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1 Introduction
The K-theory of C*-algebras is the study of a collection of abelian groups
Kn(A) that are invariants of a C*-algebra A for n ∈ N. In this paper we will
focus on the group K0(A). The map K0 taking a C*-algebra to an abelian
group can be viewed as a covariant functor from the category of C*-algebras
to the category of abelian groups with some additional properties. We will
follow [4] for this part of the theory.

The K-theory is useful in distinguishing C*-algebras. The class of AF-
algebras is completely classified by their K0 groups. In general, the K0 group
is not a complete invariant for all C*-algebras, but it is an important part of
the classification program of C*-algebras.

Topological K-theory is the “original version” of K-theory, introduced by
Sir Michael Atiyah. We will follow his classical text [1]. Topological K-theory
is the study of a collection of abelian groups Kn(X) that are invariants of a
locally compact Hausdorff space X. Unlike the case of C*-algebras, the map
K0 is a contravariant functor from the category of locally compact Hausdorff
spaces to the category of abelian groups.

It is well-known that there is a contravariant functor mapping the cate-
gory of unital C*-algebras bijectively onto the category of compact Haus-
dorff spaces that reverses the direction of morphisms. We will see that
K0(X) ∼= K0(C(X)) for every compact Hausdorff space X. Furthermore, the
functors K0 and K0 preserve morphisms by reversing their directions. This
result can be extended to non-unital C*-algebras and locally compact Haus-
dorff spaces, where K0(X) ∼= K0(C0(X)) for every locally compact Hausdorff
space X. This correspondence is explained in [6].

The reader is assumed to be familiar with the basics of C*-algebras and
topological bundles. If one needs a review on these subjects, we recommend
[2] for C*-algebras and the introductory chapter of [6] for vector bundles.

2 K-theory of C*-algebras
Definition 2.1. Let A be a C*-algebra. For n,m ∈ N, let Mm,n(A) be the
set of allm×n matrices with entries in A. Ifm = n, writeMn,n(A) = Mn(A),
then Mn(A) is a C*-algebra with the involution (a∗)ij = (aji)

∗.

Definition 2.2. Let A be a C*-algebra. For n ∈ N we define Pn(A) to be
the set of all projections in Mn(A). For n ≤ m, there is a natural embedding
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of Pn(A) into Pm(A) given by

p 7→ Diag(p, 0m−n) = p⊕ 0m−n.

Define P∞(A) = lim−→n
Pn(A) as the direct limit of this inclusion. We can also

think of it as P∞(A) =
⋃∞
n=1Pn(A).

Note 2.3. It might be more notationally clear to write p as an element in
Pn(A) for n ∈ N, and let [p] denote its equivalence class in the direct limit
P∞(A). But there are two more equivalence relations to be quotiented by
later, and to save ourselves from the nested square brackets, p will denote a
finite matrix as well as its equivalence class in P∞(A), or, an ℵ0×ℵ0 matrix
with finitely many non-zero entries.

Definition 2.4. Let ∼0 be the relation on P∞(A) given by the following:
for p ∈ Pn(A) and q ∈ Pm(A), we say p ∼0 q if there exists v ∈ Mm,n(A)
such that v∗v = p and vv∗ = q. The relation ∼0 is called the Murray - von
Neummann equivalence.

Remark 2.5. A matrix v ∈ Mm,n(A) for some m,n ∈ N such that v∗v and
vv∗ are both projections is called a partial isometry. In the special case that
A = B(H) for some Hilbert space H, then v is a partial isometry if and
only if it maps (ker v)⊥ isometrically onto im v. If T is a partial isometry in
B(H), then TT ∗ is the projection onto im T and T ∗T is the projection onto
(kerT )⊥.

Example 2.6. Let H be an infinite dimensional Hilbert space. Since H ∼=
H⊕H, there exists some T ∈ B(H⊕H) such that T |H⊕0 is an isometry from
H ⊕ 0 onto H ⊕ H, and T |0⊕H = 0. Then TT ∗ = IH⊕H and T ∗T = PH⊕0.
Note that T can be considered as an element in B(H ⊕ H) as well as an
element in M2(B(H)). In the latter case

T =

[
T1 0
T2 0

]
for some T1, T2 ∈ B(H). If we let S =

[
T1 T2

]
, then SS∗ = I1 ∈M1(B(H))

and S∗S = I2 ∈M2(B(H)). So I2 ∼0 I1 .

Lemma 2.7. Let A be a C*-algebra, let p ∈ Pn(A) and q ∈ Pm(A) for some
n,m ∈ N, and suppose there exists v ∈ Mm,n(A) for which v∗v = p and
vv∗ = q. Then v = qv = vp = qvp.

2



Proof. Let w = (1− q)v, then

w∗w = v∗(1− q)(1− q)v = v∗(1− q)v = v∗v − v∗vv∗v = p− pp = 0.

However ‖w‖2 = ‖w∗w‖ = 0, which implies that w = 0. So 0 = w = v − qv.
This implies that v = qv. The case v = pv is proved similarly. Lastly,

qvp = (qv)p = vp = v.

Proposition 2.8. The relation ∼0 is an equivalence relation on P∞(A).

Proof. It is not yet clear that ∼0 is well-defined on P∞(A), since P∞(A) is a
direct limit, where p ∈ Pn(A) can also be represented by p⊕0k in P∞(A), for
any k ≥ 0. We will show that ∼0 is an equivalence relation on

⊔∞
r=1Pr(A),

and also satisfies p ∼0 p⊕ 0k for p ∈ Pn(A), n ≥ 1 and k ≥ 0. Then for any
p ∈ Pn(A), q ∈ Pm(A) and k, k′ ≥ 0, have p ∼0 q if and only if

p⊕ 0k ∼0 p ∼0 q ∼0 q ⊕ 0k′ .

So ∼0 descends to an equivalence relation on P∞(A). To this end, let p ∈
Pn(A), q ∈ Pm(A) and r ∈ Pl(A) for some l,m, n ≥ 1.

To show p ∼0 p ⊕ 0k, let v =
[
p 0n×k

]
, then v∗v = p and vv∗ = p ⊕ 0k.

The special case with k = 0 verifies reflexivity.
Suppose there exists v ∈ Mm,n(A) such that v∗v = p and vv∗ = q. Let

w = v∗ ∈Mn,m(A). We have

w∗w = q and ww∗ = p.

So ∼0 is symmetric.
Suppose p ∼0 q and q ∼0 r. Then there exists some v ∈ Mm,n(A) and

u ∈Ml,m(A) for which

v∗v = p, vv∗ = q, u∗u = q and uu∗ = r

hold. Let z = uv. Using Lemma 2.7, the following computations hold.

z∗z = v∗u∗uv = v∗qv = v∗v = p,

zz∗ = uvv∗u∗ = uqu∗ = r.

Thus p ∼0 r, which proves transitivity.
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Definition 2.9. Let A be a C*-algebra and p, q projections in P∞(A). We
say that p and q are mutually orthogonal if pq = 0, written p ⊥ q.

Remark 2.10. If p ⊥ q then

qp = q∗p∗ = (pq)∗ = 0∗ = 0,

so q ⊥ p. And also,
(p+ q)∗ = p∗ + q∗ = p+ q

(p+ q)(p+ q) = pp+ pq + qp+ qq = pp+ qq = p+ q.

So p+ q is also a projection in A.
In the special case that A = B(H) for some Hilbert space H and P,Q ∈

B(H) are projections, we have P ⊥ Q if and only if ran P ⊥ ran Q.

Proposition 2.11. Let p, p′, q, q′ ∈ P∞(A). Then

1. p⊕ q ∼0 q ⊕ p.

2. p ∼0 p
′ and q ∼0 q

′ implies p⊕ q ∼0 p
′ ⊕ q′.

3. (p⊕ q)⊕ r = p⊕ (q ⊕ r).

4. Suppose p and q are represented by matrices of the same size, and p ⊥ q,
then p+ q ∼0 p⊕ q.

Proof. 1. Suppose p is n×n and q is m×m. Let v =

[
0n×m p
q 0m×n

]
. Then

v∗v =

[
0m×n q∗

p∗ 0n×m

] [
0n×m p
q 0m×n

]
=

[
q∗q 0m×n

0n×m p∗p

]
= q ⊕ p;

vv∗ =

[
0n×m p
q 0m×n

] [
0m×n q∗

p∗ 0n×m

]
=

[
pp∗ 0n×m

0m×n qq∗

]
= q ⊕ p.

So q ⊕ p ∼0 p⊕ q.
2. Suppose v∗v = p, vv∗ = p′, w∗w = q and ww∗ = q′, then

(v ⊕ w)∗(v ⊕ w) = p⊕ q

and
(v ⊕ w)(v ⊕ w)∗ = p′ ⊕ q′.
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So p⊕ q ∼0 p
′ ⊕ q′.

3. This is by definition.
4. Suppose p and q are of the same size and pq = 0. Let v =

[
p q

]
, then

vv∗ =
[
p q

] [p
q

]
= pp+ qq = p+ q,

v∗v =

[
p
q

] [
p q

]
=

[
pp pq
qp qq

]
=

[
p 0
0 q

]
= p⊕ q.

So p+ q ∼0 p⊕ q.

Definition 2.12. Let A be a C*-algebra. Define D(A) = P∞(A)/ ∼0. The
equivalence class of p in D(A) is written [p]D. Equip D(A) with an operation
+ by [p]D + [q]D = [p⊕ q]D.

Proposition 2.13. (D(A),+) is an abelian monoid.

Proof. This is mostly a consequence of Proposition 2.11. Point 2 implies that
the operation + is well-defined after quotienting by ∼0. Point 3 implies that
+ is associative. Point 1 implies that it is commutative. So (D(A),+) is an
abelian semigroup. Now we claim that [01]D is the identity element (note
that 0n ∼0 0m for all n,m ∈ N by Proposition 2.8). To this end, take any
p ∈ P∞(A). By point 1 of Proposition 2.11 and Proposition 2.8,

01 ⊕ p ∼0 p⊕ 01 ∼0 p,

so
[01]D + [p]D = [p]D + [01]D = [p]D.

From the abelian monoid D(A) we will construct an abelian group, by a
construction called the Grothendieck completion.

Definition 2.14. Let (S,+) be an abelian semigroup, then S × S is also
naturally a semigroup. Let∼ be a relation on S×S given by (a1, b1) ∼ (a2, b2)
if there exists x ∈ S so that

a1 + b2 + x = a2 + b1 + x.

Define G(S) = (S × S)/ ∼, and equip it with the operation + by

[(a, b)] + [(c, d)] = [(a+ c, b+ d)].
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Proposition 2.15. The above construction is well-defined, and G(S) is an
abelian group. Furthermore, if S is an abelian monoid with identity element
0, then ϕ : S → G(S) by ϕ(s) = [(s, 0)] is a monoid homomorphism.

Proof. It is easy to see that ∼ is an equivalence relation on S × S. To see
that + is well-defined on G(S), let ai, bi, ci, di ∈ S for i = 1, 2, and suppose
that (a1, b1) ∼ (a2, b2) and (c1, d1) ∼ (c2, d2). Then there exists x, y ∈ S such
that

a1 + b2 + x = a2 + b1 + x and c1 + d2 + y = c2 + d1 + y.

Then

(a1 + c1) + (b2 + d2) + (x+ y) = (a2 + c2) + (b2 + d2) + (x+ y),

so [(a1 + c1, b1 + d1)] = [(a2 + c2, b2 + d2)].
Since + is associative and commutative on S, the addition induced on

G(S) is associative and commutative as well. For a, b, c, d ∈ S, it is clear
that [(a, a)] = [(b, b)]. Furthermore

[(c, d)] + [(a, a)] = [(c+ a, d+ a)] = [(c, d)].

So (a, a) is the identity element of G(S). Also,

[(a, b)] + [(b, a)] = [(a+ b, a+ b)],

so [(b, a)] is the inverse of [(a, b)]. Hence G(S) is indeed an abelian group.
Now suppose that S is an abelian monoid with 0, and ϕ : S → G(S) by

ϕ(s) = [(s, 0)]. Then it is clear that ϕ(a+ b) = ϕ(a) + ϕ(b) and that ϕ(0) is
the identity element of G(S).

It is convenient to think of [(a, b)] ∈ G(S) as “a− b”.

Example 2.16. 1. S = N. Then G(N) = Z. This is the standard construc-
tion of Z.

2. S = N ∪ {∞}. For any a, b, c, d ∈ N ∪ {∞},

a+ c+∞ =∞ = b+ d+∞,

so [(a, b)] = [(c, d)]. Hence G(S) ∼= {0}. This example demonstrates why
we required the x in defining ∼ in Definition 2.14, where (a1, b1) ∼ (a2, b2)
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if and only if there exists x for which a1 + b2 + x = a2 + b1 + x. Suppose
for instance we define another relation ∼bad on S by (a1, b1) ∼bad (a2, b2) if
a1 + b2 = a2 + b1. For any a, b ∈ S, we have

∞+ a =∞ = b+∞,

so (∞,∞) ∼bad (a, b). In particular, (1, 1) ∼bad (∞,∞) ∼bad (1, 2), but
clearly (1, 1) 6∼bad (1, 2), which shows that ∼bad is not an equivalence re-
lation! This is the same problem that one runs into when asking “Surely
∞+∞ =∞, but what is ∞−∞?”

Now we are ready to give the definition of the K0 group of a unital C*-
algebra.

Definition 2.17. Let A be a unital C*-algebra. Define K0(A) = G(D(A)).
Define the map [·]0 : P∞(A) → K0(A) by [p]0 = ϕ([p]D) where ϕ : D(A) →
G(D(A)) is the monoid homomorphism defined in Proposition 2.15.

Example 2.18. 1. Let A = C. All projections in P∞(C) are projection
matrices. Take p, q ∈ P∞(C). We may assume that p and q are both n× n.
Suppose p and q have the same rank k ≤ n, and let {z1, . . . , zk} be an
orthonormal basis of ran p and extend it to an orthonormal basis {z1, . . . , zn}
of Cn; let {w1, . . . , wk} be an orthonormal basis of ran q. Let v ∈ Mn(C) be
the matrix that takes zj to wj for j = 1, . . . , k, and takes zj to 0 for all
j = k + 1, . . . , n. Then

v∗vzj =

{
v∗wj = zj : j = 1, . . . , k

v∗0 = 0 : j = k + 1, . . . , n
.

So v∗v is the projection onto ran p, hence v∗v = p. Similarly, vv∗ = q, so
p ∼0 q.

Conversely suppose p ∼0 q. Then there exits a matrix v for which v∗v = p
and vv∗ = q. Since row rank and column rank coincide, we have

rank p = rank v∗v = rank vv∗ = rank q.

Hence p ∼0 q if and only if p and q have the same rank. Furthermore it
is clear that rank p + rank q = rank(p ⊕ q). Thus D(C) ∼= N. Therefore
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K0(C) ∼= G(N) = Z.

2. Let A = Mm(C) for some m ∈ N. Then for n ∈ N, the C*-algebra Mn(A)
is naturally a subalgebra of Mmn(C), and the rank argument from above
works just as well. Hence K0(Mm(C)) ∼= Z.

3. Let A = B(H) for H an infinite dimensional Hilbert space. The same
rank argument works since every two Hilbert spaces of the same dimension
are isometric. So projections in P∞(A) are once again determined up to Mur-
ray - von Neumann equivalence by their dimensions, and D(A) ∼= {dim p :
p ∈ P∞(A)}. Since H is infinite dimensional, D(A) has a largest element
α0 = dimH since dim(Hn) = dimH for all finite n, and α0 + α = α0 for
all α ∈ D(A). So by the same argument in part 2 of Example 2.16, have
K0(B(H)) = G(D(B(H))) = 0.

To summarize,

K0(B(H)) ∼=

{
Z : dimH < ℵ0
0 : dimH ≥ ℵ0

3 Unitaries and projections
In this section we develop some properties of unitary and projection elements
in a C*-algebra. These will be necessary for exploring meaningful properties
of the K0-group of C*-algebras.

From here on Ã denotes the unitization of the C*-algebra A. For more
information on unitization, see [2].

Definition 3.1. Let X be a topological space and x, y ∈ X. Say x and y are
homotopy equivalent in X, written x ∼h y, if there exists a continuous
path α : [0, 1]→ X such that α(0) = x and α(1) = y.

Definition 3.2. Let A be a C*-algebra, and a, b ∈ A. We say a is unitarily
equivalent to b, written a ∼u b, if there exists a unitary u ∈ Ã such that
uau∗ = b. It is clear that these are equivalence relations.
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Definition 3.3. Let A be a unital C*-algebra, define U(A) to be the group
of unitary elements in A, and define U0(A) to be all u ∈ U(A) such that
u ∼h 1. That is, U0(A) is the path-connected component of 1 in U(A).

Definition 3.4. Let A be a unital C*-algebra and let a ∈ A. The spectrum
σ(a) of a is defined to be

σ(a) := {λ ∈ C : a− λ1 is not invertible in A}.

The general theory of spectrum and of continuous functional calculus can
be found in [2].

Lemma 3.5. Let A be a unital C*-algebra and u ∈ U(A). If σ(u) 6= T, then
u ∈ U0(A).

Proof. Suppose σ(u) 6= T. Let w ∈ T \ σ(u) and let logw : C \ [0,∞) →
C be the branch of logarithm that avoids the ray containing w. Then
exp(logw(z)) = z for all z ∈ T \ {w} ⊇ σ(u), so exp(logw(u)) = u. Let
h = logw(u), then

σ(h) ⊆ logw(T \ w) ⊆ iR.

For t ∈ [0, 1], let ht = th. Clearly σ(th) ⊆ iR for all t ∈ [0, 1], so
σ(exp(th)) ⊆ T for all t ∈ [0, 1], which implies that exp(th) is unitary for any
t ∈ [0, 1]. Furthermore the map β : [0, 1]→ U(A) mapping β(t) = exp(th) is
a continuous path of unitaries from 1A ∈ A to u ∈ A. Hence u ∈ U0(A).

Lemma 3.6 (Whitehead). Let A be a unital C*-algebra and let u, v ∈ U(A).
Then [

u 0
0 v

]
∼h
[
uv 0
0 1

]
∼h
[
vu 0
0 1

]
∼h
[
v 0
0 u

]
in U(M2(A)).

Proof. Since
[
0 1
1 0

]
has spectrum {±1}, by Lemma 3.5 have

[
0 1
1 0

]
∼h
[
1 0
0 1

]
.
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Let α : [0, 1] → U0(M2(A)) be a path from
[
0 1
1 0

]
to
[
1 0
0 1

]
. Define β :

[0, 1]→M2(A) by

β(t) =

[
u 0
0 1

]
α(t)

[
v 0
0 1

]
α(t).

Since for all t ∈ [0, 1], β(t) is the product of four unitaries, so β is in fact a
path in U(M2(A)). Further,

β(0) =

[
u 0
0 1

] [
0 1
1 0

] [
v 0
0 1

] [
0 1
1 0

]
=

[
0 u
1 0

] [
0 v
1 0

]
=

[
u 0
0 v

]
,

and
β(1) =

[
u 0
0 1

] [
v 0
0 1

]
=

[
uv 0
0 1

]
.

So [
u 0
0 1

]
∼h
[
uv 0
0 1

]
.

By symmetry and transitivity, it is only left to prove that[
u 0
0 v

]
∼h
[
v 0
0 u

]
.

This can be accomplished by defining the path

γ(t) = α(t)

[
u 0
0 v

]
α(t).

Corollary 3.7. Let A be a unital C*-algebra, u ∈ U(A), then
[
u 0
0 u∗

]
∈

U0(M2(A)).

Proof. By Lemma 3.6,[
u 0
0 u∗

]
∼h
[
uu∗ 0
0 1

]
=

[
1 0
0 1

]
.
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Lemma 3.8. Let A be a unital C*-algebra and u ∈ U(A). If ‖u − 1‖ < 2
then u = exp(ih) for some self-adjoint element h ∈ A.

Proof. If ‖u − 1‖ < 2 then σ(u − 1) ⊆ B2(0), in particular −2 6∈ σ(u − 1),
so −1 6∈ σ(u). Since σ(u) 6= T, by the proof of Lemma 3.5, u = exp(s)
for some s ∈ A with σ(s) ∈ iR. Let h = −is, then h is self-adjoint and
exp(ih) = exp(s) = u.

Proposition 3.9. Let A be a unital C*-algebra. Then

U0(A) = {exp(ih1) . . . exp(ihl) : l ∈ N, hj ∈ A self-adjoint}.

Proof. Let u ∈ U0(A). A continuous path from u to 1 can be partitioned into
segments

u = u0 ∼h u1 ∼h · · · ∼h uk = 1

where ‖uj−1 − uj‖ < 2 for j = 1, . . . , k. Now apply induction on k. For
k = 1, ‖u − 1‖ < 2, and the result follows Lemma 3.8. Suppose the result
is true for k = n − 1, and the inductive step for n has been completed.
Then u1 = exp(ih1) . . . exp(ihl) for some l ∈ N and hj self-adjoint. Because
‖u− u1‖ < 2, so

‖uu∗1 − 1‖ = ‖(u− u1)u∗1‖ = ‖u− u1‖ < 2.

By Lemma 3.8, there exists a self-adjoint element h0 ∈ A such that uu∗1 =
exp(ih0). Then

u = exp(ih0)u1 = exp(ih0) exp(ih1) . . . exp(ihl).

This completes the induction.
Conversely if h is self-adjoint, the proof of Lemma 3.5 implies that exp(ih) ∈

U0(A). The product of such unitaries is also homotopic to the identity. Thus
all elements in U0(A) are indeed equal to finite products as in the claim.

Proposition 3.10. Let A,B be unital C*-algebras, ϕ : A → B a surjective
∗-homomorphism. Then

1. ϕ(U0(A)) = U0(B)

11



2. For any u ∈ U(B), there exists v ∈ U0(M2(A)) such that

ϕ(v) =

[
u 0
0 u∗

]
Proof. 1. Since ϕ takes unitaries to unitaries, ϕ(U0(A)) ⊆ U0(B). The
converse requires some work. Let u ∈ U0(B). By Proposition 3.9, there
exists hermitian elements h1, . . . , hl ∈ B such that

u = exp(ih1) exp(ih2) . . . exp(ihl).

Let t1, . . . , tl ∈ A such that ϕ(tj) = hj for j = 1, . . . , l, and let t̃j = 1
2
(tj + t∗j)

for j = 1, . . . , l. Then t̃j are self-adjoint, and

ϕ(t̃j) =
1

2
(ϕ(tj) + ϕ(tj)

∗) =
1

2
(hj + hj) = hj.

Let
v = exp(it̃1) . . . exp(it̃l).

The proof of Lemma 3.5 implies that v ∈ U0(A). And happily, ϕ(v) = u.

2. Let u ∈ U(B). By Corollary 3.7
[
u 0
0 u∗

]
∈ U0(M2(B)). Then by part

1 there exists some v ∈ U0(M2(A)) such that ϕ(v) = u⊕ u∗.

Definition 3.11. Let A be a unital C*-algebra and a ∈ A. Then σ(a∗a) ⊆
R≥0, where the square root function is defined. So we may define |a| =
(a∗a)1/2.

Proposition 3.12. Let A be a unital C*-algebra.

1. If z ∈ GL(A), then |z| ∈ GL(A), and w(z) := z|z|−1 ∈ U(A).

2. The map w : GL(A)→ U(A) defined in 1. is continuous. And w(u) =
u for all u ∈ U(A).

3. If a, b ∈ GL(A) with a ∼h b in GL(A), then w(a) ∼h w(b) in U(A).
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Proof. 1. Suppose z is invertible. Then z∗ is also invertible, so z∗z ∈ GL(A).
It follows that

σ(|z|) = σ((z∗z)1/2) = {t1/2 : t ∈ σ(z∗z)} 63 0.

Thus |z| is invertible.
Furthermore,

w(z)w(z)∗ = z|z|−1(z|z|−1)∗ = z|z|−1|z|−1z∗

= z(z∗z)−1z∗ = zz−1(z∗)−1z∗ = 1,

and similarly w(z)∗w(z) = 1. So w(z) ∈ U(A).
2. The map a 7→ a∗a is continuous. Also inversion and multiplication

are continuous in GL(A). So to prove the claim it is sufficient to prove that
a 7→ a1/2 is continuous on A≥0, where A≥0 is the set of normal elements in A
with spectrum contained in [0,∞).

Suppose we fix a ∈ A≥0 and let U be a bounded open neighbourhood
containing σ(a). The upper-semicontinuity of spectra [5] implies that there
is some d > 0 such that if b ∈ A and ‖b − a‖ < d then σ(b) ⊆ U . Thus
the problem reduces to proving that the square root map is continuous on
Ωr ⊆ A≥0 where

Ωr = {a ∈ A : a∗a = aa∗, σ(a) ⊆ [0, r]}.

Let f denote the square root function and let ε > 0 be given. By the
Stone-Weierstrass theorem, there exists a complex polynomial g such that
‖g − f‖∞ < ε/3 on [0, r]. For c ∈ Ωt,

‖f(c)− g(c)‖ = ‖(f − g)(c)‖
= sup{|(f − g)(z)| : z ∈ σ(c)}
≤ ‖f − g‖∞ < ε/3.

Therefore g is continuous on Ωt since a 7→ an is continuous. So there exists
δ > 0 such that ‖g(a) − g(b)‖ < ε/3 whenever a, b ∈ A with ‖a − b‖ < δ.
Thus when a, b ∈ Ωt with ‖a− b‖ < δ, have ‖f(a)− f(b)‖ < ε.

3. Let α : [0, 1] → GL(A) be a continuous path from a to b. Then by
part 2, w ◦ α : [0, 1]→ U(A) is a continuous path from w(a) to w(b).

For an element z ∈ A, the form z = w(z)|z| is called the polar decom-
position of z.
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Definition 3.13. The relations ∼u and ∼h induce equivalence relations on
P∞(A) as follows: p ∼u q, if by representing p and q both as n×nmatrices for
some n ∈ N, there exists a unitary element u ∈ M̃n(A) such that u∗pu = q.
We say that p ∼h q if by representing p and q both as n×n matrices for some
n ∈ N, there exists a path α(t) in Pn(A) such that α(0) = p and α(1) = q.

Proposition 3.14. Let A be a unital C*-algebra, a, b ∈ A self-adjoint ele-
ments, z ∈ GL(A) and z = u|z| the polar decomposition of z. If za = bz
then ua = bu.

Proof. Since a and b are self-adjoint, take the adjoint of the equality to have
az∗ = z∗b. Then

|z|2a = z∗za = z∗bz = az∗z = a|z|2.

So a commutes with |z|2. Consequently a commutes with g(|z|2) for all
complex polynomials g. By Stone-Weierstrass theorem, the element |z|−1 =
((|z|2)1/2)−1 is the limit of a sequence of polynomials in |z|2. Hence a com-
mutes with |z|−1. It follows that

uau∗ = z|z|−1au∗ = za|z|−1u∗ = bz|z|−1u∗ = buu∗ = b.

Proposition 3.15. Let n ∈ N≥1, and p, q ∈ Pn(A). Then

1. p ∼h q implies p ∼u q.

2. p ∼u q implies p ∼0 q.

3. p ∼0 q implies p⊕ 0n ∼u q ⊕ 0n.

4. p ∼u q implies p⊕ 0n ∼h q ⊕ 0n.

Proof. 1. Let α(t) be a path in Pn(A) that connects p to q, then we can
partition the path into segments of length less than 1/2. It is now sufficient
to prove that if ‖p− q‖ < 1/2 then p ∼u q. Let z = pq + (I − p)(I − q) ∈ Ã,
and pz = pq = zq. Also

‖z − I‖ = ‖pq + (I − p)(I − q)− I‖
= ‖pq + (I − p)(I − q)− p− (I − p)‖
= ‖p(q − p) + (I − p) ((I − q)− (I − p)) ‖
= ‖p(q − p) + (I − p)(p− q)‖
≤ ‖p‖‖(q − p)‖+ ‖I − p‖‖p− q‖
≤ 2‖p− q‖ < 1.
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Hence z ∈ GL(A). Let z = u|z| be the polar decomposition of z. By
Proposition 3.14, pu = uq.

2. Suppose p ∼u q. Then there exists some unitary u ∈ M̃n(A) such that
u∗pu = q. Let v = u∗p, then vv∗ = u∗ppu = q and v∗v = puu∗p = pp = p.
Also note that v = u∗p ∈ Mn(A) since Mn(A) is an ideal in M̃n(A). Hence
p ∼0 q.

3. Suppose there exists v ∈Mn(A) such that vv∗ = q and v∗v = p. Define

u =

[
v 1− q

1− p v∗

]
and w =

[
q 1− q

1− q q

]
.

Then

u∗u =

[
v In − q

In − p v∗

] [
v∗ In − p

In − q v

]
=

[
vv∗ + (In − q) v − vp+ v − qv

v∗ − pv∗ + v∗ − v∗q (In − p) + v∗v

]
=

[
In + q − q v − v + vv∗v − vv∗v

v∗ − v∗ + v∗vv∗ − v∗vv∗ In − v∗v + v∗v

]
= I2n

Lemma 2.7 is used to equate the second line to the third in the above
equation. Similar computations show that uu∗ = w∗w = ww∗ = I2n. So
u,w,wu ∈ U2n(Ã). And

wu =

[
q I − q

I − q q

] [
v I − q

I − p v∗

]
=

[
qv + (I − q)(I − p) q − qq + v∗ − qv∗
v − qv + q − qp (I − q)(I − q) + qv∗

]
=

[
v + (I − q)(I − p) (I − q)v∗

q(I − p) (I − q) + qv∗

]
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is an element of M̃2n(A). Now,

wu(p⊕ 0n)(wu)∗

=

[
v+(I−q)(I−p) 0

q−qp I−q+v∗

] [
p 0
0 0

] [
v∗+(I−p)(I−q) q−pq

0 I−q+v

]
=

[
v 0
0 0

] [
v∗ + (I − p)(I − q) q − pq

0 I − q + v

]
=

[
vv∗ + v(I − p)(I − q) vq − vpq

0 0

]
= q ⊕ 0n

noting that
v(I − p)(I − q) = (v − vv∗v)(I − q) = 0

and
vq − vpq = vvv∗ − (vv∗v)vv∗ = vvv∗ − vvv∗ = 0

by Lemma 2.7.
4. Suppose p ∼u q. Then there exists unitary u ∈ M̃n(A) such that

upu∗ = q. By Lemma 3.6 there exists a path t 7→ wt in U(M2n(Ã)) such that

w0 =

[
In 0
0 In

]
and w1 =

[
u 0
0 u∗

]
.

Let pt = wtDiag(p, 0n)w∗t . Then pt ∈ P2n(A) for each t ∈ [0, 1]. Furthermore,

p0 = Diag(p, 0n) and p1 =

[
upu∗ 0

0 0

]
= Diag(q, 0n).

Therefore p⊕ 0n ∼h q ⊕ 0n.

4 K0 as a functor
We will see that K0 is a contravariant functor from the category of C*-
algebras to the category of abelian groups, and that it enjoys many use-
ful properties. Before starting the functoriality, we will first need a way
to induce group homomorphisms from semigroups homomorphisms in the
Grothendieck completion.
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Proposition 4.1. Let S be an abelian semigroup. For any abelian group H
and any semigroup homomorphism ρ : S → H, the map ρG : G(S) → H
given by ρG([(s, t)]G) = ρ(s) − ρ(t) for all (s, t) ∈ S × S is a well-defined
group homomorphism.

Proof. Let ρG be as defined above and let s1, s2, t1, t2 ∈ S. To see that ρG
is well-defined, suppose that [(s1, t1)]0 = [(s2, t2)]0. Then there exists r ∈ S
such that s1 + t2 + r = s2 + t1 + r, which implies that

ρ(s1) + ρ(t2) + ρ(r) = ρ(s2) + ρ(t1) + ρ(r).

But H is a group, where all elements are invertible. So

ρG([(s1, t1)]G) = ρ(s1)− ρ(t1) = ρ(s2)− ρ(t2) = ρG([(s2, t2)]G).

Hence ρG is well-defined. Now to check that ρG is a homomorphism:

ρG([(s1, t1)]G + [(s2, t2)]G) = ρG([(s1 + s2, t1 + t2)]G)

= ρ(s1 + s2)− ρ(t1 + t2)

= (ρ(s1)− ρ(t1)) + (ρ(s2)− ρ(t2))

= ρG([(s1, t1)]0) + ρG([s2, t2)]0)

If A and B are C*-algebras, with ϕ : A→ B a continuous ∗-homorphism,
then ϕ extends naturally to a ∗-homomorphism Mn(A) → Mn(B) for all
n ∈ N by applying ϕ entry-wise to matrix entries, i.e. ϕ(T )ij = ϕ(Tij). This
map clearly respects matrix multiplication and involution. In the same way, ϕ
extends entry-wise to P∞(A) and respects direct sum, and is thus a monoid
homomorphism P∞(A) → P∞(B). Let π : P∞(B) → P∞(B)/ ∼0 be the
quotient map. Then π◦ϕ is a monoid homomorphism P∞(A)→ P∞(B)/ ∼0.
If p, q ∈ P∞(A) with p ∼0 q, there exists some matrix v with entries in A
such that vv∗ = p and v∗v = q. Hence

π ◦ ϕ(p) = π(ϕ(vv∗)) = π(ϕ(v)ϕ(v∗))

= π(ϕ(v∗)ϕ(v)) = π(ϕ(v∗v))

= π ◦ ϕ(q)

So π◦ϕ(p) factors into a monoid homomorphism ϕ̃ : P∞(A)/ ∼0→ P∞(B)/ ∼0

by ϕ̃([p]) = π ◦ ϕ(p)(= [ϕ(p)]).
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Proposition 4.2. Let A and B be C*-algebras and ϕ : A→ B a continuous
∗-homomorphism. Then there exists a group homomorphism K0(ϕ) : A→ B
satisfying K0(ϕ)([p]0) = [ϕ(p)]0 for all p ∈ P∞(A).

Proof. Recall that K0(A) = G(P∞(A)/ ∼0), where there is a monoid homo-
morpism [·]0 : A → K0(A). By the previous paragraph, we have a monoid
homomorphism

ϕ̃ : P∞(A)/ ∼0→ P∞(B)/ ∼0 .

By Proposition 4.1, let K0 = ϕ̃G, and let ιA, ιB be the “inclusion” from
D(A) → K0(A) and D(B) → K0(B) respectively, as in Proposition 2.14.
Then

K0(ϕ)([p]0) = K0(ϕ)(ιA([p]D)) = ϕ̃G([([p]D, [0]D)]G)

= [(ϕ̃([p]D), ϕ̃([0]D)]G = ιB ◦ ϕ̃([p]D)

= ιB([ϕ(p)]D) = [ϕ(p)]0

Proposition 4.3. Let A be a unital C*-algebra, then K0(A) = {[p]0 − [q]0 :
p, q ∈ P∞(A)}, and [0]0 = 0.

Proof. Every element of K0(A) can be written as [([p]D, [q]D)]G for some
p, q ∈ P∞(A), and

[([p]D, [q]D)]G = [([p]D, 0)]G + [(0, [q]D)]G

= [([p]D, 0)]G − [([q]D, 0)]G.

Also,
[0]0 = [([0]D, 0)]G = [(0, 0)]G = 0.

Proposition 4.4. Let A,B and C be C*-algebras, let ϕ : A → B and ψ :
B → C be continuous ∗-homomorphisms. Then K0(ψ) ◦K0(ϕ) = K0(ψ ◦ϕ).
Also, let 0 denote the zero map between any two C*-algebras, then K0(0) = 0,
the zero group map.

Proof. By Proposition 4.3, every element in K0(A) is of the form [p]0 − [q]0
for some p, q ∈ P∞(A). Computing using Proposition 4.2,

K0(ψ) ◦K0(ϕ)([p]0 − [q]0) = K0(ψ) (K0(ϕ)([p]0)−K0(ϕ)([q]0))

= K0(ψ) ([ϕ(p)]0 − [ϕ(q)]0)

= [ψ ◦ ϕ(p)]0 − [ψ ◦ ϕ(q)]0

= K0(ψ ◦ ϕ)([p]0 − [q]0).
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Moreover,

K0(0)([p]0 − [q]0) = [0(p)]0 − [0(q)]0 = 0− 0 = 0.

Corollary 4.5. The map K0 is a (covariant) functor, with K0 on C*-algebras
defined as in Definition 2.17 and K0 on continuous ∗-morphisms defined as
in Proposition 4.2.

Proof. Simply collect the results from Propositions 4.2 and 4.4.

5 K0 of general C*-algebras

Let A be a C*-algebra, possibly non-unital. Let Ã denote the unitization
of A. Then Ã = A ⊕ CI as a vector space, and A is an ideal in Ã. Let
ιI , ιA be the inclusion maps from CI and A into Ã respectively, and let πI
and πA be the natural quotient maps from Ã onto CI and A respectively.
Both Ã and CI are unital C*-algebras. Their K0 groups are defined as
in the first section. Also, the inclusion ιI induces a group homomorphism
K0(ιI) : K0(CI) = Z→ Ã.

Definition 5.1. Let A be a C*-algebra. Define K0(A) = kerK0(πI).

Proposition 5.2. Let A be a C*-algebra. Then

K0(A) = {[p]0 − [q]0 : p, q ∈ P∞(Ã), πI(p) ∼0 πI(q)} =: S1

= {([p]0 − [q]0)− ([πI(p)]0 − [πI(q)]0) : p, q ∈ P∞(Ã)} =: S2

= {[p]0 − [πI(p)]0 : p ∈ P∞(Ã)} =: S3

Proof. Let g ∈ K0(Ã) and g ∈ kerK0(πI). Then there exists some n ∈ N
and p, q ∈ Pn(Ã) such that g = [p]0 − [q]0, and that

0 = K0(πI)([p]0 − [q]0) = [πI(p)]0 − [πI(q)]0.

So πI(p) ∼0 πI(q). Conversely suppose πI(p) ∼0 πI(q), then

K0(πI)([p]0 − [q]0) = [πI(p)]0 − [πI(q)]0.

This proves the first equality.
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With the first equality in mind, suppose πI(p) ∼0 πI(q). Then

[p]0 − [q]0 = ([p]0 − [q]0)− ([πI(p)]0 − [πI(q)]0) ∈ S2.

So K0(A) = S1 ⊆ S2. And

K0(πI) (([p]0 − [q]0)− ([πI(p)]0 − [πI(q)]0))

= ([πI(p)]0 − [πI(q)]0)− ([πI ◦ πI(p)]0 − [πI ◦ πI(q)]0)
= ([πI(p)]0 − [πI(q)]0)− ([πI(p)]0 − [πI(q)]0)

= 0

So S2 ⊆ K0(A), this proves the second equality.
Clearly S3 ⊆ S2. Take

g = ([p]0 − [q]0)− ([πI(p)]0 − [πI(q)]0) ∈ S2.

Suppose q is n× n, and let p′ = p⊕ (In − q). Then

[p′]0 = [p]0 − [q0] + [In]0.

Also
πI(p

′) = πI(p)⊕ (In − πI(q)),

so
[πI(p

′)]0 = [πI(p)]0 − [πI(q)]0 + [In]n.

Thus [p′]0 − [πI(p)]0 = g, this proves S2 = S3.

The above gives a definition for the K0 group of non-unital C*-algebras,
and defines another abelian group for a unital C*-algebra. We need to verify
that it coincides with the previous definition for the unital case.

Lemma 5.3. Let A be a unital C*-algebra. Let 1A denote the identity of
A, and let Ã = A ⊕ CI as vector space. Then Ã ∼= A ⊕ CJ . The C*-
algebra A⊕CJ is defined with norm ‖a+zJ‖ = max(‖a‖, |z|) and involution
(a+ zJ)∗ = a∗ + zJ .
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Proof. Define τ : A ⊕ CJ → Ã by a ⊕ zJ 7→ a + z(I − 1A). This is clear a
vector space isomorphism and respects the involution. Lastly,

τ(a⊕ zJ)τ(b⊕ wJ)

= (a+ z(I − 1A))(b+ w(I − 1A))

= ab+ w(aI − a1A) + z(Ib− 1Ab) + zw(II − I1A − 1AI + 1A1A)

= ab+ w(a− a) + z(b− b) + zw(I − 1A − 1A + 1A)

= ab+ zw(I − 1A)

= τ(ab⊕ zwJ).

So τ is an isomorphism.

Remark 5.4. To gain an intuitive idea of the above lemma, consider the
case of where A = C(X) is the set of continuous functions from a compact
Haudorff space X into the complex numbers. The unitization C̃(X) is iso-
morphic to C(X t {∗}) (see Proposition 9.9). Let 1A denote the function
that is constantly 1 on X and zero on ∗. Let 1∗ be the function that is 1 on
∗ and constantly zero on X. Then we have

C(X t {∗}) ∼= C(X)⊕ C({∗}) ∼= C(X)⊕ C1∗,

where 1∗ = 1− 1A. The proof of the lemma imitates this idea to prove it in
the non-commutative case.

Proposition 5.5. Let A be a unital C*-algebra, then K0(A) ∼= K0(A).

Proof. By the lemma above, Ã ∼= A ⊕ CJ . Let ιA : A → A ⊕ CJ be the
natural inclusion map and πA : A ⊕ CJ → A the quotient map. The map
τ : A⊕CJ → Ã is defined in the previous proof. Define α : K0(A)→ K0(Ã)
by

[p]0 − [q]0 7→ [τ(ιA(p))]0 − [τ(ιA(q))]0.

In other words, α = K0(τ ◦ ιA). Since πI(τ(ιA(p))) = 0 = πI(τ(ιA(q))), the
image of α is indeed in K0(A). Let β = K0(πA ◦ τ−1) : K0(A) → K0(A).
Then,

β ◦ α = K0(πA ◦ τ−1τ ◦ ιA) = K0(πA ◦ ιA) = K0(idA) = idK0(A).
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For p̃, q̃ ∈ P∞(Ã) with πI(p̃) = πI(q̃), let p1 = τ ◦ ιA ◦ πA ◦ τ−1(p̃) and
p2 = p̃ − p1. Then p1 + p2 = p̃ and p1, p2 are orthogonal projections. Write
q̃ = q1 + q2 in the same way. Since πI(p̃) = πI(q̃), by the way that τ is
defined, we have that p2 = q2. So

[p̃]0 − [q̃]0 = ([p1]0 + [p2]0)− ([q1]0 + [q2]0) = [p1]0 − [q1]0,

and

(α ◦ β)([p̃]0 − [q̃]0) = K0(τ ◦ ιA ◦ πA ◦ τ−1)([p̃]0 − [q̃]0)

= [p1]0 − [q1]0 = [p̃]0 − [q̃]0.

Hence α and β are mutual inverses.

Definition 5.6. Let A be a non-unital C*-algebra. Define K0(A) := K0(A).

Remark 5.7. By Proposition 5.5, we can safely write K0(A) = K0(A) for
any unital C*-algebras A.

The description S3 in Proposition 5.2 is the one will be used most often.
Next is a discussion of when two elements in such description are equivalent.

Lemma 5.8. Let A be a C*-algebra, v ∈ Mm,n(A) and w ∈ Mn,k(A) for
some k,m, n ∈ N. Then πI(vw) = πI(v)πI(w).

Proof. We compute πI(vw) to be

πI [(v − πI(v))(w − πI(w)) + πI(v)(w − πI(w)) + (v − πI(v))w + πI(v)πI(w)]

Since A is an ideal in Ã, all of (v− πI(v))(w− πI(w)), πI(v)(w− πI(w)) and
(v − πI(v))w have entries in A, which are 0 when they are evaluated under
πI . So

πI(vw) = πI(πI(v)πI(w)) = πI(v)πI(w)

since πI(v)πI(w) ∈Mk,l(CI).

Lemma 5.9. Let A be a C*-algebra, and let p, q ∈ P∞(Ã). Then p ∼0 q in
P∞(Ã) implies πI(p) ∼0 πI(q).
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Proof. There exists a matrix v with entries in Ã such that vv∗ = p and
v∗v = q. By Lemma 5.8,

πI(p) = πI(vv
∗) = πI(v)πI(v

∗) ∼0 πI(v
∗)πI(v) = πI(v

∗v) = πI(q).

Proposition 5.10. Let A be a C*-algebra, and p, q ∈ P∞(Ã). The following
are equivalent

1. [p]0 − [πI(p)]0 = [q]0 − [πI(q)]0

2. there exists r1, r2 ∈ P∞(Ã) with p⊕ r1 ∼0 q ⊕ r2

3. there exists k, l ∈ N such that p⊕ Ik ∼0 q ⊕ Il in P∞(Ã)

Proof. (1 =⇒ 2) The equality [p]0 − [πI(p)]0 = [q]0 − [πI(q)]0 implies that

[p⊕ πI(q)]0 = [p]0 + [πI(q)]0 = [q]0 + [πI(p)]0 = [q ⊕ πI(p)]0
So let r1 = πI(q) and r2 = πI(p). This satisfies 2.
(2 =⇒ 3) Since ri = πI(ri) for i = 1, 2, we see that r1 and r2 can be
considered as matrices in Mn(C) and Mm(C) respectively. Let k = rank r1 ≤
n. Let {z1, . . . , zk} be an orthonormal basis of Ranr1Cn, and extend it to an
orthonormal basis {z1, . . . , zn} of Cn. Let {e1, . . . , en} denote the standard
basis of Cn, and define u ∈ Mn(C) by uzj = ej for j = 1, . . . , n. Then u is
unitary since it takes an orthonormal basis to another one, and

ur1u
∗ej = ur1zj =

{
uzj = ej : j = 1, . . . , k

u0 = 0 : j = k + 1, . . . , n

So
r1 ∼0 ur1u

∗ = Ik ⊕ 0n−k ∼0 Ik.

By identifying u as a unitary matrix inMk(CI), this also holds true in P∞(Ã).
Similarly, r2 ∼0 Il in P∞(Ã) for l = rank r2. So

p⊕ Ik ∼0 p⊕ r1 ∼0 q ⊕ r2 ∼0 q ⊕ Il.

(3 =⇒ 1) We use Lemma 5.9 here and compute

[p]0 − [πI(p)]0 = [p]0 − [πI(p)]0 + [Ik]0 − [Ik]0

= [p⊕ Ik]0 − [πI(p)⊕ Ik]0
= [p⊕ Ik]0 − [πI(p⊕ Ik)]0
= [q ⊕ Il]0 − [πI(q ⊕ Il)]0
= [q]0 − [πI(q)]0.
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The next natural step is to extend the functorK0 to all ∗-homomorphisms
on all C*-algebras. Let A,B be C*-algebras. A ∗-homomorphism ϕ : A→ B
can be extended to a ∗-homomorphism Ã = A ⊕ CIA → B̃ = B ⊕ CIB by
ϕ̃|A = ϕ and ϕ̃(IA) = IB.

Definition 5.11. Let A,B be C*-algebras, ϕ : A→ B a ∗-homomorphism.
DefineK0(ϕ) = K0(ϕ̃)|K0(A) : K0(A)→ K0(B). ThenK0(ϕ) is a well-defined
group homomorphism.

Proof. Note that K0(ϕ) is the restriction of K0(ϕ̃) to K0(A). So it is a group
homomorphism. πI(ϕ̃(p)) = πI(ϕ̃(q)) by the way ϕ̃ is defined. So the image
of K0(ϕ) is in K0(B).

Proposition 5.12. Let A,B be unital C*-algebras, let α : K0(A) → K0(A)
be the group isomorphism described in the proof of Proposition 5.5, and sim-
ilarly let β : K0(B) → K0(B) be such group isomorphism. Then for any
group homomorphism ϕ : A→ B, we have

K0(ϕ) ◦ α = β ◦K0(ϕ).

Proof. We adopt all notation used in Proposition 5.5, where α = K0(τA ◦ ιA)
and β = K0(τB ◦ ιA). Then

β ◦K0(ϕ) = K0(τB ◦ ιA) ◦K0(ϕ) = K0(τB ◦ ιB ◦ ϕ)

and
K0(ϕ) ◦ α = K0(ϕ̃)|K0(A)

◦K0(τA ◦ ιA) = K0(ϕ̃ ◦ τA ◦ ιA).

For a ∈ A,
τB ◦ ιB ◦ ϕ(a) = ϕ(a)⊕ 0IB = ϕ̃ ◦ τA ◦ ιA(a).

So τB ◦ ιB ◦ϕ = ϕ̃◦τA ◦ ιA as maps A→ B̃, so applying K0 they are the same
as maps from K0(A) to K0(B̃) whose image lie in K0(B). This concludes
the proof.

Remark 5.13. By the above proposition and Proposition 5.5, we can safely
write K0(ϕ) = K0(ϕ) for any ∗-homomorphism ϕ.

Proposition 5.14. Let A,B,C be C*-algebras, and let ϕ : A → B and
ψ : B → C be ∗-homomorphisms. Then K0(ψ) ◦K0(ϕ) = K0(ψ ◦ ϕ). Also,
K0(idA) = idK0(A) and K0(0) = 0 for 0 any zero map.
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Proof. We compute:

K0(ψ) ◦K0(ϕ) = K0(ψ̃)|K0(B) ◦K0(ϕ̃)|K0(A)

= K0(ψ̃ ◦ ϕ̃)|K0(A)

= K0(ψ̃ ◦ ϕ)|K0(A)

= K0(ψ ◦ ϕ).

Similarly,

K0(idA) = K0(ĩdA)|K0(A)

= K0(idÃ)|K0(A)

= idK0(Ã)
|K0(A)

= idK0(A).

Finally,

K0(0) = K0(0̃)|K0(A) = K0(πI)|K0(A).

But K0(A) is exactly kerK0(πI), so K0(0) = 0.

Now we have a functor K0 from the category of C*-algebras to the cate-
gory of abelian groups.

6 Functorial properties of K0

The K0-group of a C*-algebra can be difficult to compute even for most
C*-algebras. With the functoriality of K0 in hand, some useful properties
of the functor K0 will aid calculation. One might say this is similar to how
exact sequences help the computation of cohomology groups. In fact, K0 is
an extraordinary cohomology functor, but this will not be discussed here.
In short summary, the most basic and important properties of the functor
K0 are homotopy invariance, half exactness and split exactness. Also, K0 is
a continuous functor, meaning that the inductive limit K0-group is isomor-
phic to the K0-group of inductive limits. Other useful tools for computing
the K0-groups include the higher K-groups, Bott periodicity, and the 6-term
exact sequence. In this paper we will only prove the three basic functorial
properties of K0.
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Definition 6.1. Let A and B be C*-algebras and ϕ, ψ : A → B be ∗-
homomorphisms. We say ϕ is homotopic to ψ, written ϕ ∼h ψ, if there
exists a family of continuous ∗- homomorphisms ϕt : A → B for t ∈ [0, 1]
such that ϕ0 = ϕ and ϕ1 = ψ, and that for each a ∈ A, t 7→ ϕt(a) is a
continuous map [0, 1]→ B. The family ϕt is called a homotopy from ϕ to ψ.

Let A and B be C*-algebras. We say A is homotopic to B, written A ∼h
B, if there exists ϕ : A → B and ψ : B → A continuous ∗-homomorphisms
such that ϕ ◦ ψ ∼h idA and ψ ◦ ϕ ∼h idB.

6.1 Homotopy invariance

Proposition 6.2. Let A and B be C*-algebras, ϕ, ψ : A→ B be continuous
∗-homomorphisms with ϕ ∼h ψ, then K0(ϕ) = K0(ψ). If A ∼h B, then
K0(A) ∼= K0(B).

Proof. Once again, a typical element in K0(A) is [p]0 − [q]0 for some p, q ∈
P∞(A). Hence it is sufficient to show that K0(ϕ)(p) = K0(ψ)(p) for all
p ∈ P∞. Let ϕt be a homotopy from ϕ to ψ. The family ϕt extends to a
homotopy from ϕ to ψ on Mn(A). The map [0, 1] → Mn(B) given by t 7→
ϕt(p) is continuous, and since each ϕt is a ∗-homomorphism, ϕt(p) ∈ Pn(B),
so t 7→ ϕt(p) is a homotopy of

ϕ(p) = ϕ0(p) ∼h ϕ1(p) = ψ(p).

But we know homotopic projections are equivalent in D(A), so

K0(ϕ)(p) = [ϕ(p)]0 = [ψ(p)]0 = K0(ψ)(p).

Hence K0(ϕ) = K0(ψ).
Suppose A ∼h B. There exists continuous homomorphisms α : A → B

and β : B → A such that α ◦ β ∼h idA and β ◦ α ∼h idB. Then using
Proposition 4.4 and the first half of this proof,

K0(α) ◦K0(β) = K0(α ◦ β) = K0(idA) = idK0(A),

K0(β) ◦K0(α) = K0(β ◦ α) = K0(idB) = idK0(B).

Hence K0(α) : K0(A) → K0(B) is a group isomorphism, whose inverse is
K0(β).
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6.2 Half- and split-exactness

Definition 6.3. Let C and D be categories, and F : C → D be a functor.

1. F is exact if whenever

0 A B C 0
f g

is a short exact sequence in C , then

0 F (A) F (B) F (C) 0
F (f) F (g)

is exact in D .

2. F is half exact if whenever

0 A B C 0
f g

is a short sequence in C , then

F (A) F (B) F (C)
F (f) F (g)

is sequence in D that is exact at F (B).

3. F is split exact if whenever

0 A B C 0
f g

h

is a split exact sequence in C , then

0 F (A) F (B) F (C) 0
F (f) F (g)

F (h)

is a split exact sequence in D .

Clearly an exact functor would be half-exact. In this section we will
show that the functor K0 is half-exact and split-exact. However, K0 is not a
exact functor. We will see a counterexample in a later section when we have
developed more machinery.
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Lemma 6.4. Let

0 A B C 0
ϕ ψ

be a short exact sequence of C*-algebras, and let n ∈ N. Let ϕ̃ : Mn(Ã) →
Mn(B̃) and ψ̃ : Mn(B̃)→Mn(C̃) be the unital ∗-homomorphisms induced by
ϕ and ψ, respectively. Then,

1. The map ϕ̃ : Mn(Ã)→Mn(B̃) is injective.
2. An element a ∈ Mn(B̃) belongs to the image of ϕ̃ if and only if

ψ̃(a) = πI(ψ̃(a)).

Proof. 1. The map ϕ̃ : A⊕CIA → B ⊕CIB is injective on both A and CIA.
Therefore it is injective Ã → B̃, and also the induced map ϕ̃ : Mn(Ã) →
Mt(B̃) is continuous.

2. For a ∈ A and z ∈ C,

ψ̃ ◦ ϕ̃(a+ zIA) = ψ̃(ϕ(a) + zIB) = ψ ◦ ϕ(a) + zIC = zIC

= πI(ψ̃ ◦ ϕ̃(a+ zIA)).

Conversely, suppose b ∈ B and z ∈ C with

ψ(b) + zIC = ψ̃(b+ zIB) = πI(ψ̃(b+ zIB)) = zIC .

Then ψ(b) = 0. By exactness there exists a ∈ A such that ϕ(a) = b, then
b+ zIB = ϕ̃(a+ zIA).

Proposition 6.5. K0 is half-exact.

Proof. Let A,B and C be C*-algebras with ∗-homomorphisms ϕ : A → B
and ψ : B → C, where ϕ is injective, ψ is surjective, and im(ϕ) = ker(ψ).

A typical element in K0(A) is [p]0 − [πI(p)]0 for some p ∈ P∞(Ã). By
Lemma 6.4 the equation

ψ̃ ◦ ϕ̃(p) = πI(ψ̃ ◦ ϕ̃(p)) = ψ̃ ◦ ϕ̃(πI(p))

holds. So

K0(ψ) ◦K0(ϕ)([p]0 − [π(p)]0) = [ψ̃ ◦ ϕ̃(p)]0 − [ψ̃ ◦ ϕ̃(πI(p))]0 = 0.
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So im(K0(ϕ)) ⊆ ker(K0(ψ)).
Conversely, let [p]0 − [πI(p)]0 ∈ K0(B) be in the kernel of K0(ψ). Since

ψ̃(p) ∼0 ψ̃(πI(p)) in Pn(C) for some n ∈ N, by Proposition 3.15 there exists
a unitary element u ∈M2n(C) such that

u(ψ̃(p)⊕ 0n)u∗ = ψ̃(πI(p))⊕ 0n.

By Lemma 3.10 there exists a unitary v ∈M4n(B) such that ψ̃(v) = u⊕ u∗.
Let p1 = v(p⊕ 03n)v∗. Then

p ∼0 p⊕ 03n ∼0 p1,

and similarly πI(p) ∼0 πI(p1). Also,

ψ̃(p1) =

[
u 0
0 u∗

] [
ψ̃(p)⊕ 0n 0

0 02n

] [
u∗ 0
0 u

]
=

[
u(ψ̃(p)⊕ 0n)u∗ 0

0 02n

]
= πI(ψ̃(p))⊕ 03n.

It follows that ψ̃(p1) = πI(ψ̃(p1)). By Lemma 6.4 there exists e ∈ M3n such
that ϕ̃(e) = p1. Also,

ϕ̃(ee) = ϕ̃(e)ϕ̃(e) = p1p1 = p1,

ϕ̃(e∗) = p∗1 = p1.

By Lemma 6.4, ϕ̃ : M4n(Ã)→M4n(B̃) is injective, which implies e = ee = e∗,
and hence e is a projection. Now

K0(ϕ)([e]0 − [πI(e)]0) = [p1]0 − [πI(p1)]0 = [p]0 − [πI(p)]0.

This shows that kerK0(ψ) ⊆ imK0(ϕ). Therefore kerK0(ψ) = imK0(ϕ).

Proposition 6.6. The functor K0 is split-exact.

Proof. Suppose

0 A B C 0
ϕ ψ

λ
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is a split exact sequence of C*-algebras. By the half-exactness just proved,
the sequence

K0(A) K0(B) K0(C)
K0(ϕ) K0(ψ)

is exact. Also, since K0 is a functor, we have

K0(ψ) ◦K0(λ) = K0(ψ ◦ λ) = K0(idC) = idK0(C),

so the sequence is also exact at K0(C). It is left to show that K0(ϕ) is
injective.

Let g ∈ K0(A) be in the kernel of K0(ϕ). By the proof of Proposition 6.5,
there exits some n ∈ N, p ∈ Pn(Ã) and some unitary u ∈ Mn(B̃) such that
g = [p]0 − [πI(p)]0 and uϕ̃(p)u∗ = πI(ϕ̃(p)). Let v = (λ̃ ◦ ψ̃)(u∗)u. Then

v∗v = u∗(λ̃ ◦ ψ̃(u))(λ̃ ◦ ψ̃(u∗))u = u∗Inu = In,

vv∗ = (λ̃ ◦ ψ̃(u∗))uu∗(λ̃ ◦ ψ̃(u)) = In,

and
ψ̃(v) = (ψ̃ ◦ λ̃ ◦ ψ̃(u∗))(ψ̃(u)) = ψ̃(u∗)ψ̃(u) = ψ̃(In) = In.

Since ψ̃(v) = πI(ψ̃(v)), by Lemma 6.4, there exists w ∈ Mn(Ã) such that
ϕ̃(w) = v. Since ϕ̃ is injective and ϕ̃(w∗w) = In = ϕ̃(ww∗), have ww∗ =
In = w∗w, so w is unitary. Moreover,

ϕ̃(wpw∗) = vϕ̃(p)v∗ = (λ̃ ◦ ψ̃)(u∗)uϕ̃(p)u∗(λ̃ ◦ ψ̃)(u)

= (λ̃ ◦ ψ̃)(u∗)πI(ϕ̃(p))(λ̃ ◦ ψ̃)(u)

= (λ̃ ◦ ψ̃)(u∗πI(ϕ̃(p))u)

= (λ̃ ◦ ψ̃)(ϕ̃(p)) = λ̃((ψ̃ ◦ ϕ̃)(p))

= λ̃((ψ̃ ◦ ϕ̃)(πI(p)))

= ϕ̃(πI(p)).

By the injectivity of ϕ̃ we can conclude that πI(p) = wpw∗. Hence p ∼0 πI(p)

in Pn(Ã). Therefore g = 0.

Corollary 6.7. Let A and B be C*-algebras. Then K0(A ⊕ B) ∼= K0(A) ⊕
K0(B).
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Proof. The sequence

0 A A⊕B B 0

is split-exact. Hence by the split-exactness of K0, we have a split-exact
sequence of abelian groups:

0 K0(A) K0(A⊕B) K0(B) 0.

Therefore K0(A)⊕K0(B) ∼= K0(A⊕B).

7 K-theory of compact Hausdorff spaces
Definition 7.1. Let X be a Hausdorff topological space, V and W topolog-
ical vector bundles over X. Define the map πV : V → X by πV (v) = x if
v ∈ Vx. We write π = πV , when it is understood that π has domain V . A map
ϕ : V → W is a bundle homomorphism if ϕ is continuous, ϕ(v) ∈ π−1W (πV (v))
for all v ∈ V , and that ϕx = ϕ|Vx : Vx → Wx is a linear homomorphism for
all x ∈ X. We say V is isomorphic to W if there exists ϕ : V → W and
ψ : W → V bundle homomorphisms such that ϕ ◦ψ = idV and ψ ◦ϕ = idW .

Definition 7.2. Let X be a Hausdorff space and let n ∈ N. Define Θn(X)
to be the rank-n trivial bundle over X; specifically, Θn(X) = X × Cn.

Definition 7.3. For X a Hausdorff space, define Vect(X) to be the set of
all isomorphism classes of topological vector bundles on X.

Definition 7.4. Let X be a Hausdorff space, define C(X) to be the set of
all continuous functions from X to C. If X is compact, then C(X) can be
equipped with the sup-norm as the norm and with pointwise conjugation as
its involution. This gives C(X) a C*-algebra structure.

Remark 7.5. Let C be the category of compact Hausdorff spaces and let
A be the category of unital C*-algebras. Define a contravariant functor
F : C → A as follows. If X is a compact Hausdorff space, then F (X) =
C(X). If X, Y are compact Hausdorff spaces and ϕ ∈ Hom(X, Y ), then
F (ϕ) = ϕ∗ ∈ Hom(C(Y ), C(X)) where ϕ∗f(x) = f(ϕ(x)) for all f ∈ C(Y )
and x ∈ X, where Hom(X, Y ) is the set of continuous functions from X to Y ,
and Hom(C(Y ), C(X)) is the set of ∗-homomorphisms from C(Y ) to C(X).
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If X is a Hausdorff space, not necessarily compact, then C(X) is not
necessarily a C*-algebra since the sup-norm cannot be defined. However
C(X) is a ring, so for m,n ∈ N, it makes sense to consider Mm,n(C(X)), all
m by n matrices with entries in C(X). Note that Mm,n(C(X)) is naturally
isomorphic to C(X,Mm,n(C)), by taking a matrix F ∈ Mm,n(C(X)) to f ∈
C(X,Mm,n(C)), where [f(x)]ij = Fij(x) for all x ∈ X.

Lemma 7.6. Let X be a Hausdorff space, and let m,n ∈ N. For ev-
ery f ∈ C(X,Mm,n(C)), define a bundle homomorphism Γ(f) : Θn(X) →
Θm(X) by Γ(f)(x, v) = (x, f(x)v). Then Γ : f 7→ Γ(f) is a bijection from
C(X,Mm,n(C)) to Hom(Θn(X),Θm(X)). In other words, we have a one-
to-one correspondence between Hom(Θn(X),Θm(X)) and C(X,Mm,n(C)) =
Mm,n(C(X)).

Proof. Suppose f, g ∈ Mm,n(C(X)) with f 6= g. Pick x ∈ X for which
f(x) 6= g(x). Then there exists v ∈ Cn for which g(x)v 6= f(x)v, which
shows that Γ is injective. It is left to show that Γ is surjective.

Let Cn and Cm be equipped with their standard inner products. Define
p : Θn(X)→ Cn by p(x,w) = w. Suppose ϕ : Θn(X)→ Θm(X) is a bundle
homomorphism. Define f : X →Mm,n(C) so that

f(x)ij = 〈p(ϕ(x, ej)), ei〉

for all x ∈ X. Clearly f is continuous. Moreover,

Γ(f)(x, v) = (x, f(x)v)

= (x,
m∑
i=1

n∑
j=1

f(x)ijvjei)

= (x,
m∑
i=1

n∑
j=1

〈p(ϕ(x, ej)), ei〉vjei)

= (x,
m∑
i=1

n∑
j=1

〈p(ϕ(x, vjej)), ei〉ei)

= (x,
m∑
i=1

〈p(ϕ(x, v)), ei〉ei)

= (x, ϕ(x, v))

for all (x, v) ∈ Θn(X). Thus Γ(f) = ϕ, and we conclude that Γ is surjective.

32



Lemma 7.7. Let V and W be vector bundles over a compact Hausdorff space
X, and suppose that ϕ : V → W is a bundle homomorphism such that ϕx is a
vector space isomorphism for every x ∈ X. Then ϕ is a bundle isomorphism.

Proof. Let X1, . . . Xk be the connected components of X, let Vj = V |Xj
and

Wj = W |Xj
for j = 1, . . . , k. If ϕ : V → W is a bundle homomorphism

such that ϕ|Vj is an isomorphism from Vj onto Wj, then ϕ is an isomorphism
from V onto W . Thus for the rest of the proof we may assume that X is
connected.

By hypothesis ϕ is a bijection, so ϕ−1 is defined, with ϕ−1|x a vector space
isomorphism. We need to check that ϕ−1 is continuous. Choose an open cover
{U1, . . . , Ul} for which V |Uk

and W |Uk
are trivial for k = 1, . . . , l. For each

k, let ϕk = ϕ|V |Uk
. Then it is sufficient to show that ϕ−1k is continuous.

Let n be the rank of V and W . We can identify V |Uk
and W |Uk

with
Θn(Uk), and can consider ϕk to be a bundle isomorphism from Θn(Uk) to
itself. Apply Lemma 7.6 to obtain a continuous function fk : Uk → Mn(C)
such that ϕk(x, v) = (x, fk(x)v) for all (x, v) ∈ Θn(Uk). Since ϕk(x) is an
isomorphism for all x ∈ Uk, have fk(x) ∈ GLn(C) for all x ∈ Uk.

Each fk is an element of C(Uk,Mn(C)). The matrix fk(x) is invert-
ible for every x ∈ Uk, since inversion is continuous, we have that f−1(x) ∈
C(Uk,Mn(C)). Apply the lemma again have ϕ−1k is continuous.

Proposition 7.8. Let V be a vector bundle over a compact Hausdorff space
X. Then V is isomorphic to a subbundle of the trivial bundle ΘN(X) for
some N ∈ N.

Proof. Let X1, . . . , Xm be the distinct connected components of X. If V |Xk
is

a subbundle of ΘNk(Xk) for some Nk ∈ N, then let N = N1 +N2 + · · ·+Nm,
and V is itself a subbundle of ΘN(X). So for the rest of the proof we may
assume that X is connected.

Since V is locally trivial, let U = {U1, . . . , Ul} be an open cover of X such
that V |Uk

∼= ΘM(Uk) for some M ∈ N. (Note that this M is the same for all
k since X is connected.) Let ϕk : V |Uk

→ ΘM(Uk) be a bundle isomorphism.
Define qk : ΘM(Uk)→ CM by qk(x,w) = w for x ∈ Uk and w ∈ CM ; also let
π : V → X be projection onto the point in X that an element v ∈ V lies
above. Choose a partition of unity {f1, . . . , fl} subordinate to the cover U ,
and let N = M · l. Then define Φ : V →

⊕l
k=1 CM by

Φ(v) = (f1(π(v))q1(ϕ1(v))⊕ · · · ⊕ fl(π(v))ql(ϕl(v))).
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Then ϕ(v) = (π(v),Φ(v)) defines a bundle homomorphism V → ΘN(X).
Since ϕ is injective, this is a bijective homomorphism onto a subbundle of
ΘN(X). By Lemma 7.7 this is indeed an isomorphism.

Corollary 7.9. Every vector bundle over a compact Hausdorff space admits
a Hermitian metric.

Proof. It is clear that every trivial bundle naturally has a Hermitian met-
ric, and since every bundle over a compact Hausdorff space is a subbundle of
some trivial bundle, then it inherits the restriction of the Hermitian metric.

Definition 7.10. Let X be a Hausdorff space, and let [V ], [W ] ∈ Vect(X).
Define [V ⊕ W ] to be the isomorphism class of bundles as follows. There
exists n,m ∈ N such that V is a subbundle of Θn(X) and W is a subbundle
of Θm(X). Let Q be the subbundle of Θn+m(X) such that Qx = Vx ⊕Wx ⊆
Cn ⊕ Cm for all x ∈ X. Define [V ⊕W ] to be [Q].

Proposition 7.11. Let X be a compact Hausdorff space, and let V,W be
vector bundles over X. Then [V ⊕ W ] is well-defined and it is a vector
bundle.

Proof. The proof is easy and is left as an exercise for the reader.

Remark 7.12. The vector bundle V ⊕W is called the Whitney sum of V
and W . The general construction is more abstract and it may take some
work to check the bundle definitions. Proposition 7.8 allows for a concrete
description of the class [V ⊕W ]. Also, in K-theory it is more helpful to think
of a vector bundle as a subbundle of some trivial bundle, as we will see when
we relate the topological K-theory to the C*-algebra K-theory.

Proposition 7.13. Let X be a compact Hausdorff space. The set Vect(X)
equipped with the operation [V ] + [W ] = [V ⊕W ], is an abelian monoid.

Proof. The only non-trivial part is to verify that [V ] + [W ] = [W ] + [V ].
Suppose V is a subbundle of Θn(X) and W is a subbundle of Θm(X). We’ll
write V ⊕W and W ⊕ V as the corresponding subbundles of Θn+m(X). Let
ρ : V ⊕W → W ⊕ V be such that

ρ(x, v ⊕ w) = ρ(x,w ⊕ v)
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for all x ∈ X and v ∈ Vx, w ∈ Wx. Clearly ρ|x is a vector space isomorphism
for all x ∈ X, so by Lemma 7.7 it is left to show that ρ is continuous. For
any x ∈ X, take an open neighbourhood U of x for which both V |U and
W |U are trivial. There exists k ≤ n and l ≤ m for which there exists bundle
isomorphisms

ϕ : V |U
∼=→ Θk(U); ψ : W |U

∼=→ Θl(U).

Definition 7.14. Let X be a compact Hausdorff space. Define K0(X) =
G(Vect(X)), where G(·) is the Grothendieck completion.

The following is a lemma that helps with computation of K0-groups.

Lemma 7.15. Let X be a compact Hausdorff space and let I denote the
closed interval [0, 1]. If V is a vector bundle over X × I, then V |X×{0} ∼=
V |X×{1}.

Proof. First we show that a bundle V over X × [a, b] is trivial if there exists
some c ∈ (a, b) such that V |X×[a,c] and V |X×[c,b] are trivial. To see this, let
ϕ : V |X×[a,c] → Θn(X × [a, c]) and ψ : V |X×[c,b] → Θn(X × [c, b]) be bundle
isomorphisms for some n ∈ N. There exists a function h : X → GLn(C)
such that ϕ(v) = h(π(v))ψ(v) for all v ∈ V |x. Then the map Φ : V →
Θn(X × [a, b]) defined by

Φ(v) =

{
ϕ(v) : a ≤ t ≤ c

h(π(v))ψ(v) : c < t ≤ b

is a bundle isomorphism.
Next, for every x ∈ X and t ∈ [0, 1] there exists some Ux,t ⊆ X a

neighbourhood of x and some δt > 0 such that V is trivial over

Ux,t × (t− δt, t+ δt).

Because [0, 1] is compact, there exists a finite collection {t0, . . . , tk} ⊆ [0, 1]
such that

k⋃
i=0

(ti − δti , ti + δti) ⊇ [0, 1].

Let Ux =
⋂k
i=0 Ux,ti . Then V is trivial over Ux × (ti − δti , ti + δti) for all

i = 0, . . . , k. Hence by observation from the previous paragraph, we see
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that V |Ux×I is trivial. Thus, since X is compact, there exists a finite cover
{U1, . . . , Ur} of X such that V |Uj×I is trivial for all j = 1, . . . , r.

Let {f1, . . . , fr} be a partition of unity subordinate to the cover {U1, . . . , Ur}.
For j = 0, . . . , r let

Fj = f1 + · · ·+ fj.

In particular F0 = 0 and Fr = 1. Also define

X0 = {(x, Fj(x)) : x ∈ X}

for j = 1, . . . , r. Because V |Uj×I is trivial, there exists a bundle isomorphism
Φj : V |Uj×I → Θn(Uj × I). Define Ψj : V |Xj−1

→ V |Xj
by

Ψj(v) =

{
v : π(v) 6∈ Uj × I
Φ−1j (w) : π(v) ∈ Uj × I

where w = ((x, fj(x)), u) if Φj(v) = ((x, fj−1(x)), u). Then Ψj is a bundle
isomorphism. Thus we have

V |X×{0} = V |X0
∼= V |X1

∼= . . . ∼= V |Xr = V |X×{1}.

Corollary 7.16. Every vector bundle over a contractible compact Hausdorff
space is trivial.

Proof. Let X be a contractible compact Hausdorff space. There exists a
fixed point x0 ∈ X and a continuous function ϕ : X × [0, 1] → X satisfying
ϕ|X×{0}(x) = x for all x ∈ X and ϕ|X×{1}(x) = x0 for all x ∈ X. Suppose V
is a vector bundle over X. Then ϕ∗(V ) is a bundle over X × [0, 1] with

V ∼= ϕ∗(V )|X×{0} ∼= ϕ∗(V )|X×{1} ∼= ΘrankV (X)

by Lemma 7.15.

Example 7.17. Consider the compact Hausdorff space S1 = {z ∈ C : |z| =
1}. Let A = {eiθ : 0 ≤ θ ≤ π} be the closed upper half of S1 and let
B = {eiθ : π ≤ θ ≤ 2π} be the lower half of S1. Fix a rank n complex vector
bundle V over S1. Because A and B are both contractible, by Corollary 7.16
V |A and V |B are trivial bundles. Let ϕ : V |A → Θn(A) and ψ : V |B → Θn(B)
be bundle isomorphisms. Let g ∈ GLn(C) be the matrix that represents
ϕ ◦ ψ−1 at 1, and let h be the matrix that represents ϕ ◦ ψ−1 at −1. The
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group GLn(C) is path connected, so let gt and ht be continuous paths from
A and B respectively to the identity matrix.

Define a rank n bundle W over S1× I as follows. The bundle W is trivial
over A × I and B × I, with trivializations Φ : W |A×I → Θn(A × I) and
Ψ : W |B×I → Θn(B × I). Furthermore, the transition function is defined to
be

Ψ−1((1, t), u) = Φ−1((1, t), gtu) and Ψ−1((−1, t), u) = Φ−1((−1, t), htu)

for ±1 ∈ S1, t ∈ [0, 1] and u ∈ Cn. Finally, Lemma 7.15 implies that

V ∼= W |S1×{0} ∼= W |S1×{1} ∼= Θn(S1).

Therefore equivalence classes of vector bundles over S1 are characterized
by ranks, and K0(S1) ∼= G(N) ∼= Z.

8 K0(X) ∼= K0(C(X))

The main result of this section is the proof of the equivalence of K-theories.
When X is compact Hausdorff, then C(X) is a unital C*-algebra, and it
makes sense to ask if the two definitions of K-theories agree.

Theorem 8.1. Let X be compact Hausdorff. Then K0(C(X)) ∼= K0(X) as
abelian groups.

Now we will develop some results necessary to prove this theorem.

Definition 8.2. Let X be a compact Hausdorff space. For E ∈ P∞(C(X)),
and x ∈ X, let RanE(x) be the image of E(x). That is, if E is n× n, then
RanE(x) = E(x)Cn. Define RanE =

⋃
x∈X

⋃
v∈RanE(x)(x, v).

Proposition 8.3. Let X be a compact Hausdorff space, n ∈ N and E ∈
P∞(C(X)). Then RanE is a vector bundle over X.

Proof. Fix x0 ∈ X and let

U = {x ∈ X : ‖E(x0)− E(x)‖op < 1}

As E and the operator norm are both continuous, the set U is the pull back
of (−∞, 1) through a continuous function, and is hence open. Observe that
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for any x1 ∈ X, the element In +E(x0)−E(x1) is within distance 1 from In,
and as such is an invertible matrix. Also, for any v ∈ Cn, we have

(In + E(x0)− E(x1))E(x1)v = E(x1)v + E(x0)E(x1)v − E(x1)E(x1)v

= E(x1)v + E(x0)E(x1)v − E(x1)v

= E(x0)E(x1)v

So In +E(x0)−E(x1) maps RanE(x1) into RanE(x0), and since this is an
invertible matrix, we have that dimRanE(x0) ≥ dimRanE(x1). A similar
calculation shows that

(In − E(x0) + E(x1))(RanE(x0)) ⊆ RanE(x1))

Thus we see that RanE(x0) and RanE(x1) have the same dimension, and
In +E(x0)−E(x1) maps RanE(x1) to RanE(x0) isomorphically. Thus, the
map

ϕ : RanE|U → U × RanE(x0)

(x, v) 7→ (x, (In + E(x0)− E(x1))v)

is a bundle isomorphism. So RanE is locally trivial, thus is a vector bundle.

Proposition 8.4. Let X be a compact Hausdorff space, and let E,F ∈
P∞(C(X)). Then RanE ∼= RanF as bundles if and only if E ∼u F .

Proof. Since RanQ ∼= Ran (diag(Q, 0r)) for any Q ∈ P∞(C(X)) and r ∈ N,
we can take some n ∈ N large enough so that E and F are both inMn(C(X)).

Suppose that E ∼u F . Then we can find U ∈ Un(C(X)) such that
UEU∗ = F . Define γ : RanE → RanF by

γ(x,E(x)v) = (x, U(x)E(x)v) = (x, F (x)U(x)v) ∈ RanF (x),

for x ∈ X and v ∈ Cn. It has the inverse map

γ−1(x, F (x)v) = (x, U∗(x)F (x)v) = (x,E(x)U∗(x)v).

So γ is a bundle isomorphism between RanE and RanF .

Conversely, suppose that RanE and RanF are isomorphic vector bundles.
Let ϕ : RanE → RanF be a bundle isomorphism. We define matrices

38



A,B ∈ Mn(C(X)) as follows. For f ∈ (C(X))n, let Af = ϕ(Ef) and
Bf = ϕ−1(Ff). Then

ABf = A(ϕ−1(Ff)) = ϕ(E(ϕ−1(Ff))).

However ϕ−1(Ff) is a continuous section of RanE, so

ABf = ϕ(E(ϕ−1(Ff))) = ϕ(ϕ−1(Ff)) = Ff

Which shows that AB = F . A similar computation shows that BA = E.
Also,

EBf = Eϕ−1(Ff) = ϕ−1(Ff) = Bf

and
BFf = ϕ−1(FFf) = ϕ−1(Ff) = Bf.

So EB = B = BF . Similarly, FA = A = AE.
Now define

T =

[
A In − F

In − E B

]
∈M2n(C(X)).

With the observations above it is straightforward to check that T is invertible,
with inverse

T−1 =

[
B In − E

In − F A

]
.

Then

Tdiag(E, 0n)T−1 =

[
A In − F

In − E B

] [
E 0
0 0

] [
B In − E

In − F A

]
=

[
A 0
0 0

] [
B In − E

In − F A

]
=

[
F 0
0 0

]
= diag(F, 0n)

Thus E is similar to F through an invertible matrix T . Since E and F are
normal and similar to each other, they are in fact unitarily equivalent by
Proposition 3.14.

Corollary 8.5. Let X be compact Hausdorff. The range map

Ran : P∞(C(X))/ ∼u→ Vect(X)
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mapping
[E] 7→ [RanE]

is well-defined and injective.

Proposition 8.6. Let X be a compact Hausdorff space, let N ∈ N, and
suppose that V is a subbundle of ΘN(X). Let ΘN(X) be equipped with the
standard Hermitian metric, and for x ∈ X, let E(x) be the orthogonal pro-
jection of ΘN(X)|x onto V |x. Then the map E : x 7→ E(x) defines an
idempotent E ∈MN(C(X)).

Proof. By using Lemma 7.7 again, we only need to show that each x0 ∈ X
has an open neighbourhood for which E|U : x 7→ E(x) is continuous on U .
Fix x0 and choose U to be a connected open neighbourhood of x0 over which
V is trivial. Let n be the rank of V , and let ϕ : Θn(U) → V |U be a bundle
isomorphism. For k = 1, . . . , n, define sk : U → Θn(U) by sk(x) = (x, ek),
the kth standard basis vector lying above x. Then for each x ∈ U , the set

{ϕ(s1(x)), ϕ(s2(x)), . . . , ϕ(sn(x))}

is a vector space basis for V |x. Let 〈., .〉 be the standard Hermitian metric
of ΘN(U) restricted to V . By the Gram-Schmidt process, we obtain a an
orthogonal basis of V |x by defining inductively

s′k(x) = ϕ(sk(x))−
k−1∑
i=1

〈ϕ(sk(x)), s′i(x)〉
〈s′i(x), s′i(x)〉

s′i(x)

for k = 1, . . . , n. Then the set{
s′1(x)

‖s′1(x)‖
, . . . ,

s′n(x)

‖s′n(x)‖

}
is an orthonormal basis for V |x equipped with 〈., .〉, where ‖ · ‖ denotes the
norm induced by 〈., .〉. Moreover, the map x 7→ s′1(x)

‖s′1(x)‖
is continuous. Finally,

for E the orthogonal projection as in the statement, we have

E(x)w =
n∑
k=1

〈
ϕ(x,w),

s′k(x)

‖s′k(x)‖

〉
s′k(x)

‖s′k(x)‖

and the above is jointly continuous in x ∈ X and w ∈ Cn. Therefore
x 7→ E(x) is continuous.
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Corollary 8.7. Let V be a vector bundle over a compact Hausdorff space X.
Then V ∼= RanE for some E ∈ P∞(C(X)). Hence the map

Ran : P∞(C(X))/ ∼u→ Vect(X)

is surjective.

Proof. There exists N ∈ N such that V is isomorphic to a subbundle of
ΘN(X). So assume that V is embedded in ΘN(X), and let ΘN(X) be
equipped with the canonical metric. For each x ∈ X let E(x) be the or-
thogonal projection of ΘN(X)x onto Vx. By Proposition 8.6 , x 7→ E(x)
defines an element in E ∈ PN(X), and RanE = V .

Corollary 8.8. Let V be a vector bundle over a compact Hausdorff space
X. Then there exists another vector bundle V ⊥ over X such that V ⊕ V ⊥ ∼=
ΘN(X) for some N ∈ N.

Proof. We know that there exists some N ∈ N such that V is isomorphic to a
subbundle of ΘN(X). For each x ∈ X, let E(x) be the orthogonal projection
of ΘN(X)x onto Vx. By Proposition 8.6, this family of projections defines an
element E ∈ PN(C(X)). Define V ⊥ = Ran (IN − E). Then

V ⊕ V ⊥ ∼= RanE ⊕ Ran (IN − E) = Ran IN = ΘN(X).

Theorem 8.9. Let X be a compact Hausdorff space. Then P∞(C(X)) and
Vect(X) are isomorphic as abelian monoids.

Proof. Define Ψ : P∞(C(X))→ Vect(X) by Ψ([E]) = [RanE]. By Corollar-
ies 8.5 and 8.7, Ψ is well-defined, injective and surjective. It is left to show
that it is a monoid homomorphism, i.e. Ran (E⊕F ) ∼= RanE⊕RanF . But
this is obvious, as they are not just isomorphic, but are in fact equal.

Corollary 8.10. Let X be a compact Hausdorff space. Then K0(X) ∼=
K0(C(X)) as abelian groups.

Proof. Apply the Grothendieck completion to the isomorphism obtained in
Theorem 8.9 to obtain

K0(X) = G(Vect(X)) ∼= G(P∞(C(X))) = K0(C(X)).
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For X a compact Hausdorff space and V a topological vector bundle over
X, we write [V ]0 for the element in K0(X) that is represented by V .

Proposition 8.11. Let X be a compact Hausdorff space, then

K0(X) = {[V ]0 − [W ]0 : V,W vector bundles over X}.

Proof. This follows from Corollary 8.10 and Proposition 4.3.

Now that we’ve shown that K0(X) and K0(C(X)) are isomorphic as
abelian groups, we will verify that the associated morphisms are preserved
by this identification.

Definition 8.12. Let X and Y be compact Hausdorff spaces, let f : X → Y
be a continuous map and let V be a rank r subbundle of some trivial bundle
Θn(Y ) of Y . (By Proposition 7.8 all vector bundles over Y are isomorphic
to a bundle of this form). Define the pull-back of V via f , written f ∗(V ),
to be the rank r subbundle of Θn(X) where the fibre at a point x ∈ X is
(f ∗(V ))x = Vf(x).

Proposition 8.13. Let X and Y be compact Hausdorff spaces, f : X → Y
continuous and V is a subbundle of Θn(Y ). Then f ∗(V ) is indeed a vector
bundle on X.

Proof. Take any x ∈ X, let U be an open neighbourhood of f(x) in Y
for which V |U is trivial. Then f−1(U) is an open neighbourhood of x and
f ∗(V )|f−1(U) = f ∗(V |U) is trivial.

Proposition 8.14. Let X and Y be compact Hausdorff spaces, let f : X → Y
be continuous, and E ∈ P∞(C(Y )). Then f ∗(E) is a projection in P∞(C(X)),
and f ∗(RanE) = Ran f ∗(E).

Proof. For x ∈ X,

(E ◦ f)(x) · (E ◦ f)(x) = E(f(x))E(f(x)) = EE(f(x)) = E ◦ f(x)

and
(E ◦ f)∗(x) = (E ◦ f(x))∗ = E∗(f(x)) = E ◦ f(x).
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So E ◦ f is a projection. Furthermore, suppose E is n× n. Then

f ∗(RanE)x = (RanE)f(x) = E(f(x))Cn = (Ran f ∗(E))x.

Therefore f ∗(RanE) = Ran f ∗(E).

Definition 8.15. Let X and Y be compact Hausdorff spaces and let f :
X → Y be a continuous map. Then f ∗ is a ∗-homomorphism from C(Y ) to
C(X). Define K0(f) : K0(Y )→ K0(X) by

K0(f)([V ]0 − [W ]0) = [f ∗(V )]0 − [f ∗(W )]0.

Remark 8.16. According to Proposition 8.14, if f : X → Y is a continuous
map then by identifying K0(Y ) with K0(C(Y )) and K0(X) with K0(C(X)),
we conclude that K0(f) and K0(f

∗) are the same map. To be precise, the
diagram

K0(Y ) K0(X)

K0(C(Y )) K0(C(X))

K0(f)

∼= ∼=

K0(f∗)

commutes.

Proposition 8.17. The map X 7→ K0(X) is a covariant functor from the
category of compact Hausdorff spaces to the category of abelian groups.

Proof. Let X, Y, Z be compact Hausdorff spaces, and let f : X → Y and
g : Y → Z be continuous. Consider the commutative diagrams

K0(Z) K0(Y ) K0(X)

K0(C(Z)) K0(C(Y )) K0(C(X))

K0(g)

∼= ∼=

K0(f)

∼=

K0(g∗) K0(f∗)

and
K0(Z) K0(X)

K0(C(Z)) K0(C(X))

K0(f◦g)

∼= ∼=

K0((f◦g)∗)
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Since K0 is a functor, we have

K0((f ◦ g)∗) = K0(g
∗ ◦ f ∗) = K0(g

∗) ◦K0(f
∗).

Hence the first rows of the two diagrams imply thatK0(f◦g) = K0(g)◦K0(f).
The fact that K0(idX) = idK0(X) also follows from the functoriality of K0 and
Remark 8.16 in a similar way.

Example 8.18. Let X = {∗} be a point. Then C(X) ∼= C. By Example
2.18 and Corollary 8.10, we see that K0(X) ∼= K0(C) ∼= Z .

9 K-theory of locally compact spaces
The K-theory of locally compact spaces correspond to the K-theory of non-
unital C*-algebras.

Definition 9.1. Let X be a topological space. We say X is locally compact
if for every x ∈ X there exists some open neighbourhood U ⊆ X of x such
that the closure U of U in X is compact.

Definition 9.2. Let X be a locally compact space. Define X+ to be the set
X t {∞} with the collection of open sets given by

T + := {U ⊆ X : U open in X}∪{(X\F )∪{∞} : F closed and compact X}.

Proposition 9.3. Let X be a topological space, then X+ is a compact topo-
logical space. Moreover, X+ \ {∞} is homeomorphic to X in the obvious
way.

Proof. We first check that the collection of open sets T + is a topology on
X+.

1. The empty set ∅ is open in X, so ∅ ∈ T +. The empty set ∅ is obviously
closed and compact, so X+ = (X \ ∅) ∪ {∞} ∈ T +.

2. Define
T0 := {U : U open in X},

T1 := {(X\F ) ∪ {∞} : F closed and compact in X}.

Clearly T0 is closed under arbitrary union. Let {Fi : i ∈ I} be an arbitrary
collection of closed compact subsets of X. Then F :=

⋂
i∈I Fi is clearly
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closed. Pick any i0 ∈ I. Then F is a closed subset of the compact set Fi0 ,
thus F is also compact. Then⋃

i∈I

(X \ Fi) ∪ {∞} = (X \ F ) ∪ {∞} ∈ T1.

So T1 is closed under arbitrary union. Finally, take U ∈ T0 and (X \ F ) ∪
{∞} ∈ T1. We have

U ∪ (X \ F ) ∪ {∞} = (X \ (X \ U)) ∪ (X \ F ) ∪ {∞}
= (X \ ((X \ U) ∩ F )) ∪ {∞} ∈ T1

because (X \ U) ∩ F is closed and compact (it is a closed subset of F ).
Therefore T = T0 ∪ T1 is closed under arbitrary union.

3. Clearly T0 is closed under finite intersection. A finite union of com-
pact closed sets is also closed and compact, so T1 is also closed under finite
intersection. Lastly, suppose U is open and F is closed and compact, then

U ∩ ((X\F ) ∪ {∞}) = U ∩ (X\F ) ∈ T1.

Therefore T is closed under finite intersection.
The above verifies that T is a topology on X. The subspace topology on

X+ \{∞} is T0, which coincides with the topology on X. Hence X+ \{∞} ∼=
X. Next we check that X+ is compact.

Let {Ui}i∈I be a open cover for X+. Since this collection covers the point
∞, there exists some i0 ∈ I such that Ui0 ∈ T1. Then X+ \ Ui0 is a compact
subset of X, hence also a compact subset of X+, so there exists a finite subset
J ⊆ I for which X+ \ Ui0 ⊆

⋃
i∈J Ui. Whence {Ui : i ∈ J ∪ {i0}} is a finite

cover for X+. Therefore X+ is compact.

Remark 9.4. The space X+ is called the one point compactification of X.

Proposition 9.5. Let X be a locally compact topological space. If X is
Hausdorff then X+ is also Hausdorff.

Proof. Let T0 be T1 be as defined in the proof of Proposition 9.3. By Propo-
sition 9.3 we know that X+ \ {∞} ∼= X is Hausdorff. Fix x ∈ X+ \ {∞}
and let U be an open neighbourhood of x where U is compact in X. Then
V := X+ \U is an open neighbourhood of∞, and U ∩V = ∅. Therefore X+

is Hausdorff.
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Proposition 9.6. Let X be a compact Hausdorff space, and let x0 ∈ X. The
map f : X → (X \ x0)+ given by

f(x) =

{
x : x 6= x0

∞ : x = x0

is a homeomorphism.

Proof. It is clear that f is bijective. It is also clear that for any S ⊆ X\{x0},
S is open in X if and only if f(S) is open in (X \ {x0})+.

Suppose U ⊆ X is an open neighbourhood of x0. Let F = X \ U . Since
F is a closed subset of X, it is compact. Also,

U = ((X \ {x0}) \ F ) ∪ {x0}.

On the other hand, suppose F ⊆ X \ {x0} is closed and compact, then

((X \ {x0}) \ F ) ∪ {∞} = X \ F

is an open neighbourhood of x0. Hence x0 ∈ X and ∞ ∈ (X \ {x0})+ have
the “same” open neighbourhoods. It follows that a subset S ⊆ X contain-
ing x0 is open if and only if f(S) is open. Therefore f is a homeomorphism.

Definition 9.7. Let X be a locally compact Hausdorff space. Define C0(X)
to be the set of all continuous functions f ∈ C(X) satisfying the following:
for any ε > 0 there exists a compact subset F ⊆ X such that |f(x)| < ε for
all x ∈ X \ F .

Proposition 9.8. Let X be a locally compact Hausdorff space and let f ∈
C0(X). Define f̃ on X+ to be

f̃ =

{
f(x) : x ∈ X
0 : x =∞

.

Then f̃ ∈ C(X+). If h ∈ C(X+) satisfies h(∞) = 0, then h|X ∈ C0(X) and
h̃|X = h.
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Proof. It is clear that f̃ is continuous on X+ \ {∞}, so we only need to
check that f̃ is continuous at ∞. Given any ε > 0, by the definition of
C0(X), there exists a compact subset F ⊆ X such that |f(x)| < ε for all
x ∈ X \ F . But U := (X \ F ) ∪ {∞} is an open neighbourhood of ∞. We
have |f̃(x)− f̃(∞)| = |f̃(x)| < ε for all x ∈ U . Therefore f̃ is continuous.

The second part of the proof follows essentially the same proof.

Proposition 9.9. Let X be a locally compact Hausdorff space. Let IX denote
the identity element of C̃0(X) and let 1X+ denote the constant function 1 on
X+. Define ϕ : C̃0(X) → C(X+) by ϕ(f) = f̃ for all f ∈ C0(X) and
ϕ(I) = ϕ(1X+) and extend linearly. Then ϕ is a C*-algebra isomorphism.

Proof. It is easy to see that ϕ is a ∗-homomorphism. Suppose

0 = ϕ(f + zIX) = f̃ + z1X+

for some f ∈ C0(X) and z ∈ C. Then

z = (f̃ + z1X+)(∞) = 0.

It then follows that f̃(x) = 0 for all x ∈ X, so f = 0. Hence ϕ is injective.
Take any h ∈ C(X+) and let z = h(∞). By Proposition 9.8 the function

(h− z1X+)|X ∈ C0(X). Also, ϕ((h− z1X+) + zIX) = h. This shows that ϕ
is surjective. Therefore ϕ is an isomorphism.

Definition 9.10. Let X be a locally compact Hausdorff space, and let ι :
{∞} → X+ be the inclusion map. Define K0(X) := kerK0(ι) ⊆ K0(X+).

Remark 9.11. Suppose X is a locally compact Hausdorff space and ι :
{∞} → X+ is the inclusion map. The induced ∗-homomorphism ι∗ : C(X+)→
C({∞}) does the following:

ι∗(f̃) = f̃ ◦ ι = 0, ∀f ∈ C0(X)

and
ι∗(1X+) = 1X+ ◦ ι = 1{∞}.

This means that ι : C(X+) → C({∞}) is the projection onto the one di-
mensional subspace generated by the identity element and ker ι = C0(X).
Whence in light of Remark 8.16 and Proposition 9.9, K0(X) is isomorphic
to K0(C0(X)) in the expected way.
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9.1 Relative and reduced K-theory

Definition 9.12. Let X be a compact Hausdorff space, and let A be a
compact subset of X. Let ι : A→ X be the inclusion map. Then K0(ι) is a
group homomorphism K0(X)→ K0(A). Define K0(X,A) to be ker(K0(ι)).
The groupK0(X,A) is called the relative K-group of the compact pair (X,A).

Proposition 9.13. Let X be a locally compact Hausdorff space. Then K0(X) ∼=
K0(X+,∞).

Proof. This is a consequence of Remark 9.11.

Proposition 9.14. Let X be a compact Hausdorff space and fix x0 ∈ X.
Then K0(X) ∼= K0(X, x0)⊕ Z.

Proof. Let ι : {x0} → X be the inclusion map, and let λ : X → {x0} be the
only constant map. Consider the sequence

0 K0(X, x0) K0(X) K0({x0}) 0.
K0(ι)

K0(λ)

By the definition of K0(X, x0), this sequence is exact. Furthermore, ι ◦ λ =
id{x0}, then by the functoriality of K0 we have that

K0(λ) ◦K0(ι) = K0(ι ◦ λ) = K0(id{x0}) = idK0({x0}).

Hence the above is a split exact sequence of abelian groups. Therefore
K0(X) ∼= K0(X, x0)⊕K0({x0}). Lastly, by Example 8.18 we haveK0({x0}) ∼=
Z.

Remark 9.15. LetX be a compact Hausdorff space. LetG0 be the subgroup
of K0(X) generated by [Θ1(X)]0. Since

[Θn(X)]0 + [Θm(X)]0 = [Θn(X)⊕Θm(X)]0 = [Θn+m(X)]0,

we have that G0 = {±[Θn(X)]0 : n ∈ N≥0} ∼= Z. Fix x0 ∈ X, and let
ιx0 : {x0} → X be the inclusion map. Then

K0(ιx0)([Θ
n(X)]0) = [ι∗x0(Θ

n(X))]0 = [Θn({x0})]0,
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which corresponds to n ∈ Z in the isomorphism Z ∼= K0({x0}). Hence
K0(ιx0)|G0 → K0({x0}) is an isomorphism for any x0 ∈ X. Thus we have
that K0(X, x0) ∼= K0(X)/G0 for any x0 ∈ X. More importantly, we have
that K0(X, x0) ∼= K0(X, x1) for any x0, x1 ∈ X.

Definition 9.16. Let X be a compact Hausdorff space. Define the reduced
K-group of X, denoted K̃0(X), to be K0(X, x0) for any choice of x0 ∈ X.

Remark 9.17. Let X be a compact Hausdorff space and fix x0 ∈ X. By
Proposition 9.13 we have K̃0(X) ∼= K0(X, {x0}). By Remark 9.15, the defi-
nition of K̃0(X) is independent of the choice x0 ∈ X.

10 Functorial properties of K0

10.1 Homotopy invariance

Definition 10.1. Let X and Y be topological spaces and let f, g : X → Y
be continuous maps. We say f is homotopic to g if there exists a continuous
map f• : [0, 1]×X → Y mapping (t, x) 7→ ft(x) such that f0(x) = f(x) and
f1(x) = g(x) for all x ∈ X.

Definition 10.2. Let X and Y be topological spaces. Then X is said to be
homotopic to Y if there exist continuous maps f : X → Y and g : Y → X
such that f ◦ g is homotopic to idY and g ◦ f is homotopic to idX .

Lemma 10.3. Let X and Y be compact Hausdorff spaces, and let ϕ• : [0, 1]×
X → Y mapping (t, x) 7→ ϕt(x) be continuous. Then the map t 7→ (ϕt)

∗(f) =
f ◦ ϕt is continuous from [0, 1] to C(X) for any f ∈ C(Y ).

Proof. Let f ∈ C(Y ) and ε > 0 be given. Then f ◦ ϕ• : [0, 1]×X → R is a
continuous function. By continuity, for any t ∈ [0, 1] and x ∈ X, there exists
δt > 0 and an open neighbourhood Ux ⊆ X of x such that

|f ◦ ϕs(y)− f ◦ ϕt(x)| < ε

for every s ∈ Bδt(t) ∩ [0, 1] and y ∈ Ux. By compactness, X can be
covered by a finite collection of open sets of the form Ux1 , . . . , Uxk . Let
δ = min{δt1 , . . . , δtk} > 0. Then for any x ∈ X,

|(ϕs)∗(f)(x)− (ϕt)
∗(f)(x)| = |f ◦ ϕs(x)− f ◦ ϕt(x)| < ε,

so ‖(ϕs)∗(f)− (ϕt)
∗(f)‖∞ < ε.
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Proposition 10.4. Let X and Y be compact Hausdorff spaces. Let f : X →
Y and g : Y → X be a homotopy between X and Y . Then f ∗ : C(Y )→ C(X)
and g∗ : C(X)→ C(Y ) give a homotopy between C(X) and C(Y ).

Proof. By assumption g ◦ f is homotopic to the identity map idX on X.
Hence there exists a continuous family ϕt : X → X for t ∈ [0, 1] satisfy-
ing ϕ0 = idX and ϕ1 = g ◦ f . By Lemma 10.3, (ϕ•)

∗ is a homotopy from
(ϕ0)

∗ = (idX)∗ = idC(X) to (ϕ1)
∗ = (g ◦ f)∗ = f ∗ ◦ g∗. Similarly g∗ ◦ f ∗ is

homotopic to idC(Y ).

Corollary 10.5. Let X and Y be compact Hausdorff spaces and f : X → Y
be a homotopy. Then K0(f) : K0(Y )→ K0(X) is a group isomorphism.

Proof. By Proposition 10.4 we see that f ∗ : C(Y )→ C(X) is a homotopy. It
follows by Proposition 6.2 that K0(f

∗) is an isomorphism, whence Remark
8.16 gives us the conclusion that K0(f) is an isomorphism.

Example 10.6. Let X = [0, 1]. Then X is homotopic to a point. Hence by
Corollary 10.5 and Example 8.18, we have

K0(C([0, 1])) ∼= K0([0, 1]) ∼= K0({∗}) ∼= Z.

Remark 10.7. The functor K0 is not homotopy-invariant for locally com-
pact Hausdorff spaces. In Example 7.17 we saw that K0(S1) ∼= Z. The unit
circle S1 is homeomorphic to the one point compactification of R, and R is
homotopic to a point. However, Proposition 9.14 says that K0(R) ⊕ Z ∼=
K0(S1), which implies that K0(R) ∼= 0. On the other hand, the K0-group of
a point is Z, as shown in Example 10.6, which is not isomorphic to K0(R).

Example 10.8. We will now exhibit an example that shows K0 is not an
exact functor.

Consider the short exact sequence

0 C0((0, 1)) C([0, 1]) C⊕ C 0.ι π

Where

(ι(f))(t) :=

{
f(t) : t ∈ (0, 1)

0 : t ∈ {0, 1}
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for any f ∈ C0((0, 1)) and t ∈ [0, 1], and

π(g) := (g(0), g(1))

for any g ∈ C([0, 1]). It is left to the reader to check that this sequence is
exact.

Corollary 6.7 and Example 8.18 give us the isomorphism

K0(C⊕ C) ∼= K0(C)⊕K0(C) ∼= Z⊕ Z.

On the other hand C([0, 1]) ∼= Z by Example 10.6. The map K0(π) : Z →
Z ⊕ Z is not a surjection, since Z is generated by one element but Z ⊕ Z
cannot be generated by one element. Therefore the functor K0 does not take
the short exact sequence in consideration to a short exact sequence of abelian
groups.

10.2 Half-exactness of K̃0

Proposition 10.9. Let X be a compact Hausdorff space and let A be a closed
subset of X. Define I(A) to be all the continuous functions f ∈ C(X) that
vanish on A, i.e. f(A) = {0}. Then the following are true

1. I(A) is a closed ideal of C(X).

2. I(A) ∼= C0(X \ A).

3. Let [A] denote the point corresponding to A in the quotient X/A. Then
(X/A) \ {[A]} ∼= X \ A as locally compact Hausdorff spaces.

4. I(A) ∼= C0((X/A) \ {[A]}).

5. C(X)/I(A) ∼= C(A).

Proof. 1. Let f ∈ I(A) and g ∈ C(X), then

(f · g)(a) = f(a)g(a) = 0g(a) = 0

for all a ∈ A, so f · g ∈ I(A). Clearly if a convergent sequence of functions
vanish on A then so does the limit. Hence I(A) is a closed ideal in C(X).
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2. Let ϕ : C0(X \ A)→ C(X) be defined by

ϕ(f)(x) =

{
f(x) : x ∈ X \ A
0 : x ∈ A

for all f ∈ C0(X \ A) and x ∈ X. For each ε > 0, there exists an open
neighbourhood U ⊆ X with A ⊆ U satisfying |ϕ(f)(x)| < ε for all x ∈ U .
Hence we see that ϕ(f) ∈ C(X) for all f ∈ C0(X \ A). It is also clear from
definition that the image of ϕ is contained in I(A). We also define a map
ψ : I(A)→ C(X \ A) by

ψ(g)(x) = g(x)

for all g ∈ I(A) and x ∈ X \ A. Since g(A) = {0}, then for every ε > 0
there exists an open neighbourhood U ⊇ A satisfying |g(x)| < ε for all x ∈ U .
Hence ψ(g) ∈ C0(X\A). It is easy to check that ϕ and ψ are mutual inverses.
Therefore C0(X \ A) ∼= I(A).

3. This is obvious.
4. This is a consequence of 2 and 3.
5. Define ϕ : C(X)/I(A) → C(A) by letting ϕ([f ]) = f |A. If [f ] = [g],

then (f − g)|A = 0, so ϕ([f ]) = ϕ([g]). Hence ϕ is well-defined.
Define ψ : C(A) → C(X)/I(A) as follows. Fix h ∈ C(A), by Tietze’s

extension theorem [7] the function h extends to a continuous function h̃ ∈
C(X). Let ψ(h) = [h̃]. It is easy to check that ϕ and ψ are mutual inverses.
Therefore

C(A) ∼= C(X)/I(A).

Corollary 10.10. Let X be a compact Hausdorff space and let A be a closed
subset of X. Under the identifications I(A) ∼= C0(X \ A) and C(A) ∼=
C(X)/I(A), the following sequence is exact:

K0(C0((X/A) \ {[A]})) K0(C(X)) K0(C(A))

Proof. Consider the following diagram

0 I(A) C(X) C(X)/I(A) 0

0 C0((X/A) \ {[A]}) C(X) C(A) 0

∼= = ∼=
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The upper row is clearly exact. The isomorphisms from the upper row to the
lower row are given by Lemma 10.9. By the half-exactness of the functor K0

6.5, we obtain the exactness of the K0-groups.

Corollary 10.11. Let X be a compact Hausdorff space and let A be a closed
subset of X. Let ι : A → X be the inclusion map and let π : X → X/A be
the projection map. The following sequence is exact:

K̃0(X/A) K0(X) K0(A).
K0(π) K0(ι)

Proof. By Corollary 8.10, we know K0(X) ∼= K0(C(X)) and K0(A) ∼=
K0(C(A)). By Remark 9.17 and Remark 9.11, we have that K0((X/A) \
{[A]}) ∼= K0((X/A) \ {[A]}) ∼= K̃0(X/A). To see that K0(π) and K0(ι) are
the maps in this exact sequence, one can take π and ι and chase through the
proofs in this section.

Remark 10.12. The functor K0 is not half-exact. If A is a compact subset
of a compact Hausdorff space X and we take the quotient X/A, the subspace
A is contracted to a point rather than deleted, and this point is not present
in the corresponding C*-algebra quotient. The point in X/A representing A
detects the rank of the bundles, so we take the reduced K̃0 to delete this
extra information and make the sequence exact.

Proposition 10.13. Let X and Y be locally compact Hausdorff spaces. Then
K0(X)⊕K0(Y ) ∼= K0(X t Y ).

Proof. It can be easily verified that C(X)⊕C(Y ) ∼= C(XtY ). By Corollaries
6.7 and 8.10 we have

K0(X)⊕K0(Y ) ∼= K0(C(X))⊕K0(C(Y )) ∼= K0(C(X)⊕C(Y )) ∼= K0(XtY ).

11 What’s next
Computing the K0 or K0 group can be very difficult even with the machin-
ery we have developed. The next step is to define the higher K-groups by
Kn+1(A) := Kn(SA) orKn−1(X) := Kn(SX), were S denotes the suspension
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of the C*-algebra or the topological space. The isomorphism Kn(C(X)) ∼=
K−n(X) holds for all n. For a C*-algebra and a closed ideal I, there exist
connecting maps for which the long sequence

. . .→K2(A/I)→K1(I)→K1(A)→K1(A/I)→K0(I)→K0(A)→K0(A/I)

is exact. The corresponding sequence is exact for the reduced topological
K-theory, with arrows pointed in the opposite direction.

The celebrated Bott Periodicity theorem says that Kn(A) ∼= Kn+2(A) (or
Kn(X) ∼= Kn+2(X)) for all n. This reduces the above sequence to a sequence
with six elements. It also implies that if we know the K0- and K1-group of
a C*-algebra then we can read off the K-groups of its suspensions. For
example, to find the K-groups of spheres of any dimension, one only needs
to compute K0 and K1 for the two pointed space S0. The interested readers
are referred to [1] and [4] for more details.
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