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0 Introduction

Consider a compact Riemannian manifold X. It is common to introduce new structures on it and study
them to get information about the underlying manifold X. In this paper, we consider the anti-self-dual
(ASD) connections on a principal bundle over a 4-manifold X, i.e., connections which satisfy the ASD
equation. However, the space of all such objects may be too big, infinite-dimensional. Hence, we quo-
tient it by the gauge group, which is the group of symmetries of the bundle. The obtained moduli space
turns out to carry a natural geometric and topological structure, except for maybe some singular points
corresponding to so-called irreducible connections.
We start with section 1, by going through the basic definitions and facts, assuming the familiarity of
the reader with notions such as differentiable manifolds, Riemannian structures, vector bundles, Hodge
Theory, etc. Knowing the theory of Banach, Sobolev spaces, elliptic theory is recommended, but not
required. We will use the results listed in the Appendix, the proofs of which can be found in the corre-
sponding sources.
In Section 2 we study the ASD connections in the presence of a holomorphic sctructure on the manifold
X. It turns out that part of the conditions for being ASD can be rewritten as an integrablity condition.
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Section 3 establishes a local “sequential-compactness” result for moduli spaces. This leads to the process
of compactification and the Removable Singularities Theorem which states that connections with finite
action have no point singularities. We will not cover these two topics, although an interested reader can
see the original papers by K. Uhlenbeck [11] and [10], along with the book by S. K. Donaldson and P.
B. Kroheimer [2] for more information.
We finish with section 4, by showing that locally moduli spaces are smooth manifolds, under a series of
nice assumptions, using the Fredholm Theory.
This naturally leads to the Donaldson Theory, whose goal is to distinguish smooth 4-manifolds which
have the same classical invariants, by introducing new ones using the ASD moduli spaces. It turns out
that these new invariants depend not only on the topology of X, but on its smooth structure. One of
the results of Donaldson Theory is the existence of exotic smooth structures on R4. One can see [2] and
[4] if interested.

1 Connections and curvature

Definition 1.1. Let G be a Lie group. A principal G-bundle P over a smooth manifold X is a manifold
with a smooth (right) G action P × G → P , which we write as (p, g) 7→ pg = Rgp, and orbit space
P/G = X. Also, this action is locally equivalent to the obvious action on U ×G, where U is an open set
in X. Hence, we obtain a fibration π : P → X. We say P has structure group G. N

Remark 1.2. We write gE for the bundle of Lie algebras associated to the adjoint represenation adg,
i.e. gE is a real subbundle of End E = E ⊗ E∗.

Definition 1.3. A connection on a principal G-bundle P over X can be defined in any of the following
equivalent ways:

• As a field of horizontal subspaces H ⊂ TP transverse to the fibres of π. This means, for each point
p ∈ P , we have TPp = Hp ⊕ T (π−1(x)), where π(p) = x. This field of subspaces is required to be
preserved by the action of G on P , i.e., (Rg)∗Hp = Hpg, for g ∈ G.

• As a 1-form A on P with values in the Lie algebra g of G, i.e. a section of the bundle T ∗P ⊗ g over
P . Again, we require this to be invariant under G, i.e., (Rg)

∗A = adg−1 ◦A, for g ∈ G.

N

Remark 1.4. Note that a connection on the frame bundle can be defined by a covariant derivative on
E, which is a linear map ∇ : Γ(E) → Γ(T ∗X ⊗ E) that satisfies the Leibnitz rule. Observe that ∇ is a
local operator. Then we say that a local section σ of the frame bundle (i.e. a collection of local sections
s1, . . . sn of E, where n = rank(E)) is horizontal at x in X if all the ∇si vanish at x. Finally, we define
Hp to be the tangent space to a horizontal section σ through p, regarded as a submanifold of P . This
construction can easily be inverted, giving us the desired equivalence. We will write ∇A for a covariant
derivative, using A to denote a connection.

Definition 1.5. We quickly recall the concept of holonomy. This will not be needed until Section 4,
where it will be used to get rid of connections which cause problems. Assume we have a principal G-
bundle P over a manifold X, and a connection A. For p, q ∈ P , we write p ∼ q if there exists a piece-wise
smooth horizontal curve in P joining p to q. Clearly, ∼ is an equivalence relation. Fix p ∈ P and and
define the holonomy group of (P,A) based at p to be Holp(P,A) = {g ∈ G : p ∼ gp}. Then the holonomy
group Holp(P,A) depends on the base point p ∈ P only up to conjugation in G. Thus, we can regard it
as an equivalence class of subgroups of G under conjugation, which is independent of p, and is written
as Hol(P,D). See Chapter 2 of [6] for more details. N
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Remark 1.6. The space of connections A(E) on a vector bundle E can be described as the affine space
{A + a|a ∈ Ω1(End E)}, where A is any connection on E. This can easily be obtained by a direct
calculation that the difference of two connections is linear over C∞(X).

Definition 1.7. Let E be a vector bundle. Let ∇A denote a covariant derivative on E. The gauge
group G is the group of all automorphisms u : E → E. It acts on the set of connections by the rule
∇u(A)s = u∇A(u−1s). N

Remark 1.8. If we regard u as a section of the vector bundle End E, then we can write ∇u(A) as
∇A − (∇Au)u−1, so we get u(A) = A− (∇Au)u−1.
Now, let’s look at how u acts on trivializations τ . We get that uτ is a new trivialization, and Auτ =
uAτu−1 − (du)u−1. Hence, suppressing the superscript τ , we get the action A→ uAu−1 − (du)u−1.

Definition 1.9. Let ΩpX(E) = Γ(
∧p

T ∗X ⊗ E).

We have exterior covariant derivatives dA : ΩpX(E) → Ωp+1
X (E) which are uniquely determined by the

properties:

• dA = ∇A on Ω0
X(E).

• dA(w ∧ θ) = (dw) ∧ θ + (−1)pw ∧ (dAθ), for w ∈ ΩpX , θ ∈ ΩqX(E).

N

Remark 1.10. The operator dA extends on a ∈ Ωp(End E) in the following way:

dAa = da+A ∧ a− (−1)pa ∧A = da+ [A, a]

Proof. First, note that we identify End E with E ⊗E∗. So, we need to find what the induced dA on the
dual space E∗ and on the tensor product is locally.
For the dual space E∗, the exterior covariant derivative dA : Γ(E∗) → Ω1(E∗) is determined by the
following formula: dA(t)(s) = dA(t(s))− t(dA(s)), where t is a section of E∗ and s is a section of E. This
map can easily be shown to satisfy the Leibniz rule.
We can rewrite this as dA(t(s)) = dA(t)(s) + t(dA(s)). Assume that locally dA(ej) = Bji ⊗ ei, where
e1, ..., en is the basis of TX and e1, ..., en is its dual basis. So, after applying the above equation to t = ej ,
s = ei, we get:

0 = dA(ej(ei)) = (Bjk ⊗ e
k)(ei) + ej(Aki ⊗ ek)

= Bjkδki +Aji δjk

= Bji +Aji

Hence, we get that dA(ej) = −Aji ⊗ ei locally, and so dA(sie
i) = (dsi − sjAji )⊗ ei.

Next, the operators dA on E and E∗ naturally induce dA on E⊗E∗ by dA(s⊗ t) = dA(s)⊗ t+ s⊗dA(t),
for t a section of E∗ and s a section of E.
Now, we are ready to compute what this dA is locally. Using the second bullet point of Definition 1.9,
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for a ∈ Ωp, we have:

dA(aij ⊗ ei ⊗ ej) = daij ⊗ ei ⊗ ej + (−1)paij ∧ dA(ei ⊗ ej)

= daij ⊗ ei ⊗ ej + (−1)paij ∧ (Aki ⊗ ek ⊗ ej −A
j
k ⊗ ei ⊗ e

k)

= daij ⊗ ei ⊗ ej + (−1)paij ∧Aki ⊗ ek ⊗ ej + (−1)p+1aij ∧A
j
k ⊗ ei ⊗ e

k

= daij ⊗ ei ⊗ ej + (−1)p(−1)pAki ∧ aij ⊗ ek ⊗ ej − (−1)paij ∧A
j
k ⊗ ei ⊗ e

k

= daij ⊗ ei ⊗ ej +Aik ∧ akj ⊗ ei ⊗ ej − (−1)paik ∧Akj ⊗ ei ⊗ ej

= (daij + [A, a]ij)⊗ ei ⊗ ej

And hence, using matrix notation we get the desired dAa = da+ [A, a].

Definition 1.11. The curvature of the connection is FA = d2
A ∈ Ω2

X(gE). One can easily show that it
transforms in the following way under bundle automorphisms: Fu(A) = uFAu

−1. We call a connection
flat if its curvature is zero. N

Remark 1.12. For a smooth manifold X, consider the trivial bundle Rn = Rn ×X or Cn = Cn ×X.
Then this bundle admits a product connection whose covariant derivative is just ordinary differentiation
of vector-valued functions, i.e. ∇A = d. Clearly this connection is flat.

Proposition 1.13. Given a connection A and a ∈ Ω1(End E), we have that FA+a = FA + dAa+ a∧ a.

Proof. We will use the fact that FA = dA+A ∧A. So,

FA+a = d(A+ a) + (A+ a) ∧ (A+ a)

= dA+A ∧A+ (da+ [A, a]) + a ∧ a
= FA + dAa+ a ∧ a

Proposition 1.14. The Bianchi identity: dAFA = 0.

Proof.

dA(FA) = d(FA) + [A,FA]

= d(dA+A ∧A) + [A,FA]

= d2A+ d(A ∧A)) + [A,FA]

= dA ∧A−A ∧ dA+ [A,FA]

= (FA −A2) ∧A−A ∧ (FA −A2) + [A,FA]

= FA ∧A−A3 −A ∧ FA +A3 + [A,FA]

= FA ∧A−A ∧ FA + [A,FA]

= 0

Definition 1.15. Using the Hodge star ∗, we define the L2 inner product (a, b)L2 =
∫
X
tr(a ∧ ∗b)dµ,

for a, b ∈ Ωp(gE). Then the induced operator dA on Ωp(g) has a formal adjoint d∗A characterized by the
equation (dAa, b)L2 = (a, d∗Ab)L2 . N
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Definition 1.16. From now on, we let X be a 4-dimensional, oriented and Riemannian manifold. Then
we have the orthogonal decomposition of the 2-forms on X into the self-dual part, which is the +1
eigenspace of the Hodge star ∗, and the anti-self-dual part, the −1 eigenspace:

Ω2
X = Ω+

X ⊕ Ω−X

This splitting extends to bundle-valued 2-forms and in particular to the curvature tensor FA of a con-
nection on a bundle E over X as

FA = F+
A ⊕ F

−
A ∈ Ω+

X(gE)⊕ Ω−X(gE)

where Ω±X(gE) = Γ(Λ±X ⊗ gE). We say a connection is anti-self-dual (ASD) if F+
A = 0 and is self-dual if

F−A = 0. N

Proposition 1.17. The differential operator d∗A + d+
A : Ω1 → Ω0 ⊕Ω− is elliptic. See section 5.2 of the

Appendix for the definition of ellipticity.

Proof. Let a ∈ Ω1. Then (d∗A + d+
A)(a) = (d∗Aa, d

+
Aa) = (− ∗ dA ∗ a, dAa+∗dAa

2 ).
In order to check for ellipticity, we need to calculate the symbol, which is obtainded by replacing all the
occurences of dA by ζ∧, where ζ is a non-zero 1-form.

So, we obtain a function a 7→ (− ∗ (ζ ∧ ∗a), ζ∧a+∗(ζ∧a)
2 ) = (−ζ \ya, ζ∧a+∗(ζ∧a)

2 ). Now we need to prove
it is invertible. Note that the dimensions of the domain and the codomain are both equal to 4, so it is
enough to show injectivity, i.e. if ζ

\
ya = 0 and ζ ∧ a+ ∗(ζ ∧ a) = 0, then a = 0. So, assume this is the

case. Then:

0 = ζ
\
y(ζ ∧ a+ ∗(ζ ∧ a))

= ζ
\
y(ζ ∧ a− ζ \y ∗ a))

= ζ
\
y(ζ ∧ a)− ζ \y(ζ

\
y ∗ a)

= (ζ
\
yζ) ∧ a− ζ ∧ (ζ

\
ya)− 0

= |ζ|2a− ζ ∧ 0

= |ζ|2a

So, since ζ is non-zero, we obtain a = 0, as required.
Similarly, one can show that the operator d∗ + d :

⊕
i Ω2i+1 →

⊕
i Ω2i is also elliptic.

Definition 1.18. The Yang-Mills functional on the space of all connections on E is defined to be:

‖FA‖2 =

∫
X

|FA|2dµ =

∫
X

|F−A |
2dµ+

∫
X

|F+
A |

2dµ,

for a connection A. N

Proposition 1.19. The critical points of the Yang-Mills functional satisfy d∗AFA = 0.

Proof. We know that the space of connections can be described as {A + a : a ∈ Ω1(End E)} and that
FA+a = FA + dAa+ a ∧ a.
Suppose A is a critical point of the Yang-Mills functional. Consider a one-parameter family of connections
on E given by Aε = A+ εa, with ε ∈ (−t0, t0), for some small t0 and a ∈ Ω1(End E). Then,

FA+εa = FA + dA(εa) + (εa) ∧ (εa) = FA + εdAa+ ε2a ∧ a

and
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‖FA+εa‖2L2 = (FA+εa, FA+εa)L2

= (FA + εdAa+ ε2a ∧ a, FA + εdAa+ ε2a ∧ a)L2

= (FA, FA)L2 + 2ε(FA, dAa)L2 + ε2(· · · )

Hence,
d

dε
(‖FA+εa‖2L2)|ε=0 = 2(FA, dAa)L2 = 2(a, d∗AFA)L2 .

Since A is a critical point, 0 = 2(a, d∗AFA)L2 , for any a. Thus, d∗AFA = 0.

Corollary 1.20. Combining with the Bianchi dentity dAFA = 0, we get that the critical points of the
Yang-Mills functional are solutions to the Yang-Mills equations:{

dAFA = 0

d∗AFA = 0

Remark 1.21. Here, we will use some facts about Chern classes, which can be found in [8].
Let L be a Hermitian line bundle over a manifold X. The curvature of a connection A on L is a purely
imaginary 2-form which we write as −2πiφ, where φ is a real 2-form, which is closed by the Bianchi
identity. It therefore defines a de Rham cohomology class [φ] ∈ H2(X;R). Consider a second connection
A
′

= A+a. Then F
′

= F +da, as a∧a = 0 for rank 1. Thus, [φ
′
] = [φ]. Hence, we obtain a cohomology

class which is independent of the choice of connection, and thus depends only on the bundle L. This class
is called the first Chern class c1(L) which classifies L. More generally, for any complex vector bundle E,
with a connection A, the first Chern class c1(E) is represented by i

2πTr(FA). See the appendix of [8] for
more details.
Now, consider the 4-form Tr(F 2

A) definded by a connection on a Hermitian bundle E. Again, this is a
closed form whose de Rham cohomology class depends only on E, not on the particular choice of the
connection.
In fact, for a complex vector bundle we have [ 1

8π2Tr(F
2
A)] = c2(E)− 1

2c1(E)2 ∈ H4(X), where c1, c2 are
Chern classes.
When bundles have the structure group SU(2), then Tr(FA) = c1(E) = 0. In this case, for a compact,
oriented manifold, we identify H4 with integers and write c2(E) = 1

8π2

∫
X
Tr(F 2

A) ∈ Z.

Remark 1.22. For the Lie algebra u(n) of skew adjoint matrices Tr(ζ2) = −|ζ|2.
Also, we have that for any 2-form β, β = β+ + β−, and so β2 = β2

+ + 2β+ ∧ β− + β2
− = β2

+ + β2
−,

since ASD and SD spaces are orthogonal. Next, using the fact that β± = ± ∗ β±, we get that β2 =
β+ ∧ ∗β+ − β− ∧ ∗β− = |β+|2dµ− |β−|2dµ, where dµ is the Riemannian volume form. Hence, Tr(F 2

A) =
−(|F+

A |2 − |F
−
A |2)dµ. Thus, a connection is ASD if and only if Tr(F 2

A) = |F−A |2dµ.
Also,

8π2c2(E) =

∫
X

Tr(F 2
A)dµ =

∫
X

|F−A |
2dµ−

∫
X

|F+
A |

2dµ,

while for the Yang-Mills functional

‖FA‖2 =

∫
X

|FA|2dµ =

∫
X

|F−A |
2dµ+

∫
X

|F+
A |

2dµ.

So,

‖FA‖2 = 8π2c2(E) + 2

∫
X

|F+
A |

2dµ.

Thus, when c2 is nonnegative we get that A is ASD ⇒ A is an absolute minimizer for the Yang-Mills
functional.
Clearly, in this case, A is ASD iff ‖FA‖2 = 8π2c2(E).
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Similarly, if c2(E) is nonpositive, we obtain that A is SD ⇒ A is an absolute minimizer, and A is SD
iff ‖FA‖2 = −8π2c2(E).

Definition 1.23. The standard 4-dimensional characteristic class for a real O(n) bundle is the Pon-
tryagin class p1(V ) = −c2(V ⊗ C) ∈ H4(X,Z). Such a bundle also has a Stiefel-Whitney class
w2(V ) ∈ H2(X,Z2) such that w2(V )2 = p1(V ) mod 4. See [9] for more details. N

Definition 1.24. We make the following convention for vector bundles over a compact oriented 4-
manifold:

κ(E) = c2(E), for SU(2) bundles E,

= c2(E)− 1

2
c1(E)2, for U(r) bundles E,

= −1

4
p1(V ), for SO(r) bundles V .

We then have the Chern-Weil formula κ(E) = 1
8π2

∫
X
Tr(F 2

A) . N

Proposition 1.25. If a bundle E over a compact, oriented Riemannian 4-manifold admits an ASD
connection, then κ(E) ≥ 0, and if κ(E) = 0, any ASD connection is flat.

Proof. This follows from Remark 1.22.

2 Holomorphic bundles

When the base space X admits a complex structure, we can rewrite the ASD condition in two pieces,
one of which has a simple geometric interpretation as an integrability condition.
For simplicity, consider the base to be the Euclidean space R4, with connection matrices Ai. Then the
ASD condition F+

A = 0 can be represented as a system of partial differential equations:

F12 + F34 = 0

F14 + F23 = 0

F13 + F42 = 0

where Fij = [∇i,∇j ] =
∂Aj
xi
− ∂Ai

xj
− [Ai, Aj ].

Now, when you think about the base space as C2 equipped with the flat Euclidean metric, these conditions
can be rewritten as:

[∇1 + i∇2,∇3 + i∇4] = 0 (the integrability condition)

[∇1,∇2] + [∇3,∇4] = 0 (the condition that F̂A = 0, from Proposition 2.11)

Definition 2.1. Let Z be a complex manifold. A holomorphic vector bundle E over Z is a complex
manifold with a holomorphic projection map π : E → Z and a complex vector space structure on each
fibre Ez = π−1(z), such that the data is locally holomorphically equivalent to the standard product
bundle. N

Definition 2.2. The complexified de Rham complex (Ω∗Z , d) splits into a double complex (Ωp,qZ , ∂, ∂̄),
with d = ∂ + ∂̄, and ∂ : Ωp,q → Ωp+1,q and ∂̄ : Ωp,q → Ωp,q+1.
Now, for any complex vector bundle E over Z, we write Ωp,qZ (E) for E-valued (p, q)-forms.

Given a holomorphic structure E on E, there is a linear operator ∂̄E : Ω0,q
Z (E) → Ω0,q+1

Z (E) uniquely
determined by:
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• ∂̄E(fs) = (∂̄f)s+ f(∂̄Es),

• ∂̄Es vanishes on an open subset U ⊂ Z if and only if s is holomorphic (∂̄s = 0) over U .

N

Remark 2.3. The operators ∂̄E satisfy ∂̄2
E = 0, hence we obtain the Dolbeault cohomology groups

H∗(E) = ker ∂̄E/ im ∂̄E .

Theorem 2.4. On a C∞ complex vector bundle E over a complex manifold Z, a partial connection
∂̄α, i.e. an operator Ω0

Z(E) → Ω0,1
Z (E) which satisfies the Leibniz rule, is integrable, meaning that local

holomorphic trivializations exist, if and only if ∂̄2
α ∈ Ω0,2

Z (End E) is zero.

Proof. See page 282 of [5] for a proof.

Corollary 2.5. Decompose FA = F 2,0
A +F 1,1

A +F 0,2
A . Then F 0,2

A = ∂̄2
A, where ∂̄A is the partial connection

induced by A. Then the connection is compatible with a holomorphic structure, i.e. ∂̄A = ∂̄E , if and only
if F 0,2

A = 0.

Proof. If ∂̄A is the ∂̄ operator for some holomorphic structure, then clearly F 0,2
A = ∂̄2

A = 0.
For the converse, we just apply Theorem 2.4.

Definition 2.6. A connection A on a complex vector bundle E over Z with a Hermitian metric is called
unitary if d(s, t) = (dAs, t) + (s, dAt), for any two sections s, t of E.
Note that a unitary connection has a skew-Hermitian matrix of coefficients in any unitary local trivial-
ization, i.e., Aτ = −(Aτ )∗, where Aτ is a matrix of 1-forms s.t. ∇A = d+Aτ .
This is because if ei forms a local orthonormal frame for E, then δij = (ei, ej). So, after differentiating,
we get:

0 = (dAei, ej) + (ei, dAej)

= (Aikek, ej) + (ei, Ajkek)

= Aikδkj +Ajkδik

= Aij +Aji

N

Lemma 2.7. If E is a complex vector bundle over Z with a Hermitian metric on the fibres, then for
each partial connection ∂̄α on E there is a unique unitary connection A such that ∂̄A = ∂̄α.

Proof. Consider local unitary trivializations, where the partial connection ∂̄α is represented by aτ , a
matrix of (0, 1)-forms. Then Aτ is uniquely determined as aτ − (aτ )∗, because it satisfies the unitary
condition Aτ = −(Aτ )∗ and the compatability connection (Aτ )0,1 = aτ , as (aτ )∗ is a matrix of (1, 0)-
forms.

Proposition 2.8. A unitary connection on a Hermitian complex vector bundle over Z is compatible
with a holomorphic structure if and only if it has curvature of type (1, 1), and in this case the connection
is uniquely determined by the metric and holomorphic structure.

Proof. Note that the curvature of a unitary connection is skew-adjoint, hence F 0,2 = −(F 0,2)∗. Thus,
having a curvature of type (1, 1) is equivalent to F 0,2 = 0. So, we can just apply Corollary 2.5 and
Lemma 2.7.
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Definition 2.9. Let Z be a complex manifold of complex dimension 2 with a Hermitian metric on its
tangent bundle. Then it is also an oriented Riemannian 4-manifold. We have two orthogonal decompo-
sitions of the complexified 2-forms on Z:

Ω2 = Ω2,0 ⊕ Ω1,1 ⊕ Ω0,2

Ω2 = Ω+ ⊕ Ω−

The complex structure and metric together define a (1, 1)-form ω by the rule ω(ζ, η) = (ζ, iη). Hence,
Ω1,1 = Ω1,1

o ⊕ Ω0 · ω, where Ω1,1
o is forms pointwise orthogonal to ω. N

Lemma 2.10. The complexified self-dual 2-forms over Z are

Ω+ = Ω2,0 ⊕ Ω0ω ⊕ Ω0,2

and the complexified anti-self-dual forms are

Ω− = Ω1,1
o

Proof. It is enough to prove this result in C2, with complex coordinates z1 = x1 + ix2,z2 = x3 + ix4.
For the standard Hermitian metric, where dx1, dx2, dx3, dx4 is the orthonormal basis, we know that:

Ω+ = span{dx1 ∧ dx2 + dx3 ∧ dx4, dx1 ∧ dx3 − dx2 ∧ dx4, dx1 ∧ dx4 + dx2 ∧ dx3}

Ω− = span{dx1 ∧ dx2 − dx3 ∧ dx4, dx1 ∧ dx3 + dx2 ∧ dx4, dx1 ∧ dx4 − dx2 ∧ dx3}

Now, Ω2,0 and Ω0,2 are spanned by dz1 ∧ dz2 and dz̄1 ∧ dz̄2 respectively, i.e., Ω2,0 ⊕ Ω0,2 is spanned by
real and imaginary parts of

dz1 ∧ dz2 = d(x1 + ix2) ∧ d(x3 + ix4) = (dx1 ∧ dx3 − dx2 ∧ dx4) + i(dx1 ∧ dx4 + dx2 ∧ dx3)

Since ω = dx1 ∧ dx2 + dx3 ∧ dx4, we get that Ω+ = Ω2,0 ⊕ Ω0ω ⊕ Ω0,2.
Note that to finish the proof, it is enough to show Ω− ⊆ Ω1,1

o .
We have:

(ω, dx1 ∧ dx2 − dx3 ∧ dx4) =(dx1 ∧ dx2 + dx3 ∧ dx4, dx1 ∧ dx2 − dx3 ∧ dx4)

=(dx1 ∧ dx2, dx1 ∧ dx2)− (dx1 ∧ dx2, dx3 ∧ dx4)

+ (dx3 ∧ dx4, dx1 ∧ dx2)− (dx3 ∧ dx4, dx3 ∧ dx4)

=1− 0 + 0− 1

=0

The other two calculations are similar.

Proposition 2.11. If A is an ASD connection on a complex vector bundle E over the Hermitian complex
surface Z, then the operator ∂̄A defines a holomorphic structure on E. Conversely if E is a holomorphic
structure on E, and A is a compatible unitary connection, then A is ASD if and only if F̂A := (FA, ω) = 0.

Proof. Assume A is ASD, i.e., F+
A = 0. Then by Lemma 2.10, F 0,2 = 0, so we just apply Corollary 2.5.

For the second part, if A is ASD, then (FA, ω) = (F+
A + F−A , ω) = (F−A , ω) = 0, because Ω− = Ω1,1

o .
Conversely, since A is a compatible unitary connection, its curvature has type (1, 1), meaning that the
(0, 2) and (2, 0) parts are 0. So, FA = F oA + FωA , where F oA is the Ω1,1

o part, and FωA is the Ω0ω part.
Since, 0 = (FA, ω) = (F oA + FωA , ω) = (FωA , ω), we get that FωA = 0, implying that F+ = 0.
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3 Uhlenbeck theorem

One can easily show that a flat connection can be locally represented by a zero connection matrix in
a suitable gauge. Therefore, it is natural to ask whether a connection with small curvature can be
represented by another small connection matrix in some gauge. This leads to the concept of “gauge
fixing”, which gives us the optimal connection matrix. The main result of this section is Corollary 3.8
which is a “sequential compactness” results of ASD connections, modulo gauge transformations, on a
small ball.

3.1 Main Theorems

Remark 3.1. We will work in the framework of Sobolev spaces. See section 5.1 of the Appendix for
more information.

Definition 3.2. Suppose A0 is a connection on a unitary bundle E → X over a Riemannian manifold
X, and consider the gauge equivalence class of another connection A on E:

H = {u(A)|u ∈ G} ⊂ A.

We say that a point B in H is in Coulomb gauge relative to A0 if d∗A0
(B −A0) = 0. N

Remark 3.3. The definition of Coulomb gauge relative to A0 is motivated by the desire to minimize
the L2 norm of B −A0 over the equivalence class H.
For example, consider a one-parameter family of gauge transformations exp(tχ), denoted as etχ, where
χ ∈ Ω0(gE) has compact support. Then:

d

dt
‖etχ(B)−A0‖2

∣∣∣
t=0

=
d

dt
‖etχBe−tχ − d(etχ)e−tχ −A0‖2

∣∣∣
t=0

Note that for a fucntion H(t), we have d
dt‖H(t)‖2 = d

dt (H(t), H(t)) = 2(H(t), H ′(t)). So, using also
Remark 1.8, we get:

d

dt
‖etχ(B)−A0‖2

∣∣∣
t=0

= 2(etχBe−tχ − d(etχ)e−tχ −A0,
d

dt
(etχBe−tχ − d(etχ)e−tχ −A0))

∣∣∣
t=0

= 2(B −A0, (χe
tχBe−tχ − etχBχe−tχ)− (d(χetχ)e−tχ + d(etχ)(−χetχ)))

∣∣∣
t=0

= 2(B −A0, (χB −Bχ)− dχ)

= 2(B −A0, [χ,B]− dχ)

= 2(B −A0,−dB(χ))

= −2(d∗B(B −A0), χ)

Proposition 3.4. Let X be a compact Riemannian 4-manifold and A be a connection on a unitary
bundle E over X. There is a constant c(A) such that if B is another connection on E and if a = B −A
satisfies ‖∇A∇Aa‖2 +‖a‖2 < c(A), then there is a gauge transformation u such that u(B) is in Coulomb
gauge relative to A.
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Proof. We have:

u(B) = u(A+ a)

= A+ a− (dA+au)u−1

= A+ a− (dAu+ [a, u])u−1

= A+ a− (dAu)u−1 − (au− ua)u−1

= A− (dAu)u−1 + uau−1

We need u such that d∗A(A− u(B)) = 0, i.e. d∗A((dAu)u−1 − uau−1) = 0 We will look for u of the form
exp(χ), where χ ∈ Γ(gE), which we will denote by eχ. To do this, we will apply the Implicit function
theorem to the function

G(a, χ) = d∗A((dAe
χ)e−χ − eχae−χ)

First, we will think of G as a function on 1-forms a in L2
2 and sections χ in L2

3. Also, note that G now
has values in L2

1. Next, we need to calculate the derivative at a = 0, χ = 0:

DG(0, 0)(b, ζ) =
d

dt

∣∣∣
t=0

G(tζ, tb)

=
d

dt

∣∣∣
t=0

d∗A((dAe
tζ)e−tζ − etζtbe−tζ)

= d∗A((dAe
tζ)(−ζe−tζ) + (dA(ζetζ)e−tζ)− (etζbe−tζ + t(. . . )))

∣∣∣
t=0

= d∗A(dAζ − b)

In order to use the Implicit function theorem (Theorem 5.8 from the Appendix), we need the map
ζ 7→ DG(0, 0)(0, ζ) = d∗AdAζ to be surjective. This follows from the fact that the image of the Laplace

operator d∗AdA is the image of d∗A, see [12] for this Hodge-theoretic fact. Also, note that ‖∇A∇Aa‖2 +

‖a‖2 is a norm on L2
2, so the Implicit function theorem gives us a small solution χ if a is small, i.e.

‖∇A∇Aa‖2 + ‖a‖2 < c(A), for some constant c(A).

Definition 3.5. Let B4 be the unit ball in R4 and m : R4 → S4 be the standard stereographic projection
map, which is a conformal diffeomorphism from R4 to S4 minus a point.

N

Now, we state two main theorems of this section along with their corollary. Their proofs will come in
section 3.2 after proving some preliminary results.

Theorem 3.6. There are constants ε1,M > 0 such that any connection on the trivial bundle over B
4

(it means it is smooth up to the boundary) with ‖FA‖L2 < ε1 is gauge equivalent to a connection Ã over
B4 with

d∗Ã = 0

‖Ã‖L2
1
≤M‖FÃ‖L2

Proof. Given in Section 3.2.

Theorem 3.7. There is a constant ε2 > 0 such that if Ã is any ASD connection on the trivial bundle
over B4 which satisfies the Coulomb gauge condition d∗Ã = 0 and ‖Ã‖L4 ≤ ε2, then for any interior
domain D ⊂ B4 (i.e. D̄ ⊂ B4) and any l ≥ 1 we have
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‖Ã‖L2
l (D) ≤Ml,D ‖FA‖L2(B4)

for a constant Ml,D depending only on l and D.

Proof. Given in Section 3.2.

Corollary 3.8. There exists a constant ε > 0, such that for any sequence of ASD connections Aα, over
B4 with ‖F (Aα)‖L2 ≤ ε there is a subsequence α′ and gauge equivalent connections Āα′ which converge
in C∞ on the open ball. Note that this is a “sequential compactness” property for ASD connections
modulo gauge transformations and restricted to a small ball.

Proof. Let ε = min(ε1,
ε2
CM ), where C is the Sobolev constant from the Sobolev inequality 5.2 ‖A‖L4 ≤

C‖A‖L2
1
.

Then, if Aα is a sequence of ASD connections over B4, with ‖F (Aα)‖L2 ≤ ε ≤ ε1, we can apply

Theorem 3.6 to get a gauge equivalent sequence Ãα, with all the conditions for Ãα’s from that theorem.
Then, note that for all α, ‖Ãα‖L4 ≤ C‖Ãα‖L2

1
≤ CM‖FÃ‖L2 ≤ CM ε2

CM = ε2. Thus, we can now

apply Theorem 3.7 for each of the Ãα’s. We obtain a uniformly bounded sequence, which we call again
as Ãα with uniformly bounded derivatives. Therefore, we can use Arzelà–Ascoli theorem to extract a
subsequence which converges uniformly in C∞ on the open ball.

3.2 Proofs of Theorems 3.6 and 3.7

Lemma 3.9. Let B be a connection on the trivial bundle over S4 in Coulomb gauge relative to the
product connection (i.e. with d∗B = 0). There are constants N, η > 0 such that if ‖B‖L4 < η then
‖B‖L2

1
< N ‖FB‖L2 .

Proof. Since H1(S4) = 0 and d∗B = 0, we can use Remark 5.2 to get an inequality:

‖B‖L2
1
≤ c1‖dB‖L2

for some c1 > 0.
Next,

‖B ∧B‖L2 ≤ ‖B‖2L4

Using Proposition 5.2 from the Appendix, we get

‖B‖L4 ≤ c2‖B‖L2
1

for some c2 > 0.
Hence, since dB = FB −B ∧B, we get that

‖B‖L2
1
≤ c1‖dB‖L2 ≤ c1(‖FB‖L2 + c2‖B‖L4‖B‖L2

1
)

and thus,
‖B‖L2

1
(1− c1c2‖B‖L4) ≤ c1‖FB‖L2 .

So, take η = 1
2c1c2

. We get that if ‖B‖L4 ≤ 1
2c1c2

, then ‖B‖L2
1
(1 − c1c2

1
2c1c2

) ≤ c1‖FB‖L2 and so,
‖B‖L2

1
≤ 2c1‖FB‖L2 . Therefore, the required N = 2c1.

Lemma 3.10. There is a constant η′ > 0 such that if the connection B of Lemma 3.9 has ‖B‖L2 <
η′ then for each l ≥ 1, a bound ‖B‖L2

l+1
≤ fl(Ql(B)) holds, for a universal continuous function fl,

independent of B, with fl(0) = 0, where Ql(B) = ‖FB‖L∞ +
∑l
i=1 ‖∇

(i)
B FB‖L2 , for ∇(i)

B = ∇B · · · ∇B.
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Proof. The proof is quite technical, it uses mostly elliptic theory, Sobolev and Hölder inequalities. We
therefore choose to omit it. It can be found at p. 61 of [2].

Proof of Theorem 3.7. Let Ã be an ASD connection on the trivial bundle over B4 such that d∗Ã = 0.
Consider the differential operator δ = d∗ + d+. Similarly to Proposition 1.17, it can be shown to be
elliptic. Since Ã is ASD, we have that (dÃ + Ã ∧ Ã)+ = 0, i.e., d+Ã + (Ã ∧ Ã)+ = 0. Combining with

the fact that d∗Ã = 0, we get that δÃ+ (Ã ∧ Ã)+ = (d+ + d∗)Ã+ (Ã ∧ Ã)+ = 0.
Assume that the base manifold is S4. Also, let B4 be contained in S4 using the stereographic map.
Note that the flat metric on B4 is conformal to the round metric on S4 and the L2 norm on 2-forms in
4-dimensions is conformally invariant.
For any interior domain D of B4, let φ be the map with support in B4 and 1 on D. Then, extending by
0, we get another connection matrix α ≡ φÃ defined on all of S4. Now,

δ(φÃ) = d+(φÃ) + d∗(φÃ)

= (d(φÃ))+ − ∗d ∗ (φÃ)

= (dφ ∧ Ã+ φdÃ)+ − ∗d(φ ∗ Ã)

= (dφ ∧ Ã)+ + φd+(Ã)− ∗(dφ ∧ ∗Ã+ φd(∗Ã))

= (dφ ∧ Ã)+ − φ(Ã ∧ Ã)+ − ∗(dφ ∧ ∗Ã) + φd∗Ã

= (dφ ∧ Ã)+ − (α ∧ Ã)+ − (dφ)
\
yÃ

Now, we apply the estimates for δ. Referring to Remark 5.2, we have ‖α‖L2
2
≤ const‖δα‖L2

1
.

From the calculations above, we get ‖δα‖L2
1
≤ ‖dφ ∧ Ã‖L2

1
+ ‖α ∧ Ã‖L2

1
+ ‖(dφ)

\
yÃ‖L2

1
.

Now, we evaluate a part of ‖α ∧ Ã‖L2
1
:

‖∇(φÃ⊗ Ã)‖L2 = ‖∇(φÃ)⊗ Ã+ φÃ⊗∇Ã‖L2

= ‖∇(φÃ)⊗ Ã+ Ã⊗ φ∇Ã‖L2

= ‖∇(φÃ)⊗ Ã+ Ã⊗∇(φÃ)− Ã⊗∇φ⊗ Ã‖L2

≤ ‖∇(φÃ)⊗ Ã‖L2 + ‖Ã⊗∇(φÃ)‖L2 + ‖Ã⊗∇φ⊗ Ã‖L2

≤ const(‖∇(φÃ)‖L4‖Ã‖L4 + ‖Ã‖2L4)

for some constant depending only on φ.
Next, ‖dφ∧Ã‖L2

1
is bounded by some constant, again depending on φ, times ‖Ã‖L2

1
. Same for ‖(dφ)

\
yÃ‖L2

1
.

So, combining all the inequalities, and the Sobolev embedding theorem, we get

‖α‖L2
2
≤ const‖δα‖L2

1
≤ const(‖Ã‖L2

1
‖α‖L2

2
+ ‖Ã‖L2

1
+ ‖Ã‖2L2

1
).

This, can be rearranged to get an upper bound on ‖α‖L2
2

in terms of ‖Ã‖L2
1
, if ‖Ã‖L2

1
is small enough.

Then, when φ = 1, α = Ã, so we went from an L2
1 bound over B to an L2

2 bound over D. This argument
can be iterated to get estimates on all the higher derivatives over domains containing D.

Proposition 3.11. If Ai, Bi are sequences of connections on a unitary bundle over a manifold X, all of
whose derivatives are bounded, and if Ai is gauge equivalent to Bi for each i, then there are subsequences
converging to limiting connections A∞, B∞, such that A∞ is gauge equivalent to B∞.
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Proof. Since all derivatives of Ai, Bi’s are bounded, by using Ascoli-Arzela theorem, by possibly passing
to a sunsequence, we can assume that these sequences converge.
Now, let Bi = ui(Ai), for all i, for some ui’s. Then we have

Bi = ui(Ai) = uiAiu
−1
i − duiu

−1
i

and hence
dui = (uiAiu

−1
i −Bi)ui = uiAi −Biui

Now, both sequences Ai, Bi converge, hence all their derivatives are uniformly bounded. We will now
show using induction, that all the derivatives of ui’s are also uniformly bounded. Since U(n) is compact,
we have that ui’s are in C0. Now, assume that ui is bounded in Cr, then by the formula above, dui
is bounded in Cr, hence ui is bounded in Cr+1. So, we can apply Ascoli-Arzela theorem to obtain a
subsequence which converges in C∞ to some limit u∞. Note that the gauge relation between Ai’s and
Bi’s is preserved in the limit, finishing the proof of the theorem.

Proposition 3.12. There is a constant ζ > 0 such that if B
′

t (t ∈ [0, 1]) is a one-parameter family of
connections on the trivial bundle over S4 with ‖F ′Bt‖L2 < ζ for all t, and with B

′

0 the product connection,

then for each t there exists a gauge transformation ut such that ut(B
′

t) = Bt satisfies

d∗Bt = 0

‖Bt‖L2
1
≤ 2N‖FBt‖L2

where N is the constant of Lemma 3.9.

Proof. We will use the continuity method. Consider the set S ⊆ [0, 1] for which such a gauge transfor-
mation ut exists. We will show that S is open and closed. Combining with the obvious fact that 0 ∈ S,
we then obtain that S = [0, 1].
First, we show that S is closed. We consider a sequence si in S with a limit s and we need to show that
s ∈ S.

Note that for each t = si, ‖Bt‖L4 ≤ C‖Bt‖L2
1
≤ 2CN ‖FBt‖L2 < 2CNζ. So, pick ζ such that 2CNζ <

η, η′ from Lemmas 3.9 and 3.10.
Lemma 3.9 gives us that ‖Bt‖L2

1
< N ‖FBt‖L2 . Lemma 3.10 gives us that ‖Bt‖L2

l+1
≤ fl(Ql(Bt)), for

all l ≥ 1, for some continuous functions fl. So since all the derivatives of ∇(j)
Bt
FBt are bounded, and

covariant derivatives of curvature are gauge invariant, we obtain bounds on all the derivatives of Bt.
Now, from Proposition 3.11, we can note that if we have two sequences all of whose derivatives are
bounded, then by possibly passing to a subsequence, we can assume that the sequences are convergent.
So consider two sequences Bti and B′ti and apply Proposition 3.11 to get subsequences which converge in
C∞ to gauge equivalent limits Bs and B′s respectively. Note that we will have d∗Bs = 0 and ‖Bs‖L2

1
≤

2N ‖FBs‖L2
1
. Thus, s ∈ S, so S is closed.

Next, we show that S is open. Consider any point t0 ∈ S. We will prove that there exists an interval
around t0 contained in S. WLOG assume Bt0 = B′t0 and call this connection B. Let B′t0+δ = B + bδ.
We want to show that for small bδ there exists a required gauge transformation ut0+δ.
As in the proof of Proposition 3.4, we will look for solutions of the form eχδ and will try to solve the
equation H(χδ, bδ) = 0, where H(χ, b) = d∗(eχ(B + b)e−χ − d(eχ)e−χ).
So, we can think of H, as of a function on L2

l sections of gE and L2
l−1 1-forms with values in gE . Also,

H has values in L2
l−2 sections of gE . In order to use the Implicit function theorem, we need the map

(D1H)0 : Γ(gE) → Γ(gE) to be surjective. Then, we will have a small solution χ to H(χ, b) = 0, if b is
also small, implying that there will be interval around t0 which is in S.
So, assume for contradiction that it is not surjective. Similarly as before, (D1H)0χ = d∗dBχ. Then
there exists a non-zero smooth η such that (d∗dBχ, η)L2 = 0, for all χ.

14



Choose χ = η. Then 0 = (d∗dBη, η)L2 = (dBη, dη)L2 = (dη + [B, η], dη)L2 = ‖dη‖2L2 + ([B, η], dη)L2 .
Now,

‖dη‖2L2 ≤‖([B, η], dη)‖L2

≤‖[B, η]‖L2‖dη‖L2

≤const‖B‖L4‖η‖L4‖dη‖L2

We know from Hodge Theory that Ωk = ker(4Ωk) ⊕ im(d∗) ⊕ im(d). In our case, for k = 0, since
im(d) ∩ Ω0 = {0}, we have that Ω0 = ker(4Ω0)⊕ im(d∗), where this decomposition is L2-orthogonal.
For X compact, connected we also have that ker(4Ω0) is the constant functions and hence im(d∗)
is functions orthogonal to constants. Note that these functions have integral zero:

∫
X

(d∗α)vol =

±
∫
X
d(α

\
yvol) = 0, by Stokes’ theorem. Thus, ‖4Ω0η‖2

L2
l−2

= ‖dη‖2
L2
l−1

+ ‖d∗η‖2
L2
l−1

= ‖dη‖2
L2
l−1

.

Consider Theorem 5.5 from the Appendix. Since η ⊥ ker(4Ω0) by assumption, we get an elliptic
inequality: ‖η‖L2

l
≤ const‖4Ω0η‖L2

l−2
= const‖dη‖L2

l−1
. Hence, ‖η‖L2

1
≤ const‖dη‖L2 .

Next, recall the Sobolev inequality 5.2 and use it twice on B and η to get ‖B‖L4 ≤ const‖B‖L2
1

and

‖η‖L4 ≤ const‖η‖L2
1
. Hence, we obtain: ‖dη‖2L2 ≤ const‖B‖L2

1
‖dη‖2L2 and therefore, const ≤ ‖B‖L2

1
, for

some constant.
However, we can choose ζ > 0, from the statement of the proposition, small enough to have the L2

1 norm
of Bt as small as we want, for all t ∈ S. So, we obtain a contradiction, which concludes the proof.

Proof of Theorem 3.6. First, we observe that there exists a path from connection A on the trivial bundle
over the ball to the product connection. Consider δt : R4 → R4, x 7→ tx, for t ∈ (0, 1). For such t’s, let
At = δ∗t (A) be a connection matrix over B4. Note that A0 = 0 and A1 = A. Now,∫

B4

‖F (At)‖dµ =

∫
‖x‖≤1

‖F (A)‖dµ ≤
∫
B4

‖F (A)‖dµ

which follows from the conformal invariance of the L2 norm of the curvature in 4-dimensions.
Identify B4 with a hemisphere of S4. Let r : S4 → S4 be the reflection map, which is equal to the identity
on the equatorial S3 sphere and flips the two hemispheres. Also, let p : S4 → B4 be the projection map,
which is the identity on B4 and r on the other hemisphere. Note that p is not differentiable on the
equator, but it is not really an issue. For the clean way to deal with this problem, see page 68 of [2].
Let α be a connection matrix on B4. Set β = p∗(α), Fβ = p∗(Fα). These are well-defined L∞ 1-form
and 2-form over S4 correspondingly. Then

∫
S4 ‖Fβ‖2dµ = 2

∫
B4 ‖Fα‖2dµ.

So, if we have a connection A over B
4
, we can use the construction above to make a path to 0 without

increasing the L2 norm. Let Bt = p∗(At), i.e., we have a path of connections over S4 with the curvatures
being

√
2 times bigger than the ones of At. Pick ε1 so that

√
2ε1 < ζ from Proposition 3.12 and apply

it. We get a sequence of gauge equivalent connections B′t with d∗(B′t) = 0 and ‖B′t‖L2
1
≤ 2N‖FB′t‖L2 .

Then our desired Ã is B′1 restricted to B4.

4 ASD moduli spaces

As before, let E be a bundle over a compact, Riemannian 4-manifold. In this section we define the
moduli space ME to be the set of ASD connections on E modulo gauge transformations. This set carries
a natural quotient topology induced from the one on the space on connections A. Although the space A
may be infinite-dimensional, ME is finite dimensional. Also, we will see that it has a structure of a real

15



analytic space. In the case of SU(2) or SO(3) bundles over some simple manifolds, such as, for example,
S4, CP2, or S2×S2, the ASD equations can be solved, giving us explicit examples of moduli spaces. See
pp. 126–129 of [2] for more information.

4.1 Basic theory

Remark 4.1. The definition of the moduli space is the solutions to the ASD equation, divided by the
gauge group. However, we will consider this problem in the reverse order. First, we consider the set of
all connections modulo the gauge group and then we describe the moduli space inside it.

Definition 4.2. We continue to work in the framework of Sobolev spaces L2
l . We will stay in the range

l > 2 because the Sobolev embedding theorem in 4-dimensions tells that for any such l, the space L2
l

consists of continuous functions. So, for any l > 2, we define A to be the space of L2
l−1 connections on a

bundle E, G to be the group of L2
l gauge transformations.

Hence, set B = A/G with the quotient topology. We write [A] for the equivalence class of a connection
A in B.
The moduli space ME is the set of gauge equivalence classes of ASD connections on E.
In fact, the description of the moduli spaces we will get, is independent of the choice of l. This follows
from the fact that the natural inclusion of M(l + 1) in M(l) is a homeomorphism, where M(l) is L2

l−1

ASD connections modulo L2
l gauge transformations. N

Proposition 4.3. The function d on B × B, defined by

d([A], [B]) = inf
g∈G
‖A− g(B)‖

is a metric, where ‖A−B‖ =
( ∫

X
|A−B|2dµ

) 1
2

is the L2 metric on A.

Proof. The properties that d([A], [B]) = d([B], [A]), d([A], [B]) ≤ d([A], [C])+d([C], [B]), and d([A], [A]) =
0 follow immediately. So, it is only left to show that d([A], [B]) = 0 implies [A] = [B].
Hence, assume d([A], [B]) = 0. Then we have a sequence gα such that gα(B) converges to A. We need
to show that B and A are gauge equivalent. Let Bα = gα(B). Then we have dBgα = (B −Bα)gα.
Note that since G is compact, gα’s are uniformly bounded and hence dBgα’s are also bounded in L2.
Thus, we can take a subsequence, which we continue to call gα, with a limit g, so that we have weak
convergence in L2

1, and strong convergence in L2.
Then, dBg = (B −A)g.
Now, if φ is any smooth section of End E, as gα’s, we have:

(dBg, φ) = lim(dBgα, φ) = lim((B −Bα)gα, phi) = ((B −A)g, φ)

because Bαgα converges to Ag in L1.
Thus, we have an elliptic equation for g with coefficients in L2

l−1 and so from elliptic regularity (Propo-
sition 5.7 of the Appendix), g is in L2

l .

In particular, B is Hausdorff in the quotient L2
l−1 topology.

Definition 4.4. For A ∈ A and ε > 0, we set TA,ε = {a ∈ Ω1(gE) : d∗Aa = 0, ‖a‖L2
l−1

< ε}. We will see

that a neighbourhood of [A] in B can be described as a quotient of TA,ε for small ε. N

Definition 4.5. A connection A on a G-bundle E is reducible if for each point x ∈ X the holonomy maps
Tγ of all loops γ based at x lie in some proper subgroup of the automorphisms group AutEx ∼= G. N
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Definition 4.6. The isotropy group ΓA of a connection A in the gauge group G is

ΓA = {u ∈ G|u(A) = A}

N

Remark 4.7. Note that if the base manifold X is connected, then ΓA is isomorphic to the centralizer
of the holonomy group HA in G. Also, ΓA, as a closed subgroup of G, is also a Lie group. Its elements
are the covariant constant sections of the bundle AutE, and hence the Lie algebra of ΓA is kernel of the
covariant derivative dA in Ω0

X(gE). The group ΓA acts on Ω1
X(gE) and on TA,ε.

Proposition 4.8. For small ε the projection map from A to B induces a homeomorphism h from the
quotient TA,ε/ΓA to a neighbourhood of [A] in B. For a in TA,ε, the isotropy group of a in ΓA is naturally
isomorphic to that of h(a) in G.

Proof. This is a common argument in differential geometry, however, the proof is highly non-trivial. For
a similar statement and its proof, one can consult [3].

Definition 4.9. Let A∗ = {A ∈ A|ΓA = C(G)}, where C(G) is the centre of G. Note that C(G) is
the smallest isotropy group that can be, because the elements of C(G) correspond to the constant gauge
transformations u, and so u(A) = uAu−1 − (du)u−1 = A. Now, let B∗ in B be the quotient of A∗. N

Remark 4.10. For simplicity, we only consider the irreducible connections, i.e., when the stabilizer
ΓA is trivial. Proposition 4.8 says that B∗ is modelled locally on the balls TA,ε in the Hilbert spaces
ker d∗A ⊂ L2

l−1(Ω1(gE)). However, the description of B \ B∗ is more complicated. For example, when
working with SU(2) connections, there is a result saying that a connection is reducible if there is a
decomposition E = L⊕L−1, where L is a complex line bundle over X. This, in turn is equivalent to the
condition c2(E) = −c1(L). See pp. 132–134 of [2] for more information. Thus, we always make sure to
stay in the irreducible case.

Remark 4.11. We obtain local models for M within the local models for the orbit B space. Let A be
an ASD connection and define: ψ : TA,ε → Ω+(gE), ψ(a) = F+(A+ a) = d+

Aa+ (a ∧ a)+.
Let Z(ψ) ∈ TA,ε be the zero set of ψ. The map h from 4.8 induces a homeomorphism from the quotient
Z(ψ)/ΓA to a neighbourhood of [A] in M .

4.2 Fredholm theory

Definition 4.12. A bounded linear map L : U → V between Banach spaces is Fredholm if it has finite-
dimensional kernel, cokernel and closed image. The last condition is actually redundant.
Hence, the kernel and the image of L are closed and admit topological complements, so we can write
U = U0 ⊕ F , V = V0 ⊕ G, where F and G are finite-dimensional and L is a linear isomorphism from
U0 to V0. The index of L is the difference of the dimensions: ind(L) = dim(kerL) − dim(cokerL) =
dim(F )− dim(G). N

Definition 4.13. Let N be a connected open neighbourhood of 0 in the Banach space U . A smooth
map φ : N → V is called Fredholm if for each point x in N the derivative (Dφ)x : U → V is a linear
Fredholm operator. In this case the index of (Dφ)x is independent of x and is referred to as the index
of φ. N

Remark 4.14. Let φ be such a Fredholm operator with index r and φ(0) = 0. For the purposes of
this section, we regard such two maps being equal if they are equal on an arbitrary small neighbourhood
of 0. Suppose that L = (Dφ)0 is surjective, so the index is the dimension of the kernel of L. The
implicit function theorem in Banach spaces the says that there is then a diffeomorphism f from one
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neighbourhood of 0 in U to another, such that φ ◦ f = L. We will just say that φ is right equivalent to
the map L if they agree under composition on the right with a local diffeomorphism.

Proposition 4.15. A Fredholm map φ from a neighbourhood of 0 is locally right equivalent to a map of
the form φ̃ : U0×F → V0×G, φ̃(ζ, η) = (L(ζ), α(ζ, η)), where L is a linear isomorphism from U0 to V0,
F and G are finite-dimensional, dim(F )− dim(G) = ind(φ), and the derivative of α vanishes at 0.

Proof. Let φ′ = prV0 ◦φ : N → V0. Then the derivative of φ′ at 0 is surjective by construction. So, using
the previous remark, we can apply a diffeomorphism f between some small neighbourhoods of 0, to get
the required map φ̃.

Corollary 4.16. We obtain a finite dimensional model for neighbourhood of 0 in the zero set Z(φ).
Under a diffeomorphism of U this is taken to the zero set of the smooth map: f : F → G between
finite-dimensional vector spaces given by f(y) = α(0, y).

Proof. We use the previous Proposition 4.15 to get the right equivalent map φ̃. So, we need to find the
zero set of φ̃(ζ, η) = (L(ζ), α(ζ, η)). Since L is an isomorphism, ζ has to be equal zero. So, the zero set

of φ̃ can be identified with the zero set of the function F → G : η 7→ α(0, η), which we call f .

4.3 Local models for the moduli space

Proposition 4.17. If A is an ASD connection over X, a neighbourhood of [A] in M is modelled on a
quotient f−1(0)/ΓA, where f : ker(δA)→ coker(d+

A) is a ΓA-equivariant map.

Proof. We have the map ψ : TA,ε ⊂ ker(d∗A)→ Ω+
X(gE), a 7→ d+

Aa+ (a ∧ a)+.
Hence,

(Dψ)0(b) =
d

dt

∣∣∣
t=0

(d+
A(tb) + (tb ∧ tb)+) = d+

A(b).

We already know that the operator δA ≡ d∗A+d+
A : Ω1 → Ω0⊕Ω+ is elliptic. This is equivalent to saying

that d+
A : ker(d∗A)→ Ω+

X(gE) is elliptic, which (because X is compact) implies that it is Fredholm.
Consider the the following sequence of operators:

0 Ω0 Ω1 Ω+ 0
dA d+A

Note that since A is ASD, it is a complex. So, take the associated symbol complex:

0 R V Λ2
+(V ) 0

ζ∧ π+(ζ∧)

where ζ 6= 0 and π+ is the projection on the self-dual part. It can be easily shown that this complex
is exact, and so the original complex is elliptic. Hence, the standard elliptic theory tells us that in the
original complex the images of the operators are closed subspaces and that the cohomology groups are
finite dimensional. For more information on this argument, see Lemma 5.2.5 on p. 97 of [4].
So, in particular, dA(Ω0) = im(dA) is closed in Ω1, which implies that Ω1 = ker(d∗A)⊕ im(dA). Thus, we
have:

im(δA) = im(d+
A

∣∣
ker(d∗A)

) = d+
A(ker(d∗A)) = d+

A(ker(d∗A)⊕ im(dA)) = d+
A(Ω1) = im(d+

A)
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where the equality d+
A(ker(d∗A)) = d+

A(ker(d∗A) ⊕ im(dA)) follows from the fact that d+
A(im(dA)) = 0, as

A is ASD. Hence, coker(δA) = coker(d+
A).

Thus, apply Corollary 4.16 to get that Z(ψ) is modelled as the zero set of some smooth map

f : ker(δA)→ coker(δA) = coker(d+
A)

and combined with Remark 4.11, we get the desired result.
Note that in the complex above, ker(δA) is the cohomology group at Ω0 and coker(d+

A) is the cohomology
at d+

A, which, as mentioned before, are finite dimensional. Therefore, we can summarize this proposition
as the following theorem:

Theorem 4.18. Locally, the moduli space is the zero set of a smooth map f : F → G, for some finite
dimensional spaces F,G. Hence, if G = 0, it is smooth. This is why G is called the “obstruction space”
and when G = 0, we say that the moduli space is “unobstructed”.
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5 Appendix

5.1 Sobolev spaces

Definition 5.1. Consider a compact manifold X with a vector bundle V . After choosing a metric on X,
a fibre metric and compatible connection A on V , we define the Sobolev space Lpk to be the completion
of smooth sections of V with respect to the norm

‖s‖Lpk =
( k∑
i=0

∫
X

‖∇(i)
A s‖pdvol

) 1
p

For more information on Sobolev spaces and the proof of the following theorem, one can consult [1].

N

Proposition 5.2. Sobolev embedding theorem: There exists a constant C > 0 such that for any connec-
tion A, we have:

‖A‖L4 ≤ C‖A‖l21

5.2 Elliptic inequalities

Definition 5.3. Let E,F be two vector bundles over a compact manifold X and P : Γ(E) → Γ(F ) be
a linear differential operator of order k. That means that we can write P in index notation as

Pv = Ai1...ik∇i1...ikv +Bi1...ik−1∇i1...ik−1
v + · · ·+Ki1∇i1v + Lv

for a section v of E, where Ai1...ik , Bi1...ik−1 are tensors taking values in E∗ ⊗ F .
Now, for each point x ∈ X, and each ζ ∈ T ∗x (X), define σζ(P, x) = Ai1,...,ikζi1 . . . ζik . Then σζ(P, x) is
a linear map from Ex to Fx. Let σ(P ) : T ∗(X) × E → F be the bundle map defined by σ(P )(ζ, v) =
σζ(P, x)v ∈ Fx, whenever x ∈ X, ζ ∈ T ∗x (X) and v ∈ Ex. Then σ(P ) is called the symbol of P and
σ(P )(ζ, v) is homogeneus of degree k in ζ and linear in v. N

Definition 5.4. Let P : Γ(E)→ Γ(F ) be as before. We say P is an elliptic operator if for each x ∈ X
and each nonzero ζ ∈ T ∗x (X), the linear map σζ(P, x) : Ex → Fx is invertible. N

Theorem 5.5. Let P : Γ(E) → Γ(F ) be a smooth linear elliptic operator of order k, for E,F vector
bundles over a compact Riemannian manifold X. Let l ≥ 0 and p > 1 be integers. Then there exists a
constant D such that if v ∈ Lpk+l(E) and v ⊥ ker(P ), then ‖v‖Lpk+l ≤ D‖Pv‖Lpl .

Proof. See Proposition 1.5.2 on page 17 of [6].

Remark 5.6. Consider the operator

d∗ + d :
⊕
i

Ω2i+1
X →

⊕
i

Ω2i
X

Similarly to Proposition 1.17 it can be shown to be elliptic.
If we suppose H1(X) = 0, all the 1-forms are orthogonal to the kernel. For example, in 4-dimensions, if α
is any odd degree mixed form in the kernel of d+d∗, it is in the kernel of (d+d∗)2 = d2+d∗d+dd∗+(d∗)2 =
d∗d + dd∗, which is the Laplacian. So, both the 1-form and 3-form parts are harmonic. However, since
H1(X) = H3(X) = 0, by the Hodge theorem, there are no nonzero harmonic 1-forms or 3-form. So, we
get that α = 0, and so the kernel of d+ d∗ is zero.
Hence, Theorem 5.5 gives the inequality

‖A‖L2
k
≤ c(‖d∗A‖L2

k−1
+ ‖dA‖L2

k−1
)
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for some c > 0.
In particular, if we suppose d∗A = 0, we obtain:

‖A‖L2
k
≤ c‖dA‖L2

k−1

Similarly,
δ ≡ d∗ + d+ : Ω1

X → Ω0
X ⊕ Ω+

X

is an elliptic operator, which has kernel zero on Ω1
X , if H1(X) = 0.

So we can obtain
‖α‖L2

2
≤ c′‖δα‖L2

1

for some c′ > 0.

Proposition 5.7. Elliptic regularity: Suppose that P : Γ(E)→ Γ(F ) is as in the setting of Theorem 5.5.
Let p > 1, l ≥ 0 be integers. Assume P (v) = w holds weakly with v ∈ L1(V ), w ∈ L1(W ). Then if
w ∈ Lpl (W ), we have v ∈ Lpk+l(V ).

Proof. This is Theorem 1.4.1 on page 13 of [6].

5.3 Implicit function theorem

Theorem 5.8. Suppose E1, E2 and F are Banach spaces and f : E1×E2 → F is a smooth map. Write
(D1)f, (D2)f for the partial derivatives. Then if (D2)f : E2 → F is surjective and admits a bounded right
inverse, then for all η1 near ζ1, there exists a unique solution η2 to the equation f(η1, η2) = f(ζ1, ζ2).

Proof. See Theorem 6.2.1 of [7].
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