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Abstract

In this paper we demonstrate how the Legendre transform connects the statements of
Nöether’s theorem in Hamiltonian and Lagrangian mechanics. We give precise definitions of
symmetries and conserved quantities in both the Hamiltonian and Lagrangian frameworks and
discuss why these notions in the Hamiltonian framework are somewhat less rigid. We explore
conditions which, when put on these definitions, allow the Legendre transform to set up a one-
to-one correspondence between them. We also discuss how to preserve this correspondence when
the definitions of symmetries and conserved quantities are less restrictive.
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1 Introduction

This paper studies the theorem that Emmy Nöether published in 1918, which provides a mathe-

matical way to see connections between ‘symmetries’ and ‘conserved quantities’. As we shall see,

Nöether’s theorem can be stated in both the Lagrangian and Hamiltonian frameworks. In Section

6 we demonstrate how the Legendre transform relates these statements and furthermore how, un-

der specific requirements, it gives a one-to-one correspondence between the respective notions of

symmetry and conserved quantity.

Section 2 is dedicated to introducing the tools needed from symplectic geometry to formulate

Hamiltonian mechanics. In Section 1.6 we will see how geodesic flow on a Riemannian manifold

arises as a symplectomorphism generated by a specific diffeomorphism. In Section 5.3 we apply

the Legendre transform to this setup and recover an equivalent way to define geodesic flow in the

Hamiltonian framework.

Section 3 gives an introduction to Lagrangian mechanics. In particular, we derive the Euler-

Lagrange equations using tools from the calculus of variations. A Lagrangian is just a smooth

function on the tangent bundle and we will see that when this function is a ‘natural Lagrangian,’

the Euler-Lagrange equations are equivalent to Newton’s second law. We also demonstrate how

the Euler-Lagrange equations are a generalization of Newton’s second law; in particular, the Euler-

Lagrange equations hold in non-inertial reference frames. We give many examples of Lagrangian

systems and then translate these systems to the Hamiltonian framework in Section 5.

In Section 4 we use the tools introduced in Section 2 to study some basic notions in Hamiltonian

mechanics. As mentioned above, the main object of study in Lagrangian systems is the Lagrangian,

which is just a smooth function on the tangent bundle TM . In Hamiltonian mechanics the main

object is the Hamiltonian, which is just a smooth function on the cotangent bundle T ∗M . In

Section 2.4 we show how the cotangent bundle always has a canonical symplectic structure and so

we see that an advantage of Hamiltonian mechanics is that it incorporates the use of tools from

symplectic geometry.

After introducing Lagrangian and Hamiltonian mechanics, Section 5 demonstrates how the two

formulations are equivalent under the Legendre transform. Given a Lagrangian L ∈ C∞(TM)

we get an induced map called the Legendre transform, which we denote by ΦL, from TM to

T ∗M . Similarily, given a Hamiltonian H ∈ C∞(T ∗M) we get the induced Legendre transform

ΦH : T ∗M → TM . Under certain conditions, which we discuss, the Legendre transform is a

diffeomorphism. We use the Legendre transform to translate examples given in Section 3 and

Sections 4 into the opposing frameworks. In particular, we will see how the Legendre transform

takes motions in one framework to motions in the other.

In Section 6 we study Nöether’s theorem in both the Lagrangian and Hamiltonian frameworks.

We give physical examples in both settings to demonstrate the power of this theorem. We then show
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how the statements of Nöether’s theorem can be translated, under the Legendre transform, from

one framework to the other. We give examples of how the Legendre transform takes symmetries

to symmetries and conserved quantities to conserved quantities. With the definitions given, we

use the Laplace-Runge-Lenz vector to show how the notions of symmetry and conserved quantity

are not in one-to-one correspondence. However, we fix this problem by putting restrictions on

the symmetries and conserved quantities. Lastly, we discuss the problem of how to make the

correspondence one-to-one when the definitions are more general.

Throughout this paper we will use the Einstein summation convention.
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2 Symplectic Geometry

We discuss here the concepts in symplectic geometry which will be needed to formulate Hamiltonian

mechanics in Section 4. In Riemannian geometry, manifolds are equipped with a non-degenerate

symmetric quadratic form, whereas in symplectic geometry the non-degenerate quadratic form

is required to be skew-symmetric. Although there are some similarities between symplectic and

Riemannian geometry, as we shall see there are also some vast differences.

2.1 Symplectic Vector Spaces

Let V be an m dimensional real vector space and Ω : V × V → R a skew-symmetric bilinear map.

Let U = {u ∈ V ; Ω(u, v) = 0 for all v ∈ V }. Suppose that dimU = k and that {u1, . . . , uk} is a

basis. Recall the standard form theorem for skew-symmetric bilinear maps:

Theorem 2.1. (Standard Form for Skew-Symmetric Bilinear Maps) With U, V and Ω as

above, we can find n ∈ N and a basis u1, . . . , uk, e1, . . . en, f1 . . . , fn of V such that

Ω(ui, v) = 0 for all i and for all v ∈ V
Ω(ei, ej) = 0 = Ω(fi, fj) for all i, j

Ω(ei, fj) = δji for all i, j

Proof. This is a fairly straightforward induction proof. See [1], page 3 for details.

It follows that, with respect to this basis, the matrix representation of Ω is0 0 0

0 0 Id

0 −Id 0


Definition 2.2. The bilinear map Ω is said to be symplectic (or non-degenerate) if U = {0}. If

this is the case then the pair (V,Ω) is called a symplectic vector space and {e1, . . . , en, f1, . . . , fn}
is called the corresponding symplectic basis.

It follows from the theorem that any symplectic vector space is necessarily even dimensional

and the corresponding skew-symmetric bilinear map is of the form[
0 Id

−Id 0

]

Example 2.3. (Symplectic Vector Space Prototype)

The simplest example of a symplectic vector space is (R2n,Ω0) where Ω0 is defined such that

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1, 0 . . . , 0) together with f1 = (0, . . . , 0, 1, 0 . . . , 0), . . . , fn =

(0, . . . , 0, 1) form a symplectic basis. The reason this symplectic vector space is referred to as a

prototype is given by the Darboux theorem, which is stated in section 2.2.
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Definition 2.4. Let (V1,Ω1) and (V2,Ω2) be symplectic vector spaces. A linear isomorphism

ϕ : V1 → V2 is called a symplectomorphism if ϕ∗Ω2 = Ω1. Here ϕ∗ is the pullback of ϕ meaning

that (ϕ∗Ω2)(u, v) = Ω2(ϕ(u), ϕ(v)).

In the same way that a Riemannian metric induces the musical isomorphism between TM and

T ∗M , where M is some Riemannian manifold, so the skew-symmetric bilinear form Ω induces a

natural isomorphism between V and V ∗.

Proposition 2.5. Given a symplectic vector space (V,Ω), the non-degenerate bilinear form Ω

induces an isomorphism between V and V ∗ through the map

V → V ∗ v 7→ Ω(v, ·)

Proof. The non-degeneracy of Ω shows this map is injective, while we know that dimV = dimV ∗.

Hence this is indeed an isomorphism.

Definition 2.6. Let (V,Ω) be a finite dimensional symplectic vector space and Y ⊂ V a subspace.

The symplectic complement of Y is defined to be the subspace

Y Ω := {v ∈ V ; Ω(v, u) = 0 for all u ∈ Y } .

For a subspace Y ⊂ V , consider the map

Φ : V → Y ∗ v 7→ Ω(v, ·)|Y

It’s clear that ker Φ = Y Ω. The surjectivity of Φ follows by combining Proposition 2.5 together

with the fact that any element of α ∈ Y ∗ can be extended to an element of α̃ ∈ V ∗ such that

α̃|Y = α. It follows, by the first isomorphism theorem, V/Y Ω ∼= Y ∗. Since dimY = dimY ∗, we

have that dimV = dimY + dimY Ω. Moreover, by definition, Ω|Y×Y is non-degenerate if and only

if Y ∩ Y Ω = 0. That is Ω|Y×Y is non-degenerate if and only if V = Y ⊕ Y Ω. This leads to the

following definition.

Definition 2.7. If Ω|Y×Y ≡ 0 then Y is called an isotropic subspace of V . If Y is isotropic and

dimY = 1
2 dimV then Y is called a Lagrangian subspace of V .

The above remarks give us

Proposition 2.8. A subspace Y ⊂ V is Lagrangian if and only if Y = Y Ω.

2.2 Symplectic Manifolds

Let M be a manifold and let ω ∈ Ω2(M) be a 2-form. By definition, for each p ∈M we have that

ω(p) := ωp is a skew-symmetric bilinear map ωp : TpM × TpM → R.
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Definition 2.9. A 2-form ω ∈ Ω2(M) is said to be symplectic if it is closed and if ωp is symplectic

(non-degenerate) for each p ∈M . In such a case, the pair (M,ω) is called a symplectic manifold.

By the standard form theorem, a symplectic manifold is necessarily even dimensional.

Definition 2.10. Given a 1-form µ ∈ T ∗M , the unique vector field Vµ in T ∗M such that ω(Vµ, ·) =

µ is called the symplectic dual of µ. That is, for each p ∈ M we set Vµ(p) to be the pre-image

of µ(p) under the map defined in Proposition 2.5. In other words, Vµ is the unique vector field

satisfying

Vµ ω = µ

Example 2.11. (Prototype of a Symplectic Manifold)

Let M = R2n with standard coordinates x1, . . . , xn, y1, . . . , yn. The form ω0 := dxi ∧ dyi
is symplectic, and TpM ∼= R2 has symplectic basis

{
∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p
, ∂
∂y1

∣∣∣
p
, . . . , ∂

∂yn

∣∣∣
p

}
so that

(R2n, ω0) is a symplectic manifold.

The Darboux theorem shows why the manifold above can be thought of as the prototype of sym-

plectic manifolds. The theorem locally classifies symplectic manifolds up to symplecteomorphism.

That is, locally every symplectic manifold is symplectomorphic to (R2n, ω0).

Theorem 2.12. (Darboux) Let (M,ω) be a symplectic manifold. For any p ∈ M there exists a

coordinate chart (U, x1, . . . xn, y1, . . . , yn) centred at p such that

ω|U =

n∑
i=1

dxi ∧ dyi

The coordinates giving this local expression of ω are called Darboux coordinates.

Proof. The proof is just an application of the Frobenius theorem together with a characterization

of Darboux coordinates. See [4], page 349 for the details.

In the same way we defined Lagrangian subspaces of a vector space, we can define Lagrangian

submanifolds.

Definition 2.13. Given a symplectic manifold (M,ω), a submanifold (N, ι) of M is called a

Lagrangian submanifold if at each p ∈ N , TpN is a Lagrangian subspace of TpM . That is, N

is Lagrangian if and only if ι∗ω = ω|TpN×TpN = 0 and dimN = 1
2 dimM .

We finish this subsection with a simple yet important proposition.

Proposition 2.14. Let (M1, ω1) and (M2, ω2) be symplectic manifolds. If (L, ι) is a Lagrangian

submanifold of (M1, ω1) and f : (M,ω1) → (M2, ω2) is a symplectomorphism, then (f(L), f ◦ ι) is

a Lagrangian submanifold of (M2, ω2).
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Proof. By definition, we have that f∗ω2 = ω1. Hence

(f ◦ ι)∗ω2 = ι∗f∗ω2 = ι∗ω1 = 0

since (L, ι) is a Lagrangian submanifold of (X1, ω1).

Using the results from this section we can answer the question of when a diffeomorphism between

two symplectic manifolds is a symplectomorphism.

2.3 When is a Diffeomorphism a Symplectomorphism?

Let ϕ : (M1, ω1) → (M2, ω2) be a diffeomorphism of two symplectic manifolds. We will see that

the answer to the posed question of this subsection is “if and only the graph of ϕ is a Lagrangian

submanifold of the ‘twisted’ symplectic manifold (M1 ×M2, ω̃).” We first formalize the definitions

in this statement.

Given the two symplectic manifolds (M1, ω1) and (M2, ω2) as above, consider their Cartesian

product M1 ×M2. Let π1 and π2 denote the projection maps onto the first and second factors

respectively. For any a, b ∈ R\{0}, consider the 2-form

ω := a(π∗1ω1) + b(π∗2ω2)

Since the exterior derivative commutes with the pull-back, it follows ω is closed. Moreover, to

see that ω is symplectic, let (p, q) ∈ M1 × M2 be arbitrary and consider non-zero (Vp,Wq) ∈
TpM1×TqM2. Without loss of generality, suppose that Vp is nonzero. By the non-degeneracy of ω1

there exists Xp ∈ TpM such that (ω1)p(Vp, Xp) 6= 0 so that ω((p, Vp), (q, 0q)) = a ·ω1,p(Vp, Xp) 6= 0.

Definition 2.15. In particular, taking a = 1 and b = −1 we obtain the twisted product sym-

plectic form ω̃ ∈ Ω2(M1 ×M2):

ω̃ = π∗1ω1 − π∗2ω2

Let Γϕ = {(p, ϕ(p)); p ∈M} denote the graph of ϕ. It’s clear the the function

f : M1 → Γϕ p 7→ (p, ϕ(p))

is an embedding. Since Γϕ is the image of M1 under f , it follows that Γϕ is a submanifold of

M1 ×M2 of dimension 4n− 2n = 2n.

Hence Γϕ always satisfies ‘half’ of the requirements of being Lagrangian. We can now prove the

statement posed at the beginning of this section.

Proposition 2.16. The diffeomorphism ϕ is a symplectomorphism ⇐⇒ Γϕ is a Lagrangian

submanifold of (M1 ×M2, ω̃).
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Proof. We already know that (Γϕ, ι) is a submanifold of (M1 ×M2, ω̃), where ι : Γϕ : M1 ×M2 is

the inclusion map. Let f be as above. We have that

Γϕ is Lagrangian ⇐⇒ ι∗ω̃ = 0

⇐⇒ f∗ι∗ω̃ = 0 since f is a diffeomorphism

⇐⇒ (ι ◦ f)∗ω̃ = 0

But

(ι ◦ f)∗ω̃ := ((ι ◦ f)∗ ◦ π∗1)ω1 − ((ι ◦ f)∗ ◦ π∗2)ω2 = (π1 ◦ ι ◦ f)∗ω1 − (π2 ◦ ι ◦ f)∗ω2 = ω1 − ϕ∗ω2

Hence

Γϕ is Lagrangian ⇐⇒ ϕ∗ω2 = ω1

Remark 2.17. It is crucial in the above proof that the 2-form on M1×M2 is the twisted product

form, otherwise this would not work.

2.4 Canonical Symplectic Structure of Cotangent Bundles

Given an arbitrary manifold M , the total space of the cotangent bundle T ∗M can always be turned

into a symplectic manifold. This subsection describes how.

Let M be an arbitrary n-dimensional manifold and T ∗M the cotangent bundle. To turn T ∗M

into a symplectic manifold we need to find a closed symplectic 2-form ω ∈ Ω2(T ∗M). Consider first

the 1-form α ∈ Ω1(T ∗M) defined by

α(p,ξp)(V(p,ξp)) := ξp
(
π∗(V(p,ξp))

)
where (p, ξp) ∈ T ∗pM and V(p,ξp) ∈ T(p,ξp)(T

∗M) are arbitrary and π∗ is the differential of the

projection map π : T ∗M →M . Define ω := −dα. By definition, both α and ω are global forms on

T ∗M . After the computation of α and ω in local coordinates, shown below, it is straightforward

to verify that ω is symplectic. It is clear that ω is closed, since it is exact. Hence (T ∗M,ω) is a

symplectic manifold.

Definition 2.18. The 1-form α ∈ Ω1(T ∗M) is called the tautological 1-form and the 2-form

ω ∈ Ω2(T ∗M) is called the canonical symplectic 2-form.

For future use we compute here α and ω in local coordinates. Let (U, x1, . . . , xn) be an arbitrary

coordinate chart in M and (T ∗U, x1, . . . , xn, ξ1, . . . , ξn) the induced chart on T ∗M . The first thing to

show is how π∗ : T (T ∗M)→ TM works. For arbitrary (p, σp) ∈ T ∗pM and W(p,σp) = W i ∂
∂xi

∣∣
(p,σp)

+
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W̃ i ∂
∂ξi

∣∣∣
(p,σp)

∈ T(p,σp)(T
∗M) there exists ai ∈ R such that π∗(W(p,σp)) = ai ∂

∂xi

∣∣
p
. It follows

ai = (π∗(W(p,σp)))(dx
i
∣∣
p
)

= W(p,σp)(x
i ◦ π)

= W j ∂

∂xj

∣∣∣∣
(p,σp)

(xi ◦ π) + W̃ j ∂

∂ξj

∣∣∣∣
(p,σp)

(xi ◦ π)

= W i

That is,

π∗
(
W(p,σp)

)
=

(
p,W i ∂

∂xi

∣∣∣∣
p

)
.

Since α is an element of Γ(T ∗(T ∗M)) we have functions a1, . . . , an, b
1, . . . , bn ∈ C∞(π−1(U))

such that α = aidx
i + bidξi. By definition, for arbitrary (p, σp) ∈ T ∗pM

ai(p, σp) = α(p,σp)

(
∂

∂xi

∣∣∣∣
(p,σp)

)
= σp

(
π∗

(
∂

∂xi

∣∣∣∣
(p,σp)

))
= σp

(
∂

∂xi

∣∣∣∣
p

)
= σi(p) = ξi(p, σp)

and

bi(p, σp) = α(p,σp)

(
∂

∂ξi

∣∣∣∣
(p,σp)

)
= σp

(
π∗

(
∂

∂ξi

∣∣∣∣
(p,σp)

))
= σp(p, 0p) = 0 = 0(p, 0p).

We have shown that in local coordinates

α = ξidx
i

and it follows

ω := −dα = dxi ∧ dξi

Given another 1-form µ ∈ Ω1(M) we now show that the graph of µ, considered as a function

M → T ∗M , is a Lagrangian submanifold of T ∗M if and only if µ is closed. To avoid confusion, let

sµ denote the map sµ : M → T ∗M given by p 7→ (p, µp) and let Γsµ denote the image of µ in T ∗M

sµ(M) := Γsµ = {(p, µp) ; p ∈M}

That is, the image of µ as a map is the same thing as the graph of sµ. Let π : T ∗M → M denote

the projection mapping. It’s clear that π ◦ sµ = id.

Proposition 2.19. Let α be the tautological 1-form on T ∗M . Then s∗µα = µ.

8



Proof. Fix arbitrary (p, µp) ∈ Γsµ . By definition, α(p,µp)(V ) = µp(π∗V ). Hence for arbitrary

V ∈ TpM ,

s∗µα(V ) = α((sµ)∗V ) = µp(π∗(sµ)∗V ) = µp((π ◦ sµ)∗V ) = µp(id(V )) = µp(V ).

Using this we get

Proposition 2.20. Γsµ is a Lagrangian submanifold of T ∗M ⇐⇒ µ is closed.

Proof. Let τ : M → Γsµ be the same map as sµ but with range restricted to Γsµ . It follows that τ

is a diffeomorphism and sµ = ι ◦ τ . Hence

Γsµ is Lagrangian ⇐⇒ ι∗ω ≡ 0

⇐⇒ ι∗dα ≡ 0

⇐⇒ τ∗ι∗dα ≡ 0 because τ is a diffeomorphism

⇐⇒ (ι ◦ τ)∗dα ≡ 0

⇐⇒ (sµ)∗dα ≡ 0

⇐⇒ d(sµ)∗α ≡ 0

⇐⇒ dµ ≡ 0

⇐⇒ µ is closed

2.5 Lifting a Diffeomorphism

Definition 2.21. Given a diffeomorphism f : M1 →M2 between two manifolds M1 and M2, there

is an induced symplectomorphism f] : T ∗M1 → T ∗M2 called the lift of f which is constructed as

follows.

Since f is a diffeomorphism we have that f∗ : T ∗M → T ∗M is an isomorphism. For arbitrary

(p1, ξp1) ∈ T ∗p1M1 we define f] by

f](p1, ξp1) := (f(p1), (f∗)−1(ξp1)).

Since f is a diffeomorphism we get that both f] and f−1
] are bijective and smooth. Moreover, we

9



have the following commutative diagram.

M1

T ∗M1

M2

T ∗M2

π1

f]

f

π2

(†)

Proposition 2.22. Let α1 and α2 denote the tautological forms on T ∗M1 and T ∗M2 respectively.

Then

f∗] (α2) = α1.

Proof. Let (p1, ξp1) ∈ T ∗p1M1 and (p2, ξp2) ∈ T ∗p2M2 be such that p2 = f(p1) and ξp1 = f∗ξp2

It needs to be shown that (f])
∗(α2)(p2,ξp2 ) = (α1)(p1,ξp1 ) By definition, (f])

∗(α2)(p2,ξp2 ) ∈ T ∗(p1,ξp1 )(T
∗M1)

so let η ∈ T(p1,ξp1 )(T
∗M1) be arbitrary. Then

f∗]

(
(α2)(p2,ξp2 )

)
(η) := (α2)(p2,ξp2 )

(
((f ])∗)η

)
:= ξp2 ◦ (π2)∗

(
f ]∗η
)

= ξp2 ((π2 ◦ f])∗η)

= ξp2 ((f ◦ π1)∗η) by †

= ξp2 (f∗(π1∗η))

= f∗ξp2 (π1∗η)

= ξp1 (π1∗η)

= (α1)(p1,ξp1 )η

Corollary 2.23. In the setup of Proposition 2.22, if we take M1 = M2 = M and let f : M → M

be a diffeomorphism, then the lift of f preserves ω. That is, f∗] (ω) = ω.

Proof. This follows immediately from the fact that the pull back commutes with the exterior

derivative.

The following Lemma and Theorem will be needed in section 6 to study Nöether’s theorem.

Lemma 2.24. Let M be a manifold. Fix X ∈ Γ(TM) and let θt denote its flow. There exists a

unique vector field X] on the cotangent bundle (i.e. X] ∈ Γ(T (T ∗M))) such that the flow of X], say

Ψt, is the lift of θt. That is, Ψt = θt,]. Note that by Corollary 2.23, each Ψt is a symplectomorphism.

Proof. Let θt denote the flow of X ∈ Γ(TM). We have that θt is a diffeomorphism θt : M →M so

its lift θt,] is a symplectomorphism θt,] : T ∗M → T ∗M . Proposition 2.22 shows that θt,] preserves

10



α. Just let X] be the infinitesimal generator of θt,]. Here the integral curves are of the form

θ
(p,ξ)
] : R→ T ∗M , t 7→ θt,](p, ξ), and so θt,] is a local flow of X].

Theorem 2.25. (Lifting to the Cotangent Bundle)

Let M be a manifold. Let α ∈ Γ(T ∗(T ∗M)) denote the tautological 1-form on T ∗M and consider

the symplectic manifold (T ∗M,ω = −dα). If g : T ∗M → T ∗M is a symplectomorphism preserving

α (i.e. g∗α = α) then there exists a diffeomorphism f : M →M such that g = f].

Proof. The proof of this theorem is done by combining the following claims. For what is below we

let V denote the symplectic dual of α. That is, ω(V, ·) = V ω = α.

Claim 2.26. If g∗α = α then g commutes with the flow of V , or equivalently g∗V = V .

Proof. Let θt denote the flow of V . It needs to be shown that g ◦ θt = θt ◦ g, or equivalently, that

g ◦ θt ◦ g−1 = θt. By definition, for each p ∈ M , we have that θ(p) is the unique curve satisfying

θ(p)(0) = p and d
dt

∣∣
t=0

θ(p) = Vp. Since θ0 is the identity, we have that g ◦θ0 ◦g−1(p) = p. Hence, by

uniqueness, it suffices to show that d
dt

∣∣
t=0

g◦θt◦g−1(p) = Vp which happens, by the non-degeneracy

of ω, if and only if (
d

dt

∣∣∣∣
t=0

g ◦ θt ◦ g−1(p)

)
ωp = Vp ωp = αp (2.1)

By the chain rule

d

dt

∣∣∣∣
t=0

g ◦ θt ◦ g−1(p) = g∗,g−1(p)

(
d

dt
(θt(g

−1(p)))

)
= g∗,g−1(p)(Vg−1(p))

Fix an arbitrary Yp ∈ Γ(TpM) and plug it into both sides of (2.1). The right hand side is

Vp ωp(Yp) = αp(Yp)

while the left hand side becomes(
d

dt

∣∣∣∣
t=0

g ◦ θt ◦ g−1(p) ωp

)
(Yp) = ωp

(
g∗,g−1(p)(Vg−1(p)), Yp

)
= ωp

(
g∗,g−1(p)(Vg−1(p)), g∗,g−1(p) ◦ g−1

∗,p(Yp)
)

= (g∗ω)g−1(p)

(
Vg−1(p), g

−1
∗,p(Yp)

)
= ωg−1(p)

(
Vg−1(p), g

−1
∗,p(Yp)

)
= αg−1(p)(g

−1
∗,p(Yp))

= (g∗α)p((g∗,p)
−1(Yp))

= αp(Yp)

11



Notice that this claim had nothing to do with the fact the symplectic manifold was a cotangent

bundle. This result holds for any symplectic manifold (X,ω) for which ω = −dα for some 1-form

α and g∗α = α.

Claim 2.27. The integral curves, γ : R→ T ∗M , of V are of the form

γ(p,σ)(t) = (p, σe−t)

where (p, σ) ∈ T ∗M is arbitrary.

Proof. In local coordinates we know that α = ξidx
i and ω = dxi∧dξi. Let V = ai ∂

∂xi
+ bi

∂
∂ξi

where

ai, bi ∈ C∞(T ∗U). By definition

α = V ω = aidξi − bidxi

and so ai = 0 and bi = −ξi. Let (p, σ) ∈ T ∗M be arbitrary and suppose γ : R→ T ∗M is an integral

curve of V starting at (p, σ). We can write γ(t) = (q(t), r(t)) and it follows

γ′(t) = Vγ(t) = (qi(t))′
∂

∂xi

∣∣∣∣
γ(t)

+ (ri(t))
′ ∂

∂ξi

∣∣∣∣
γ(t)

It follows that for all t ∈ R, (qi(t))
′ = 0 and (ri(t))

′ = −ξi(γ(t)) = −ri(t). That is, qi(t) is a constant

function while ri(t) = ri(0)e−t. By assumption γ(0) = (p, σ) and so it follows γ(t) = (p, σe−t)

It immediately follows that θt is fibre preserving. That is, θt(T
∗
xM) = T ∗xM . Also, it implies

that if g(p, ξ) = (q, η) then for all λ > 0 , g(p, λξ) = g(q, λη). This is because the flow of V is

complete and e−t is surjective onto (0,∞). Also, by the continuity of g and θt we have that

g(p, 0p) = g(p, lim
t→∞

θt(ξ)) = lim
t→∞

g(θt(p, ξ)) = lim
t→∞

θt(g(p, ξ)) = g(q, 0q)

Hence

g(p, ξ) = (q, η) =⇒ g(p, λξ) = (q, λη) for all λ ≥ 0

Supposing that g(p, ξ) = (q, η) consider another arbitrary element (p, σp) of T ∗pM . Suppose that

g(p, σp) = (q̃, µq̃). Then by applying the above it follows g(p, λσp) = (q̃, λµp) for λ = 0. That is,

g(p, 0) = (q̃, 0). But g(p, 0) = (q, 0) and so it must be that q = q̃. Hence g maps fibres to fibres.

We are now ready to construct f : M →M such that f] = g. Indeed, define f by

f : M →M p 7→ π ◦ g(p, 0p).

12



Claim 2.27 shows that f is well defined, while it readily follows that

f ◦ π = π ◦ g. (2.2)

To prove f] = g, we will show H := g ◦ f−1
] is the identity map. By definition, H is a map

from T ∗M to T ∗M . Let (p, σp) ∈ T ∗M be arbitrary and suppose that H(p, σp) = (q, ηq). Let

V(p,σp) ∈ Γ(T(p,σp)(T
∗M)) be arbitrary. By hypothesis, g preserves α while Proposition 2.22 shows

that f] also preserves α. Hence H preserves α. That is,

(H∗α(q,ηq))(V(p,σp)) = (H∗α)(p,σp)(V(p,σp))

= α(p,σp)(V(p,σp))

:= σp(π∗(V(p,σp)))

On the other hand,

(H∗α(q,ηq))(V(p,σp)) = α(q,ηq)(H∗(V(p,σp)))

= ηq(π∗(H∗(V(p,σp))))

= ηq((π ◦ g ◦ f−1
] )∗(V(p,σp)))

= ηq((f ◦ π ◦ f−1
] )∗(V(p,σp))) by (2.2)

= ηq(π∗(V(p,σp))) by †

But if σp(π∗(V(p,σp))) = ηq(π∗(V(p,σp))) for all V(p,σp) ∈ T(p,σp)(T
∗M) then it must be that

(p, σp) = (q, ηq) = H(p, σp). That is, H is the identity map.

2.6 Constructing Symplectomorphisms

Given two manifolds M1 and M2, we demonstrated in Section 2.4 that their cotangent bundles

have a canonical symplectic structure. Let α1 and α2 denote the tautological 1-forms on T ∗M1 and

T ∗M2 respectively. Let ω1 = −dα and ω2 = −dα2 denote the canonical 2-forms on T ∗M1 and T ∗M2

respectively. A straightforward calculation shows that the tautological 1-form on T ∗M1 × T ∗M2 is

α = π∗1α1 + π∗2α2.

implying that the canonical symplectic form on (T ∗M1 × T ∗M2) ∼= T ∗(M1 ×M2) is

ω = π∗1ω1 + π∗2ω2.

By Proposition 2.16 we know that if the graph of a diffeomorphism ϕ : (T ∗M1, ω1) → (T ∗M2, ω2)

is a Lagrangian submanifold of the ‘twisted product’ (T ∗M1 × T ∗M2, ω̃), then ϕ is a symplecto-

morphism. While by Proposition 2.20 we know that the graph of a 1-form µ ∈ Ω1(M1 ×M2) is a

Lagrangian submanifold of T ∗(M1×M2) if the 1-form is closed. Hence, in particular, we have that
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Γdf is a Lagrangian submanifold of (T ∗M1, ω1) × (T ∗M2, ω2) ∼= (T ∗(M1 ×M2), ω) for any smooth

function f ∈ C∞(M1 ×M2). Also, by Proposition 2.14 we know that symplectomorphisms take

Lagrangian submanifolds to Lagrangian submanifolds. With this in mind, we first find a symplecto-

morphism from (T ∗(M1×M2), ω) to (T ∗(M1×M2), ω̃) so that we can find Lagrangian submanifolds

of the later. After doing this, we ‘construct’ a symplectomorphism between T ∗M1 and T ∗M2 by

finding a diffeomorphism τ : T ∗M1 → T ∗M2 whose graph, which is a subset of T ∗(M1×M2), equals

the graph of df . We will see that the existence of such a diffeomorphism is governed by the implicit

function theorem.

Consider the functions

σ2 : T ∗M2 → T ∗M2 , (p, ξ) 7→ (p,−ξ)

and

σ := id× σ2 : T ∗M1 × T ∗M2 → T ∗M1 × T ∗M2

Proposition 2.28. The map σ : (T ∗M1×T ∗M2, ω)→ (T ∗M1×T ∗M2, ω̃) is a symplectomorphism.

That is, σ∗ω̃ = ω

Proof. First note that σ is involutive and so bijective. Moreover in local coordinates x1, . . . , xn, ξ1, . . . , ξn

on T ∗M2 we have

σ∗2α2 = σ∗2(ξidx
i) = (ξi ◦ σ2)(d(xi ◦ σ2)) = −ξidxi = −α2

and so

σ∗ω = σ∗(π∗1ω1) + σ∗(π∗2ω2) = (π1 ◦ σ)∗ω1 + (π2 ◦ σ)∗ω2 = π∗1ω1 − π∗2ω2 = ω̃

Definition 2.29. If Y is a Lagrangian submanifold of (T ∗M1 × T ∗M2, ω) we define the twist of

Y , denoted Y σ to be the image of Y under σ. That is, Y σ := σ(Y ).

Proposition 2.30. If Y is a Lagrangian submanifold of (T ∗M1 × T ∗M2, ω) then the twist of Y is

a Lagrangian submanifold of (T ∗M1 × T ∗M2, ω̃)

Proof. Since σ : (T ∗M1 × T ∗M2, ω)→ (T ∗M1 × T ∗M2, ω̃) is a symplectomorphism, this result is a

corollary of Proposition 2.14.

As mentioned at the beginning of this section, we now want to find a diffeomorphism whose

graph equals the graph of the closed 1-form df , where f ∈ C∞(M1×M2). We call the graph of df the

‘Lagrangian submanifold generated by f ’. Before stating this formally, we introduce some notation

so that we can write this submanifold in a way that will allow us to find conditions on when it is

the graph of a diffeomorphism ϕ. By definition, we have that (df)(x,y) = π∗1((d1f)x) + π∗2((d2f)y)
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where x1, . . . , xn and y1, . . . , yn are local coordinates on M1 and M2 respectively, π1 and π2 are the

natural projections on T ∗M1 × T ∗M2 and d1f = ∂f
∂xi
dxi and d2f = ∂f

∂yi
dyi.

Definition 2.31. The Lagrangian submanifold generated by f is the Lagrangian submanifold

of M1 ×M2 defined by

Yf :=
{

((x, y), (df)(x,y)) ; (x, y) ∈M1 ×M2

}
= {((x, y), ((d1f)x, (d2f)y)) ; (x, y) ∈M1 ×M2}

Definition 2.32. If there exists a diffeomorphism ϕ : T ∗M1 → T ∗M2 such that Y σ
f = Γϕ then,

by Proposition 2.16, ϕ is a symplectomorphism. If such a symplectomorphism exists we call it the

symplectomorphism generated by f . Recall that here Y σ
f is the twist of Yf .

We are trying to find a diffeomorphism ϕ : T ∗M1 → T ∗M2 such that Γϕ = Y σ
f . But notice that

Γϕ = Y σ
f ⇐⇒ {((x, ξ), (y, η)) : ϕ(x, ξ) = (y, η)} = {((x, (d1f)x), (y,−(d2f)y))}

⇐⇒ ξ = (d1f)x and η = −(d2f)y

⇐⇒ ξi =
∂f

∂xi
(x, y) (?) and ηi = − ∂f

∂yi
(x, y) (??)

That is, writing ϕ(x, ξ) = (ϕ1(x, ξ), ϕ2(x, ξ)), for Γϕ to equal Y σ
f all we need is that ϕ2(x, ξ) =

−(d2f)y, for then it automatically follows ϕ1(x, ξ) = y. Given any (x, ξ) the implicit function

theorem says (locally) when a solution to (?) exists. That is, it tells us when one can write y as a

function of both x and ξ. If (x1, . . . , xn, y1, . . . , yn) are local coordinates on M1 ×M2 the implicit

function theorem says that we can write y as a function of x and ξ locally if and only if

det

[
∂

∂yj

(
∂f

∂xi

)]
6= 0.

Also, note that if we have a solution to (?) say, y = ϕ1(x, ξ) then we can plug this solution into

(??) and thus completely determine the map ϕ satisfying Γϕ = Y σ
f . We give some examples of this

process in the next section.

2.7 Applications to Geodesic Flow

Recall the definition of geodesic flow.

Definition 2.33. Let (M, g) be a Riemannian manifold. The geodesic flow of M is the local

R-action on TM defined by

Θ : R× TM → TM , (t0, Vp) 7→
d

dt

∣∣∣∣
t=t0

γVp(t)

where γVp is the unique geodesic starting at p ∈M with initial velocity Vp.

Recall that a Riemannian manifold is called geodesically complete if every geodesic is defined

for all t ∈ R and is called geodesically convex if for any two points in the manifold there exists
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a minimizing geodesic connecting them. For the rest of this section, unless stated otherwise,

all manifolds are assumed to be compact. Since compact metric spaces are complete, it follows

from the Hopf-Rinow theorem that all of our Riemannian manifolds are geodesically complete and

geodesically convex.

Example 2.34. (Free Translational Motion)

Let M1 = Rn = M2 with coordinate charts (Rn, x1, . . . , xn) and (Rn, y1, . . . , yn) respectively. En-

dow M1 and M2 with the standard metric. We have the respective induced coordinate charts

(T ∗Rn, x1, . . . , xn, ξ1, . . . , ξn) and (T ∗Rn, y1, . . . , yn, η1, . . . , ηn). Let f ∈ C∞(M1×M2) be given by

f(x, y) = −1

2
d(x, y)2 = −1

2

n∑
i=1

(xi − yi)2.

Since the metric is assumed to be the standard one it follows that d(x, y) is the usual Euclidean

distance. By definition,

Y σ
f =

{(
a, b,

∂f

∂xi
(a, b)dxi,− ∂f

∂yi
(a, b)dyi

)
| a, b ∈ Rn

}
.

We would like to find the symplectomorphism genereated by f . That is, we would like to find a

map ϕ : Rn → Rn such that Y σ
f equals Γϕ. In this case (?) is ξi = ∂f

∂xi
(a, b) = bi − ai and (??) is

ηi = − ∂f
∂yi

= bi − ai. Since ∂f
∂xi

= yi − xi we have that

[
∂

∂yj

(
∂f

∂xi

)]
ij

= δij

so that the implicit function theorem guarantees a solution to (?). We have shown that

Y σ
f = {(a, b, b− a, b− a) | a, b ∈ Rn} .

For fixed a ∈ Rn, the implicit function theorem has shown the existence of a function ϕ1 : Rn → Rn

where for every b ∈ Rn there exists ξ ∈ Rn such that b = ϕ1(a, ξ). In this case, it is obvious that

every element ξ ∈ T ∗aRn = Rn is of the form b− a for some b ∈ Rn. We set

ϕ1(a, ξ) = ϕ1(a, b− a) = b

and

η = ϕ2(a, ξ) := − ∂f
∂yi

(a, b) = ξ

so that ϕ(a, ξ) = (b, η) = (ξ + a, ξ) and Γϕ = Y σ
f . That is, ϕ is the symplectomorphism generated

by f . Identifying T ∗pRn with TpRn = {vectors emanating from p} we see that ϕ is free translational

motion.

The above example is a special case of the following.
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Example 2.35. (Geodesic Flow)

Let (M, g) be an arbitrary compact Riemannian manifold. As in the previous example, let

d : M × M → R denote the Riemann distance function and f ∈ C∞(M × M) be given by

f = −1
2d(a, b)2. To find the sympelctomorphism generated by f we need to solve

(?) ξi = daf and (??) ηi = −dbf.

Using the musical isomorphism we can identify T ∗M with TM . That is, for a ∈M , we have

[ : TaM → T ∗aM V 7→ V [ := g(V, ·).

Let V and W in TM be the unique vector fields such that V [ = ξ and W [ = η. Then the above

equations become

(?) g(V, ·) = daf(·) and (??) g(W, ·) = −dbf(·).

We now show that under this identification the symplectomorphism generated by f is the geodesic

flow. First we need the following Lemma.

Lemma 2.36. Let U, V ∈ TaM . Then

d

dt

∣∣∣∣
t=0

− 1

2
d((exp)a(U), (exp)a(tV ))2 =< V,U > .

Proof. First notice that for s ∈ R small enough so that (exp)a(sU) is contained in a geodesic ball

centred at (exp)a(U), we have that d((exp)a(U), (exp)a(sU)) = |1 − s||U |. Indeed, let γ : R → M

be the unique geodesic starting at a with initial velocity U . Since geodesics have constant speed it

follows that the length of γ over [s, 1], denoted L
(
γ|[s,1]

)
, is

L
(
γ|[s,1]

)
=

∫ 1

s

∣∣γ′(t)∣∣ dt
= |U |

∫ 1

s
dt

= |U ||1− s|

Since the radial geodesic from (exp)a(U) to (exp)a(sU) is the unique minimizing curve from

(exp)a(U) to (exp)a(sU) (for a proof of this see [10], Proposition 6.10) it follows that

d((exp)a(U), (exp)a(sU)) = |1− s||U |.

Next, fix (exp)a(U) ∈M and consider the function, also denoted f , defined by

f : M → R b 7→ f((exp)a(U), b).

Notice that given V ⊥ ∈ TaM with V ⊥ ⊥ U the Gauss Lemma shows that there exists a curve
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β : R → M starting at a with initial velocity V ⊥ such that d(β(t), b) is constant. That is,

f(β(t)) = c implying that f∗(β
′(0)) = 0. Observe that we can write V = V ⊥+ λU for some λ ∈ R.

Letting G denote the function G : R→M given by t 7→ (exp)a(tV ) it follows that

d

dt

∣∣∣∣
t=0

− 1

2
d((exp)a(U), (exp)a(tV ))2 =

d

dt

∣∣∣∣
t=0

f(G(t))

= (f∗)G(0)G
′(0)

= (f∗)a(V )

= λf∗(U)

= λ
d

ds

∣∣∣∣
s=0

− 1

2
(d((exp)a(sU), (exp)aU))2

= λ
d

ds

∣∣∣∣
s=0

− 1

2
|1− s|2|U |2

= λ|U |2

=< V,U >

With this lemma we now reconsider (?). Evaluating the left hand side at V we get |V |2. By

geodesic convexity, there exists some U ∈ TM such that (exp)a(U) = b. Using Lemma 2.36, the

right hand side is

daf(V ) = (f∗)a(V )

=
d

dt

∣∣∣∣
t=0

d((exp)a(tV ), y)

=
d

dt

∣∣∣∣
t=0

d((exp)a(tV ), (exp)a(U))

=< V,U >

Now take any vector V ′ ∈ TM such that V ′ ⊥ V . Plugging V ′ into (?) the left hand side becomes

0 and the right hand side is < V ′, U >. Hence, < V,U >=< V, V > and < V ′, U >= 0 =< V, V ′ >

for any V ′ ⊥ V . It follows that U = V and so b = (exp)a(V ).

We now need to solve (??). We will see the solution is given by W = γ′V (1) = d
dt

∣∣
t=1

(exp)a(tV ).

Indeed, let W̃ = d
dt

∣∣
t=1

(exp)a(tV ) and fix any W ′ ⊥ W̃ . Again, by the Gauss Lemma, we have

that dbf(W ′) = 0 and so W = kW̃ for some k ∈ R. But since geodesics have constant speed it

follows that |V |2 = |W̃ |2. Therefore the left hand side of (??) is

< W, W̃ > = k < W̃ , W̃ >
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= k|W̃ |2

= k|V |2

while the right hand side is

−(dbf)(W̃ ) = −(f∗)b(W̃ )

=
d

ds

∣∣∣∣
s=0

1

2
d(a, (exp)a((1 + s)(V )))2

=
d

ds

∣∣∣∣
s=0

1

2
d((exp)a(0V ), (exp)a((1 + s)V ))2

=
d

ds

∣∣∣∣
s=0

1

2
(1 + s2)|V |2

= |V |2

Hence k = 1 showing that W = d
dt

∣∣
t=1

(exp)a(V ).

In summary, for Γϕ to equal Y σ
f it needs to be that V is the unique vector field such that

b = (exp)a(V ) (so that b is a function of a and V ) and further that W = d
dt

∣∣
t=1

(exp)a(tV ). That

is, the map ϕ is given by

(a, V ) 7→
(

(exp)a(V ),
d

dt

∣∣∣∣
t=1

(exp)a(tV )

)
=
(
γV (1), γ′V (1)

)

In the section on Hamiltonian mechanics, we will return to the concept of geodesic flow and

give some insight as to why it arose as the symplectomorphism generated by the Riemann distance

function.
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3 Lagrangian Mechanics

Recall that Newton’s second law states that in an inertial reference frame the motion of a particle,

with position γ(t), is given by the solution to the ODE

F (γ(t)) = p′(t)

where F is the net force acting on the particle and p(t) = m(t)v(t) is the particle’s momentum.

Lagrangian mechanics is a reformulation of Newtonian mechanics in which motions are given by

solutions to the Euler-Lagrange equations. In any situation where Newton’s second law can be

applied, so can the Euler-Lagrange equations. We will see that, in any such system, the Euler-

Lagrange equations are equivalent to Newton’s second law. However, the equations also hold in

settings in which Newton’s second law does not hold. For example, Newton’s second law only

holds in an inertial reference frame, while the Euler-Lagrange equations are valid in any coordinate

system. Another advantage in using the Euler-Lagrange equations comes with the way in which

they allow constraint forces on a mechanical system to be ignored. For example, if studying the

motion of a bead on a wire, in the Lagrangian setting we do not need to worry about the forces

keeping the bead constrained to the wire.

For the rest of this paper all forces are assumed to be conservative, and so we first recall this

definition.

3.1 Conservative and Central Forces

Consider Rn equipped with standard coordinates x1, . . . , xn. Let g be a metric on Rn and let

x1, . . . , xn, v1 . . . , vn denote the induced coordinates on TRn = R2n. Recall the kinetic energy is

defined by

K : R2n → R (x, v) 7→ 1

2
mg(v, v) =

1

2
mgijv

ivj =
1

2
m|v|2

where m is some positive constant, called the mass of the particle. Fix two points r1, r2 ∈ Rn and

consider a curve γ : [a, b]→ Rn such that γ(a) = r1 and γ(b) = r2. Then the work done by a force

F on a particle moving along γ is defined to be the integral of F over the curve γ

W (r1 → r2, γ) :=

∫
γ
F · ds =

∫ b

a
F (γ(t)) · γ′(t)dt

Theorem 3.1. (Work-Kinetic Energy Theorem)

Given a system of k particles of masses mi with position ri, the change in kinetic energy of the

system is equal to the sum of the work done on each particle.

Proof. Let Fi denote the force acting on the i-th particle and Wi the work done by Fi on the i-th
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particle. By Newton’s second law we have that

d

dt

∣∣∣∣
r(t)

K =
n∑
i=1

(mir
′′
i (t)) · r′i(t) =

n∑
i=1

Fi(ri(t)) · r′(t).

It follows that

K(t2)−K(t1) =

∫ t2

t1

dK

dt
dt =

n∑
i=1

∫ t2

t1

Fi · r′idt =

n∑
i=1

Wi

As the next example shows, given two paths α, β : [a, b] → Rn with α(a) = r1 = β(a) and

α(b) = r2 = β(b), it may be that W (r1 → r2, α) 6= W (r1 → r2, β).

Example 3.2. (A Non-Conservative Force)

Consider a particle moving around the unit circle under the following force field.

This vector field (force) has integral curve γ(t) = (cos t, sin t). It follows that F (x, y) = (−y, x).

Fix the points (1, 0) and (−1, 0). Consider the curve α : [0, π]→ R2 given by t 7→ (cos t, sin t) and

β : [0, π] → R2 given by t 7→ (cos t,− sin t). Then α and β are both curves starting at (1, 0) and

ending at (−1, 0); however,

W ((1, 0)→ (−1, 0), α) =

∫
α
F · ds =

∫ π

0
(− sin t, cos t) · (− sin t, cos t)dt = π

while

W ((1, 0)→ (−1, 0), β) =

∫
β
F · ds =

∫ π

0
(sin t, cos t) · (− sin t,− cos t) = −π

Contrary to this example, for certain forces (such as the gravitational and electrostatic forces)

it is the case that W does not depend on the path traversed by the particle. This leads to the

following definition.

Definition 3.3. A force is called conservative if the work done is path independent. Letting

r1, r2 ∈ Rn be arbitrary, this means that for any two curves α, β : [a, b]→ Rn with α(a) = r1 = β(a)
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and α(b) = r2 = β(b),

W (r1 → r2, α) =

∫
α
F · ds =

∫
β
F · ds = W (r1 → r2, β)

In this case the work done by F is justifiably denoted W (r1 → r2). A mechanical system is called

conservative if the net force is conservative.

Recall that the gradient of a function U : Rn → Rn is defined to be

∇U := (dU)] =

(
gji

∂U

∂xi

)
∂

∂xj

where ] : T ∗Rn → TRn is the musical isomorphism and gji = [g−1]ji. With the standard metric,

the above definition reduces to the standard notion of the gradient.

Theorem 3.4. A force F is conservative if and only if there exists a continuously differentiable

function U : Rn → R such that F = −∇U .

Proof. First suppose that the work done by F is conservative. Fix a point r0 ∈ Rn and define

U : Rn → R r 7→ −
∫
γ
F · ds

where γ : [a, b]→ Rn is an arbitrary curve with γ(a) = r0 and γ(b) = r. By hypothesis this function

is well defined. By the fundamental theorem of line integrals it follows∫
γ
∇U · ds = U(r)− U(r0) = −

∫
γ
F · ds− U(r0).

In particular, taking γ to be the curve γ : [0, t]→ Rn given by t 7→ (1− t)r0 + tr, it follows that∫ t

0
∇(γ(t))(r − r0)dt = −

∫ t

0
F (γ(t))(r − r0)dt− U(r0).

But since U(r0) is a constant, it follows from the fundamental theorem of calculus that F = −∇U .

Conversely, suppose that there exists U : Rn → R such that F = −∇U . Then for arbitrary γ

as above,

−
∫
γ
F · ds =

∫
γ
∇U · ds = U(r)− U(r0)

That is, W (r0 → r, γ) = U(r)−U(r0) and so only depends on the end points r0 and r. Hence, the

work done is path independent showing F is conservative.

Definition 3.5. For a conservative force F , the scalar function U : Rn → R such that F = −∇U
is called the potential energy .

The reason that a force with this property is called conservative comes from Theorem 3.7 below.
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Definition 3.6. The total energy of a conservative system is defined to be

E = T + U,

the kinetic energy plus the potential energy.

Theorem 3.7. (Conservation of Total Energy) In a conservative mechanical system, the total

energy is conserved. That is, d
dtE = 0.

Proof. Suppose that F = −∇U . For arbitrary t1, t2 ∈ R, by the Work-Kinetic Energy Theorem

K(γ(t2))−K(γ(t1)) = W (γ(t1)→ γ(t2)) =

∫
γ
F · ds =

∫
γ
∇U · ds = U(γ(t1))− U(γ(t2))

Hence (K + U)(γ(t2)) = (K + U)(γ(t1)) and so E := K + U is independent of t.

In section 6 we will do some interesting computations with the Laplace-Runge-Lenze vector and

so we recall here the two-body central force problem.

Definition 3.8. A central force on a particle with position vector ~r is a conservative force for

which the corresponding potential energy is only a function of ‖~r‖.

The classical example of a central force is one given by a potential of the form

U(~r) = − k

‖~r‖

where k is some constant. Given a system of two particles, (say ~r1 and ~r2) in a closed system,

by fixing one of the particles and considering the relative position vector ~r = ~r1 − ~r2 we can give

explicit formulas for the potential energy corresponding to the gravitational and Coulomb force.

The gravitational potential is given by

U(~r) = −Gm1m2

‖~r‖

and the Coulomb by

U(~r) =
1

4πε0

q1q2

‖~r‖

where q1 and q2 are the charges of the two particles. Here G and ε0 are two constants whose explicit

values depend on the units being used.

Proposition 3.9. Consider a closed system of two particles moving in R3 with the standard metric.

If the particles are subject to a central force field then the force is always parallel to the relative

position of the two particles.

Proof. By definition, U is a function of only ‖~r‖. That is U = U(‖~r‖). In spherical coordinates we

have that ∇U = ∂U
∂r

∂
∂r where ∂

∂r is associated with the vector r̂ = ~r
‖~r‖ .
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Definition 3.10. If ~r is the position vector of a particle, then its angular momentum is defined

to be

~L := ~r × p = m(~r × ~̇r)

and the torque is

τ := ~r × F

Using Newton’s second law, it immediately follows that torque is the time derivative of angular

momentum.

Proposition 3.11. If two particles are subject to a central force field then the angular momentum

of their relative position vector is constant.

Proof. By proposition 3.9 the force is parallel to ~r. Hence d
dt
~L = m(~̇r × ~̇r) + (~r × F ) = 0.

Remark 3.12. By definition, the angular momentum is always orthogonal to the momentum and

position vector. In the two-body central force problem, Proposition 3.11 showed that the angular

momentum vector is constant. Hence it must be that the plane determined by the momentum and

position of the relative position vector is constant. That is, the movement of the two particles is

always restricted to a plane. Under translation and rotation, it is no loss of generality to assume

that the particles motion is restricted to the xy-plane.

3.2 The Calculus of Variations and the Euler-Lagrange Equations

The calculus of variations studies functionals on a given space X. In this section X will be the set of

smooth curves γ : [a, b]→M , where M is some manifold. The Euler-Lagrange equations will arise

as the extreme points of a specific function, called the action. After deriving the Euler-Lagrange

equations we will see how they are a generalization of Newton’s second law.

Definition 3.13. Let M be an n-dimensional manifold with tangent bundle TM . Given L ∈
C∞(TM) the pair (M,L) is called a Lagrangian system and L is called the Lagrangian.

Definition 3.14. A Riemannian manifold (M, g) with Lagrangian L = K −U is called a natural

Lagrangian system.

At first, it may seem that the Lagrangian defined in a natural system is random; however, we

will see that in these systems the Euler-Lagrange equations are equivalent to Newton’s second law.

The Euler-Lagrange equations have proven to be more effective than Newton’s second law in many

different natural Lagrangian systems.

Definition 3.15. Given a smooth curve γ : [a, b] → M we get an induced curve γ̃, called the lift

of γ, into the tangent bundle defined by

γ̃ : [a, b]→ TM t 7→ (γ(t), γ′(t))
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Definition 3.16. Let C = {γ : [a, b]→M ; γ is smooth}. Consider the functionA : C → R defined

by

A(γ) := Aγ :=

∫ b

a
γ̃∗L(t)dt =

∫ b

a
L(γ(t), γ′(t))dt

The function A : C → R is called the action of the Lagrangian system.

The goal of this section is to find curves γ : [a, b]→M which are critical points for A. Just as

minimum and maximum points are extreme points in elementary calculus, we seek to find curves

for which the “derivative” of the action vanishes. Intuitively, for a curve γ : [a, b] → M to be a

minimum we need the value of A to be no greater on γ than on curves ‘close’ to γ, say ‘within ε’,

as pictured below.

γ

γε

More precisely, fix a coordinate chart (U, x1, . . . , xn) in M and consider (TU, x1, . . . , xn, v1, . . . , vn),

the induced chart on TM . Let γ : [a, b] → U be a curve. Given ε ∈ R, pick arbitrary c1, . . . , cn ∈
C∞([a, b]) with ci(a) = 0 = ci(b). Define γε(t) := (γ1(t) + εc1(t), . . . , γn(t) + εcn(t)). Note that

we can choose ε small enough so that γε is contained in U . We have that γ0 = γ and so if γ is a

minimum of A then
d

dε

∣∣∣∣
ε=0

Aγε = 0

On the other hand, the chain rule, product rule and fundamental theorem of calculus give that

d

dε

∣∣∣∣
ε=0

Aγε =
d

dε

∫ b

a
L(γε(t), γ

′
ε(t))dt

=

∫ b

a

((
∂L

∂xi

∣∣∣∣
γ̃(t)

)
ci(t) +

(
∂L

∂vi

∣∣∣∣
γ̃(t)

)
d

dt
ci(t)

)
dt

=

∫ b

a

((
∂L

∂xi

∣∣∣∣
γ̃(t)

)
ci(t) +

d

dt

((
∂L

∂vi

∣∣∣∣
γ̃(t)

)
ci(t)

)
− d

dt

(
∂L

∂vi

∣∣∣∣
γ̃(t)

)
ci(t)

)
dt

=

∫ b

a

((
∂L

∂xi

∣∣∣∣
γ̃(t)

)
ci(t)− d

dt

(
∂L

∂vi

∣∣∣∣
γ̃(t)

)
ci(t)

)
dt+

[(
∂L

∂vi

∣∣∣∣
γ̃(t)

)
ci(t)

]b
a

=

∫ b

a

((
∂L

∂xi

∣∣∣∣
γ̃(t)

)
ci(t)− d

dt

(
∂L

∂vi

∣∣∣∣
γ̃(t)

)
ci(t)

)
dt
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=

∫ b

a

[(
∂L

∂xi

∣∣∣∣
γ̃(t)

)
− d

dt

(
∂L

∂vi

∣∣∣∣
γ̃(t)

)]
ci(t)

But since this expression is equal to zero for all c1(t), . . . , cn(t) with ci(a) = ci(b) = 0, the

Fundamental Lemma of Calculus of Variations (see [2] page 57) implies

∂L

∂xi

∣∣∣∣
γ̃(t)

− d

dt

(
∂L

∂vi

∣∣∣∣
γ̃(t)

)
= 0 for all i = 1, · · · , n

These n second order ODE’s are called the Euler-Lagrange equations. Hence we have shown that

a necessary condition for a curve to minimize the action is that it needs to satisfy the Euler-Lagrange

equations.

Remark 3.17. If the Lagrangian is strictly convex, meaning for fixed x ∈M , arbitrary v, w ∈ TxM
and 0 < t < 1 we have L(x, tw + (1− t)v) < tL(x,w) + (1− t)L(x, v), then the converse is locally

true. That is, if a curve γ : [a, b] → M satisfies the Euler-Lagrange equations, then there exists a

subinterval [a1, b1] ⊂ [a, b] such that γ|[a1,b1] minimizes the action. See [1] page 117 for a proof of

this.

Remark 3.18. In the above derivation of the Euler-Lagrange equations, it was assumed that the

Lagrangian was time independent. However, there are many situations in which the Lagrangian

does depend on time, some of which we will see in subsequent sections. But notice that even if the

Lagrangian were of the form L(x1, . . . , xn, v1, . . . , vn, t) the above calculation would be exactly the

same and the Euler-Lagrange equations derived above would not change.

3.3 Examples of Lagrangian Systems

Example 3.19. The Action as the Length Functional

In the case that we are working in a natural system for which the net force is zero, our Lagrangian

reduces to

L = K : TM → R (p, Vp) 7→
1

2
mgp(Vp, Vp).

In this case A(γ) is just a constant times the length of γ. That is,

A(γ) =
1

2
m

∫
γ
gγ(t)(γ

′(t), γ′(t))dt.

A standard result from Riemannian geometry is that the critical points of the length functional are

geodesics. Hence any geodesic is a critical point of A. In particular, if the Riemannian manifold

is Rn with the standard metric, and the net force is zero, then we get that the solutions of the

Euler-Lagrange equations are straight lines. That is, the shortest path between two points is a

straight line. Using this mechanical system we will give, in the section on Hamiltonian mechanics,

another interpretation of geodesic flow.
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Example 3.20. (Natural System with Standard Coordinates)

Consider a natural Lagrangian system in R2 with the standard metric. Let x1, x2 denote

the standard coordinates and let x1, x2, v1, v2 be the induced coordinates on TR2 = R4. In this

coordinate system we have that g = (dx1)2 + (dx2)2. Suppose that a particle of mass m is moving

in R2 under a conservative force field F = −∇U . By definition the Lagrangian L : R4 → R is

defined by

L(x1, x2, v1, v2) := K(x1, x2, v1, v2)− U(x1, x2, v1, v2)

=
1

2
m(v1)2 +

1

2
m(v2)2 − U(x1, x2).

The elements of the Euler-Lagrange equations are

∂L

∂x1
(γ̃(t)) = − ∂U

∂x1
(γ(t)) ,

∂L

∂x2
(γ̃(t)) = − ∂U

∂x2
(γ(t))

and

d

dt

(
∂L

∂v1
(γ̃(t))

)
=

d

dt

(
mv1(γ̃(t))

)
= mγ̈1(t) ,

d

dt

(
∂L

∂v2
(γ̃(t))

)
=

d

dt

(
mv2(γ̃(t))

)
= mγ̈2(t).

Hence, in this setting, the Euler-Lagrange equations are equivalent to Newton’s second law.

This equivalence easily extends to conservative force fields on Rn. The same result also holds for

k particles moving in Rn. To see this, just take the manifold to be Rkn so that the motion of the

k-particles can be described by the motion of one particle.

Example 3.21. (Natural System with Polar Coordinates)

Consider the setup of the previous example, but with polar coordinates (r, θ). Let r, θ, r̃, θ̃

denote the induced coordinates on TR2 = R4. By the chain rule we have ∂
∂r = cos θ ∂

∂x1
+ sin θ ∂

∂x2

and ∂
∂θ = −r sin θ ∂

∂x1
+ r cos θ ∂

∂x2
. It follows that in polar coordinates

g =

[
1 0

0 r2

]
and g−1 =

[
1 0

0 1
r2

]

In these coordinates, the velocity of γ(t) = (r(t), θ(t)) is given by ṙ ∂∂r + θ̇ ∂
∂θ . Therefore the kinetic

energy of the particle at time t is

K(γ̃(t)) = K(r, θ, ṙ, θ̇)

=
1

2
mg

(
ṙ
∂

∂r
, θ̇
∂

∂θ

)
=

1

2
m(ṙ)2 +

1

2
mr2(θ̇)2
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Since L = K − U it follows that

∂L

∂r
= mrθ̇2 − ∂U

∂r
and

∂L

∂θ
= −∂U

∂θ

while

d

dt

(
∂L

∂r̃

∣∣∣∣
γ̃(t)

)
= mr̈ and

d

dt

(
∂L

∂θ̃

∣∣∣∣
γ̃(t)

)
=

d

dt
(mr2θ̇) = mr2θ̈ + 2mrṙθ̇

We have that F = −∇U = −∂U
∂r

∂
∂r −

1
r2
∂U
∂θ

∂
∂θ and by definition, the forces in the r and θ directions

are

Fr =
F · ∂∂r∣∣ ∂
∂r

∣∣ = −∂U
∂r

and Fθ =
F · ∂∂θ∣∣ ∂
∂θ

∣∣ = −1

r

∂U

∂θ

Combining these equalities the first Euler Lagrange equation gives that

Fr = m(r̈ − rθ̇2)

which is the r-component of Newtons second law, while the second equation says

rFθ = −∂U
∂θ

=
d

dt

(
mr2θ̇

)
= mr2θ̈ + 2mrṙθ̇

which is precisely the statement that the torque, rFθ, is the derivative of angular momentum, mr2θ̇.

Remark 3.22. In the above examples we showed that a motion is determined by solving the Euler-

Lagrange equations. However, we do not know if this solution is a maximum or a minimum. To

prove that a solution is a maximium or a minimum usually requires some extra work. However, the

above examples do demonstrate Hamilton’s Principle which is that the path a particle follows

is a critical point of the action A.

These examples lead to the following definition.

Definition 3.23. In a Lagrangian system (M,L), a curve γ : [a, b]→M is called a motion if γ̃(t)

satisfies the Euler-Lagrange equations.

Since the Euler-Lagrange equations were derived from a statement about curves, independent

of the coordinate system chosen, this means that if the equation holds in one coordinate system,

they hold in any other. However, we can also prove this rigorously.

Proposition 3.24. Let (M,L) be a Lagrangian system. If the Euler-Lagrange equations hold in

one coordinate chart then they hold in all coordinate charts.

Proof. Let (U, x1, . . . , xn) and (V, x̃1, . . . , x̃n) denote two arbitrary coordinate charts on M with

non-trivial intersection and let x1, . . . , xn, v1, . . . , vn and x̃1, . . . , x̃n, ṽ1, . . . , ṽn denote the induced
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coordinates on TU and TV respectively. Suppose that γ is a motion in (M,L). That is

∂L

∂xi

∣∣∣∣
γ̃(t)

=
d

dt

(
∂L

∂vi

∣∣∣∣
γ̃(t)

)
.

The chain rule shows that ∂
∂xi

= ∂x̃j

∂xi
∂
∂x̃j

implying that ṽi = ∂x̃i

∂xj
vj . Using these expressions we get

∂ṽi

∂vl
=
∂x̃i

∂xj
δjl =

∂x̃i

∂xl
(3.1)

and

∂ṽi

∂xl
=

∂2x̃i

∂xj∂xl
vj . (3.2)

It follows that

∂L

∂xi

∣∣∣∣
γ̃(t)

=

(
∂L

∂x̃j
∂x̃j

∂xi
+
∂L

∂ṽj
∂ṽj

∂xi

)∣∣∣∣
γ̃(t)

=

(
∂L

∂x̃j
∂ṽj

∂vi
+
∂L

∂ṽj
∂2x̃j

∂xl∂xi
vl
)∣∣∣∣

γ̃(t)

by (3.1) and (3.2)

=

(
∂L

∂x̃j
∂ṽj

∂vi
+
∂L

∂ṽj
∂2x̃j

∂xl∂xi
dxl

dt

)∣∣∣∣
γ̃(t)

since we are substituting γ̃(t).

We also have that

d

dt

(
∂L

∂vi

∣∣∣∣
γ̃(t)

)
=

d

dt

(
∂L

∂ṽj
∂ṽj

∂vi

∣∣∣∣
γ̃(t)

)

=
d

dt

((
∂L

∂ṽj
∂x̃j

∂xi

)∣∣∣∣
γ̃(t)

)
by (3.1)

=
d

dt

(
∂L

∂ṽj

∣∣∣∣
γ̃(t)

)
∂x̃j

∂xi
+

∂L

∂ṽj

∣∣∣∣
γ̃(t)

(
∂2x̃j

∂xl∂xi
dxl

dt

)
by the product rule

=
d

dt

(
∂L

∂ṽj

∣∣∣∣
γ̃(t)

)
∂ṽj

∂vi
+

∂L

∂ṽj

∣∣∣∣
γ̃(t)

(
∂2x̃j

∂xl∂xi
dxl

dt

)
by (3.1).

By combining these two calculations it follows that

∂L

∂xi

∣∣∣∣
γ̃(t)

− d

dt

(
∂L

∂vi

∣∣∣∣
γ̃(t)

)
=

(
∂L

∂x̃j

∣∣∣∣
γ̃(t)

− d

dt

(
∂L

∂ṽj

∣∣∣∣
γ̃(t)

))
∂ṽj

∂vi

To make a comparison between Lagrangian and Hamiltonian mechanics, we compute here the

Euler-Lagrange equations for the simple pendulum and revisit the calculation in the next section.
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Example 3.25. The Simple Pendulum

The simple pendulum is illustrated below.

θ

We have a mass m attached to a weightless rod of length l. That is, we are working in the

1-dimensional submanifold (S1, θ) of (R2, r, θ) which we endow with the standard metric. By

Newton’s second law we know that the equation of motion for the mass is

θ̈ = −g
l

sin θ

Let θ, θ̃ denote the induced coordinates on T ∗S1 ∼= S1 × R. As in example 3.21 we have that

K = 1
2ml

2(θ̃)2. A standard calculation gives that the net force F = −mg
l sin θ is conservative with

potential energy U = mgl(1−cos θ). With the natural Lagrangian L = K−U , let α(t) be a motion

in the Lagrangian system (S1, L). That is, suppose α̃(t) = (α(t), α′(t)) satisfies the Euler-Lagrange

equations, i.e.

∂L

∂θ

∣∣∣∣
α̃(t)

=
d

dt

(
∂L

∂θ̃

∣∣∣∣
α̃(t)

)
=⇒ −mgl sin(α(t)) =

d

dt

(
ml2α′(t)

)
= ml2α′′(t)

This is precisely the statement that the torque exerted by gravity on the pendulum, −mgl sinα(t),

is the product of the moment of inertia, ml2, and angular acceleration, α′′(t).

Remark 3.26. In the above example we found the equations of motion without computing the

tension of the rope, the constraint force. Although this example is simple enough to solve using

Newton’s second law, it gives a glimpse into how the Euler-Lagrange equations can be used to

simplify other complicated systems with constraint forces.
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4 Hamiltonian Mechanics

The next level of formality in studying mechanics is done using Hamilton’s formulation. This

approach is done through the framework of symplectic geometry, which was introduced in section

2. In section 2.4 we saw how the cotangent bundle has a canonical symplectic structure. Where

Lagrangian mechanics studies curves living in TM , Hamilton’s approach instead studies curves in

the symplectic manifold T ∗M . We will see that the outcomes predicted in Hamiltonian mechanics

agree with those from Lagrangian mechanics in situations where both can be applied.

4.1 Hamiltonian Vector Fields

Definition 4.1. A triple (X,ω,H) where (X,ω) is a symplectic manifold and H ∈ C∞(X) is called

a Hamiltonian system and H is called the associated Hamiltonian function.

Fix a Hamiltonian system (X,ω,H). We have that dH ∈ Γ(T ∗X) and by Proposition 2.5 there

exists a corresponding vector field VH ∈ Γ(TX), the symplectic dual of dH. Notice that any

G ∈ C∞(X) induces a vector field VG in this way.

Definition 4.2. Given G ∈ C∞(X), the vector field VG is called the Hamiltonian vector field

associated to G.

We will need the following propositions in section 6.

Proposition 4.3. The flow θt of VH preserves ω (i.e. θ∗tω = ω).

Proof. By Cartan’s magic formula together with the closedness of ω it follows that

LVHω = d(VH ω) + VH dω = d(VH ω) = d(dH) = 0

Proposition 4.4. The Hamiltonian function of a Hamiltonian vector field is constant on its flows.

That is, H ◦ θt = H on the domain of θt.

Proof. By the antisymmetry of the interior product

LVHH = VHH = VH dH = VH (VH ω) = 0

The following is an illustration of this result.

Example 4.5. (Height Function on S2)

The sphere S2 is a symplectic manifold when equipped with the local 2-form dθ ∧ dh, where

θ is a local coordinate for S1 and h is the x3-coordinate of R3. Let H(θ, h) = h. It’s clear that

dH = dh and since ω(VH , ·) = (dθ ∧ dh)(VH , ·) = dh it must be that VH = ∂
∂θ . The vector field

VH = ∂
∂θ has flow ρt : S2 → S2 given by (θ, h) 7→ (θ + t, h), which is clearly constant under the

height function. That is, H ◦ ρt = H.
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By the closedness of ω we have LWω = d(W ω) for any W ∈ Γ(TX). We see that the flow of

an arbitrary W ∈ Γ(TX) preserves ω if W ω is closed. This motivates the following definition.

Definition 4.6. A vector field W ∈ Γ(TX) is said to be Hamiltonian if W ω is exact and is

said to be symplectic if W ω is closed.

By definition all Hamiltonian vector fields are symplectic. However, the converse is not true.

Example 4.7. (Symplectic Vector Field that is not Hamiltonian)

The 2-torus T2 is a symplectic manifold when equipped with local 2-form dθ ∧ dϕ, where θ

and ϕ are two different local coordinates for S1. The vector field ∂
∂θ on T2 is symplectic but not

Hamiltonian since ∂
∂θ (dθ ∧ dϕ) = dϕ is closed but not exact. The 1-form dϕ is locally exact, but

not globally exact since ϕ is only defined on a proper open subset of S1. The same can be said

about the vector field ∂
∂ϕ .

Remark 4.8. The Lie bracket [·, ·] turns the subspace of Hamiltonian vector fields into a Lie

algebra. In fact a stronger result holds; the Lie bracket of any two symplectic vector fields is

Hamiltonian. Indeed, if X,Y are symplectic then, using the identity

[LX , ıY ] = ı[X,Y ] = [ıX ,LY ]

it follows that

[X,Y ] ω = ı[X,Y ]ω

= LX ıY ω − ıY LXω

= d(X Y ω) +X d(Y ω)− Y d(X ω)

= d(ω(Y,X))

Just as the Euler-Lagrange equations determine the motions a Lagrangian system must satisfy,

curves satisfying the Hamilton equations give the motions in a Hamiltonian system. We will see

why this is below.

4.2 Hamilton’s Equations

By Darboux’s theorem we can find local coordinates (q1, . . . , qn, p1, . . . , pn) in X such that ω =

dqj ∧ dpj . We have that VH = Ai ∂
∂qi

+ Bi
∂
∂pi

for some Ai, Bi ∈ C∞(X). It follows that VH ω =

Aidpi − Bidqi. Since dH = ∂H
∂qi
dqi + ∂H

∂pi
dpi, it must be that Ai = ∂H

∂pi
and Bi = −∂H

∂qi
. Hence any

integral curve γ(t) = (α(t), β(t)) of VH must satisfy

d
dtα

i(t) =
(

∂
∂pi
H
)

(γ(t))

d
dtβi(t) = −

(
∂
∂qi
H
)

(γ(t))
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These are the Hamilton equations, a system of 2n first order ODE’s. That is, a curve γ : R→ X

is an integral curve for VH if and only if γ(t) satisfies Hamilton equations. We have shown that

VH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

Definition 4.9. An integral curve γ : R→ X of VH is called a motion of the Hamiltonian system

(X,ω,H). That is, γ is a motion if and only if γ satisfies Hamilton’s equations.

A rather basic example of a Hamiltonian system is the simple pendulum. This was discussed

in the Lagrangian setting as Example 3.25

Example 4.10. (The Simple Pendulum)

Consider the 1-dimensional manifold S1. Let (V, θ) be a chart in S1. We know that the cotangent

bundle (T ∗S1, θ, ξ) is a symplectic manifold with symplectic 2-form ω = dθ ∧ dξ. Consider the

function K : R → R given by ξ 7→ ξ2

2ml2
and V : U → R given by θ 7→ gml(1 − cos θ). Define the

Hamiltonian to be

H : T ∗S1 → R (θ, ξ) 7→ K(ξ) + U(θ).

At first this definition of the Hamiltonian may seem ad hoc; however, after introducing the Legendre

transform we will see where it comes from. In fact, the choice for naming the functions K and U

above is to indicate that the Hamiltonian is to be thought of, in this setting, as the total energy.

It follows that the Hamiltonian vector field is

VH =
∂H

∂ξ

∂

∂θ
− ∂H

∂θ

∂

∂ξ
= mgl sin θ

∂

∂θ
− ξ

ml2
∂

∂ξ

Hence if γ(t) = (α(t), β(t)), where α(t) = θ(γ(t)) and β(t) = ξ(α(t)), is a motion in this Hamiltonian

system then γ(t) satisfies the Hamilton equations

d

dt
(β(t)) =

∂H

∂ξ

∣∣∣∣
γ(t)

=⇒ β′(t) = mgl sin(α(t))

and
d

dt
(α(t)) = − ∂H

∂θ

∣∣∣∣
γ(t)

=⇒ α′(t) = −β(t)

ml2

Combining these two equations it follows that

α′′(t) = −g
l

sin θ

which is precisely the motion of the pendulum as prescribed by Newton’s second law. That is, the

integral curves of the Hamiltonian vector field give the motions of this mechanical system.
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4.3 The Poisson Bracket

Given a symplectic manifold (X,ω), the Poisson bracket turns C∞(X) into a Lie algebra. Suppose

that the symplectic manifold also has a Hamiltonian H ∈ C∞(X). In the same way the Lie

bracket measures commutativity of vector fields, the Poisson bracket measures the commutativity

of functions with the Hamiltonian vector field.

Definition 4.11. Given f, g ∈ C∞(X) their Poisson bracket is defined to be

{f, g} := ω(Vf , Vg).

By definition

{f, g} := ω(Vf , Vg) = (Vf ω)(Vg) = df(Vg) = Vgf.

Using this calculation, is not hard to verify that {·, ·} does indeed turn C∞(X) into a Lie algebra.

Moreover, there is a Leibniz rule;

{f, gh} = g{f, h}+ {f, g}h.

A straightforward computation shows that C∞(X) 3 H 7→ VH ∈ Γ(TX) is a Lie algebra anti-

homomorphism.

Proposition 4.12. For f ∈ C∞(X) we have {f,H} = 0 ⇐⇒ f ◦ θt = f on the domain of θt,

where θt is the flow of VH . That is, {f,H} = 0 if and only if f is constant along the integral curves

of VH .

Proof.

f ◦ θt = f ⇐⇒ θ∗t f = f

⇐⇒ LVHf = 0

⇐⇒ VHf = 0

⇐⇒ (df)(VH) = 0

⇐⇒ (Vf ω)(VH) = 0

⇐⇒ ω(VH , Vf ) = 0

⇐⇒ {H, f} = 0 = {f,H}

Definition 4.13. A function f such that {f,H} = 0 is called an integral of motion.

By definition, if two functions f1, f2 commute (with respect to {·, ·}) then ω(Xf1 , Xf2) = 0,

showing that given a collection of commuting integrals of motion, they generate an isotropic sub-

space of TpM . But in the paragraph following Definition 2.6, we showed that given a subspace Y
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of a vector space V we have dimV = dimY + dimY Ω. If Y is isotropic then Y ⊂ Y Ω so that an

isotropic subspace has dimension at most half the dimension of M . A Hamiltonian system is called

(completely) integrable if there exists n Poisson commuting independent integrals of motion

f1 = H, f2, . . . , fn.

Theorem 4.14. (Arnold-Lioville Theorem, [1])

Let (X,ω,H) be a completely integrable Hamiltonian system of dimension 2n with integrals of

motion f1 = H, f2, . . . , fn. Consider the function f : TX → Rn defined by f := (f1, . . . , fn). Let

c ∈ Rn be a regular value of f . That is, c is a point in Rn such that for every point in f−1(c) the

differential of f is surjective. Then f−1(c) is a Lagrangian submanifold of X. Moreover we have

(a) If the flows of the Hamiltonian vector fields Xf1 , . . . , Xfn starting at a point p ∈ f−1(c) are

complete, then the connected component of f−1(c) containing p is a homogeneuous space for

Rn. This connected component has local coordinates ϕ1, . . . , ϕn, called angle coordinates,

for which the flows of Xf1 , . . . , Xfn are linear.

(b) There exists coordinates ψ1, . . . , ψn, called action coordinates, such that each ψi is an integral

of motion and also such that ϕ1, . . . , ϕn, ψ1, . . . , ψn form Darboux coordinates.

Proof. This is Theorem 18.12 in [1]. A proof of part (a) can be found in [1], page 110. For a proof

of part (b) see [2], pages 271-274 and 279-281.

There is a rather simple expression of the Poisson bracket in Darboux coordinates.

Proposition 4.15. Let (M,ω) be a symplectic manifold and let (U, q1, . . . , qn, p1, . . . , pn) be a

Darboux chart. Then for f, g ∈ C∞(M) we have {f, g} = ∂g
∂pi

∂f
∂qi
− ∂f

∂pi
∂g
∂qi

.

Proof. In the above Darboux coordinates we have that ω = dqi ∧ dpi. Hence

{f, g} := ω(Vf , Vg)

= (dqi ∧ dpi)
(
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi
,
∂g

∂pi

∂

∂qi
− ∂g

∂qi
∂

∂pi

)
= − ∂f

∂pi

∂g

∂qi
− (− ∂g

∂pi

∂f

∂qi
)

=
∂g

∂pi

∂f

∂qi
− ∂f

∂pi

∂g

∂qi
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5 The Legendre Transform

We have seen the definition of motions in a Lagrangian system (M,L). These are just curves

whose derivatives are solutions to the Euler-Lagrange equations. We have also seen how motions

are defined in a Hamiltonian system (X,ω,H). These are just curves that satisfy the Hamilton

equations. But given a Lagrangian system (M,L) we can always consider the cotangent bundle to

get a symplectic manifold (T ∗M,ω). The Legendre transform provides the link between Lagrangian

mechanics in (M,L) and Hamiltonian mechanics in (T ∗M,ω = −dα,H), where H ∈ C∞(T ∗M)

will be defined below. Conversely, given a Hamiltonian system on a manifold which is a cotangent

bundle, (T ∗M,ω = −dα,H) we can consider, under the Legendre transform, motions in an induced

Lagrangian system (M,L). In section 6 we will see how the Legendre transform relates the two

statements of Nöether’s theorem.

5.1 The Legendre Transform on a Vector Space

Let V denote an n-dimensional vector space with ordered basis {e1, . . . , en} and let {v1, . . . , vn}
denote the coordinate functions. Fix L ∈ C∞(V ).

Definition 5.1. The Legendre transform associated to L is the map

ΦL : V → V ∗ p 7→ ∂L

∂v
(p)

where ∂L
∂v (p) is the co-vector ( ∂L

∂v1
(p), . . . , ∂L∂vn (p)) ∈ T ∗p V ∼= V ∗

In other words, ΦL(p) is the Jacobian of L evaluated at p.

Definition 5.2. The dual function associated to L is the function L∗ : V ∗ → R defined by

L∗ : V ∗ → R α 7→ sup{α · p− L(p) , p ∈ V }

Notice that if V ∗ has coordinates {ξ1, . . . , ξn} with respect to the dual basis {e1, . . . , en} then

we can take the Legendre transform of L∗ which is just ΦL∗(p) = Jac(L∗)|p =
[
∂L∗

∂ξi
(p)
]
.

Suppose now that V = Rn. For the rest of this section, let (x1, . . . , xn) denote the standard

coordinates on Rn and let (x1, . . . , xn, v1, . . . , vn) and (x1, . . . , xn, ξ1, . . . , ξn) be the induced coor-

dinates on TRn and T ∗Rn respectively.. Fix a smooth function L ∈ C∞(TRn) = C∞(R2n). For

what is to follow, let x = (x1, . . . , xn), v = (v1, . . . , vn), a = (a1, . . . , an) and ξ = (ξ1, . . . , ξn) ∈ Rn

be arbitrary. For each x ∈ Rn the map L gives an induced map

Lx : Rn → R , v 7→ L(x, v)
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Recall that the Hessian of Lx is the map Hess(Lx) : Rn → L(Rn,Rn) defined by

Hess(Lx) :=

[
∂2Lx
∂vi∂vj

]
Remark 5.3. For fixed x ∈ Rn the Legendre transform is a function from Rn to Rn

ΦLx : Rn → Rn , p 7→ ∂Lx
∂v

(p)

and so by definition of the Hessian it follows that

Hess(Lx) =

[
∂2Lx
∂vivj

]
= Jac(ΦLx)

Definition 5.4. A function L ∈ C∞(TRn) is called strongly convex if for each p ∈ Rn the sym-

metric matrix Hess(Lx(p)) satisfies uTHess(Lx(p))u > 0 for all non-zero u ∈ Rn (i.e. Hess(Lx(p))

is a positive definite matrix).

Proposition 5.5. If L ∈ C∞(TRn) is strongly convex then L is strictly convex.

Proof. Let x ∈ Rn be arbitrary. We need to show that Lx : Rn → R is strictly convex. For

arbitrary, p, q ∈ Rn with q 6= 0 let (Lx)p,q denote the function

(Lx)p,q : R→ R , t 7→ Lx(p+ tq).

Notice that Lx is strictly convex if and only if (Lx)p,q is strictly convex for all p, q ∈ Rn. But

a standard calculation shows that
(
qT ·Hess(Lx)p,q · q

)
= (Lx)′′p,q. By assumption, it follows that

(Lx)′′p,q(t) > 0 for all t ∈ R and p, q ∈ Rn. Thus, from basic calculus, it follows that (Lx)p,q is

strictly convex for all p, q ∈ Rn.

Proposition 5.6. Fix x ∈ Rn and suppose that Lx : Rn → R is strongly convex. Then the following

are equivalent

1. Lx has a critical point (i.e. there exists v0 ∈ Rn such that ∂Lx
∂vi

(v0) = 0 for all i = 1, . . . , n).

2. Lx has a local minimum

3. Lx has a unique global minimum

Proof. (1) =⇒ (2) Suppose that v0 is a critical point Lx. By hypothesis Hess(Lx)|v0 is positive

definite and so has only positive eigenvalues. Thus by the second derivative test (see [14], Theorem

6.37) L has a local minimum at p.

(2) =⇒ (3) Suppose that v0 is a local minimum of L. Then by definition there exists a neigh-

bourhood U ⊂ Rn such that v0 ∈ U and L(v0) ≤ L(u) for all u ∈ U . Suppose that v0 is not a global

minimum. Then there exists w ∈ Rn such that L(w) < L(v0). But then for arbitrary θ ∈ (0, 1), by
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Proposition 5.5, we have that L((1− θ)v0 + θw) < L(v0)− θL(v0) + θL(w) < L(v0). But this is a

contradiction since we can choose θ sufficiently small so that (1− θ)v0 + θw ∈ U .

(3) =⇒ (1) This is known from basic calculus.

Proposition 5.7. Fix an arbitrary x ∈ Rn. If Lx ∈ C∞(TxRn) = C∞(Rn) is strongly convex then

ΦLx : TxRn → ΦL(TxRn) is a diffeomorphism.

Proof. By definition, for arbitrary v0 ∈ TxRn ∼= Rn we have ΦLx(v0) = ∂Lx
∂v (v0) ∈ T ∗xRn = Rn. By

assumption, the Jacobian of ΦLx is positive definite. That is, Hess(Lx)|v0 is positive definite so in

particular

det

[
∂

∂vj
ΦLx(v0)

]
= det

[
∂

∂vj
∂

∂vi
Lx(v0)

]
> 0

Thus, by the inverse function theorem, ΦLx is a local diffeomorphism. Since a bijective local

diffeomorphism is a diffeomorphism, it suffices to show that ΦLx : TxRn = Rn → ΦLx(Rn) is

injective. So suppose that p, q ∈ Rn = TxRn are such that p 6= q. Let w = q − p so that w 6= 0.

Since Lx is smooth, we have that Lx is smooth on the line segment {p + tw ; 0 ≤ t ≤ 1}. By the

chain rule
d

dt
ΦLx(p+ tw) = (Jac(ΦLx)(p+ tw))w = Hess(Lx(p+ tw))w

We also have that ΦLx(q)− ΦLx(p) =
∫ 1

0
d
dtΦLx(p+ tw)dt. Putting this together yields

wT (ΦLx(q)− ΦLx(p)) = wT
(∫ 1

0

d

dt
ΦLx(p+ tw)dt

)
= wT

(∫ 1

0
Hess(Lx(p+ tw))wdt

)
=

∫ 1

0
wTHess(Lx(p+ tw))w dt

However, Hess(Lx) is positive definite on Rn and so this last expression is positive. Thus it can’t

be that ΦLx(p) = ΦLx(q). Hence ΦLx = ∂
∂vLx is injective.

Proposition 5.8. If Lx is strongly convex then for all ξ ∈ ΦLx(Rn) we have

L∗x(ξ) = ξ · Φ−1
Lx

(ξ)− Lx(Φ−1
Lx

(ξ))

Proof. Fix ξ ∈ ΦLx(Rn) ⊂ T ∗xRn = Rn. Consider the function g : Rn → R defined by g(v) =

ξ · v − Lx(v). It’s clear that g is smooth. We have that

∂

∂v
g(v) = ξ − ∂

∂v
Lx(v) = ξ − ΦLx(v)

and so

Hess(g)|v = −Hess (Lx)|v
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Hence, by hypothesis, it follows Hess(g(v)) is negative definite. Also, by Proposition 5.7 there

exists a unique q ∈ Rn such that ΦLx(q) = ∂Lx
∂v (q) = ξ. That is, ∂

∂vg(q) = 0. But since Hess(g) is

negative definite, by Proposition 5.6, it follows q is a global maximum for g. Hence g(a) ≤ g(q) for

all a ∈ Rn. But then

L∗x(ξ) = sup{ξa− f(a) , a ∈ Rn}

= sup{g(a) , a ∈ Rn}

= g(q)

= ξ(Φ−1
Lx

(ξ))− Lx(Φ−1
Lx

(ξ))

Theorem 5.9. If Lx is strongly convex then ΦL∗
x

= Φ−1
Lx

.

Proof. By definition, the Legendre transform of L∗ is

ΦL∗
x

: T ∗xRn → TxRn , ξ 7→
∂L∗x
∂ξ

Proposition 5.8 showed that for all ξ ∈ ΦLx(U)

L∗x(ξ) = ξ · Φ−1
Lx

(ξ)− Lx(Φ−1
Lx

)(ξ)

Thus

ΦL∗
x
(ξ) =

∂L∗x
∂ξ

(ξ)

= Φ−1
Lx

(ξ) + ξ

(
∂

∂ξ
Φ−1
Lx

(ξ)

)
−
(
∂Lx
∂v

(Φ−1
Lx

(ξ)) ·
(
∂ΦLx−1

∂ξ
(ξ)

))
by the chain rule

= Φ−1
Lx

(ξ) + ξ

(
∂

∂ξ
Φ−1
Lx

(ξ)

)
−

(
ΦLx(Φ−1

Lx
(ξ)) ·

(
∂Φ−1

Lx

∂ξ
(ξ)

))
by definition

= Φ−1
Lx

(ξ) + ξ

(
∂

∂ξ
Φ−1
Lx

(ξ)

)
− ξ ·

(
∂Φ−1

Lx

∂ξ
(ξ)

)
= Φ−1

Lx
(ξ)

Remark 5.10. Let L ∈ C∞(Rn) be a strongly convex function. We say that L has quadratic

growth at infinity if there exists a positive definite quadratic form Q on Rn and a constant K such

that L(p) ≥ Q(p)−K for all p ∈ Rn. If L has quadratic growth at infinity, then ΦL(Rn) = (Rn)∗.

That is, if L is strongly convex and has quadratic growth at infinity, then ΦL : TRn → T ∗Rn is a

diffeomorphism. This is exercise 54 in [1]. We do not give a proof of this result as we do not need

it for what is to follow.
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Using the above theorems we can show that the dual function of a strongly convex Lagrangian

is strongly convex.

Proposition 5.11. If L ∈ C∞(TRn) is strongly convex, then H = L∗ ∈ C∞(T ∗Rn) is strongly

convex.

Proof. Suppose that L ∈ C∞(Rn) is strongly convex. We need to show that H = L∗ ∈ C∞((Rn)∗)

is strongly convex. That is, for fixed x ∈ Rn, we need to show that for all ξ ∈ Rn we have

Hess(Hx(ξ)) is positive definite. We showed in the proof of Theorem 5.9 that ∂L∗
x

∂ξ (ξ) = Φ−1
Lx

(ξ). We

also have that

ΦLx(Φ−1
Lx

(ξ)) = ΦLx(ΦHx(ξ)) = ξ.

Differentiating this equality with respect to ξ, the chain rule gives that(
∂ΦLx

∂v
(ΦHx(ξ))

)(
∂

∂ξ
ΦHx(ξ)

)
= 1.

Since ΦLx = ∂Lx
∂v and ΦHx = ∂L∗

x
∂ξ = ∂Hx

∂ξ this equation is the same as

(
∂2Lx
(∂v)2

(ΦHx(ξ))

)(
∂2Hx

(∂ξ)2
(ξ)

)
= 1.

That is we have shown that

Hess(Hx(ξ)) = Hess(Lx (ΦHx(ξ)))−1.

Since the inverse of a positive definite matrix is positive definite, the result follows.

Corollary 5.12. (Involutivity of the Legendre Transform and Dual Function )

Let L ∈ C∞(Rn) be strongly convex. If H = L∗, then H∗ = L. In particular, this means that

ΦH∗ = ΦL∗∗ = ΦL.

Proof. Let L ∈ C∞(Rn) be strongly convex. From Proposition 5.11 we have that H = L∗ is strongly

convex. Hence

H∗(x, v) = v · Φ−1
Hx

(v)−Hx(Φ−1
Hx

(v)) by Proposition 5.8 and 5.11

= v · Φ−1
Hx

(v)−
((

Φ−1
Hx

(v)
)
·
(
Φ−1
Lx

(Φ−1
Hx

(v))
)
− Lx

(
Φ−1
Lx

(Φ−1
Hx

(v))
))

by Proposition 5.8

= v · Φ−1
Hx

(v)−
((

Φ−1
Hx

(v)
)
· v − Lx(v)

)
since Φ−1

Lx
= ΦHx

= L(x, v)

40



5.2 The Legendre Transform on Manifolds

The Legendre transform can be extended naturally to act on manifolds since, at every point, the

tangent and cotangent spaces are vector spaces.

Let M be a n-dimensional manifold and (U, x1, . . . , xn) an arbitrary coordinate chart. By

definition, U is diffeomorphic to an open subset of Rn. We have the induced coordinate charts

(TU, x1, . . . , xn, v1, . . . , vn) and (T ∗U, x1, . . . , xn, ξ1, . . . , ξn) on TM and T ∗M respectively, and we

know that TU ∼= U × Rn ∼= T ∗U . Suppose that L ∈ C∞(TU) is strongly convex. We define the

Legendre transform associated to L to be the map

ΦL : TU → ΦL(TU) (x, v) 7→ ∂L

∂v
(x, v).

For a fixed x ∈M , we have that Lx ∈ C∞(TxU) is strongly convex with respect to v1, . . . , vn. The

Legendre transform induces the map

ΦLx : TxU → T ∗xU Wx 7→ ΦLx(Wx) =
∂Lx
∂v

(Wx)

That is, ∂Lx
∂v (Wx) is the n-tuple

(
∂Lx
∂v1

(Wx), · · · , ∂Lx∂vn (Wx)
)
. For each x ∈ M the dual function

associated to L is again defined to be the map

L∗x : T ∗xU → R ξx 7→ sup{ξx ·Wx − Lx(Wx) ; Wx ∈ TxU}

All of the results from the previous section still hold. That is, for each x ∈M , we have

• Lx has a critical point ⇐⇒ Lx has a local minimum ⇐⇒ Lx has a unique global minimum.

• ΦLx : TxU → ΦLx (TxU) is a diffeomorphism.

• For all ξx ∈ ΦLx (TxU) we have L∗x(ξx) = ξx · Φ−1
Lx

(ξx)− Lx(Φ−1
Lx

(ξx)).

• ΦL∗
x

= Φ−1
Lx
.

• If L ∈ C∞(TU) is strongly convex then H = L∗ ∈ C∞(ΦL(TU)) is strongly convex.

• If L ∈ C∞(TU) is strongly convex and H = L∗ ∈ C∞(ΦL(TU)) then H∗ = L. That is, the

dual function and Legendre transform are involutive.

5.3 The Legendre Transform Relates Lagrangian and Hamiltonian Mechanics

Let (M,L) be an arbitrary Lagrangian system, where L ∈ C∞(TM) is strongly convex. In the

previous section we defined L∗ ∈ C∞(T ∗M), the dual function of L. Moreover, we know that

T ∗M is a symplectic manifold when equipped with the canonical 2-form ω. Hence, we see that

the Hamiltonian system (T ∗M,ω,H = L∗) arises naturally from the Lagrangian system (M,L).

Similarly, given a Hamiltonian system of the form (T ∗M,ω,H) for some strongly convex H ∈

41



C∞(T ∗M), we can define the dual function H∗ ∈ C∞(TM). This gives the Lagrangian system

(M,L = H∗). Since the Legendre transform and the dual function are involutive, we see that

these induced systems are well defined and ‘inverse’ to each other. This motivates the following

definition.

Definition 5.13. Given a Lagrangian system (M,L) the induced Hamiltonian system is the

triple (T ∗M,ω,H := L∗) where ω is the canonical 2-form and T ∗M . Similarly, given a Hamiltonian

system of the form (T ∗M,ω,H), the induced Lagrangian system is the pair (M,L := H∗).

Remark 5.14. Let (U, x1, . . . , xn) be a coordinate chart in a manifold M . We have the induced

coordinate charts (TU, x1, . . . , xn, v1, . . . , vn) and (T ∗U, x1, . . . , xn, ξ1, . . . , ξn) on TM and T ∗M

respectively. Proposition 5.7 showed that ΦL : TU → ΦL(TU) is a diffeomorphism, while Theo-

rem 5.9 showed that Φ−1
L = ΦL∗ . Hence, in the induced Hamiltonian system (T ∗M,ω,H = L∗)

we have the coordinate chart (ΦL(TU), x1, . . . , xn, ξ1, . . . , ξn) where each ξi satisfies ξi = ∂L
∂vi

.

We also have that Φ−1
L = ΦH . Similarly, if we are given a Hamiltonian system of the form

(T ∗M,ω,H), then the Legendre transform ΦH : T ∗U → ΦH(T ∗U) gives an induced coordinate

chart (ΦH(T ∗U), x1, . . . , xn, v1, . . . , vn) where each vi = ∂H
∂ξi

. Also, we have that Φ−1
H = ΦL.

Given a natural Lagrangian system, the Hamiltonian function in the induced Hamiltonian

system is always the total energy.

Proposition 5.15. Let (M, g) be a Riemannian manifold with Lagrangian L = K−U ∈ C∞(T ∗M).

Then H := L∗ = E = K + U .

Proof. By definition, L = 1
2mgijv

ivj − U . For (x, v) ∈ TM , let (x, ξ) = ΦL(x, v) ∈ Γ(T ∗M). That

is,

ξk =
∂Lx
∂vk

=
∂

∂vk

(
1

2
mgijv

ivj
)

since U is independent of v1, . . . , vn

=
1

2
mvjgijδ

i
k +

1

2
mvigijδ

j
k by the product rule

= mgikv
i

Letting gij = [g−1]ij it follows that

vi =
1

m
gikξk.

Since Φ−1
L (x, ξ) = Φ−1

L (ΦL(x, v)) = (x, v), by Proposition 5.8 it follows that

H(x, ξ) = L∗(x, ξ)

= ξiv
i − L(x, v)
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= mgijv
jvi − 1

2
mgijv

ivj + U(x)

=
1

2
mgijv

ivj + U(x)

= K + U

Remark 5.16. Notice that if the metric is the standard one and the manifold is Rn, then in

TM = R2n motions are described by their position and velocity coordinates. However, in the

induced Hamiltonian system we have ξi = mvi and so motions in here are described at each time

by specifying position and momentum coordinates.

A simple calculation, which we show now, demonstrates that if the natural Lagrangian is time

independent then the total energy is conserved. In section 6 we will see that time independence of

the natural Lagrangian can be thought of as a ‘symmetry’ and so conservation of energy can also

be seen as a consequence of Nöether’s theorem.

Proposition 5.17. In a natural Lagrangian system, if the Lagrangian is independent of time then

energy is conserved. That is, if L(x1, . . . , xn, v1, . . . , vn, t) is such that ∂L
∂t = 0 then d

dtH = 0.

Proof. Let γ(t) be a motion in (M,L). That is, suppose γ̃(t) = (γ(t), γ′(t)) satisfies the Euler

Lagrange equations. We have that

d

dt
L(γ(t), γ′(t), t) =

∂L

∂xi

∣∣∣∣
(γ̃(t),t)

γ′(t) +
∂L

∂vi

∣∣∣∣
(γ̃(t),t)

γ′′(t) +
∂L

∂t

∣∣∣∣
(γ̃(t),t)

=
d

dt

∂L

∂vi

∣∣∣∣
(γ̃(t),t)

γ′(t) +
∂L

∂vi

∣∣∣∣
(γ̃(t),t)

γ′′(t) +
∂L

∂t

∣∣∣∣
(γ̃(t),t)

by the Euler-Lagrange equations

=
d

dt

(
∂L

∂vi

∣∣∣∣
(γ̃(t),t)

γ′(t)

)
+
∂L

∂t

∣∣∣∣
(γ̃(t),t)

by the product rule

=
d

dt

(
ξi(γ̃(t))vi(γ̃(t))

)
+
∂L

∂t

∣∣∣∣
(γ̃(t),t)

by definition

That is
d

dt

(
L(x, v, t)− ξivi

)
=
∂L

∂t

∣∣∣∣
(γ̃(t),t)

.

However, by proposition 5.8 we have that L(x, v, t) − ξivi = −L∗ := −H. Hence if ∂L
∂t = 0 then

d
dtH = 0. By Proposition 5.15 this means that the total energy is conserved.

The first example we give that demonstrates how the Legendre transform relates Hamiltonian

mechanics and Lagrangian mechanics is by showing how it translates motions in one formulation

to motions in the other. To see this we first need the following lemma.
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Lemma 5.18. Assume that L ∈ C∞(TM) is strongly convex. As above, if (TU, x1, . . . , xn, v1, . . . , vn)

is a coordinate chart on TM we get the induced chart (ΦL(TU), x1, . . . , xn, ξ1, . . . , ξn) on T ∗U ,

where by definition (x, ξ) = ΦL(x, v). Let H = L∗ ∈ C∞(T ∗U). The claim is that ∂L
∂x (x, v) =

−∂H
∂x (x, ξ)

Proof. By Proposition 5.8, Hx(ξ) = L∗x(ξ) = ξ(Φ−1
Lx

(ξ))−L(Φ−1
Lx

(ξ)). However, Φ−1
Lx

(ξ) = Φ−1
Lx

(ξ) =

Φ−1
Lx

(ΦLx(v)) = v and so

H(x, ξ) = ξ · v − L(x, v) = ξiv
i − L(x, v) (5.1)

We know that ∂vj

∂xi
= 0 for all 1 ≤ i, j ≤ n; however, by definition ξ is dependent on x and v. Hence,

taking the total derivative of H(x, ξ) with respect to xi, the left hand side of (5.1) is

∂H

∂xi
(x, ξ) +

∂H

∂ξj
(x, ξ)

∂ξj
∂xi

(x, v)

while the total derivative of the right hand side is

∂ξj
∂xi

(x, v)vj −
(
∂L

∂xi
(x, v)

)

However, by hypothesis we have that ∂H
∂ξi

(x, ξ) =
(
Φ−1
L (ΦL(x, v))

)i
= vi and so combining these

equalities finishes the proof.

This result gives us the following two theorems.

Theorem 5.19. If a curve γ : R→ U satisfies the Euler-Lagrange equations on some chart U ⊂M ,

then ΦL ◦ γ̃ : [a, b]→ T ∗M is an integral curve of the Hamiltonian vector field VH .

Proof. Let (U, x1, . . . , xn) ⊂M be an arbitrary chart. We have the induced charts (TU, x1, . . . , xn, v1, . . . , vn)

and (ΦL(TU), x1, . . . , xn, ξ1, . . . , ξn) on TM and T ∗M respectively. By hypothesis, γ̃(t) = (γ(t), γ′(t))

satisfies the Euler-Lagrange equations. That is

∂L

∂xi
(γ̃(t)) =

d

dt

(
∂L

∂vi
(γ̃(t))

)
Let Ψ(t) = ΦL(γ̃(t)) = ΦL(γ(t), γ′(t)) = (γ(t),ΦLγ(t)(γ

′(t))). It needs to be shown that Ψ(t)

satisfies Hamilton’s equations. That is, it needs to be shown that

d
dtγ

i(t) = ∂H
∂ξi

(Ψ(t))

d
dt(ΦLγ(t)(γ

′(t)))i(t) = − ∂H
∂xi

(Ψ(t))

But since Ψ(t) = ΦL(γ̃(t)) it follows that ΦH(Ψ(t)) = γ̃(t). Hence

γ′(t) =
∂H

∂ξ
(Ψ(t))
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This is precisely the first line of Hamilton’s equations. The second line also holds since

d

dt
(ΦLγ(t)(γ

′(t)))i =
d

dt

∂L

∂vi
(γ̃(t)) by definition

=
∂L

∂xi
(γ̃(t)) by the Euler-Lagrange equations

= −∂H
∂xi

(γ(t),ΦLγ(t)(γ
′(t))) by the Lemma

= −∂H
∂xi

(Ψ(t)) by definition

A stronger version of the converse is also true:

Theorem 5.20. Given a Lagrangian system (M,L), where L ∈ C∞(TM) is strongly convex, let

(T ∗M,ω,H = L∗) be the induced Hamiltonian system. If Ψ : R → T ∗M is an integral curve for

VH then Ψ = ΦL ◦ γ for some motion γ in (M,L).

Proof. Let Ψ(t) = (α(t), β(t)) ∈ T ∗M be an integral curve for VH . Then Ψ(t) satisfies the Hamilton

equations
d
dtα

i(t) = ∂H
∂ξi

(Ψ(t))

d
dtβi(t) = − ∂H

∂xi
(Ψ(t))

Here α is a curve α : R→M . It follows that

α̃(t) = (α(t), α′(t)) = (α(t),
∂H

∂ξ
(Ψ(t))) = (α(t),ΦHα(t)(β(t)))

so that

ΦL(α̃(t)) = (α(t),ΦLα(t)ΦHα(t)(β(t)) = (α(t), β(t))) = Ψ(t)

It suffices to show that α̃(t) satisfies the Euler-Lagrange equations. Indeed

∂L

∂x
(α̃(t)) =

∂Lα(t)

∂x
(
d

dt
α(t)) by definition

= −
∂Hα(t)

∂x
(β(t)) by the Lemma 5.17

= −∂H
∂x

(Ψ(t)) by definition

=
d

dt
(β(t)) by Hamilton’s equations

=
d

dt
ΦLα(t)

(
ΦHα(t)(β(t))

)
since ΦL∗ = Φ−1

L

=
d

dt
ΦLα(t)(

∂H

∂ξ
(Ψ(t))) by definition

=
d

dt
ΦLα(t)(

d

dt
(α(t))) by Hamliton’s equation
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=
d

dt

∂L

∂v
(α̃(t)) by definition

Example 5.21. (Geodesic Flow in Hamiltonian Mechanics)

We can now show how the Legendre transform relates the concept of geodesic flow in Lagrangian

and Hamiltonian mechanics. Let (M, g, L) be a natural Lagrangian system, where L ∈ C∞(TM) is

strongly convex. Recall that in section 2.7 we derived the geodesic flow as the symplectomorphism

generated by the Riemann distance function. In other words, we set our Lagrangian to be

L : TM → R (x, Vx) 7→ 1

2
gx(Vx, Vx).

As demonstrated in Example 3.19 if the net force on the mechanical system is 0, then the solutions

to the Euler-Lagrange equations are geodesics. Consider what happens if we translate this system

into the Hamiltonian setting. Using the argument in the proof of Proposition 5.15 we have that

L∗(x, ξ) =
1

2
gijξiξj .

By definition our Hamiltonian vector field is

VH :=
∂H

∂ξi

∂

∂xi
− ∂H

∂xi
∂

∂ξi
.

The integral curves, γ(t) = (x(t), ξ(t)), of VH must satisfy Hamilton’s equations:

d
dtx

k(t) = ∂H
∂ξk

d
dtξk(t) = − ∂H

∂xk

We have that

∂H

∂ξk
=

1

2
gijδki ξj +

1

2
gijξiδ

k
j = gkjξj (5.2)

and

− ∂H
∂xk

= −1

2

∂gij

∂xk
ξiξj (5.3)

To make the notation clearer, we will denote the time derivative using dot notation. If γ(t)

satisfies Hamilton’s equations then by equation (5.2) we have that ξk = gakẋ
a. Plugging this into

the second line of Hamilton’s equations and using (5.3) we get that

ξ̇k =
∂gak
∂xq

ẋaẋq + gakẍ
a = −1

2

∂gij

∂xk
giagjpẋ

aẋp (5.4)
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We can simplify this expression using the following claim.

Claim 5.22. We have that −∂gij

∂xk
giagjp =

∂gap
∂xk

Proof. We know that gapg
pj = δja. Differentiating this with respect to xk we get that

∂gap
∂xk

gpj + gap
∂gpj

∂xk
= 0.

Multiplying both sides by gji and summing over j gives

∂gap
∂xk

δpi = −∂g
pj

∂xk
gapgij

Using this claim, equation (5.4) becomes

∂gak
∂xq

ẋaẋq + gakẍ
a =

1

2

∂gap
∂xk

ẋaẋp.

Rearranging, we get that if γ(t) satisfies Hamilton’s equations then

ẍb = gkb
(

1

2

∂gap
∂xk

ẋaẋp − ∂gak
∂xq

ẋaẋq
)

= −1

2
gkb
(
∂gak
∂xp

ẋaẋp +
∂gpk
∂xa

ẋaẋp − ∂gap
∂xk

ẋaẋp
)

This is precisely the geodesic equation. Hence, a curve satisfying the Hamilton equations is a

geodesic. Conversely, let γ(t) = (x1(t), . . . , xn(t)) be a geodesic in M . Then if we set ξk = gakẋ
a,

applying the above argument to ψ(t) = (x1(t), . . . , xn(t), ξ1(t), . . . , ξn(t)) shows that ψ is an integral

curve of VH .

Remark 5.23. As in the previous example, consider a Lagrangian of the form L = K. Then, as

in the proof of Proposition 5.15, we have for fixed x ∈M

(ΦL(x, v))i = gjiv
j

That is, for Wx = W i ∂
∂xi

∣∣
x
∈ TxM we have that

ΦLx(Wx) = gjiW
idxj .

Hence in this case the Legendre transform is just the musical isomorphism

ΦLx : TxM → T ∗xM W 7→ g(W, ·).

In section 2.7 we showed that the symplectomorphism generated by the Riemann distance

function was the geodesic flow

ϕ : TM → TM V 7→ (γV (1), γ′V (1)).
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But in order to find this symplectomorphism we identified T ∗M with TM via the musical isomor-

phism. In fact, now we can see that all we were doing in that section was solving the Hamilton

equations. We were trying to find V and W such that g(V, ·) = daL and g(W, ·) = −dbL. We

took geodesics (motions in (M,L)) and mapped them under the Legendre transform to motions in

(T ∗M,ω,H). It follows that an equivalent way to define the geodesic flow is as follows.

Definition 5.24. Consider the smooth function

H : T ∗M → R (x, ξ) 7→ 1

2
gij(x)ξiξj

and its Hamiltonian vector field

VH :=
∂H

∂ξi

∂

∂xi
− ∂H

∂xi
∂

∂ξi
.

The flow generated by VH is called the geodesic flow.

Example 5.25. (The Simple Pendulum Under the Legendre Transform)

Recall that in Example 3.25 we found the Euler-Lagrange equations for the simple pendulum.

We also saw in Example 4.10 how it was described in the Hamiltonian formulation. Noticing that

the pendulum was constrained to S1, we worked in a coordinate chart (U, θ) of S1 and considered

(TS1, θ, θ̃). With the metric on S1 induced from R2, i.e. g = g22 = l2(dθ)2, we saw that the

kinetic energy was K = 1
2ml

2(θ̃)2 and the potential energy was U = mgl(1 − cos θ). Recall that

in the Hamiltonian setting, we didn’t change the potential, but we set the kinetic energy to be

K = ξ2

2ml2
. To see why we did this, we apply the Legendre transform to the Lagrangian set up. Let

(ΦL(TU), θ, ξ) be a chart in the induced Hamiltonian system so that ξ = ∂L

∂θ̃
= ∂

∂θ̃
(1

2ml
2θ̃2) = ml2θ̃.

It follows that θ̃ = ξ
ml2

. Thus,

K =
1

2
ml2

ξ2

m2l4
=

ξ2

2ml2
.

Since in the induced Hamiltonian system the first coordinate is the same as in the Lagrangian

setting, the potential energy remains unchanged.
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6 Nöether’s Theorem

Nöether’s theorem provides a relationship between symmetries and constants of motion. Before

going into the details we first need the formal definitions. In this section we will always assume

that our manifolds are geodesically complete.

6.1 Nöether’s Theorem in Lagrangian Mechanics

First recall the different notions we have of ‘lifting’ maps. Let M be a manifold and f : M →M a

diffeomorphism. In section 2.5 we defined the lift of f to the cotangent bundle to be the map

f] : T ∗M → T ∗M (x, ξ) 7→ (f(x), (f∗)−1(ξ)).

Note that we can also lift f to a map on the tangent bundle by taking the differential of f . To

avoid confusion, we will denote the lift of f to TM by

f̃ : TM → TM (p, V ) 7→ (f(p), f∗,p(V )).

Lastly, we defined in section 3.2 the lift of a curve γ : R→M to the tangent bundle by

γ̃ : R→ TM t 7→ (γ(t), γ′(t)).

Definition 6.1. In a Lagrangian system (M,L) a continuous symmetry is a one parameter

family of diffeomorphisms {θs : M →M ; s ∈ R} such that for each s ∈ R we have (θ̃s)
∗L = L.

That is, the family of maps is a continuous symmetry if for all s ∈ R we have that L ◦ θ̃s = L.

A continuous symmetry can be thought of as a symmetry of motion. The standard notion of

symmetry is invariance under some sort of mapping, i.e. an object is called symmetric if there is

a map that preserves it. But here the objects being acted on are motions and so this definition is

referring to the preservation of solutions to the Euler-Lagrange equations. Some obvious examples

that we observe in homogeneous space are the invariance of the laws of motion under space and

time translations. Nöether’s theorem says that both these families of continuous symmetries (space

and time translations) have corresponding conserved quantities. We will see below that they are

conservation of momentum and conservation of energy respectively.

Definition 6.2. In a Lagrangian system (M,L) a conserved quantity (or constant of the

motion) is a smooth function G ∈ C∞(TM) with the property that for any motion γ : R→M in

(M,L), the total time derivative of G vanishes on the image of γ. That is for all t ∈ R

d

dt
G(γ(t)) = 0

All of the conservation laws in physics correspond to a conserved quantity.
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Theorem 6.3. (Nöether) Let (M,L) be a Lagrangian system and γ : R → M a motion. Let

(x1, . . . , xn) be local coordinates for M and (x1, . . . , xn, v1, . . . , vn) the induced local coordinates

on TM . For any continuous symmetry {θs : M →M , s ∈ R} in (M,L) there exists a conserved

quantity. The conserved quantity is given by the formula(
∂

∂vi
L

)
·
(
d

ds
◦ θis,∗

)
∈ C∞(TM).

Proof. By hypothesis, for any s ∈ R, L( ˜(θs ◦ γ)(t)) = L(γ̃(t)). That is,

0 =
∂

∂s
L( ˜(θs ◦ γ)(t))

=
∂

∂s
L
(
(θs ◦ γ)(t), (θs ◦ γ)′(t)

)
=

∂

∂xi
L
(

˜(θs ◦ γ)(t)
)( d

ds
(θs ◦ γ)i(t)

)
+

∂

∂vi
L
(

˜(θs ◦ γ)(t)
)( d

ds

(
d

dt
(θs ◦ γ)i(t)

))

By hypothesis we have θ̃s ◦ γ satisfies the Euler-Lagrange equations:

∂

∂xi
L
(

˜(θs ◦ γ)(t)
)

=
d

dt

(
∂

∂vi
L
(

˜(θs ◦ γ)(t)
))

Plugging in the left hand side of this equation into the above gives

0 =
d

dt

(
∂

∂vi
L
(

˜(θs ◦ γ)(t)
))( d

ds
(θs ◦ γ)i(t)

)
+

∂

∂vi
L
(

˜(θs ◦ γ)(t)
)( d

ds

(
d

dt
(θs ◦ γ)i(t)

))
=

d

dt

[(
∂

∂vi
L
(

˜(θs ◦ γ)(t)
))( d

ds
(θs,∗(γ̃(t)))i

)]
That is,

(
∂
∂vi
L
)
·
(
d
ds ◦ θ

i
s,∗
)

is a conserved quantity.

Remark 6.4. By noticing that ∂L
∂vi

is nothing but the Legendre transform of L, we can give a

coordinate free description of the resulting conserved quantity. That is, setting

G :=

(
∂L

∂vi

)(
d

ds
◦ (θs,∗)

i

)
we have that for arbitrary (p, v) ∈ TM

G(p, v) =
(
ΦLp(v)

)
·
(
θ

(p)
∗

(
d

ds

∣∣∣∣
s=0

))
.

Example 6.5. (SO(3) gives Continuous Symmetries under a Central Force)

Let F be a central force acting on a particle in R3 with metric g and natural Lagrangian

L = K−U . Let γ be the motion of the particle. A one-parameter subgroup of SO(3) is a collection
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of maps {θs ∈ SO(3)}, where s ∈ R, with the property that θs+t = θs ◦ θt. By definition, for every

x ∈ R3 we have that ‖θs(x)‖ = ‖x‖ and hence for each 1 ≤ i ≤ 3 we have that U(θs(γ(t))) = U(γ(t)).

Since each θs is a linear operator on R3 each map has a matrix representation, say [θs]. Note that

vi( ˜(θs ◦ γ)(t))vj( ˜(θs ◦ γ)(t)) =
d

dt
((θs ◦ γ(t))i) · d

dt
((θs ◦ γ(t))i)

=
(
[(γi)′(t)]T [θs]

T
)
·
(
[θs][(γ

i)′(t)]
)

since θs is linear

= vi(γ̃(t))vj(γ̃(t)) since [θs] is orthogonal

It follows that K( ˜(θs ◦ γ)(t)) = K(γ̃(t)). Hence L( ˜(θs ◦ γ)(t)) = L(γ(t)) showing that each one

parameter subgroup of SO(3) is a continuous symmetry on natural Lagrangian systems under a

central force. This statement easily generalizes to Rn. It also generalizes to a system of k particles

in Rn by considering the manifold Rnk so that the motion of the k particles is described by one

curve.

Remark 6.6. In a natural Lagrangian system for which the potential energy is zero, every element

of the Gallilean group SGal(3) corresponds to a continuous symmetry. In the cases where the

Euler-Lagrange equations reduce to Newton’s second law, saying that the elements of SGal(3) are

continuous symmetries is equivalent to the statement that Newton’s laws are invariant under the

action of elements of SGal(3).

Example 6.7. (Rotational Invariance Gives Conservation of Angular Momentum)

Example 6.5 showed that, under a central force, each one parameter subgroup of SO(3) is a

continuous symmetry. Hence by Nöether’s theorem, each has a corresponding conserved quantity.

For example consider rotation about the x3-axis. That is, consider the one parameter family given

by

θs =

 cos s − sin s 0

sin s cos s 0

0 0 1

 .
Nöether’s theorem shows that for any t ∈ R the corresponding conserved quantity is(

ΦLγ(t)(γ
′(t))

)
·
(
θ

(γ(t))
∗

(
d

ds

∣∣∣∣
s=0

))
.

Computing, we get that the conserved quantity is

[
m(γ1)′(t),m(γ2)′(t),m(γ3)′(t)

]
·


 0 −1 0

1 0 0

0 0 0


 (γ1)′(t)

(γ2)′(t)

(γ3)′(t)




= m(γ2)′(γ1)′ −m(γ1)′(γ2)′
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This last value is precisely the angular momentum in the x3 direction. That is, rotational symme-

try about the x3-axis has angular momentum in the x3 direction as its corresponding conserved

quantity.

Example 6.8. (Translational Invariance Gives Conservation of Momentum)

Consider a closed system in (R3,K − U) subject to a conservative force whose potential is

independent of the x1-coordinate. Notice that translation in the x1-direction is given by the one

parameter family {θs : R → R3, (x1, x2, x3) 7→ (x1 + s, x2, x3)}. For a motion γ, it’s clear that
d
dt(θs ◦ γ(t)) = γ′(t) and so

˜(θs ◦ γ)(t) = (γ1(t) + s, γ2(t), γ3(t), (γ1)′(t), (γ2)′(t), (γ3)′(t)).

By our hypothesis we have that U(θs(γ(t))) = U(γ(t)). Hence L( ˜(θs ◦ γ)(t)) = L(γ̃(t)). By

Nöether’s theorem we have that(
∂L

∂vi
( ˜(θs ◦ γ)(t))

)
·
(
d

ds

∣∣∣∣
s=0

(θs,∗(γ̃(t)))i
)

is a conserved quantity. But this is equal to

[
m(γ1)′(t),m(γ2)′(t),m(γ3)′(t)

]
·

 1

0

0

 = m(γ1)′(t).

That is, momentum in the x1-direction is the resulting conserved quantity of translation in the

x1-direction. This example easily generalizes to Rn. Note also that in a system with k particles in

Rn interacting through conservative forces, we can replace our base space with Rnk and study the

motion of 1 particle.

Example 6.9. (Time Invariances Gives Conservation of Energy)

We showed in proposition 5.17 that if the Lagrangian was time independent then the total

energy was conserved. However, it is not obvious how to view time translation as a continuous

symmetry. To see how this can be done, suppose first that in a Lagrangian system (M,L) the

Lagrangian is time dependent. That is, suppose L ∈ C∞(T (M × R)). Consider the Lagrangian

system (M ×R, L1) where L1 ∈ C∞(T (M ×R)) is defined as follows. If (x1, . . . , xn, v1, . . . , vn) are

the induced coordinates on TM and (t, u) are the induced coordinates on TR then define L1 by

L1 : T (M × R)→ R (t, x, u, v) 7→ L(t, x,
v

u
)u.

Notice that if we have a motion γ : R→M , then the curve

γ̂ := α : R→ R×M ε 7→ (ε, γ(ε))
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is a motion in (R×M,L1). This is because α̃(ε) = (ε, γ(ε), 1, γ′(ε)) and

L1(ε, γ(ε), 1, γ′(ε)) = L(ε, γ(ε), γ′(ε)).

Hence it is justified to call γ : R → M a motion in (M,L) if γ̂ = α is a motion in (R ×M,L1).

Suppose that {θs : R×M → R×M} is a continuous symmetry in (R×M,L1). Then by Nöether’s

theorem we have that the following is a conserved quantity in (R×M,L1);

∂L1

∂u
(t, x, u, v) · d

ds
θ0
s +

∂L1

∂vi
L(t, x, u, v) · d

ds
θis

which is

L(t, x,
v

u
)
d

ds
θ0
s −

vi

u

∂L

∂vi
(t, x,

v

u
)
d

ds
θ0
s +

∂L

∂vi
(t, x,

v

u
)
d

ds
θis.

If the Lagrangian is time dependent we define conserved quantities as follows. Given a motion γ

in (M,L) we get the motion α = γ̂ in (R×M,L1) defined above. We observed that a continuous

symmetry / conserved quantity in (R×M,L1) is also a continuous symmetries / conserved quantity

in (M,L) since L1 = L when we set u = 1. By Nöether’s theorem, a continuous symmetry {θs} in

(R ×M,L1) gives a conserved quantity in (R ×M,L1) which in turn gives a conserved quantity,

G, in (M,L) by setting u = 1. That is we have that {θs} is a continuous symmetry in (M,L) with

corresponding conserved quantity G. We can now view time translation as a continuous symmetry

and compute its corresponding conserved quantity. It’s clear that the continuous symmetry of

(R ×M,L1) given by {θs : R ×M → R ×M , (t, x, u, v) 7→ (t + s, x, u, v)} is representing time

translation. Now suppose that γ : R → M is a motion in (M,L) and L is time independent.

Consider the induced motion γ̂ = α : R→ R×M . We have that

L1( ˜(θs ◦ α)(t) = L1(ε+ s, γ(ε), 1, γ′(ε))

= L(ε+ s, γ(ε), γ′(ε)))

= L(ε, γ(ε), γ′(ε)) since L is time independent

= L1(ε, γ(ε), 1, γ′(ε))

= L1(α̃)

But we have that d
dsθ

i
s = 0 for all i ≥ 1. As well, d

dsθ
0
s = 1 and so the conserved quantity is just

L(t, x, vu) − vi

u
∂L
∂vi

(t, x, vu). By setting u = 1, it follows that the conserved quantity in (M,L) is

L(t, x, v)− vi ∂L
∂vi

(t, x, v) = −L∗. But in a natural Lagrangian system, Proposition 5.15 showed that

L∗ is the total energy.

6.2 Nöether’s Theorem in Hamiltonian Mechanics

Fix a Hamiltonian system (X,ω,H). We first define the notions of continuous symmetry and

conserved quantity in the symplectic setting.
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Definition 6.10. A continuous symmetry is a vector field W ∈ Γ(TX) such that

LWω = 0 and LWH = 0

Definition 6.11. A conserved quantity (or constant of motion) is a function f ∈ C∞(X)

that Poisson commutes with H. By the antisymmetry of the Poisson bracket, this means that

{f,H} = 0 = {H, f}.

Since {H, f} = ω(VH , Vf ) = (VH ω)(Vf ) = (dH)(Vf ) = VfH = LVfH, we have that f Poisson

commutes with H if and only if

LVfH = VfH = 0 = VHf = LVHf.

Theorem 6.12. (Nöether) If W ∈ Γ(TX) is a continuous symmetry, then W is locally Hamilto-

nian and its Hamiltonian function is a constant of the motion. Conversely, given a constant of the

motion f ∈ C∞(X), its Hamiltonian vector field, Vf , is a continuous symmetry.

Proof. Let W be a continuous symmetry. By hypothesis,

0 = LWω = d(W ω) +W dω = d(W ω)

Hence, by Poincare’s lemma, around every point there exists a neighbourhood U and a function

f ∈ C∞(U) such that W ω = df . That is, locally W = Vf so that W is locally Hamiltonian. By

hypothesis, LWH = 0 = LVfH so that {f,H} = 0 = {H, f}. Conversely, let f ∈ C∞(X) be a

conserved quantity so that {f,H} = 0 = {H, f}. Consider the corresponding vector field Vf . It

was just shown that LVfH = 0 while

LVfω = d(Vf ω) + Vf dω = d(Vf ω) = d(df) = 0

Example 6.13. (Symmetries on the 2-Torus)

Consider the 2-torus T2 with local coordinate chart (U, θ, ϕ). Here U = A × B, where (A, θ)

and (B,ϕ) are two different local coordinate charts on S1. Consider the Hamiltonian system

(U, ω = dθ ∧ dϕ,H) where H ∈ C∞(TU) is defined by H(θ, ϕ) := θ. It follows dH = dθ and so the

Hamiltonian vector field is VH = − ∂
∂ϕ . Consider the vector field W = ∂

∂ϕ ∈ Γ(TU). The flow of W

is

θs : U → U , (θ, ϕ) 7→ (θ, ϕ+ s).

By Cartan’s magic formula, we have that

L ∂
∂ϕ
ω = d(dθ) +

∂

∂ϕ
dω = 0
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and

LWH =
∂θ

∂ϕ
= 0.

That is, W is a continuous symmetry in this Hamiltonian system. Since W ω = dθ it follows that

on U we have W = Vf where f : U → R , (θ, ϕ) 7→ θ. That is, f = H and hence {f,H} = 0. That

is, f is the corresponding conserved quantity. Notice that f = H is not a global function on T2

and so we can only say that W is locally Hamiltonian.

Nöether’s theorem in the Hamiltonian setting says that each continuous symmetry on a sym-

plectic manifold is locally Hamiltonian. That is, if W ∈ Γ(TX) is a continuous symmetry, then

for each p ∈ X there exists an open set Up and fp ∈ C∞(Up) (the conserved quantity) such that

W = Vfp on Up. However, when the symplectic manifold is a cotangent bundle, the following

proposition gives a condition on when the conserved quantity is global.

Proposition 6.14. Given a manifold M , we know that the cotangent bundle (T ∗M,ω = −dα)

is a symplectic manifold, where ω is the tautological 2-form. Fix a Hamiltonian function H ∈
C∞(T ∗M). Let W ∈ Γ(T (T ∗M)) be a continuous symmetry in the Hamiltonian system (T ∗M,ω,H)

which preserves that tautological 1-form α. Then the corresponding conserved quantity (Hamilto-

nian function) is α(W ). Note that this conserved quantity is globally defined. In other words, if

W ∈ Γ(T (T ∗M)) is a continuous symmetry which preserves α, then

W = Vα(W ).

Proof. Suppose that W ∈ Γ(T (T ∗M)) is a continuous symmetry such that LWα = 0. By Cartan’s

magic formula this means that

d(W α) = −W dα = W ω.

6.3 Nöether’s Theorem Under the Legendre Transform

This subsection gives another example of how the Legendre transform translates statements between

Lagrangian and Hamiltonian mechanics. That is, we show how the Legendre transform translates

the statements of Nöether’s theorem.

Theorem 6.15. Let (M,L) be a Lagrangian system where L ∈ C∞(TM) is strongly convex.

Suppose that {θs : M → M, s ∈ R} is a continuous symmetry so that the corresponding conserved

quantity is F :=
(
∂
∂vi
L
) (

d
ds ◦ (θis,∗)

)
. This continuous symmetry generates a vector field W ∈

Γ(TM). The claim is that the vector field W] ∈ Γ(T (T ∗M)), as defined in Lemma 2.24, is a

continuous symmetry in the induced Hamiltonian system (T ∗M,ω,H = L∗) and the corresponding

conserved quantity is F ◦ Φ−1
L = F ◦ ΦH .
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Conversely, given an arbitrary manifold M , consider the Hamiltonian system (T ∗M,ω = −dα,H)

for some arbitrary strongly convex Hamiltonian H ∈ C∞(T ∗M). Suppose that W ∈ Γ(T (T ∗M)) is

a continuous symmetry which preserves α. Let G denote the corresponding conserved quantity. If

{ψs : T ∗M → T ∗M, s ∈ R} is the flow of W then by Theorem 2.25 there exists a family of diffeomor-

phisms {θs : M → M} such that θ]s = ψs. The claim is that {θs : M → M, s ∈ R} is a continuous

symmetry in (M,L := H∗) and that the corresponding conserved quantity is G ◦ Φ−1
H = G ◦ ΦL.

Proof. Given a continuous symmetry {θs : M →M , s ∈ R} in (M,L), let F =
(
∂L
∂vi

) (
d
ds ◦ θ

i
s,∗
)

be

the corresponding conserved quantity. Let W be the infinitesimal generator of {θs} and W] denote

its lift. We are trying to show that W] is a continuous symmetry in (T ∗M,ω,H). By Proposition

2.22 it follows

LW]
α = 0 and LW]

ω = 0

It remains to show that LW]
H = 0. By Theorem 6.14 we know that W] = Vα(W]). However,

W] α = F ◦ Φ−1
L = F ◦ ΦH since for arbitrary (p, ξp) ∈ T ∗M by definition

F ◦ Φ−1
L (p, ξp) =

(
ΦL(Φ−1

L (ξp))
)(

θ
(p)
∗

(
d

ds

∣∣∣∣
s=0

))
= ξp (Wp)

= ξp
(
π∗((W])(p,ξp))

)
= α(W])(p, ξp)

Thus, showing that LW]
H = 0 is equivalent to showing, by Proposition 4.12, that for any integral

curve Ψ of VH we have d
dt(F ◦ Φ−1

L )(Ψ(t)) = 0. But by Theorem 5.17, any integral curve of VH is

of the form (ΦL ◦ α̃)(t) for some motion α(t) in (M,L). But then

d

dt
F ◦ Φ−1

L (ΦL(α(t))) =
d

dt
F (α(t)) = 0

since F is a conserved quantity. All of this shows that W] is a conserved quantity in (T ∗M,ω,L∗)

with globally defined conserved quantity F ◦ ΦH .

Conversely, consider a Hamiltonian system of the form (T ∗M,ω = −dα,H) for some strongly

convex H ∈ C∞(T ∗M). Let W ∈ Γ(T (T ∗M)) be a continuous symmetry whose flow preserves

α. Then by Theorem 6.14 we have that the corresponding conserved quantity is G = W α.

Furthermore, by Theorem 2.25 , if {Ψs : T ∗M → T ∗M, s ∈ R} is the flow of W then there exists

a family {θs : M →M, s ∈ R} such that Ψs = θ]s. That is, each Ψs is defined by

Ψs : T ∗M → T ∗M (p, ξ) 7→ (θs(p), (θ
∗
s)
−1(ξ)).

We want to show that the family {θs : M → M, s ∈ R} is a continuous symmetry in the induced
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Lagrangian setting (M,L = H∗). Consider the vector field

Y = ξi
∂

∂ξi
∈ Γ(T (T ∗M)),

which is negative the symplectic dual of α. By Claim 2.26 we have that

Ψs,∗Y = Y,

while by hypothesis

Ψ∗sH = H.

By definition

L(x, v) = H∗(x, v)

= ξi
∂H

∂ξi
−H(x, ξ)

= Y (H)−H(x, ξ).

Hence

(Ψ∗sL)(x, v) = Ψ∗s(Y (H))−Ψ∗s(H(x, ξ))

= Ψ∗s(Y (H))−H(x, ξ)

Thus it suffices to show that Ψ∗s(Y (H)) = Y (H). Indeed, for arbitrary p ∈M we have that

(Ψ∗s(Y (H)))p = ((Y (H)) ◦Ψs)(p)

= YΨs(p)H

= (dH)Ψs(p)(YΨs(p))

= (dH)Ψs(p)((Ψs,∗Y )p) since Ψs,∗Y = Y

= (Ψ∗s(dH))p(Yp)

= (d(Ψ∗sH))p(Yp)

= (dH)p(Yp) since Ψ∗sH = H

= Yp(H)

But by hypothesis, Ψs is the inverse of the pullback of θs. Thus we have shown that (θ̃s)
∗L = L

for all s ∈ R. That is, {θs : M → M, s ∈ R} is a continuous symmetry in the Lagrangian

system (M,L). Nöether’s theorem shows that the corresponding conserved quantity is F =(
∂L
∂vi

) (
d
ds ◦ θ

i
s,∗
)
. As in the proof of the converse, we have that F ◦ ΦH = α(X). That is

F = α(X) ◦ ΦL.
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Remark 6.16. In summary we have shown that, given a continuous symmetry in (M,L) with

corresponding conserved quantity F , there is a corresponding continuous symmetry in the Hamil-

tonian system (T ∗M,ω,H = L∗) which preserves α and has conserved quantity F ◦ΦH . Conversely,

given a continuous symmetry in a Hamiltonian system of the form (T ∗M,ω,H) which preserves α

and has corresponding conserved quantity G, there is a a corresponding continuous symmetry in

(M,L = H∗) with conserved quantity G ◦ ΦL. In subsection 6.5 we will consider what happens

when we relax the definitions of continuous symmetry and conserved quantities.

Example 6.17. (Translational Invariance and Conservation of Momentum)

In example 6.8 we considered the natural Lagrangian system (R3,K−U), where U was assumed

to be independent of x1, with the continuous symmetry

{θs : R3 → R3 , (x1, x2, x3) 7→ (x1 + s, x2, x3)}.

We saw that as a consequence of this symmetry we got conservation of momentum. We can also

see this by using Theorem 6.15, and converting to the Hamiltonian setting. Indeed our continuous

symmetry generates the vector field ∂
∂x1
∈ Γ(TR3). Since the Jacobian of θs is the identity matrix

we have that
(
∂
∂x1

)
]

is just ∂
∂x1
∈ Γ(T (T ∗R3)). By Theorem 6.15,, it follows that

(
∂
∂x1

)
]

is a

continuous symmetry with conserved quantity α
((

∂
∂x1

)
]

)
= ξ1. But ξ1 is just mv1, which when

applied to a motion is the momentum in the x1-direction.

6.4 The Converse of Nöether’s Theorem in the Lagrangian Setting

In subsection 6.1 we showed that given a Lagrangian system (M,L) and a continuous symmetry

{θs : M →M, s ∈ R}, Nöether’s theorem gave the corresponding conserved quantity(
∂L

∂vi

)
·
(
d

ds
◦ θis,∗

)
.

With the results from the previous subsection we can now show that given a conserved quantity

of this form, the corresponding family {θs : M →M, s ∈ R} is a continuous symmetry in (M,L).

Indeed, suppose that we have a family of diffeomorphisms {θs : M →M, s ∈ R} such that

d

dt

((
∂L

∂vi

)
·
(
d

ds
◦ θis,∗

))
= 0.

This family of diffeomorphisms generates a vector field Y ∈ Γ(TM). In Theorem 6.15, we showed

that the vector field Y] ∈ Γ(T (T ∗M)) is a continuous symmetry in (T ∗M,ω,H = L∗) which

preserves α and has conserved quantity α(Y]). However, by Lemma 2.24 the flow of Y] is θs,]. It

follows from the proof of Theorem 6.15 that {θs : M → M, s ∈ R} is a continuous symmetry
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in (M,H∗) = (M,L). Hence, we have the following diagram, where within each brace we are

considering the induced Hamiltonian or Lagrangian system:


Conserved quantities

of the form
(
∂L
∂vi

) (
d
ds ◦ θ

i
s,∗
)

for some family of maps

{θs : M →M}




Families of diffeomorphisms

{θs : M →M , s ∈ R}
such that (θ̃s)

∗L = L




f ∈ C∞(T ∗M) with f = α(W )

for some W ∈ Γ(T (T ∗M))

such that LWα = 0 and {f,H} = 0




X ∈ Γ(T (T ∗M))

such that

0 = LXω = LXα = LXH



This diagram proves the converse of Nöether’s theorem in the Lagrangian setting when the

continuous symmetries are restricted to be of the above form. Using this diagram we can exhibit

a conserved quantity in a Lagrangian system which does not arise via Nöether’s theorem from a

continuous symmetry.

Example 6.18. (The Laplace-Runge-Lenz Vector)

Consider a particle of mass m moving under a central force field in R3. Let ~r denote the position

vector of this particle. For simplicity, endow R3 with the standard metric and let (x1, x2, x3) denote

the standard coordinates on R3 and (x1, x2, x3, v1, v2, v3) and (x1, x2, x3, ξ1, ξ2, ξ3) the induced

coordinates on TR3 and T ∗R3 respectively. Let L = K − U be the natural Lagrangian. As is

the case for the gravitational and electrostatic forces, we assume our potential energy is of the

form U = −k
~r where k is some constant. As in the proof of Proposition 5.14 we have that locally

ξi = mvi, the momentum in the ith direction of the particle. That is, ξi = pi as functions on

R6 = T ∗R3 = TR3. In these coordinates we have that the tautological one form is α = pidx
i. The

Laplace-Runge-Lenz vector is defined to be

~A = ~p× ~L− mk~r

‖~r‖

where ~p is the particle’s momentum and ~L is the particle’s angular momentum. By Proposition

3.11 we have that the d
dt
~L = 0. Identifying the vector field ∂

∂r with ~r
‖~r‖ we have that

ma = m~̈r = F = −∇U = −∂U
∂r

∂

∂r
= − k

‖r‖3
~r.
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It follows that

d ~A

dt
= ~̇p× ~L+ ~p× ~̇L− d

dt

(
mk

‖~r‖
~r

)
= ~̇p× ~L− d

dt

(
mk

‖~r‖
~r

)
= − mk

‖~r‖3
(
~r × (~r × ~̇r)

)
− d

dt

(
mk

‖~r‖
~r

)
= − mk

‖~r‖3
(

(~r · ~̇r)~r − ‖~r‖2~̇r
)
− d

dt

(
mk

‖~r‖
~r

)
= − mk

‖~r‖3

(
1

2

d

dt
(~r · ~r)~r − ‖~r‖2~̇r

)
− d

dt

(
mk

‖~r‖
~r

)
= − mk

‖~r‖3

(
1

2

d

dt

(
‖~r‖2

)
~r − ‖~r‖2~̇r

)
− d

dt

(
mk

‖~r‖
~r

)
= − mk

‖~r‖3

(
‖~r‖

(
d

dt
‖~r‖
)
~r − ‖~r‖2~̇r

)
− d

dt

(
mk

‖~r‖
~r

)
= mk

(
~̇r

‖~r‖
−
(
d
dt‖~r‖

)
‖~r‖2

~r

)
− d

dt

(
mk

‖~r‖
~r

)
=

d

dt

(
mk

‖~r‖
~r

)
− d

dt

(
mk

‖~r‖
~r

)
= 0

Hence the first component of ~A, which is

A1 = (~p× ~L)1 − mkx1

‖~r‖
= p2L3 − p3L2 − mkx1

‖r‖

is a conserved quantity. That is, A1 ∈ C∞(R6) is such that d
dtA

1 = 0 on motions in the Hamiltonian

system. It follows, from Theorem 6.15 that A1 ◦ ΦL is a conserved quantity in the Lagrangian

system (R3,K−U). In order to show that this conserved quantity does not arise from a continuous

symmetry, by the above diagram we need to show that the induced continuous symmetry in the

Hamiltonian system (T ∗R3,K + U) corresponding to the conserved quantity A1 ◦ ΦL ◦ ΦH = A1

has flow which is not the lift of curves on the base manifold.

By definition, our Hamiltonian system is (T ∗R3, dxi ∧ dpi, L∗), where by the argument in the

proof of Proposition 5.15 we have that

K + U = H := L∗ =
‖p‖2

2m
− k

‖r‖
.
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Note that by definition

XA1 =
∂A1

∂pi

∂

∂xi
− ∂A1

∂xi
∂

∂pi

= L3 ∂

∂x2
− L2 ∂

∂x3
− mk

r

∂

∂p1
+
mkx1

‖~r‖2
∂r

∂xi
∂

∂pi

= L3 ∂

∂x2
− L2 ∂

∂x3
+

mk

‖~r‖3
(−(x2)2 − (x3)2)

∂

∂p1
+

mk

‖~r‖3
x1x2 ∂

∂p2
+

mk

‖~r‖3
x1x3 ∂

∂p3

A straightforward calculation shows that XA1H = 0 so that A1 is a conserved quantity in the

induced Hamiltonian setting.

To find the flow, or integral curves γ(t) = (x(t), ξ(t)), of the continuous symmetry XA1 we need

to solve the Hamilton equations:

(x1)′ = 0

(x2)′ = L3

(x3)′ = −L2

(p1)′ = − mk

‖~r‖3
(−(x2)2 − (x3)2)

(p2)′ =
mk

‖~r‖3
x1x2

(p3)′ =
mk

‖~r‖3
x1x3

All we are trying to show is that the flow of XA1 is not the lift of a one parameter family of

diffeomorphisms on M . But by definition, given a continuous symmetry θs : M → M , the lift θs,]

is equal to (θ∗s)
−1, which is a linear function on each fibre of the cotangent bundle . In particular

then, if the flow of XA1 came from lifting curves on M it would be that each (pk)
′, for k = 1, 2, 3,

were a linear function of p1, p2 and p3. However, we can see immediately from the form of the above

ODE’s that this is not the case. Thus the flow of XA1 is not the lift of a continuous symmetry on

R3. We thus have shown that A1◦ΦL is a conserved quantity in the Lagrangian system (R3,K−U)

which does not come from a continuous symmetry.

Remark 6.19. An equivalent way to see this would be to show that LXA1α 6= 0. This can be done

explicitly, but the calculation is quite lengthy. Note that although LXA1α 6= 0, we showed that

XA1 is a continuous symmetry in (T ∗R3, ω,K +U) so that LXA1ω = 0. That is, not all continuous

symmetries in Hamiltonian systems of the form (T ∗M,ω,H) need to preserve the tautological

1-form.

6.5 Relaxing the Definitions of Symmetries and Conserved Quantities

With the Laplace-Runge-Lenz vector in mind, it is an interesting question to consider what would

happen if we relaxed the definitions of continuous symmetry and conserved quantity. In particular,
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is there a way to make the following diagram traceable both clockwise and counterclockwise?

{
Conserved quantities in a

Lagrangian system

}

{
Continuous symmetries in a

Lagrangian setting

}

{
Conserved quantities in a

Hamiltonian system

}

{
Continuous symmetries in a

Hamiltonian setting

}

We can see right away that with our definitions this is impossible. Indeed, any continuous symme-

try in a Lagrangian system (M,L) gives a continuous symmetry in (T ∗M,ω,L) which preserves α.

However, we showed above that the Laplace-Runge-Lenz vector is a continuous symmetry which

does not preserve α.

Recall that the original definition of a continuous symmetry in the Hamiltonian setting does

not include the requirement of preserving the tautological 1-form. However, even without this

requirement we saw that, in the Hamiltonian setting, continuous symmetries and locally defined

conserved quantities are in one-to-one correspondence. If we return to the Lagrangian setting with

the original definitions of symmetries and conserved quantity, we see that the two notions are not in

one-to-one correspondence. Indeed, we showed in the previous subsection that the Laplace-Runge-

Lenz vector is a conserved quantity, not of the form
(
∂L
∂vi

) (
d
dsθ

i
s,∗
)
, which does not come from a

continuous symmetry.

However, notice that the one-to-one correspondence of conserved quantities in the Lagrangian

and Hamiltonian setting still holds. This is because if F ∈ C∞(TM) is constant on the motions in

(M,L) then we have, by Theorem 5.19, that

d

dt
(F ◦ ΦH)(Ψ(t)) = 0

for all motions Ψ : R → T ∗M . That is, by Proposition 4.12, F ◦ ΦH is a conserved quantity in

(T ∗M,ω,H = L∗). Conversely, if G ∈ C∞(T ∗M) is such that {G,H} = 0 then d
dt (G(Ψ(t))) = 0

for all integral curves Ψ of XH , then by Theorem 5.20 it follows that

d

dt
(G ◦ ΦL(γ̃(t))) = 0
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for all motions γ : R→M in (M,L). That is we have the one-to-one correspondence

{
Conserved quantities in a

Lagrangian setting

} {
Conserved quantities in a

Hamiltonian setting

}
.

However, in order to reconcile the one-to-one correspondence between symmetries one needs to

study the notion of ‘generalized symmetries’. A thorough treatment of this topic can be found in

chapter 5 of [9]. Roughly speaking, these are a one-parameter family of ‘Lagrangian preserving’

maps in a Lagrangian system (M,L) which do not necessarily arise from lifting curves on M . That

is, a generalized symmetry can be thought of as a one-parameter family {Υs : TM → TM , s ∈ R}
such that Υ∗sL = L. Notice that with this new definition, Nöether’s theorem still holds as stated

in the Lagrangian setting. The proof of Theorem 6.3 did not use the fact that we were lifting each

θs to the tangent bundle. If one replaces θ̃s with Υs, the proof of Theorem 6.3 is unchanged. It is

likely that with the notion of generalized symmetries, one can show that all arrows in the following

diagram go both ways. We have filled in the correspondences discussed in this paper.


Conserved quantities

F ∈ C∞(TM)

such that d
dtF = 0




Families of diffeomorphisms

{Υs : TM → TM , s ∈ R}
such that (Υs)

∗L = L




f ∈ C∞(T ∗M)

such that

locally {f,H} = 0




X ∈ Γ(T (T ∗M))

such that

LXω = 0 = LXH
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