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Abstract. In this paper we review some material on Dirac bundles and spin geometry,
and do some calculations on Dirac bundle valued forms and spinor valued forms.
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Introduction

In this paper we do several calculations on Dirac bundle valued forms and spinor valued
forms. In section 1, we review some background material on Clifford algebras and their
modules. In section 2, we define Dirac bundles and Dirac operators. In section 3, we define
a linear operator s, and use it to obtain a decomposition for Dirac bundle valued forms, in
analogy to the Lefschetz decomposition of complex valued forms obtained using the Lefschetz
operator. In section 4, we use s to obtain identities that are in analogy to the Kähler
identities obtained using the Lefschetz operator, investigate the compatibility between the
exterior covariant derivative and the decomposition, then obtain a version of the generalized
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Bochner identity on Dirac bundle valued forms. In section 5, we review the definition of spin
groups using Clifford algebras, the construction of the unique nontrivial double covers from
spin groups to special orthogonal groups, and the spin Lie algebra structures. In section 6,
we review the definition of spin structures, spin manifolds, spinor bundles, and the Dirac
bundle structures on spinor bundles. In section 7, we state a theorem of Lichnerowicz, and
then use its proof to calculate the curvature term in our version of the generalized Bochner
identity on spinor valued forms.

Notation

Throughout we use the Einstein summation convention, which means that we sum over
repeated indices. Since we are always working with Riemannian manifolds, we do not distin-
guish between vector fields and 1-forms. For convenience, whenever we work over a bundle
locally around a point p, we pick an orthonormal frame ei of the (co)tangent bundle which
is parallel at p. That is, (∇ei)p = 0 for all i.

1. Clifford Algebras and Modules

In this section we recall some background material on Clifford algebras and Clifford mod-
ules, mostly taken from chapter 1 of [1].

Definition 1.1. Let V be a finite dimensional real vector space equipped with an inner
product. The Clifford algebra associated with V is defined to be

Cl(V ) := T (V )/(v ⊗ v + ⟨v, v⟩1),

where T (V ) =
∑∞

i=0 ⊗iV is the tensor algebra of V .

We identify V with the image of the natural embedding V ↪→ T (V ) ↠ Cl(V ). We have
that for any v, w ∈ V , their Clifford product in Cl(V ) satisfy the relation vw+wv = −2⟨v, w⟩.
Alternatively, if e1, . . . , en is an orthonormal basis for V , then Cl(V ) is the real unital algebra
generated by e1, . . . , en with relations eiej + ejei = −2δij. We let Cln denote Cl(Rn) where
the inner product on Rn is given by the dot product.
There is a canonical vector space isomorphism (not algebra isomorphism) between the

exterior algebra ΛV and Cl(V ), which sends ei1 ∧ · · · ∧ eik to ei1 · · · eik , where e1, . . . , en is
an orthonormal basis for V . So, the dimension of Cl(V ) is 2n.

Example 1.2. Cl(R) is isomorphic to C, the complex numbers, since Cl(R) is the real algebra
generated by a single element e, with relation e2 = −1.
Cl(R2) is isomorphic to H, the quaternions. To see the this, notice that Cl(R2) is 4-

dimensional, and spanned by {1, e1, e2, e1e2}, and these satisfy the relations

(e1)(e2) = (e1e2), e2(e1e2) = e1, (e1e2)e1 = e2, e21 = e22 = (e1e2)
2 = −1.
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The standard basis e1, . . . , en ∈ Rn in Cln generate a finite group Fn, which is called the
Clifford group. Concretely, Fn has generators e1, . . . , en,−1, and relations e2i = −1 for all
i, eiej = (−1)ejei. Cln is isomorphic to the real group algebra RFn, modulo the additional
relation (−1) + 1 = 0.

Proposition 1.3. Let W be a module over a Clifford algebra Cln. Then there exists an inner
product ⟨·, ·⟩ on W such that Clifford multiplication by unit vectors e ∈ V is orthogonal. That
is,

⟨ew, ew′⟩ = ⟨w,w′⟩
for all w,w′ ∈ W and e ∈ Rn with ∥e∥ = 1.

Proof. Choose any inner product ⟨·, ·⟩′ onW , and obtain ⟨·, ·⟩ by averaging it over the Clifford
group Fn. That is, set

⟨w,w′⟩ := 1

|Fn|
∑
e∈Fn

⟨ew, ew′⟩′.

By construction, for any w ∈ Rn, we have ⟨eiw, eiw⟩ = ⟨w,w⟩, and that for i ̸= j,
⟨eiw, ejw⟩ = ⟨ejeiw,−w⟩ = ⟨eiejw,w⟩ = −⟨ejw, eiw⟩ = 0. So for any e = aiei with

∑
i a

2
i =

1, we have

⟨ew, ew⟩ =
∑
i

a2i ⟨eiw, eiw⟩+
∑
i ̸=j

aiaj⟨eiw, ejw⟩ = ⟨w,w⟩.

Since the norm completely determines the inner product that induced the norm, and the
norm is invariant under multiplication by unit vectors, we have that the inner product is
also invariant by multiplication by unit vectors. □

There is a Z-filtration on Cl(V ), induced by the natural filtration on the tensor algebra.
Under the isomorphism between Cl(V ) and ΛV , the filtrations are the same. Unlike the
alternating algebra, this filtration on Cl(V ) is not induced from a Z-grading of Cl(V ), since
“degree 1” elements v ∈ V would square to “degree 0”.

However, there is a Z/2-grading on Cl(V ), induced by the natural Z/2-grading on the
tensor algebra, where the even Z-degree elements are considered to have degree 0, and the
odd Z-degree elements are considered to have degree 1. Alternatively, the Z/2-grading on
Cl(V ) can be obtained by the following: the involution α(v) = −v on V induces an involution
α on Cl(V ), giving a decomposition into the 1 and −1 eigenspaces, which we call Cl(V )0

and Cl(V )1.

2. Dirac Bundles and Dirac Operators

There is a canonical representation

cl(ρn) : SO(n) → Aut(Cln),

since each orthogonal transformation on Rn induces an orthogonal transformation of Cln
(an orthogonal transformation A on Rn induces a transformation on the tensor algebra, and
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sends elements of the ideal ⟨v ⊗ v + ⟨v, v⟩⟩ to elements of the form Av ⊗ Av + ⟨v, v⟩ =
Av ⊗ Av + ⟨Av,Av⟩, so it preserves the ideal).

Let E be an oriented Riemannian vector bundle on a manifold M , which gives an SO(n)-
principal bundle on M .

Definition 2.1. The Clifford bundle Cl(E) is defined to be the associated bundle

Cl(E) = PSO(E)×cl(ρn) Cln.

Let M be an n-dimensional Riemannian manifold, Cl(M) be its Clifford bundle on the
tangent bundle. Let ∇ denote the canonical connection on Cl(M) (which is the connection
on the bundle of forms induced from the Levi-Civita connection on the tangent bundle of
M). We recall the definition of a Dirac bundle from chapter 5 of [1].

Definition 2.2. A vector bundle S over M with a fibre metric ⟨·, ·⟩ and a connection ∇S

compatible with the fibre metric (for which we will often simply write ∇) is called a Dirac
bundle if S is a bundle of modules over Cl(M), and for each p ∈ M , and each σ, τ ∈ Sp and
unit vector e ∈ Tp(M), we have

⟨eσ, τ⟩ = −⟨σ, eτ⟩,
and that ∇S is a derivation. That is, for each ϕ ∈ Γ(Cl(M)), σ ∈ Γ(S), we have

∇S(ϕσ) = (∇ϕ)σ + ϕ(∇Sσ).

Example 2.3. The Clifford bundle itself with left multiplication as its module structure, and
the obvious metric and connection, is a Dirac bundle.

To see this, first note that under the canonical isomorphism ΛRn ∼= Cln, the representation
cl(ρn) is identified with Λρn. So the connection of Cl(E) ∼= ΛE that we described before is
the same as the connection induced onto the associated bundle Cl(E) from the connection
on PSO(E). Since cl(ρn) maps into the automorphisms of Cln, we have that the induced Lie
algebra map cl(ρn)∗ goes from son to Der(Cln), which then implies that the connection is a
derivation on sections.

Example 2.4. Some other examples of Dirac bundles include spinor bundles, which appear
in section 6.

Let S be a Dirac bundle over a Riemannian manifold M . Write Λk
S = Λk ⊗ S for the

bundle of S-valued k-forms. Λk
S has a natural fibre metric induced from the fibre metrics

on Λk and S given by ⟨α ⊗ τ, β ⊗ σ⟩ = ⟨α, β⟩⟨τ, σ⟩. In addition, ΛS also has a connection
induced from the connections on Λk and S given by ∇(α⊗ τ) = ∇α⊗ τ + α⊗∇τ , making
ΛS also a Dirac bundle.

Definition 2.5. Let S be a Dirac bundle overM . Define theDirac operator D : Γ(S) → Γ(S)
by the formula (using the Einstein summation convention)

Dσ = ei∇iσ

at p ∈ M (remember that {e1, . . . , en} is a local orthonormal frame of TM).
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The expression ei∇iσ is well-defined, because if we choose a different local orthonormal
frame ẽi = Aijej,

ẽi∇ẽiτ = Aijej∇Aikekτ = AijAikek∇jτ = ej∇jτ.

As a special case of the above definition, the Dirac operator on the Dirac bundle ΛS is
given by

D(α⊗ σ) = ∇iα⊗ eiσ + α⊗ ei∇iσ.

Note that the Dirac operator on ΛS preserves degree.

Proposition 2.6. The Dirac operator is formally self adjoint. That is,

⟨Dσ, τ⟩ = ⟨σ,Dτ⟩
for all compactly supported σ, τ ∈ Γ(S) (where the inner product is the L2 inner product).

Proof. As usual, assume that e1, ..., en is an orthonormal frame parallel at a point p ∈ M .

⟨Dσ, τ⟩p =⟨ej∇jσ, τ⟩p
=− ⟨∇jσ, ejτ⟩p

which by metric compatibility,

=− ej⟨σ, ejτ⟩p + ⟨σ,∇j(ejτ)⟩p
=− ej⟨σ, ejτ⟩p + ⟨σ, ej∇jτ⟩p.

Let V be the vector field defined by the condition that for all vector fields W ,

⟨V,W ⟩ = −⟨σ,Wτ⟩.
Then,

div(V )p =⟨∇jV, ej⟩p
=ej⟨V, ej⟩p − ⟨V,∇jej⟩p
=ej⟨V, ej⟩p
=− ej⟨σ, ejτ⟩p.

Then, we have that

⟨Dσ, τ⟩ = div(V ) + ⟨σ,Dτ⟩,
and the proposition follows. □

3. A Lefschetz Decomposition for Dirac Bundle Valued Forms

The content of this section have all appeared in [2], however for the main result, Proposition
3.2, we give a different proof here.

Throughout this section we let V be an n-dimensional real inner product vector space,
{e1, . . . , en} an orthonormal basis of V , and S a module over Cl(V ). We write ΛS for ΛV ⊗S.



6 HANMING LIU

Definition 3.1. Define s : ΛS → ΛS by the formula:

s(α⊗ σ) = (ei ∧ α)⊗ (eiσ).

We sometimes write sk for the restriction of s to the subspace Λk
S = ΛkV ⊗S (when we need

to emphasize it), but more often than not we will not distinguish between s and sk. Note
that s raises degree by 1.

Note that s is well-defined, since if we let e′i = Aijej be another orthonormal basis of V ,
where A is an orthogonal matrix, then

(e′i ∧ α)⊗ (e′iσ) = (Aijej ∧ α)⊗ (Aikekσ)

= AijAik(ej ∧ α)⊗ (ekσ)

= δjk(ej ∧ α)⊗ (ekσ)

= (ej ∧ α)⊗ (ejσ).

Analogous to the Lefschetz decomposition of complex-valued differential forms using the
Lefschetz operator, we give a decomposition of S-valued forms using s. We write s∗ for the
adjoint of s. Note that s∗ lowers degree by 1.

Proposition 3.2. Let Pk = ker s∗k. We have that

Λk
S = Pk ⊕ sPk−1 ⊕ · · · ⊕ skP0,

where direct summands are orthogonal to each other (on ΛS, we put the inner product induced
by wedge product and tensor product).

Proof. Note that we have Pk = ker s∗k = (Im sk−1)
⊥.

We use induction on k. The proposition is clearly true for k = 0. To prove the induction
step, we use a lemma:

Lemma 3.3. Given any x ∈ Pk and y ∈ Im sk−1, we have that ⟨sjx, sjy⟩ = 0 for all
j ≥ 0. Equivalently, instead of for all y ∈ Im sk−1, the above holds for any y of the form
y = s(ej1 ∧ · · · ∧ ejk−1

⊗ γ), γ ∈ S.

Assuming this lemma, and that the proposition is true for k − 1, we have that

sPk−1, . . . , s
kP0

are pairwise orthogonal subspaces of Λk
S. Since

Pk = (Im sk−1)
⊥ = (sPk−1 ⊕ · · · ⊕ skP0)

⊥,

we have that Pk, . . . , s
kP0 are pairwise orthogonal, and their direct sum is all of Λk

S. □

It remains to prove the lemma:
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Proof of lemma. We use induction on j. The case j = 0 is true by definition.
Assume that the claim is true for j (for all x ∈ Pk, y = s(ej1 ∧ · · · ∧ ejk−1

⊗ γ), γ ∈ S). We

want to show that for any Ai1···ikiei1 ∧ · · · ∧ eik ⊗ σi ∈ Pk, and any element of Λk−1
S of the

form ej1 ∧ · · · ∧ ejk−1
⊗ γ, we get

⟨Ai1···ikiel1 ∧ · · · ∧ elj ∧ ei1 ∧ · · · ∧ eik ⊗ el1 · · · eljσi,

el′1 ∧ · · · ∧ el′j ∧ ej1 ∧ · · · ∧ ejk−1
⊗ el′1 · · · el′jγ⟩ = 0.

Note that the left hand side of the above (desired) equation can be rewritten as the
following:

Ai1···iki⟨el1 ∧ · · · ∧ elj ∧ ei1 ∧ · · · ∧ eik , el′1 ∧ · · · ∧ el′j ∧ ej1 ∧ · · · ∧ ejk−1
⟩⟨el1 · · · eljσi, el′1 · · · el′jγ⟩.

We examine the above sum by fixing l1 to be its various values.
When l1 ̸= l′1, . . . , l

′
j, j1, . . . , jk−1, the corresponding terms vanish by definition of the inner

product on forms.
When l1 = l′1, since

⟨el1 ∧ · · · ∧ elj ∧ ei1 ∧ · · · ∧ eik , el1 ∧ el2 ∧ · · · ∧ el′j ∧ ej1 ∧ · · · ∧ ejk−1
⟩

=⟨el2 ∧ · · · ∧ elj ∧ ei1 ∧ · · · ∧ eik , el2 ∧ · · · ∧ el′j ∧ ej1 ∧ · · · ∧ ejk−1
⟩

and

⟨el1 · · · eljσi, el1el′2 · · · el′jγ⟩ = ⟨el2 · · · eljσi, el′2 · · · el′jγ⟩.
We get these terms in total:

Ai1···iki⟨el2 ∧ · · · ∧ elj ∧ ei1 ∧ · · · ∧ eik , el′2 ∧ · · · ∧ el′j ∧ ej1 ∧ · · · ∧ ejk−1
⟩⟨el2 · · · eljσi, el′2 · · · el′jγ⟩,

Which is 0 by the inductive hypothesis.
When l1 = l′i, we can bring the el′i to the front by possibly introducing a minus sign, so

the sum of the terms also vanish.
When l1 = j1, we can bring ej1 to the front and possibly introduce a sign. Now we fix l′j

to be a particular number, and we see that by bringing el1 in ⟨el1 · · · eljσi, el′1 · · · el′jγ⟩ to the

end and possibly introduce a sign (so we get the terms ⟨el2 · · · eljσi, el′1 · · · el′j−1
(el′jel1γ)⟩), we

get a sum of these terms: (without summing over l′j)

Ai1···iki⟨el2 ∧ · · · ∧ elj ∧ ei1 ∧ · · · ∧ eik , el′1 ∧ · · · ∧ el′j ∧ ej2 ∧ · · · ∧ ejk−1
⟩

⟨el2 · · · eljσi, el′1 · · · el′j−1
(el′jel1γ)⟩,

which is 0 by the inductive hypothesis. Now we sum over l′j, and still have 0.
When l1 = ji for i ̸= 1, we do the same thing and obtain a sum of 0. □

Proposition 3.4. The adjoint s∗ of s is given by

s∗(α⊗ σ) = −ei⌟α⊗ eiσ.
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Proof. We compute

⟨s(α⊗ σ), β ⊗ τ⟩ = ⟨ei ∧ α⊗ eiσ, β ⊗ τ⟩
= ⟨ei ∧ α, β⟩⟨eiσ, τ⟩
= ⟨α, ei⌟β⟩⟨σ,−eiτ⟩
= ⟨α⊗ σ,−ei⌟α⊗ eiσ⟩. □

Proposition 3.5. Let x be an S-valued k-form. We have the following formula for the
commutator:

[s∗, s]x = (n− 2k)x.

Proof. Let α⊗ τ be an S-valued k-form.

s∗s(α⊗ τ) = s∗(ei ∧ α⊗ eiτ)

= −ej⌟(ei ∧ α)⊗ ejeiτ,

ss∗(α⊗ τ) = −s(ej⌟α⊗ ejτ)

= −ei ∧ (ej⌟α)⊗ eiejτ,

so

[s∗, s](α⊗ τ) = ei ∧ (ej⌟α)⊗ eiejτ − ej⌟(ei ∧ α)⊗ ejeiτ

since interior product is an antiderivation of degree −1,

= ei ∧ (ej⌟α)⊗ eiejτ + ei ∧ (ej⌟α)⊗ ejeiτ − δijα⊗ ejeiτ

since eiej + ejei = −2δij, and ei ∧ (ei⌟α) = kα (this is most easily seen by writing α as a
sum of terms of the form ei1 ∧ · · · ∧ eik),

= ei ∧ (ej⌟α)⊗ (−2δij)τ − δijα⊗ ejeiτ

= −2k(α⊗ τ) + n(α⊗ τ). □

Remark 3.6. The triple (s, s∗, [s∗, s]) forms an sl2-representation.

Proposition 3.7. Let x be an S-valued k-form. We have the following formula for the
commutator:

[s∗, sm]x = m(n− 2k −m+ 1)sm−1x.

Proof. We use induction on m:
The case m = 1 is the previous proposition.
Assume [s∗, sm]x = m(n− 2k −m+ 1)sm−1x. Then,

s∗sm+1x = s∗smsx

which by the induction hypothesis (and remember that sx is a k + 1-form),

= sms∗sx+m(n− 2k −m− 1)smx
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which by the previous lemma,

= sm(n− 2k)x+ smss∗x+m(n− 2k −m− 1)smx

= sm+1s∗x+ (m+ 1)(n− 2k −m)smx. □

The next proposition is in analogy to Proposition 1.2.30 in [4].

Proposition 3.8. (1) If 2k > n, then Pk = 0
(2) For 2k ≤ n, sn−2k : Pk → Λn−k

S is injective
(3) sn−2k : Λk

S → Λn−k
S is an isomorphism.

(4) For 2k ≤ n, Pk = ker(sn−2k+1).

Proof. Suppose 0 ̸= α ∈ Pk. Pick m > 0 minimal with smα = 0. Then,

0 = [s∗, sm]α = m(n− 2k −m+ 1)sm−1α.

Since m is minimal, sm−1α ̸= 0. So, n − 2k = m − 1. If we assume 2k > n, then we get a
contradiction, since m − 1 ≥ 0, thus α = 0, which is part (1). If we assume 2k ≤ n, then
since m = n− 2k + 1 is minimal for smα = 0, we get that sn−2kα ̸= 0, which is part (2).
For part (3), since by part (2), sn−2(k−i) is injective on Pk−i, we have that s

n−2k is injective
on siPk−i. So sn−2k is injective on all direct summands of Λk

S, and since it maps different
direct summands to different direct summands of Λn−2k

S (by the decomposition given by
Proposition 3.2), we have that sn−2k : Λk

S → Λn−k
S is injective. By counting dimensions, we

see that it is an isomorphism.
For part (4), let 2k ≤ n. From part (2), we know that Pk ⊆ ker(sn−2k+1). Now let

α ∈ Λk
S ∩ ker(sn−2k+1). Then,

sn−2k+2s∗α = (sn−2k+2s∗ − s∗sn−2k+2)α = −(n− 2k + 2)sn−2k+1α = 0.

From part (2) we also know that sn−2k+2 is injective on Λk−1
S , so sn−2k+2s∗α = 0 gives

s∗α = 0. So α ∈ Pk. □

4. Some Calculations on Dirac Bundle Valued Forms

Recall that given a connection ∇ on a vector bundle E, the exterior covariant derivative
d∇ : Λk

E → Λk+1
E is defined by

d∇(α⊗ τ) = dα⊗ τ + (−1)kα ∧∇τ.

Using a local orthonormal frame, we have that

d∇(α⊗ τ) = dα⊗ τ + ei ∧ α⊗∇iτ.

Let S be a Dirac bundle of the tangent bundle of a Riemannian manifold. Let s act
on the space of S-valued differential forms. We obtain the following analogue of the Kähler
identities. Note that in the computations below, we always compute things locally at a point
p, and we repeatedly use the fact that we choose ei to be parallel at the point p, meaning
(∇ei)p = 0 for all i. Also note that (∇ei)p = 0 does not imply (∇∇jei)p = 0.
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The following is in analogy to the Kähler identities, which can be found in, for example,
Proposition 3.1.12 in [4].

Proposition 4.1. We have the following identities:

{d∇, s} = 0,

{d∇, s∗} = −D,

{(d∇)∗, s∗} = 0,

{(d∇)∗, s} = −D.

Proof. Let α⊗ τ be an S-valued k-form. The first identity:

d∇s(α⊗ τ) = d∇(ei ∧ α⊗ eiτ)

= d(ei ∧ α)⊗ eiτ + (−1)k+1ei ∧ α ∧∇(eiτ),

sd∇(α⊗ τ) = s(dα⊗ τ + (−1)kα ∧∇τ)

= ei ∧ dα⊗ eiτ + (−1)kei ∧ α ∧ ei∇τ,

since d(ei ∧ α) = −ei ∧ dα and ∇(eiτ) = ei∇τ , we see that {d∇, s} = 0.
The second identity (repeatedly using the identity d = ei ∧∇i):

s∗d∇(α⊗ τ) =s∗(dα⊗ τ + (−1)kα ∧∇τ)

=− ei⌟(el ∧∇lα)⊗ eiτ − (−1)kei⌟(α ∧ (ei∇τ))

using e⌟(ω ∧ ω′) = (e⌟ω) ∧ ω′ + (−1)deg(ω)ω ∧ (e⌟ω′)

=− δil∇lα⊗ eiτ + el ∧ (ei⌟∇lα)⊗ eiτ

− (−1)k(ei⌟α) ∧ (ei∇τ)− (−1)k(−1)kα ∧ ei⌟(ei∇τ),

since ei⌟(ei∇τ) = ei⌟∇(eiτ) = ∇i(eiτ) = ei∇iτ

=− δil∇lα⊗ eiτ + el ∧ (ei⌟∇lα)⊗ eiτ

− (−1)k(ei⌟α) ∧ (ei∇τ)− α ∧ (ei∇iτ),

d∇s∗(α⊗ τ) =el ∧∇l(ei⌟α)⊗ eiτ − (−1)k+1(ei⌟α) ∧ (ei∇τ).

When we add these two expressions, the first term and last term of s∗d∇(α ⊗ τ) together
give −D(α ⊗ τ), and the third term of s∗d∇(α ⊗ τ) cancels out with the second term of
d∇s∗(α ⊗ τ). The second term of s∗d∇(α ⊗ τ) together with the first term of d∇s∗(α ⊗ τ)
gives

el ∧ (ei⌟∇lα−∇l(ei⌟α))⊗ eiτ = 0.

The third and fourth identities are obtained by taking the adjoints of the first and second
identities, and using that the Dirac operator is formally self-adjoint. □
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The Lefschetz type decomposition obtained in Proposition 3.2 also gives a decomposition
of the bundle Λk

S into subbundles Pk ⊕ sPk−1 ⊕ · · · ⊕ sk−1P1 ⊕ skP0.
The following is in analogy to the proof of part (ii) of Proposition 3.1.12 in [4].

Proposition 4.2. Let α ∈ Γ(Pk). We have that

d∇α = yk+1 + syk + s2yk−1,

where yi ∈ Γ(Pi).

Proof. We can assume that 2k ≤ n, since otherwise α = 0.
Decompose d∇α = yk+1 + syk + · · · + sk+1y0, where each yi ∈ Pi = Λi

S ∩ ker(sn−2i+1) (by
Proposition 3.8).

Since for any β ∈ Γ(Pi) = Γ(Λi
S ∩ ker(sn−2i+1)),

d∇sn−2i+1β = 0 = sn−2i+1d∇β = 0

by the first identity in Proposition 4.1, we have that the individual terms in the equation

sn−2k+1(yk+1 + syk + · · ·+ sk+1y0) = sn−2k+1d∇α = 0

are zero (since the decomposition is a direct sum decomposition):

s(n−2k+1)+(i+1)yk−i = 0.

Since on Pk−i (therefore Γ(Pk−i)), s
m is injective for all m ≤ n−2(k−i), we get that yk−i = 0

for i ≥ 2. □

Define the Laplacians ∆d∇ := {d∇, (d∇)∗} = d∇(d∇)∗ + (d∇)∗d∇ and ∆D = D2. Let Rij

be the curvature operator Rij := ∇i∇j − ∇j∇i − ∇[ei,ej ] (where ∇ denotes connections on
different bundles, depending on what we put in Rij(·)), and define the differential operators

K(α⊗ τ) = ei ∧Rij(α)⊗ ejτ + ei ∧ α⊗ ejRij(τ),

R(ϕ) =
1

2
eiejRij(ϕ).

One thing to note is that we sometimes put S-valued forms in Rij(), so explicitly

Rij(α⊗ τ) = Rij(α)⊗ τ + α⊗Rij(τ).

Proposition 4.3. We have the following identities:

(1) {s,D} = −2d∇, {s∗, D} = −2(d∇)∗,
(2) [d∇, D] = K,
(3) [K, s∗] = 2R+ 2ei ∧ (ej⌟Rij),
(4) ∆D = ∆d∇ +R+ ei ∧ (ej⌟Rij).
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Proof. The first identity:

sD(α⊗ τ) =ej ∧∇iα⊗ ejeiτ + ej ∧ α⊗ ejei∇iτ

=− ej ∧∇iα⊗ eiejτ − ej ∧∇iα⊗ 2δijτ

− ej ∧ α⊗ eiej∇iτ − ej ∧ α⊗ 2δij∇iτ

Ds(α⊗ τ) =∇i(ej ∧ α)⊗ eiejτ + ej ∧ α⊗ ei∇i(ejτ).

When we add these two expressions, the third term of sD(α ⊗ τ) and the second term of
Ds(α ⊗ τ) cancel out, and the first term of sD(α ⊗ τ) cancels out with the first term of
Ds(α ⊗ τ). The two remaining terms give −2d∇, which gives {s,D} = −2d∇. Taking the
adjoint gives {s∗, D} = −2(d∇)∗.
The second identity:

d∇D(α⊗ τ) =d∇iα⊗ eiτ + ej ∧∇iα⊗∇j(eiτ)

+ dα⊗ ei∇iτ + ej ∧ α⊗∇j(ej∇iτ),

Dd∇(α⊗ τ) =∇idα⊗ eiτ + dα⊗ ei∇iτ

+∇i(ej ∧ α)⊗ ei∇jτ + ej ∧ α⊗ ei∇i∇jτ.

When we take [d∇, D], the second term of d∇D(α⊗τ) cancels with the third term ofDd∇(α⊗
τ), and the third term of d∇D(α ⊗ τ) cancels with the second term of Dd∇(α ⊗ τ). Using
d = ei ∧∇i, we are left with

[d∇, D](α⊗ τ) =ej ∧∇j∇iα⊗ eiτ + ej ∧ α⊗ ej∇j∇iτ

− ej ∧∇i∇jα⊗ eiτ − ej ∧ α⊗ ej∇i∇jτ

=K(α⊗ τ).

The third identity:

Ks∗(α⊗ τ) =− ej ∧Rji(ek⌟α)⊗ eiekτ − ej ∧ (ek⌟α)⊗ eiRji(ekτ)

since curvature operator Rij is a derivation,

=− ej∧⌟ekRjiα⊗ eiekτ − ej ∧Rji(ek)⌟α⊗ eiekτ

− ej ∧ (ek⌟α)⊗ eiekRjiτ − ej ∧ (ek⌟α)⊗ eiRji(ek)τ,

s∗K(α⊗ τ) =− ek⌟(ej ∧Rjiα)⊗ ekeiτ − ek⌟(ej ∧ α)⊗ ekeiRjiτ

=−Rjiα⊗ ejeiτ + ej ∧ (ek⌟Rjiα)⊗ ekeiτ − ek⌟(ej ∧ α)⊗ ekeiRjiτ

=−Rjiα⊗ ejeiτ − ej ∧ (ek⌟Rjiα)⊗ eiekτ − 2δikej ∧ (ek⌟Rjiα)⊗ τ

− α⊗ ejeiRjiτ − ej ∧ (ek⌟α)⊗ eiekRjiτ − 2δikej ∧ (ek⌟α)⊗Rjiτ

=−Rjiα⊗ ejeiτ − ej ∧ (ek⌟Rjiα)⊗ eiekτ − 2ej ∧ (ei⌟Rjiα)⊗ τ

− α⊗ ejeiRjiτ − ej ∧ (ek⌟α)⊗ eiekRjiτ − 2ej ∧ (ei⌟α)⊗Rjiτ.
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When taking [K, s∗], the first term of Ks∗(α⊗τ) cancels with the second term of s∗K(α⊗τ),
and the third term of Ks∗(α⊗ τ) and fifth term of s∗K(α⊗ τ) cancel, so we are left with

[K, s∗](α⊗ τ) =− ej ∧Rji(ek)⌟α⊗ eiekτ − ej ∧ (ek⌟α)⊗ eiRji(ek)τ

+Rjiα⊗ ejeiτ + 2ej ∧ (ei⌟Rjiα)⊗ τ

+ α⊗ ejeiRjiτ + 2ej ∧ (ei⌟α)⊗Rjiτ

=− ej ∧Rjikl(el⌟α)⊗ eiekτ − ej ∧ (ek⌟α)⊗ eiRjiklelτ

+Rjiα⊗ ejeiτ + 2ej ∧ (ei⌟Rjiα)⊗ τ

+ α⊗ ejeiRjiτ + 2ej ∧ (ei⌟α)⊗Rjiτ

since Rjikl = −Rjilk,

=Rjiα⊗ ejeiτ + 2ej ∧ (ei⌟Rjiα)⊗ τ

+ α⊗ ejeiRjiτ + 2ej ∧ (ei⌟α)⊗Rjiτ

=eiejRij(α⊗ τ) + 2ei ∧ (ej⌟Rij(α⊗ τ))

=2R(α⊗ τ) + 2ei ∧ (ej⌟Rij(α⊗ τ)).

The fourth identity:
By expanding out the brackets, we get the following identity between formal variables

a, b, c:
{a, {b, c}} = [[a, b], c] + {b, {a, c}}.

Applying this, and Proposition 4.1, we get

∆D =
1

2
{D,D}

=− 1

2
{D, {d∇, s∗}}

=− 1

2
([[D, d∇], s∗] + {d∇, {D, s∗}})

=
1

2
[K, s∗] + {d∇, (d∇)∗}

=R+ ei ∧ (ej⌟Rij) + ∆d∇ . □

Remark 4.4. In the case of an S-valued 0-form (which is just a section of S), d∇ = ∇, (d∇)∗ =
0, and interior product is 0, so the middle term is also 0, the fourth identity above reads

D2 = ∇∗∇+R,

which appears in chapter 2, section 5 of [1] under the name “general Bochner identity”.

Proposition 4.5. We have the following identities:

(1) [∆D, s] = 2K,
(2) [∆d∇ , s] = −K,
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(3) [s,K] = 4(d∇)2.

Proof. In this proof we use Proposition 4.1 and Proposition 4.3 throughout. The first iden-
tity:

sD2 =(−Ds− 2d∇)D

=−DsD − 2d∇D

=D(Ds+ 2d∇)− 2d∇D

=D2s+ 2Dd∇ − 2d∇D

=D2s− 2K.

The second identity:

∆d∇s =d∇(d∇)∗s+ (d∇)∗d∇s

=− d∇(s(d∇)∗ +D)− (d∇)∗sd∇

=sd∇(d∇)∗ − d∇D + (s(d∇)∗ +D)d∇

=s(d∇(d∇)∗ + (d∇)∗d∇)−K.

The third identity:

sK =sd∇D − sDd∇

=− d∇sD + (Ds+ 2d∇)d∇

=d∇(Ds+ 2d∇)−Dd∇s+ 2(d∇)2

=Ks+ 4(d∇)2. □

Corollary 4.6. The operator ∆D+2∆d∇ commutes with s. So (∆D+2∆d∇)s
mα ∈ Γ(smPk)

for any m ≥ 0 and α ∈ Γ(Pk).

Proof. Since ∆D + 2∆d∇ commutes with s, and ∆D + 2∆d∇ is self-adjoint, we have that
∆D + 2∆d∇ also commutes with s∗. So, if α ∈ Γ(Pk), which means s∗α = 0, we have that
s∗(∆D + 2∆d∇)α = 0, so (∆D + 2∆d∇)α ∈ Γ(Pk). Since ∆D + 2∆d∇ commutes with s, we
can apply s repeatedly to both sides of (∆D +2∆d∇)α ∈ Γ(Pk), and get (∆D +2∆d∇)s

mα ∈
Γ(smPk). □

5. Spin Groups and Their Lie Algebras

In this section we construct the spin groups, and then construct (unique) nontrivial 2-1
coverings from spin groups to special orthogonal groups, following chapter 1, section 2 of [1].

The group of units Cl×(V ) consists of all non-zero elements of V (along with other ele-
ments), since every non-zero vector in V squares to a non-zero real number.
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Definition 5.1. P (V ) is defined to be the subgroup of Cl×(V ) generated by all non-zero
elements of V . The pin group Pin(V ) is defined to be the subgroup of P (V ) generated by
unit length vectors, and the spin group Spin(V ) is defined by

Spin(V ) := Pin(V ) ∩ Cl0(V ).

Alternatively, Spin(V ) is the subgroup of P (V ) generated by elements of the form vw, where
v, w ∈ V, ∥v∥ = ∥w∥ = 1.

Recall that the involution α : Cl(V ) → Cl(V ) is induced from α(v) = −v for v ∈ V .

Definition 5.2. The twisted adjoint representation

Ãd : Cl×(V ) → GL(Cl(V ))

is defined by

Ãdφ(y) = α(φ)yφ−1.

Note that on Cl0(V ) (and therefore Spin(V )), the twisted adjoint representation is equal
to the “adjoint representation” given by Adφ(y) = φyφ−1, since α = Id on Cl0(V ).
The next proposition says that by the twisted adjoint representation, vectors act by re-

flection across the hyperplane they define.

Proposition 5.3. Let v, w ∈ V with v ̸= 0. We have that

Ãdv(w) = w − 2
⟨v, w⟩
∥v∥2

v.

Proof. Since v−1 = −v/∥v∥2 and vw + wv = −2⟨v, w⟩, we have that

∥v∥2Ãdv(w) = −∥v∥2vwv−1 = vwv = (−wv − 2⟨v, w⟩)v = ∥v∥2w − 2⟨v, w⟩v. □

As a corollary, we have that Ãdv(V ) = V , and since P (V ) is generated by the non-zero

vectors, we have that Ãdφ(V ) = V for all φ ∈ P (V ). Define

P̃ (V ) := {φ ∈ Cl×(V ) : Ãdφ(V ) = V }.

On P̃ (V ), Ãd is therefore also a representation with vector space V instead of Cl(V ).

Proposition 5.4. The kernel of Ãd : P̃ (V ) → GL(V ) is R×, the group of non-zero real
numbers.

Proof. Pick an orthonormal basis e1, . . . , en for V . Let φ ∈ Cl×(V ) be in the kernel of Ãd,
that is, α(φ)v = vφ for all v ∈ V . Decompose φ = φ0 + φ1 by the Z/2-grading of Cl(V ).
Since α acts by 1 on even elements and −1 on odd elements, we have that

(5.5) vφ0 = φ0v,−vφ1 = φ1v.

φ0 and φ1 (as with any element in the Clifford algebra) can be written as polynomial
expressions in e1, . . . , en. Repeatedly using eiej = −2δij − ejei shows that φ0 can be written
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as φ0 = a0 + e1a1, where a0 and a1 are polynomials in e2, . . . , en. Both a0 and e1a1 are even,
so we have that a0 is even and a1 is odd. Setting v = e1 in (5.5) shows that

e1a0 + e21a1 = a0e1 + e1a1e1 = e1a0 − e21a1.

So a1 = 0. So φ0 does not involve e1 terms. Similarly, φ0 does not involve any of the ei
terms. So φ0 is a real number.

An analogous argument shows that φ1 does not involve any of the ei terms. Since φ1 is
odd, this means that φ1 = 0.
So, φ is a non-zero real number. Conversely, any non-zero real number is clearly in the

kernel of Ãd. □

Proposition 5.6. Ãd gives homomorphisms Pin(V ) → O(V ), and Spin(V ) → SO(V ).

Proof. Notice that since any element in Pin(V ) is a product of unit length vectors, and unit

length vectors act by reflections under the representation Ãd : Cl×(V ) → GL(V ), we have
that the representation restricted to Pin(V ) is an orthogonal representation on V .
Analogously, since any element in Spin(V ) is a product of an even number of unit length

vectors, which act by a composition of an even number of reflections under the representation

Ãd : Cl×(V ) → GL(V ), we have that the representation restricted to Spin(V ) is a special
orthogonal representation. □

Proposition 5.7. Ãd : Pin(V ) → O(V ), Ãd : Spin(V ) → SO(V ) are double covers.

Proof. By viewing Cl(V ) as a left Cl(V ) module by multiplication, Proposition 1.3 gives an
inner product on Cl(V ) that is invariant under multiplication by unit length vectors. Under
such an inner product, since all elements of Pin(V ) are products of several unit length vectors
with the real number 1, and that 1 ∈ Pin(V ), we have that all elements of Pin(V ) have the

same norm as 1. So by Proposition 5.4, the kernel of Ãd as a homomorphism from Pin(V )
is Pin(V ) ∩ R = {1,−1}.
Since 1,−1 ∈ Spin(V ), we have that the kernel of Ãd : Spin(V ) → SO(V ), which is the

restriction of the kernel of Ãd : Pin(V ) → O(V ) to Spin(V ), is also {1,−1}.
Since orthogonal groups are generated by reflections, and special orthogonal groups are

generated by pairwise products of reflections, we have that these homomorphisms are sur-
jective. Thus they are double covers. □

Proposition 5.8. The double covers Ãd : Pin(V ) → O(V ), Ãd : Spin(V ) → SO(V ) are
nontrivial.

Proof. We prove this by showing that there is a path connecting −1 to 1 in Spin(V ). Pick
e1, e2 ∈ V orthogonal, then

γ(t) = (e1 cos t+ e2 sin t)(e2 sin t− e1 cos t)

for t ∈ [0, π
2
] does the job. □
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We always take V = Rn in the above, and will write Pin(n), Spin(n) for Pin(Rn), Spin(Rn).
Next we discuss the Lie algebras spinn. The Lie algebra of Cl×n (the group of units in Cln)

is simply Cln with the commutator bracket. Since Spin(n) is a compact subgroup of Cl×n , we
have that spinn is a Lie subalgebra of Cln.

Proposition 5.9. Under the canonical isomorphism Cln ∼= ΛRn, the Lie subalgebra spinn
of Cln is identified with Λ2Rn.

Proof. For each i ≤ j, consider the curve

γ(t) =(ei cos t+ ej sin t)(−ei cos t+ ej sin t)

=(cos2 t− sin2 t) + 2eiej sin t cos t

=cos(2t) + sin(2t)eiej.

These curves lie in Spin(n), and they meet the identity. Their tangent vectors at the identity
are 2eiej. Hence, spinn contains Λ2Rn = span{eiej}. Since the eiej’s are linearly indepen-
dent, and dim(spinn) = dim(son) = n(n− 1)/2, we conclude that spinn = Λ2Rn. □

son is the Lie algebra of all real n× n skew-symmetric matrices. son is generated by the
elementary transformations v ∧ w, given by

(v ∧ w)(x) = ⟨v, x⟩w − ⟨w, x⟩v.
Note that if i < j, then ei ∧ ej is the matrix with ijth entry 1, jith entry −1, and all other
entries 0, and they form a basis for son.

We have that the adjoint representation Ad : Spin(n) → SO(n) is the nontrivial double

cover (since on the even part of the Clifford algebra, Ad = Ãd). This induces a Lie algebra
isomorphism Ad∗ : spinn → son.

Proposition 5.10. The Lie algebra isomorphism above is given explicitly on basis elements
{eiej}i<j by

Ad∗(eiej) = 2ei ∧ ej.

Consequently,

Ad−1
∗ (v ∧ w) =

1

4
[v, w].

Proof. The curve
γ(t) = cos(t) + sin(t)eiej

has γ(0) = 1, γ′(0) = eiej. Then

Ad∗(eiej) =
d

dt
Ad(γ(t))|t=0.

Let x ∈ Rn. We have that

Ad(γ(t))(x) = γ(t)xγ(t)−1,
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and since (γ−1)′(0) = −γ′(0) = −eiej, we have that

Ad∗(eiej)(x) =eiejx− xeiej

=eiejx+ (eix+ 2⟨ei, x⟩)ej
=eiejx− eiejx− 2⟨ej, x⟩ei + 2⟨ei, x⟩ej
=2(ei ∧ ej)(x).

For the formula for Ad−1
∗ (v ∧ w), it is enough to notice that on basis elements ei ∧ ej, we

have

Ad−1
∗ (ei ∧ ej) =

1

2
eiej =

1

4
[ei, ej]. □

Corollary 5.11. Let ∆ : Spin(n) → SO(W ) be a representation obtained by restricting a
representation of Cln. Let ∆∗ : son → so(W ) be the associated Lie algebra representation.
Then on elementary transformations v ∧ w ∈ son,

∆∗(v ∧ w) =
1

4
[v, w].

6. Spin Manifolds and Spinor Bundles

In this section we review some material on spin manifolds, mostly taken from the beginning
of chapter 2 of [1]. [5], [6], [7] are some other useful references.

Let π : E → M be a rank n real orientable Riemannian vector bundle over a manifold
M , which means that there is a smoothly varying inner product (that is, a Riemannian
metric) on the fibres, and there exists a smoothly defined orientation on the fibres. Any
vector bundle admit Riemannian metrics, while not all vector bundles are orientable. A
necessary and sufficient topological criterion for orientability of a vector bundle is that the
first Stiefel-Whitney class of the vector bundle vanishes.

A Riemannian metric on a vector bundle is equivalently a reduction of the structure
group of the vector bundle from GL(n,R) to O(n), and a vector bundle being orientable is
equivalently the existence of a structure group reduction from GL(n,R) to GL+(n,R) (the
group of matrices with positive determinant). A real oriented Riemannian vector bundle is
therefore a vector bundle with a structure group SO(n), together with an orientation on a
fibre. So, a real orientable Riemannian vector bundle E comes with a principal SO(n)-bundle
which we denote by PSO(E).

Definition 6.1. A spin structure on E is a lifting of the SO(n) structure group to a Spin(n)
structure group. More precisely, a spin structure on the real orientable Riemannian vector
bundle E is a principal Spin(n)-bundle PSpin(E) over M , together with a 2-sheeted covering
bundle map

ξ : PSpin(E) → PSO(E)

such that ξ(pg) = ξ(p)ξ0(g) for all p ∈ PSpin(E) and g ∈ Spin(n) (here ξ0 is the canonical
2-sheeted covering map from Spin(n) to SO(n)). An orientable vector bundle is called
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spinnable if it can be equipped with a spin structure, and is called spin if we fix such a spin
structure.

Remark 6.2. A necessary and sufficient topological criterion of the spinnability of an ori-
entable vector bundle is that the second Stiefel-Whitney class of the vector bundle vanishes.
A proof of this can be found in chapter 2, section 2 of [1].

Definition 6.3. Given a spin vector bundle E and a module V over the Clifford algebra Cln,
we can form the associated bundle of the principal bundle PSpin(E) and the representation
V (where V is now viewed as a representation of Spin(n)). Associated bundles constructed
this way are called spinor bundles corresponding to the spin structure.

Spinor bundles are canonically bundles of modules over the Clifford bundle Cl(E): define
the adjoint representation

Ad : Spin(n) → Aut(Cln)

given by Adg(φ) = gφg−1 for g ∈ Spinn ⊂ Cln. Since Ad−1 = id, we have that Ad factors
through the projection map Spin(n) → SO(n) to give us a representation Ad′ of SO(n). In
fact, Ad′ is the same representation as the representation cl(ρn) from section 2. This gives
the Clifford bundle a spinor bundle structure:

Cl(E) = PSpin(E)×Ad Cln.

Definition 6.4. On a spinor bundle S, the structure of a bundle of modules over the Clifford
bundle is given in the following way (where µ denotes the representation V of Spin(n)):

Cl(E)⊕ S = PSpin(E)×Ad⊕µ (Cln ⊕ V ) → PSpin(E)×µ V,

[p, φ, v] 7→ [p, φv].

A spin manifold is a Riemannian manifold together with a spin structure on its tangent
bundle. When we say “spinor bundle on a spin manifold”, we would then mean a spinor
bundle coming from the spin structure on the tangent bundle of the manifold. When we work
over the tangent bundle, we will use PSO(M) and PSpin(M) for PSO(TM) and PSpin(TM)
(for example). From now on we only work with spin structures and spinor bundles over the
tangent bundle of a spin manifold.

Next we describe the Dirac bundle structures of spinor bundles. Let S = Cl(M)×µV be a
spinor bundle. We have already shown S is a bundle of modules over Cl(M). Proposition 1.3
gives an inner product on V invariant under multiplication by unit vectors, and this inner
product induces a metric on the associated bundle S invariant under multiplication by unit
vectors, which is the property needed in the definition of a Dirac bundle. It remains to find
a compatible connection.

Definition 6.5. On a Riemannian manifold M , we have the Levi-Civita connection, which
induces a canonical connection on its O(n)-bundle, and in turn induces a canonical connec-
tion on its SO(n)-bundle, PSO(M), if M is orientable. If M is spin, then we can pullback the



20 HANMING LIU

connection on PSO(M) to get a connection on PSpin(M), by the map ξ. This connection on
PSpin(M) would then induce a connection ∇S on its associated bundles, namely the spinor
bundles.

Proposition 6.6. The spin connection on S is a derivation with respect to the Clifford
module structure. That is, for each ϕ ∈ Γ(Cl(M)), σ ∈ Γ(S), we have

∇S(ϕσ) = (∇ϕ)σ + ϕ(∇Sσ).

Proof. The representations cl(ρn) = Ad and µ preserve the module multiplication. That is,

µ(g)(φσ) = (cl(ρn)(g)φ)(µ(g)σ)

for all g ∈ Spin(n), φ ∈ Cln, σ ∈ V . Differentiating at the identity gives that for each
A ∈ son = spinn,

(µ∗A)(φσ) = ((cl(ρn)∗A)φ)σ + φ((µ∗A)σ).

This then implies that the spin connection is a derivation on sections. □

So, spinor bundles are Dirac bundles. Next we describe the spin connection more con-
cretely.

Let f ∈ V , and e1, ..., en be an orthonormal local frame of TM . These together determine
two local sections of S by the following: e1, ..., en is equivalent to a local section of PSO(M),
which we can lift to two local sections α, β of PSpin(M). Then [α, f ] and [β, f ] give the two
local sections of S (and [α, f ] = −[β, f ]).

Proposition 6.7. Let e1, ..., en be an orthonormal local frame of TM , where we can write
the Levi-Civita connection as

∇ei = ωji ⊗ ej

where ω is an son-valued 1-form. Let f ∈ V . Then the connection ∇S on S on sections
obtained by the procedure above, σ = [α, f ], [β, f ] is given by the formula

∇σ =
1

4
ωji ⊗ eiejσ.

Remark 6.8. Note that any local section of S can be written as a C∞(M)-linear combination
of sections obtained like this (if we take f1, ..., fm to be an orthonormal basis of V , then
[α, f1], ..., [α, fm] is a local orthonormal frame of S).

Proof. We have that son is generated by the elementary transformations x ∧ y, x, y ∈ Rn,
given by (x ∧ y)(v) := ⟨x, v⟩y − ⟨y, v⟩x.
Denote the induced map on Lie algebras by subscript ∗. By Corollary 5.11, we have that

µ∗(x ∧ y) = 1
4
[x, y] (that is, left multiplication by 1

4
[x, y] ∈ Cln). Also recall that from the

discussion after Definition 6.3, we have that on Spinn, cl(ρn) = Ad. Hence, by Corollary
5.11,

cl(ρn)∗(x ∧ y) = Ad∗(x ∧ y) = ad 1
4
[x,y].
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That is,

Ad∗(x ∧ y)(φ) =
1

4
[[x, y], φ].

Let i ̸= j. Since eiej = −ejei, we have that by taking x = ei, y = ej,

Ad∗(ei ∧ ej)(φ) =
1

2
[eiej, φ].

Thus by pulling back the PSO(M) connection 1-form ω̃ = 1
2
ωjiei ∧ ej to a connection 1-

form on PSpin(M) via ξ, we get the 1
4
ωjieiej (since on each fibre, the map between these two

principal bundles is the adjoint representation, and since connection 1-forms are forms with
values in the Lie algebra, we can pullback connection 1-forms via the associated Lie algebra
homomorphism). We then view PSpin(M) as a subbundle of PSO(S), then we have that for
sections of PSO(S) of the form [α, f ], [β, f ], the desired formula holds:

∇σ =
1

4
ωji ⊗ eiejσ. □

Corollary 6.9. Let Ω be the curvature 2-form on PSO(M), and let S be any spinor bundle
associated to M . Then the curvature R of S induced by the above connection is given locally
by

Rσ =
1

4
Ωji ⊗ eiejσ,

where e1, ..., en is a local orthonormal frame of TM . In particular, for any two tangent
vectors V and W at p, the curvature transformation RV,W : Sp → Sp is given by

RV,Wσ =
1

4
⟨RV,W ei, ej⟩eiejσ.

Remark 6.10. The formulas in Corollary 6.9 work for any section σ ∈ Γ(S), since the curva-
ture operator is a tensor.

7. Some Calculations on Spinor Valued Forms

In the case of a spinor bundle, the curvature term in the general Bochner identity can be
greatly simplified:

Theorem 7.1. (Lichnerowicz, [3]). Let M be a spin manifold and S be a spinor bundle.
Let κ denote the scalar curvature of M . Then,

D2 = ∇∗∇+
1

4
κ.

Proof. The general Bochner identity mentioned in Remark 4.4 states D2 = ∇∗∇+R, where

R =
1

2
eiejRij
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by the second formula in Corollary 6.9,

=
1

8
Rijkleiejekel

=
1

8

∑
l

(
1

3

∑
i,j,k

distinct

(Rijkl +Rkijl +Rjkil)eiejek +
∑
ij

Rijileiejei +
∑
ij

Rijjleiejel)el.

The first big term is zero by the Bianchi identity, and we can rearrange the last two terms
and change some indices around to get

=
1

4
Rijilejel = −1

4
Ric(ej, el)ejel =

1

4
κ. □

We can attempt to obtain an analogous formula starting from the fourth identity of Propo-
sition 4.3:

Proposition 7.2. Let M be a spin manifold and S be a spinor bundle. Let κ denote the
scalar curvature, and Ric denote the Ricci transformation extended to ΛTM as a derivation.
Then,

∆D(α⊗ σ) = ∆d∇(α⊗ σ) +
1

4
κ(α⊗ σ)− Ric(α)⊗ σ +

3

4
Rijα⊗ eiejσ.

Proof. The curvature term in the fourth identity of Proposition 4.3 is explicitly:

1

2
Rijα⊗ eiejσ +

1

2
α⊗ eiejRijσ + ei ∧ (ej⌟Rijα)⊗ σ + ei ∧ (ej⌟α)⊗Rijσ.

The second term is 1
4
κ(α⊗ σ), by the calculation in the proof of Theorem 7.1.

The fourth term: by the second formula in Corollary 6.9,

ei ∧ (ej⌟α)⊗Rijσ =
1

4
Rijklei ∧ (ej⌟α)⊗ ekelσ =

1

4
Rklα⊗ ekelσ,

which together with the first term, add up to

3

4
Rijα⊗ eiejσ.

The third term: since Rij is a derivation, we just need to check that for 1-forms α, that

−Ric(α) = ei ∧ (ej⌟Rijα).

Note that ej⌟Rijα = ⟨Rijα, ej⟩. By the symmetry of the Riemann curvature tensor,

⟨Rijα, ej⟩ = ⟨Rej ,α(ej), ei⟩.

So,

ei ∧ (ej⌟Rijα) = ⟨Rej ,α(ej), ei⟩ei = Rej ,α(ej) = −Ric(α). □

It is unknown to the author what applications this formula has.
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[3] A. Lichnerowicz, Laplacien sur une variété riemannienne et spineure, Atti Accad. Naz. dei Lincei, Ren-
diconti 33 (1962), 187-191.

[4] D. Huybrechts, Complex Geometry: an Introduction, Springer Berlin, Heidelberg, 2005.
[5] T. Friedrich, Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, American

Mathematical Society, 2000.
[6] J. Roe, Elliptic Operators, Topology and Asymptotic Methods, Chapman and Hall/CRC, 1998.
[7] F. R. Harvey, Spinors and Calibrations, Academic Press, 1990.

Department of Pure Mathematics, University of Waterloo
Email address: hanming.liu@uwaterloo.ca


	Acknowledgments
	Introduction
	Notation
	1. Clifford Algebras and Modules
	2. Dirac Bundles and Dirac Operators
	3. A Lefschetz Decomposition for Dirac Bundle Valued Forms
	4. Some Calculations on Dirac Bundle Valued Forms
	5. Spin Groups and Their Lie Algebras
	6. Spin Manifolds and Spinor Bundles
	7. Some Calculations on Spinor Valued Forms
	References

