 𝑒𝑖𝐷𝑥 ·𝐷 𝜉 𝑎(𝑥, 𝜂)𝑏(𝑦, 𝜉) |𝜂=𝜉,𝑦=𝑥 .
The argument in the preceding proposition applied to the function (𝑥, 𝑦, 𝜉, 𝜂) ↦→
𝑎(𝑥, 𝜂)𝑏(𝑦, 𝜉) shows the expansion (4.21) is valid. □

Proposition 4.12. Let 𝑎 ∈ 𝑆𝑚 (ℂ𝑝×𝑝). Suppose there are positive constants 𝑐 and
𝐶 such that for all 𝑥, 𝜉 ∈ ℝ𝑛 with |𝜉 | ≥ 𝑐, the matrix inverse of 𝑎(𝑥, 𝜉) exists and
satisfies the bound

|𝑎(𝑥, 𝜉)−1 | ≤ 𝐶 (1 + |𝜉 |)−𝑚 .
Then there exists a symbol 𝑏 ∈ 𝑆−𝑚 (ℂ𝑝×𝑝) unique up to 𝑆−∞(ℂ𝑝×𝑝) such that

𝑎(𝑥, 𝐷)𝑏(𝑥, 𝐷) − id ∈ Op 𝑆−∞(ℂ𝑝×𝑝), (4.22)
𝑏(𝑥, 𝐷)𝑎(𝑥, 𝐷) − id ∈ Op 𝑆−∞(ℂ𝑝×𝑝). (4.23)

Proof. Choose a smooth function 𝜒 : ℝ𝑛 → [0, 1] such that 𝜒(𝜉) = 0 for |𝜉 | ≤ 𝑐

and 𝜒(𝜉) = 1 for |𝜉 | ≥ 𝑐 + 1, and set 𝑏(𝑥, 𝜉) = 𝜒(𝜉)𝑎(𝑥, 𝜉)−1. It suffices to show
that for every pair of multi-indices 𝛼 and 𝛽, there is a constant 𝐶𝛼𝛽 such that��𝜕𝛼𝜉 𝜕𝛽𝑥 𝑎(𝑥, 𝜉)−1�� ≤ 𝐶𝛼𝛽 (1 + |𝜉 |)−𝑚−|𝛼 | (4.24)
whenever |𝜉 | ≥ 𝑐. First we prove this for 𝛼 = 0 by inducting on 𝛽. The base
case 𝛽 = 0 holds true by assumption. Now let 𝛽 be any nonzero multi-index and
assume the result holds for all multi-indices of order < |𝛽 |. By differentiating both
sides of 𝑎𝑎−1 = id with respect to 𝑥 𝑗 , we get 𝜕𝑎−1/𝜕𝑥 𝑗 = −𝑎−1(𝜕𝑎/𝜕𝑥 𝑗 )𝑎−1, so
with the Leibniz rule, we obtain

𝜕
𝛽
𝑥 𝑎

−1 =
∑︁

𝛽′+𝛽′′+𝛽′′′=𝛽
𝛽′′≠0

𝑐𝛽′𝛽′′𝛽′′′
(
𝜕
𝛽′
𝑥 𝑎

−1) (𝜕𝛽′′𝑥 𝑎
) (
𝜕
𝛽′′′
𝑥 𝑎−1) .

By the induction hypothesis, there are positive constants 𝐶𝛽′ and 𝐶𝛽′′′ such that
|𝜕𝛽

′
𝑥 𝑎

−1 | ≤ 𝐶𝛽′ (1 + |𝜉 |)−𝑚 and |𝜕𝛽
′′′

𝑥 𝑎−1 | ≤ 𝐶𝛽′′′ (1 + |𝜉 |)−𝑚 whenever |𝜉 | ≥ 𝑐. In
addition, because 𝑎 ∈ 𝑆𝑚 (ℂ𝑝×𝑝), there is a constant 𝐶𝛽′′ > 0 such that |𝜕𝛽

′′
𝑥 𝑎 | ≤

𝐶𝛽′′ (1 + |𝜉 |)𝑚. Hence��𝜕𝛽𝑥 𝑎−1�� = ∑︁
𝛽′+𝛽′′+𝛽′′′=𝛽

𝛽′′≠0

𝑐𝛽′𝛽′′𝛽′′′𝐶𝛽′𝐶𝛽′′𝐶𝛽′′′ (1 + |𝜉 |)−𝑚+𝑚−𝑚

= 𝐶𝛽 (1 + |𝜉 |)−𝑚
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for some constant 𝐶𝛽. Now we prove (4.24) in general by inducting on |𝛼 | with
𝛽 fixed. The base case 𝛼 = 0 is what we just proved. Let 𝛼 be any nonzero
multi-index, and assume the result holds for multi-indices with order < |𝛼 |. By
differentiating both sides of 𝑎(𝑥, 𝜉)𝑎(𝑥, 𝜉)−1 = id with respect to 𝜉 𝑗 , we obtain

𝜕𝑎−1

𝜕𝜉 𝑗
= −𝑎−1 𝜕𝑎

𝜕𝜉 𝑗
𝑎−1,

so by the Leibniz rule, for any multi-indices 𝛼 and 𝛽 with 𝛼 ≠ 0, we have

𝜕𝛼𝜉 𝜕
𝛽
𝑥 𝑎

−1 =
∑︁

𝛼′+𝛼′′+𝛼′′′=𝛼
𝛽′+𝛽′′+𝛽′′′=𝛽

𝛼′′≠0

𝑐𝛼
′𝛼′′𝛼′′′

𝛽′𝛽′′𝛽′′′
(
𝜕𝛼

′

𝜉 𝜕
𝛽′
𝑥 𝑎

−1) (𝜕𝛼′′𝜉 𝜕
𝛽′′
𝑥 𝑎

) (
𝜕𝛼

′′′

𝜉 𝜕
𝛽′′′
𝑥 𝑎−1)

for integral constants 𝑐𝛼′𝛼′′𝛼′′′
𝛽′𝛽′′𝛽′′′ > 0. By the induction hypothesis, there are positive

constants 𝐶𝛼′𝛽′ and 𝐶𝛼′′′𝛽′′′ such that |𝜕𝛼′
𝜉
𝜕
𝛽′
𝑥 𝑎

−1 | ≤ 𝐶𝛼′𝛽′ (1 + |𝜉 |)−𝑚−|𝛼′ | and
|𝜕𝛼

′′′𝛽′′′
𝑥 𝑎−1 | ≤ 𝐶𝛼′′′𝛽′′′ (1+ |𝜉 |)−𝑚−|𝛼

′′′ | whenever |𝜉 | ≥ 𝐶. Because 𝑎 ∈ 𝑆𝑚 (ℂ𝑝×𝑝),
there is a constant 𝐶𝛽′′ > 0 such that |𝜕𝛽

′′
𝑥 𝑎 | ≤ 𝐶𝛽′′ (1 + |𝜉 |)𝑚−|𝛼′′ |. Thus��𝜕𝛼𝜉 𝜕𝛽𝑥 𝑎−1��

≤
∑︁

𝛼′+𝛼′′+𝛼′′′=𝛼
𝛽′+𝛽′′+𝛽′′′=𝛽

𝛼′′≠0

𝑐𝛼
′𝛼′′𝛼′′′

𝛽′𝛽′′𝛽′′′𝐶𝛼′𝛽′𝐶𝛼′′𝛽′′𝐶𝛼′′′𝛽′′′ (1 + |𝜉 |)−𝑚−|𝛼′ |+𝑚−|𝛼′′ |−𝑚−|𝛼′′′ |

= 𝐶𝛼𝛽 (1 + |𝜉 |)−𝑚−|𝛼 |

for some constant 𝐶𝛼𝛽. This proves 𝑏 ∈ 𝑆−𝑚 (ℂ𝑝×𝑝).
With that out of the way, it now follows from the expansion in Proposition 4.11

that
𝑎(𝑥, 𝐷)𝑏(𝑥, 𝐷) = id − 𝑟 (𝑥, 𝐷)

for some 𝑟 ∈ 𝑆−1(ℂ𝑝×𝑝). We want to invert id − 𝑟 (𝑥, 𝐷) by a Neumann series, so
we set

𝑏(𝑥, 𝐷)𝑟 (𝑥, 𝐷)𝑘 = 𝑏𝑘 (𝑥, 𝐷), 𝑏𝑘 ∈ 𝑆−𝑚−𝑘 (ℂ𝑝×𝑝)
in Proposition 4.11. Using Proposition 4.7, we can find 𝑐 ∈ 𝑆−𝑚 (ℂ𝑝×𝑝) with the
expansion 𝑐 ∼ ∑∞

𝑗=0 𝑏 𝑗 . Observe that for any integer 𝑘 > 0,

𝑎(𝑥, 𝐷)
∑︁
𝑗<𝑘

𝑏 𝑗 (𝑥, 𝐷) =
∑︁
𝑗<𝑘

𝑎(𝑥, 𝐷)𝑏(𝑥, 𝐷)𝑟 (𝑥, 𝐷) 𝑗 =
∑︁
𝑗<𝑘

(id − 𝑟 (𝑥, 𝐷))𝑟 (𝑥, 𝐷) 𝑗

= id − 𝑟 (𝑥, 𝐷)𝑘 ,
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and hence

𝑎(𝑥, 𝐷)𝑐(𝑥, 𝐷) − id = 𝑎(𝑥, 𝐷)
(
𝑐(𝑥, 𝐷) −

∑︁
𝑗<𝑘

𝑏 𝑗 (𝑥, 𝐷)
)
− 𝑟 (𝑥, 𝐷)𝑘

is an element of Op 𝑆−𝑘 (ℂ𝑝×𝑝). This proves 𝑎(𝑥, 𝐷)𝑐(𝑥, 𝐷)−id ∈ Op 𝑆−∞(ℂ𝑝×𝑝).
Uniqueness follows because if 𝑏 and 𝑐 are elements of 𝑆−𝑚 (ℂ𝑝×𝑝) such that

𝑎(𝑥, 𝐷)𝑏(𝑥, 𝐷) − id and 𝑎(𝑥, 𝐷)𝑐(𝑥, 𝐷) − id both lie in 𝑆−∞(ℂ𝑝×𝑝), then
𝑐(𝑥, 𝐷) − 𝑏(𝑥, 𝐷)

= 𝑐(𝑥, 𝐷) (id − 𝑎(𝑥, 𝐷)𝑏(𝑥, 𝐷)) + (𝑐(𝑥, 𝐷)𝑎(𝑥, 𝐷) − id)𝑏(𝑥, 𝐷)
is an element of 𝑆−∞(ℂ𝑝×𝑝). □

Proposition 4.13. If 𝑎 ∈ 𝑆𝑚 (ℂ𝑞×𝑝) has compact 𝑥-support, then 𝑎(𝑥, 𝐷) extends
to a bounded linear operator 𝑎(𝑥, 𝐷) : 𝐿2

𝑠 (ℂ𝑝) → 𝐿2
𝑠−𝑚 (ℂ𝑞) for every 𝑠 ∈ ℝ.

Proof. See Proposition 3.2 in [LM89]. □

This concludes the basic theory of pseudodifferential operators. In the next
section, we show how to extend this theory to vector bundles. In order to do so, we
need one more technical result, which is the following proposition. For a subset
𝐴 of ℝ𝑛 and a real number 𝜀 > 0, we define 𝐴𝜀 = {𝑥 ∈ ℝ𝑛 : dist(𝑥, 𝐴) ≤ 𝜀}. We
say a symbol 𝑎 ∈ 𝑆∞(ℂ𝑞×𝑝) is 𝜀-local if for any compactly supported function
𝑢 ∈ 𝐶∞(ℂ𝑝), we have

supp 𝑎(𝑥, 𝐷)𝑢 ⊆ (supp 𝑢)𝜀 .
Note that the total symbol of a partial differential operator is always 0-local and
that the composition of an 𝜀-local symbol with an 𝜀′-symbol in the sense of
Proposition 4.11 is (𝜀 + 𝜀′)-local.
Proposition 4.14. Let 𝑎 ∈ 𝑆𝑚 (ℂ𝑞×𝑝). For any 𝜀 > 0, there is an 𝜀-local symbol
𝑎𝜀 ∈ 𝑆𝑚 (ℂ𝑞×𝑝) such that 𝑎 − 𝑎𝜀 ∈ 𝑆−∞(ℂ𝑞×𝑝).
Proof. Choose a smooth function 𝑏𝜀 ∈ 𝑆0(ℂ) such that 𝑏 = 1 on a neighbourhood
of the diagonal 𝑥 = 𝜉 and such that 𝑏(𝑥, 𝜉) = 0 whenever |𝑥 − 𝜉 | ≥ 𝜀. Then
the symbol 𝑎𝜀 ∈ 𝑆𝑚 (ℂ𝑞×𝑝) given by 𝑎𝜀 (𝑥, 𝐷) = 𝑏𝜀 (𝑥, 𝐷)𝑎(𝑥, 𝐷) is 𝜀-local.
Moreover, by Proposition 4.11, both 𝑎 and 𝑎𝜀 have the expansion (4.21), hence
𝑎 − 𝑎𝜀 ∈ 𝑆−∞(ℂ𝑞×𝑝). □
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5. The Global Analysis
We are now in a position to globalise our results from the previous section to vector
bundles. Let (𝑀, 𝑔) be a compact 𝑛-dimensional Riemannian manifold, and let 𝐸
and 𝐹 be vector bundles over 𝑀 of ranks 𝑝 and 𝑞, respectively. Choose a cover for
𝑀 by closed coordinate balls 𝑦ℓ : �̄�ℓ → �̄�𝑛 for ℓ = 1, . . . , 𝑁 over each of which
𝐸 and 𝐹 have trivialisations 𝜑ℓ : 𝐸 |�̄�ℓ

→ �̄�ℓ × 𝕂𝑝 and 𝜓ℓ : 𝐸 |�̄�ℓ
→ �̄�ℓ × 𝕂𝑞,

respectively. Moreover, choose coordinate charts and trivialisations in such a way
that the balls 𝐵ℓ := {𝑥 ∈ 𝑈ℓ : |𝑦ℓ (𝑥) | < 1/

√
2} of radius 1/

√
2 cover 𝑀 , and such

that {𝑥 ∈ 𝑈ℓ : |𝑦ℓ (𝑥) | < 2/
√

5} ⊆ 𝑈ℓ for each ℓ. Choose a partition of unity
𝜒1, . . . 𝜒𝑁 subordinate to the cover 𝐵1, . . . , 𝐵𝑁 . For each ℓ, put

𝑥ℓ :=
𝑦ℓ√︁

1 − |𝑦ℓ |2
: 𝑈ℓ → ℝ𝑛,

so that 𝑥ℓ (𝑈ℓ) = ℝ𝑛 and 𝑥ℓ (𝐵ℓ) = 𝔹𝑛. In addition, assume that 𝑥−1
ℓ
(2𝔹𝑛) ⊆ 𝑈ℓ.

Then, given 𝑢 ∈ 𝛤 (𝐸), we may write 𝑢 =
∑
ℓ 𝜒ℓ𝑢, and we can view each 𝜒ℓ𝑢 as a

smooth function ℝ𝑛 → ℂ𝑟 supported in 𝔹𝑛. A cover chosen in this way we will
call a good presentation.

For a nonnegative integer 𝑘 , we define the uniform 𝐶𝑘 -norm on 𝐶𝑘 (𝐸) by

∥𝑢∥𝐶𝑘 =

𝑁∑︁
ℓ=1

∥𝑢ℓ∥𝐶𝑘
𝑏
,

where ∥𝑢ℓ∥𝐶𝑘
𝑏

is defined by (4.2) (note that this makes sense because each 𝑢ℓ has
compact support). Equipped with this norm, 𝐶𝑘 (𝐸) is a Banach space. For 𝑠 ∈ ℝ,
we define the Sobolev 𝑠-norm on 𝛤 (𝐸) by

∥𝑢∥𝑠 =
𝑁∑︁
ℓ=1

∥𝑢ℓ∥𝑠

where ∥𝑢ℓ∥𝑠 is defined by (4.1). We denote the completion of 𝛤 (𝐸) with respect
to this norm by 𝐿2

𝑠 (𝐸).
Proposition 5.1. The 𝐿2-norm ∥·∥ and the Sobolev 0-norm ∥·∥0 are equivalent.
Proof. Given sections of 𝑢 and 𝑣 of 𝐸 , define

⟨𝑢, 𝑣⟩′𝐸 =
∑︁
ℓ

⟨𝑢ℓ, 𝑣ℓ⟩

where ⟨𝑢ℓ, 𝑣ℓ⟩ is defined via the trivialisation 𝐸 |𝑈ℓ
� 𝑈ℓ × 𝕂𝑝. This defines a
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metric on 𝐸 , so by Proposition 3.4, the induced 𝐿2-norm

∥𝑢∥′ =
(∑︁
ℓ

∥𝑢ℓ∥2
)1/2

is equivalent to the 𝐿2-norm ∥·∥ determined by ⟨·, ·⟩𝐸 . The above norm is clearly
equivalent to the Sobolev 0-norm. □

Our first two global results are the following, which are immediate conse-
quences of Propositions 4.3 and 4.4 given how we have defined the Sobolev
norms.
Proposition 5.2. For any real numbers 𝑠 and 𝑠′, if 𝑠 ≥ 𝑠′, then the natural
inclusion 𝐿2

𝑠 (𝐸) ↩→ 𝐿2
𝑠′ (𝐸) is an embedding.

Proposition 5.3 (Sobolev Embedding Theorem). For any non-negative integer
𝑘 and any real number 𝑠 > 𝑘 + 𝑛/2, the natural inclusion 𝐿2

𝑠 (𝐸) ↩→ 𝐶𝑘 (𝐸) is an
embedding.

We are now in a position to extend pseudodifferential operators to vector
bundles. We begin with the following motivating construction. Consider any
coordinate chart 𝑥 : 𝑈 → ℝ𝑛 of 𝑀 over which the bundles 𝐸 and 𝐹 trivialise,
say 𝑒1, . . . , 𝑒𝑝 and 𝑓1, . . . , 𝑓𝑞 are local frames for 𝐸 and 𝐹 over 𝑈, respectively.
Given a symbol 𝑎 ∈ 𝑆𝑚 (𝕂𝑞×𝑝), we can construct an operator 𝐴 : 𝛤 (𝐸) → 𝛤 (𝐹 |𝑈)
as follows: if 𝑢 =

∑
𝑖 𝑢𝑖𝑒𝑖 on 𝑈, then we put 𝐴𝑢 =

∑
𝑗 𝑣 𝑗 𝑓 𝑗 where 𝑣1, . . . , 𝑣𝑞 are

defined by

(𝑣1(𝑥), . . . , 𝑣𝑞 (𝑥)) = (2𝜋)−𝑛
∫
ℝ𝑛

𝑒𝑖𝑥·𝜉𝑎(𝑥, 𝜉) (�̂�1(𝜉), . . . , �̂�𝑝 (𝜉)) 𝑑𝜉. (5.1)

If the functions 𝑣1, . . . , 𝑣𝑞 are supported in 𝑈 for each 𝑢 ∈ 𝛤 (𝐸), then the above
defines a global operator 𝛤 (𝐸) → 𝛤 (𝐹) simply by setting 𝐴𝑢 = 0 outside 𝐸 |𝑈 .
For example, if 𝜒 ∈ 𝐶∞(𝑀) is a smooth function supported in 𝑈, then for any
𝑢 ∈ 𝛤 (𝐸), 𝜒𝐴𝑢 and 𝐴(𝜒𝑢) are both supported in 𝑈, and hence define global
operators 𝜒𝐴 and 𝐴𝜒 from 𝛤 (𝐸) to 𝛤 (𝐹).
Definition. A linear operator 𝐴 : 𝛤 (𝐸) → 𝛤 (𝐹) is a pseudodifferential operator
of order 𝑚 if it can be written as a finite sum 𝐴 =

∑
𝛼 𝐴𝛼 of linear operators

𝐴𝛼 : 𝛤 (𝐸) → 𝛤 (𝐹) in the form (5.1). If 𝑚 ≤ 0, then 𝐴 is a smoothing operator
of order 𝑚. If 𝐴 is a smoothing operator of order 𝑚 for every 𝑚 ≤ 0, then it is an
infinitely smoothing operator.

Note that any partial differential operator 𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) of order 𝑚 is
automatically a pseudodifferential operator of order 𝑚. Our first result about
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pseudodifferential operators is the following, which is a direct consequence of
Proposition 4.13 and the above definition.
Proposition 5.4. Let 𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) be a pseudodifferential operator of order
𝑚. For each 𝑠 ∈ ℝ, 𝑃 extends to a bounded linear map 𝐿2

𝑠 (𝐸) → 𝐿2
𝑠−𝑚 (𝐹).

We now come to our first main result: the existence of a parametrix for an
elliptic partial differential operator between vector bundles.
Theorem 5.5. Let 𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) be an elliptic differential operator of order
𝑚. There is a pseudodifferential operator 𝐴 : 𝛤 (𝐹) → 𝛤 (𝐸) of order −𝑚, unique
up to infinitely smoothing operators, such that

𝑃𝐴 = id − 𝑆′, 𝐴𝑃 = id − 𝑆.
for some infinitely smoothing operators 𝑆 : 𝛤 (𝐸) → 𝛤 (𝐸) and 𝑆′ : 𝛤 (𝐹) → 𝛤 (𝐹).
Proof. With respect to our good presentation, write 𝑃 =

∑
|𝛼 |≤𝑚 𝐴

𝛼
ℓ
𝜕 |𝛼 |/𝜕𝑥𝛼 on

𝑈ℓ for each ℓ. By (4.3), 𝑃 is given on𝑈ℓ by 𝑃(∑𝑖 𝑢𝑖𝑒
ℓ
𝑖
) = ∑

𝑗 𝑣 𝑗 𝑓
ℓ
𝑗

where

(𝑣1(𝑥), . . . , 𝑣𝑞 (𝑥)) = (2𝜋)−𝑛
∫
ℝ𝑛

𝑒𝑖𝑥·𝜉 𝑝ℓ (𝑥, 𝜉) (�̂�1(𝜉), . . . , �̂�𝑝 (𝜉)) 𝑑𝜉

and 𝑝ℓ (𝑥, 𝜉) =
∑

|𝛼 |≤𝑚 𝐴
𝛼
ℓ
(𝑥)𝜉𝛼. Because 𝑈ℓ is precompact, 𝑝ℓ is bounded in

the 𝑥-variable, and therefore 𝑝ℓ is actually a symbol of order 𝑚. We show each
𝑝ℓ satisfies the conditions of Proposition 4.12. Since 𝑃 is elliptic, the matrix
𝑞ℓ (𝑥, 𝜉) =

∑
|𝛼 |=𝑚 𝐴

𝛼
ℓ
(𝑥)𝜉𝛼 is invertible for every 𝜉 ≠ 0. If we define 𝑟ℓ = 𝑝ℓ − 𝑞ℓ,

then 𝑝ℓ = 𝑞ℓ (id+𝑞−1
ℓ
𝑟ℓ). We intend to invert id+𝑞−1

ℓ
𝑟 by the Neumann series.

Notice that for all 𝑥, 𝜉 ∈ ℝ𝑛 and 𝜆 > 0, we have 𝑞ℓ (𝑥, 𝜆𝜉) = 𝜆𝑚𝑞ℓ (𝑥, 𝜉). Using
this and the identity 𝑞ℓ𝑞−1

ℓ
= id, we obtain 𝑞ℓ (𝑥, 𝜆𝜉)−1 = 𝜆−𝑚𝑞ℓ (𝑥, 𝜉)−1. Thus for

any 𝜉 ≠ 0,
|𝑞ℓ (𝑥, 𝜉)−1 | = |𝜉 |−𝑚𝑞ℓ (𝑥, 𝜉/|𝜉 |) ≤ 𝐶 |𝜉 |−𝑚

where
𝐶 = max

(𝑥,𝜉)∈ℝ𝑛×𝕊𝑛−1
|𝑞ℓ (𝑥, 𝜉)−1 | ≤ max

(𝑥,𝜉)∈�̄�ℓ×𝕊𝑛−1
|𝑞ℓ (𝑥ℓ (𝑥), 𝜉) | < ∞

because �̄�ℓ × 𝕊𝑛−1 is compact. On the other hand, obviously there is a constant
𝐶′ > 0 such that |𝑟ℓ (𝑥, 𝜉) | ≤ 𝐶′|𝜉 |𝑚−1. Thus | (𝑝−1

ℓ
𝑟) (𝑥, 𝜉) | ≤ 𝐶𝐶′|𝜉 |−1 < 1 if

|𝜉 | > 1/𝐶𝐶′, so the Neumann series

(id+𝑞ℓ (𝑥, 𝜉)−1𝑟ℓ (𝑥, 𝜉))−1 =

∞∑︁
𝑗=0

(−𝑞ℓ (𝑥, 𝜉)−1𝑟ℓ (𝑥, 𝜉)) 𝑗

33



converges for |𝜉 | > 1/𝐶𝐶′. It follows that
𝑝ℓ (𝑥, 𝜉)−1 = (id+𝑞ℓ (𝑥, 𝜉)−1𝑟ℓ (𝑥, 𝜉))𝑞ℓ (𝑥, 𝜉)−1

exists for |𝜉 | ≥ 1/𝐶𝐶′. From an argument similar to the one we used to obtain the
constant 𝐶′, it follows that

|𝑝ℓ (𝑥, 𝜉)−1 | ≤ 1
1 − 1/𝐶𝐶′ |𝑞ℓ (𝑥, 𝜉)

−1 | ≤ 𝐶′′

1 − 1/𝐶𝐶′ (1 + |𝜉 |)−𝑚

for some constant 𝐶′′ > 0. Thus by Proposition 4.12, we can find symbols
𝑎ℓ ∈ 𝑆−𝑚 (ℂ𝑝×𝑝) and 𝑠ℓ, 𝑠′ℓ ∈ 𝑆

−∞(ℂ𝑝×𝑝) such that
𝑝ℓ (𝑥, 𝐷)𝑎ℓ (𝑥, 𝐷) = id−𝑠′ℓ (𝑥, 𝐷), 𝑎ℓ (𝑥, 𝐷)𝑝ℓ (𝑥, 𝐷) = id−𝑠ℓ (𝑥, 𝐷).

Since 𝑝ℓ𝑐 and 𝑐𝑝ℓ are infinitely smoothing symbols whenever 𝑐 ∈ 𝑆−∞ is an
infinitely smoothing symbol, we may, using Proposition 4.14, replace 𝑞ℓ by a 1-
local symbol with the above two equations holding true but for potentially different
infinitely smoothing symbols 𝑠ℓ and 𝑠′

ℓ
. The above two equations then imply that

𝑠ℓ and 𝑠′
ℓ

must also be 1-local. Let 𝐴ℓ, 𝑆ℓ and 𝑆′
ℓ

be the operators corresponding
to 𝑎ℓ, 𝑠ℓ and 𝑠′

ℓ
as defined by (5.1). 1-locality guarantees that these operators map

into 𝛤 (𝐹). By construction, they satisfy the identities
𝑃𝐴ℓ = id−𝑆ℓ, 𝐴ℓ𝑃 = id−𝑆ℓ .

Set
𝐴 =

∑︁
ℓ

𝜒ℓ𝐴ℓ, 𝐴′ =
∑︁
ℓ

𝐴ℓ𝜒ℓ

𝑆 =
∑︁
ℓ

𝜒ℓ𝑆ℓ, 𝑆′ =
∑︁
ℓ

𝑆′ℓ𝜒ℓ .

Then
𝑃𝐴′𝑢 =

∑︁
ℓ

𝑃𝐴ℓ (𝜒ℓ𝑢) =
∑︁
ℓ

𝜒ℓ𝑢 −
∑︁
ℓ

𝑆′ℓ (𝜒ℓ𝑢) = 𝑢 − 𝑆
′𝑢

and
𝐴𝑃𝑢 =

∑︁
ℓ

𝜒ℓ𝐴ℓ𝑃𝑢 =
∑︁
ℓ

𝜒ℓ𝑢 −
∑︁
ℓ

𝜒ℓ𝑆
′
ℓ = 𝑢 − 𝑆

′𝑢,

so 𝑃𝐴′ = id−𝑆′ and 𝐴𝑃 = id−𝑆. These two relations imply 𝐴𝑃𝐴′ = 𝐴′ − 𝑆𝐴′ =
𝐴 − 𝐴𝑆′, and hence 𝐴 − 𝐴′ = 𝐴𝑆′ − 𝑆𝐴′ is an infinitely smoothing operator. It
follows that both 𝐴 and 𝐴′ have the desired property. □

Corollary 5.6. Let 𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) be an elliptic partial differential operator
of order 𝑚. The following hold:

34



(a) For any 𝑠 ∈ ℝ and any 𝑢 ∈ 𝐿2
𝑠 (𝐸), if 𝑃𝑢 is smooth, then 𝑢 is smooth.

(b) For each 𝑠 ∈ ℝ, 𝑃 extends to a Fredholm map 𝑃 : 𝐿2
𝑠 (𝐸) → 𝐿2

𝑠−𝑚 (𝐸) with
kernel ker 𝑃 = ker 𝑃 |𝛤 (𝐸) .

Proof. This argument is adapted from the proof to Theorem 5.2 in [LM89]. Choose
𝑄, 𝑆 and 𝑆′ for 𝑃 as in Theorem 5.5. By Proposition 5.4, 𝑃,𝑄, 𝑆 and 𝑆′ extend to
bounded linear operators

𝑃 : 𝐿2
𝑠 (𝐸) → 𝐿2

𝑠−𝑚 (𝐹), 𝑄 : 𝐿2
𝑠−𝑚 (𝐹) → 𝐿2

𝑠 (𝐸),
𝑆 : 𝐿2

𝑠 (𝐸) → 𝐿2
𝑠 (𝐸), 𝑆′ : 𝐿2

𝑠−𝑚 (𝐹) → 𝐿2
𝑠−𝑚 (𝐹)

satisfying
𝑃𝑄 = id − 𝑆, 𝑄𝑃 = id − 𝑆′.

For (a), if 𝑢 ∈ 𝐿2
𝑠 (𝐸) and 𝑃𝑢 is smooth, then

𝑢 = 𝑄𝑃𝑢 + 𝑆′𝑢.
Since 𝑆′ is infinitely smoothing, 𝑆′𝑢 is smooth, and since 𝑃𝑢 is smooth, 𝑄𝑃𝑢 is
smooth. Thus 𝑢 is smooth. For (b), it suffices to show the operators 𝑆 and 𝑆′ are
compact. This follows by the Rellich Lemma (Proposition 4.5) because 𝑆 and 𝑆′
only operate on functions with compact support. □

Theorem 5.7 (The Elliptic Decomposition Theorem). Let 𝑀 be a compact
oriented Riemannian manifold, let 𝐸 and 𝐹 be vector bundles over 𝑀 , and let
𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) be an elliptic partial differential operator. There is an 𝐿2-
orthogonal direct sum decomposition:

𝛤 (𝐹) = im 𝑃 ⊕ ker 𝑃∗.

Proof. This proof borrows arguments from Theorem 5.5 in Chapter III of [LM89]
and from Theorem 3.7 in [Mar02]. The operator 𝑃 and its formal adjoint 𝑃∗

naturally extend to Fredholm operators 𝑃 : 𝐿2
𝑚 (𝐸) → 𝐿2(𝐹) and 𝑃∗ : 𝐿2(𝐹) →

𝐿2
−𝑚 (𝐸). Hence, with respect to the 𝐿2-inner product ⟨·, ·⟩𝐿2 (𝐹) , we have the

following orthogonal direct sum decomposition:
𝐿2(𝐹) = (ker 𝑃∗)⊥ ⊕ ker 𝑃∗.

We show
(ker 𝑃∗)⊥ = (ker 𝑃†)◦ = 𝑃(𝐿2

𝑚 (𝐸)) = 𝑃(𝐿2
𝑚 (𝐸)),

where 𝑃† : 𝐿2(𝐹)∗ → 𝐿2
𝑚 (𝐸)∗ is the Banach space dual of 𝑃. The second equality

is just Proposition 2.2(a), and the third equality holds because 𝑃 is Fredholm. Let
us prove the first equality. Note that 𝑢 ∈ (ker 𝑃†)◦ if and only if 𝛼(𝑢) = 0 for all
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𝛼 ∈ 𝐿2(𝐹) with𝛼◦𝑃 = 0. By the Riesz Representation Theorem (Proposition 2.3),
this is equivalent to ⟨𝑢, 𝑣⟩𝐿2 (𝐹) = 0 for all 𝑣 ∈ 𝐿2(𝐹) such that 0 = ⟨𝑃(·), 𝑣⟩𝐿2 (𝐹) =
⟨·, 𝑃∗𝑣⟩𝐿2 (𝐸) . Thus the equality amounts to showing ⟨·, 𝑃∗𝑣⟩𝐿2 (𝐸) = 0 if and only if
𝑃∗𝑣 = 0. The reverse direction is obvious. For the forward direction, observe that
⟨·, 𝑃∗𝑣⟩𝐿2 (𝐸) = 0 implies ∥𝑃∗∥𝐿2 (𝐸) = 0, and, since 𝐿2

−𝑚 (𝐸) ↩→ 𝐿2
0(𝐸) � 𝐿

2(𝐸)
(Propositions 5.1 and 5.2), it follows that 𝑃∗𝑣 = 0.

We have shown
𝐿2(𝐹) = 𝑃(𝐿2

𝑚 (𝐸)) ⊕ ker 𝑃∗.

After intersecting both sides of the above with 𝛤 (𝐹), we get
𝛤 (𝐹) = (𝑃(𝐿2

𝑚 (𝐸)) ∩ 𝛤 (𝐹)) ⊕ (ker 𝑃∗ ∩ 𝛤 (𝐹)) = 𝑃(𝛤 (𝐸)) ⊕ ker 𝑃∗,

where we have used the fact 𝑃(𝐿2
𝑚 (𝐸)) ∩ 𝛤 (𝐹) = 𝑃(𝛤 (𝐸)), which follows from

Corollary 5.6(a), and the fact that ker 𝑃∗ ⊆ 𝛤 (𝐹) from Corollary 5.6(b). This
completes the proof. □

Corollary 5.8. Let 𝑀 be a compact manifold, let 𝐸, 𝐹 and 𝐿 be vector bundles
over 𝑀 , and let 𝑃 : 𝛤 (𝐸) → 𝛤 (𝐹) and 𝑄 : 𝛤 (𝐹) → 𝛤 (𝐿) be partial differential
operators. If for each 𝑥 ∈ 𝑀 and each nonzero 𝜉 ∈ 𝑇∗

𝑥 𝑀 , the sequence

𝐸𝑥
𝜎𝜉 (𝑃)−−−−−→ 𝐹𝑥

𝜎𝜉 (𝑄)−−−−−→ 𝐿𝑥

is exact, then 𝑃𝑃∗+𝑄∗𝑄 : 𝛤 (𝐸) → 𝛤 (𝐸) is an elliptic partial differential operator,
and we have the following 𝐿2-orthogonal decomposition:

𝛤 (𝐸) = (ker 𝑃 ∩ ker𝑄∗) ⊕ im(𝑃𝑃∗ +𝑄∗𝑄).
Proof. That the operator 𝑃𝑃∗ +𝑄∗𝑄 is elliptic follows from the identity

𝜎(𝑃𝑃∗ +𝑄∗𝑄) = 𝜎(𝑃)𝜎(𝑃)∗ + 𝜎(𝑄)∗𝜎(𝑄)
as well as the following elementary linear algebra result, which we prove:

Let 𝑈,𝑉 and 𝑊 be finite-dimensional inner product spaces, and let
𝑇 : 𝑈 → 𝑉 and 𝑆 : 𝑉 → 𝑊 be linear maps with adjoints 𝑇∗ and 𝑆∗. If
the sequence

𝑈
𝑇−→ 𝑉

𝑆−→ 𝑊

is exact, then 𝑇𝑇∗ + 𝑆∗𝑆 : 𝑉 → 𝑉 is invertible.

Assume the sequence above is exact. It suffices to show 𝑅 := 𝑇𝑇∗+𝑆∗𝑆 is injective,
so let 𝑣 ∈ 𝑉 be arbitrary, and assume 𝑅𝑣 = 0. Then 0 = ⟨𝑅𝑣, 𝑣⟩ = |𝑇∗𝑣 |2 + |𝑆𝑣 |2,
which implies 𝑇∗𝑣 = 0 and 𝑆𝑣 = 0. By exactness, 𝑣 = 𝑇𝑢 for some 𝑢 ∈ 𝑈, and
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thus |𝑣 |2 = ⟨𝑇𝑢, 𝑣⟩ = ⟨𝑢, 𝑇∗𝑣⟩ = 0, so 𝑣 = 0. □

In Examples 3.3 and 3.6, we saw that the exterior derivative 𝑑 : 𝛺(𝑀) is a
first order partial differential operator, and we computed its formal adjoint 𝑑∗
with respect to 𝐿2-norm on 𝛬(𝑇∗𝑀) induced by the metric 𝑔. The operator
Δ := 𝑑𝑑∗+𝑑∗𝑑 is called the Hodge-Laplacian; it sends 𝑘-forms to 𝑘-forms for each
𝑘 . When 𝑀 = ℝ𝑛 and 𝑘 = 0, then 𝛺0(𝑀) = 𝐶∞(ℝ𝑛) and Δ : 𝐶∞(ℝ𝑛) → 𝐶∞(ℝ𝑛)
is (the negative of) the ordinary Laplacian operator on functions of several real
variables: Δ = −∑𝑛

𝑖=1 𝜕
2/𝜕𝑥2

𝑖
. A form 𝜔 ∈ 𝛺(𝑀) is harmonic if Δ𝜔 = 0; we

define
H𝑘 (𝑀) = ker(Δ : 𝛺𝑘 (𝑀) → 𝛺𝑘 (𝑀))

and
H(𝑀) = ker(Δ : 𝛺(𝑀) → 𝛺(𝑀))

to be the spaces of harmonic 𝑘-forms and harmonic forms, respectively.
Corollary 5.9 (The Hodge Decomposition Theorem). Let 𝑀 be a compact
manifold. There is the following 𝐿2-orthogonal direct sum decomposition:

𝛺(𝑀) = Δ(𝛺(𝑀)) ⊕H(𝑀).
Proof. In Corollary 5.8, take 𝐸 = 𝐹 = 𝛬(𝑇∗𝑀), 𝑃 = 𝑑 and 𝑄 = 𝑑∗. Then
Δ = 𝑃𝑃∗ +𝑄∗𝑄, so all we need to show is show the sequence

𝛬(𝑇∗
𝑥 𝑀)

𝜎𝜉 (𝑑)−−−−→ 𝛬(𝑇∗
𝑥 𝑀)

𝜎𝜉 (𝑑)−−−−→ 𝛬(𝑇∗
𝑥 𝑀) (5.2)

is exact for each nonzero 𝜉 ∈ 𝑇∗
𝑥 𝑀 and 𝑥 ∈ 𝑀 .

Let 𝜉 ∈ 𝑇∗
𝑥 𝑀 be nonzero. If 𝜁 ∈ 𝛬(𝑇∗

𝑥 𝑀), then
𝜎𝜉 (𝑑) (𝜎𝜉 (𝑑) (𝜁)) = 𝜉 ∧ 𝜉 ∧ 𝜁 = 0.

Conversely, let 𝜁 ∈ 𝛬𝑘−1(𝑇∗
𝑥 𝑀), and assume 𝜎𝜉 (𝑑) (𝜁) = 𝜉 ∧ 𝜁 = 0. Choose a

basis 𝜉1, . . . , 𝜉𝑛 for 𝑇∗
𝑝𝑀 with 𝜉1 = 𝜉, and write

𝜁 =
∑︁

1≤𝑖1<···<𝑖𝑘≤𝑛
𝜁𝑖1···𝑖𝑘𝜉𝑖1 ∧ · · · ∧ 𝜉𝑖𝑘

for real numbers 𝜁𝑖1···𝑖𝑘 . Because 𝜉 ∧ 𝜉1 = 0,

𝜉 ∧ 𝜁 =
∑︁

1<𝑖1<···<𝑖𝑘≤𝑛
𝜁𝑖1···𝑖𝑘𝜉 ∧ 𝜉𝑖1 ∧ · · · ∧ 𝜉𝑖𝑘 ,
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so 𝜁𝑖1···𝑖𝑘 = 0 whenever 1 < 𝑖1 < · · · < 𝑖𝑘 . It follows that

𝜁 = 𝜉 ∧
( ∑︁

1<𝑖2<···<𝑖𝑘≤𝑛
𝜁1𝑖2···𝑖𝑘𝜉𝑖2 · · · ∧ 𝜉𝑖𝑘

)
,

and hence the sequence is exact. □
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