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Abstract

This paper summarizes some of the work done to date on Whitehead’s question about
the asphericity of subcomplexes of an aspherical 2-complex. We start with a review of the
theory of higher homotopy groups. Next, we study some of their particular properties for
2-complexes; including their translation into an algebraic structure called crossed modules.
The next section includes a translation of Whitehead’s conjecture using properties of
crossed modules.
We also review a different approach using homotopy of finite spaces; we include a short
summary of the main definitions and results of that theory, and the implications for White-
head’s conjecture. We finish the paper by considering some interesting questions that arise
from the above mentioned translations.
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1 Introduction

In a 1941 paper studying some properties of homotopy groups [27], J.H.C. Whitehead
formulated a very short question that has not been solved so far, although many different
approaches have been taken. The author formulated the statement as a question, but for
historical reasons the affirmative answer to his question has become known as Whitehead’s
Asphericity Conjecture. The original question is:

“Is any subcomplex of an aspherical 2-dimensional complex itself aspherical?”

Conjecture 1.1 (Whitehead’s Asphericity Conjecture) Any subcomplex of an as-
pherical 2-dimensional (CW-) complex is itself aspherical.

In the current paper, we summarize the background needed to understand the question
and the work done to date to find an answer to it.

Section 2 provides a review of the topological foundations required to understand White-
head’s Conjecture, namely, homotopy groups and their properties. Section 3 describes some
results for homotopy groups of 2-complexes and a translation of their exact sequence in
homotopy to an algebraic structure called crossed module. After describing the main tools
that will let us understand its statement, in section 4 we promote the study of Whitehead’s
Conjecture by summarizing some related problems; we finish this section with some classi-
cal results. Section 5 describes the results obtained for Whitehead’s question using crossed
modules and their equivalent category, Cat1-groups.

Another approach to Whitehead’s question using discrete homotopy is reviewed in
Section 6. This section includes a short summary of the background required for this
approach as well as yet another partial translation of Whitehead’s question, in this case to
a question in Universal Algebra. Finally, as a way of conclusion, we include in section 7
a very brief description of other approaches that have been taken to answer the question
of our interest, and leave some open questions to the reader that arise naturally from the
translation of Whitehead’s conjecture to discrete homotopy and crossed modules.

We assume the reader has a reasonable, although not too deep, knowledge of algebraic
topology including the notions of the fundamental group of a topological space, covering
spaces, homology groups, and the definition of CW-complexes, and the notions of skeleta
and dimension for them.
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2 Higher Homotopy Groups

Let’s start going through the question. It concerns aspherical complexes which are defined
as follows:

Definition 2.1 A topological space is called aspherical if its universal cover is contractible.

Equivalently, considering higher homotopy groups, we can say a space is aspherical
if πk (X) = 0,∀k > 1. Furthermore, for the particular case of 2-complexes that we will
study, by Whitehead’s theorem [28] a connected 2-complex X is aspherical if and only if
π2 (X) = 0, as will be explained in section 3.

In this section, we will understand what that characterization means by understanding
the meaning of the second homotopy group of a topological space (i.e π2 (X)), as well
as other higher homotopy groups. This can be found in many textboooks on algebraic
topology, such as [20], [9], [14].

We will start by defining the homotopy groups of a space K, and prove some properties
of them. Next, we will consider relative homotopy and construct a long exact sequence
similar to the one that is known for homology groups. Finally, we will see some methods
of computation of homotopy groups by considering the mentioned long exact sequence and
also using an homomorphism from homotopy to homology.

Let (X, x0) be a based topological space. The homotopy groups πk(X, x0), for k ≥ 1
are a generalization of the notion of the fundamental group π1 (X, x0) .

Recall that an element of π1 (X, x0) is the equivalence class with respect to based
homotopy at x0 of a loop f : I → X, whose initial and end points are x0. An element of
πk(X;x0) is defined as an homotopy class of maps:

f : (Ik, ∂Ik) → (X, x0), where Ik denotes the n-th dimensional unit cube and ∂Ik

denotes its boundary.

In other words, as in the 1-dimensional case, we have classes of maps from the k-th
dimensional cube to the space which send its boundary to the point x0.

Remark 2.2 Since we know Ik is homeomorphic to Dk and Dk t{p} /(p ∼ ∂Dk) is a cell
decomposition for Sk, we can equivalently define an element of πk(X, x0) as an homotopy
class of maps (Sk, t)→ (X, x0), where we have fixed a point t = [p] in the cell decomposition
of Sk.
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Similarly to what has been done for the fundamental group, we define the group oper-
ation by pasting two cubes together and then contracting them:

fg(t1, . . . , tk) :=

{
f(2t1, t2, . . . , tk), t1 ≤ 1/2;

g(2t1 − 1, t2, . . . , tk), t1 ≥ 1/2.

Remark 2.3 The choice of the first coordinate for “gluing” the maps appears to be ar-
bitrary, and it is. Nevertheless, the homotopy class remains the same, no matter which
coordinate we choose. This will be seen clearer after the proof of Proposition 2.6.

Using the same arguments as for π1, we can check that πk(X, x0) is a group, where the
identity is the class of the constant map Cx0 : Ik 7→ x0.

As in the case of the fundamental group, there is a functorial relation between based
spaces and higher homotopy groups. Namely, a map φ : (X, x0) → (Y, y0) induces a map
φ∗ : πk(X, x0)→ πk(Y, y0), by [f ] 7→ [φ ◦ f ] .

Moreover, the map φ∗, by its definition, is invariant under based homotopy, and in the
case that φ defines an homotopy equivalence, φ∗ will be an isomorphism.

Example 2.4 If X is a contractible space, then πn(X, x0) = 0 for every n > 0.

Proof. If X is contractible, there is a deformation retract φ : X → x0. Then, for every
n > 0, φ∗ (πn(X, x0)) = πn(x0, x0) = 0.

Remark 2.5 In a similar way, the 0-th homotopy set, π0(X), can be defined to be the set
of path components of X. This is simply a set and has no group structure though.

Higher homotopy groups have several properties; we describe some of them in the rest
of the section.

Proposition 2.6 Let (X, x0) be a based space. Then for k > 1, the k-th homotopy group,
πk (X, x0) is abelian.

Sketch of the proof. Let [f ] , [g] ∈ πk (X, x0) , we will prove that fg is homotopy
equivalent to gf. Remember that an homotopy can be regarded as a continuous film (a
scene), where each frame is a continuous map. With this idea in mind, Figure 2 shows
some of the frames that let us find such an homotopy:
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Figure 1: Homotopy between fg and gf

We can also see, that a similar argument lets us realize, as stated before, that the coordinate
in which the sum is defined can be arbitrary.

As an example, we can see that the higher homotopy groups πk (S1) are trivial for

k > 1. Indeed, any map f from Sk to S1 can be lifted to a map f̃ from Sk to R since Sk is
simply connected. Since R is contractible, f̃ is homotopic to a constant map. Projecting
back to S1 we get an homotopy between f and a constant map, proving the required result.

This means, that we have:

π0(S
1, 1) = 0, π1(S

1, 1) = Z,

πn (S1, 1) = 0, if n > 1.

The above argument can actually be generalized by replacing S1 by any space whose
universal cover is trivial.

The same kind of argument will be generalized at the end of the next subsection as a
method to compute πk for some spaces in which we have a fibration.

One can also prove that if m < n; every map from Sm to Sn is nullhomotopic, which
implies:

πm(Sn, s0) = 0, if m < n.

To prove this, one can consider triangulations of Sm and Sn; then, without loss of
generallity, one can consider a map f : Sm → Sn to be simplicial (mapping simplices to
simplices). Since m < n, the induced map on the corresponding simplices is not surjec-
tive, and therefore f (Sm) $ Sn; this implies that f (Sm) is contractible. Therefore f is
homotopically equivalent to a trivial map.

Considering Sn to be the boundary of the (n+ 1)-simplex one can verify that the
homotopy class of a map f : Sn → Sn is completely determined by its degree, and therefore:

πn(Sn, s0) = Z.
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A more rigourous proof for this fact can be obtained using Theorem 2.18.

Remark 2.7 In general, higher homotopy groups are hard to compute. Even πk(S
2) is

not known for high values of k. Nevertheless, in the next section we will summarize some
results which lead us to computations of higher homotopy groups for some special cases.

2.1 Relative Homotopy

As remarked before, the axiomatic definition of the higher homotopy groups does not give
us a tool for effectively computing these groups. In the current section, we will review
some methods for doing such computations in particular cases.

Remark 2.8 Consider the space F n of maps f :(In, In−1)→ (X, x0). We can divide them
into homotopy classes. Define the set πn (X, x0) as the set of such classes. Topologizing
F n by the compact-open topology we get that equivalently, πn (X, x0) becomes the set of all
path-components of the space F n.

Remark 2.9 So far, we have a nice closed formula for computing low dimensional ho-
motopy spaces of spheres (low meaning lower than the sphere’s dimension). However, to
compute higher-dimensional homotopy groups, as well as to compute these groups for other
spaces, we will need other results, which will be described below.

As a generalization of the homotopy groups, one can also define the so-called relative
homotopy groups as follows.

Definition 2.10 Given a triplet (X,A, x0) , where A is a closed subspace of X, and x0 ∈ A;
for n > 0, define the n-th relative homotopy set πn (X,A, x0) by considering the n-cube In.
Let In−1 be the initial (n− 1)-face of In (the face where tn = 0). Denoting the union of all
remaining (n− 1)-faces of In by Jn−1. we have:

∂In = In−1 ∪ Jn−1, ∂In−1 = In−1 ∩ Jn−1.

Remark 2.11 A map f :(In, In−1, Jn−1)→ (X,A, x0) is a continuous function from In to
X which sends In−1 into A and Jn−1 into x0. In particular, it sends ∂In into A and ∂Jn−1

into x0. Denote by F n
A = F n

A(X,A, x0) the set of all such maps. We can divide them into
homotopy classes. Define the set πn (X,A, x0) as the set of such classes. Topologizing F n

A

by the compact-open topology we get that equivalently, πn (X,A, x0) becomes the set of all
path-components of the space F n

A.
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Similarly, as it was done before, one can define an operation on the set πn (X,A, x0) ,
for n > 1 (unlike in the case of the “absolute” homotopy groups, the operation now defined
is not commutative in general).

As in the case of the homotopy groups, for n > 2, we can mimic the proof in Proposition
2.6 and prove that πn (X,A, x0) is abelian for n > 2.

Also, in a similar fashion as was described in Remark 2.2 (pinching Jn−1 to a single
point s0), one might equally well define an element of πn (X,A, x0) as an homotopy class
of maps from (En, Sn−1, s0) into (X,A, x0) .

A property that will be useful, is stated as follows (to see the proof read, for example,
[13, Prop.3.4]).

Given a topological space X and a closed subspace A such that X can be obtained
from A by adjoining a single n-cell in the same way that is done for CW-complexes, we
call the pair (X,A) a relative n-cell.

Proposition 2.12 If (X,A, x0) is a triplet such that (X,A) is a relative n-cell, then we
have πm (X,A, x0) = 0 for every m satisfying 0 < m < n.

2.2 Some Results for Homotopy Groups

Analogous to the case of the fundamental group, one can obtain simple expressions for the
computations of higher homotopy groups of some particular kinds of spaces. For example,
we have that the homotopy group of the product of two spaces is just the direct sum of
their homotopy groups. More formally, we have the following:

Proposition 2.13 Let (X, x0) , (Y, y0) be two given based spaces. Consider the product
(Z, z0) = (X × Y, (x0, y0)) .

Then, for every n > 0, we have:

πn (Z, z0) = πn (X, x0)⊕ πn (Y, y0) .

Proof. The proof is exactly the same as the one for the fundamental group. Namely,
taking a function f : (In, ∂In) → (Z, z0) , we consider the corresponding projections fX :
(In, ∂In)→ (X, x0) and fY : (In, ∂In)→ (Y, y0) . Then we can observe that the map which
sends [f ]→ ([fX ] , [fY ]) is an isomorphism.

In a similar way [13, Thm 3.1], one can get a result involving the one point union of
spaces by considering them embedded in the product space, as follows:
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Proposition 2.14 Let (X, x0) , (Y, y0) be two given based spaces. Consider the one point
sum (X ∨ Y, u0) = (X t Y/x0 ∼ y0, [x0]) . For every n > 1, we have:

πn (X ∨ Y, u0) = πn (X, x0)⊕ πn (Y, y0)⊕ πn+1 (X × Y,X ∨ Y, (x0, y0)) .

In particular, using the usual CW-decomposition of spheres, we see that (Sp × Sq, Sp ∨ Sq)
is a relative p+ q-cell, getting:

Proposition 2.15 For every p > 0, q > 0 and n < p+ q − 1,

πn(Sp ∨ Sq) ≈ πn(Sp)⊕ πn(Sq).

Proof. Follows immediately from Propositions 2.14 and 2.12 for the pair (Sp × Sq, Sp ∨ Sq) .

2.3 Long Exact Sequence in Homotopy

Similarly to homology, we can obtain a long exact sequence in homotopy by considering
the relative homotopy and a boundary operator defined as follows:

Let (X,A, x0) be a triplet, (i.e we consider both spaces based at x0 ∈ A ⊂ X). For
every n > 0, we define ∂ : πn (X,A, x0) → πn−1(A, x0) by restricting the function f to
In−1.

An element α of πn (X,A, x0) is an homotopy class which can be represented by a map

f :(In, In−1, Jn−1)→ (X,A, x0).

If n = 1, f (In−1) is a point of A which determines a path-component β ∈ π0 (A, x0) of
A. For n > 1, the restriction f |In−1 is simply a map from (In−1, ∂In−1) into (A, x0) and
hence, by definition, it represents an element of πn−1(A, x0).

We can observe that the choice of such a β is independent of the choice of f ∈ α = [f ].
Therefore, we can define the boundary operator ∂, where ∂ (α) = β.

By definition of this boundary operator, we have a couple of simple properties that will
be useful later.

Proposition 2.16 Given ∂ : πn (X,A, x0)→ πn−1(A, x0) as above, ∂ (0) = 0.

7



Proposition 2.17 For n > 1, ∂ is a group homomorphism. [Hu, thm 5.2].

Now, by the functoriality of homotopy (which can be checked by the reader in a similar
way as it is done for π1 (·)), every function from a based space to another (and in general
from a pair to another, as well) induces transformations of the corresponding homotopies,
which in the cases where homotopies are groups, are also homomorphisms.

To build a similar long exact sequence as the one obtained for homology, we will work
with the following inclusion maps:

i : (A, x0)→ (X, x0) ,

j : (X, x0)→ (X,A, x0) .

These maps induce the transformations:

i∗ : πn (A, x0)→ πn (X, x0) , n ≥ 0,

j∗ : πn (X, x0)→ πn (X,A, x0) , n ≥ 0,

and such transformations are homomorphisms for n ≥ 1.

The transformations i∗, j∗, ∂ define a long exact sequence in homotopy as follows:

· · · i∗→ πn+1 (X,A, x0)
∂→ πn (A, x0)

j∗→ πn (X, x0)
i∗→ πn (X,A, x0)

∂→ · · · j∗→ π0 (X, x0) .

The proof of the exactness of the sequence above can be seen, for example, in [13, Ch
4, S 7, Prop4].

2.4 Hurewicz Homomorphism

We have already found a similarity between homotopy and homology of a topological
space above by considering the long exact sequences that can be obtained in both cases.
Furthermore, we can define a natural homomorphism from an homotopy group πn (X) to
its corresponding homology group Hn (X) , for all n ≥ 1.
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Given a triplet (X,A, x0) , consider for n > 1 the homotopy set πn (X,A, x0) .

For an element α ∈ πn (X,A, x0) , we can represent α by a map φ : (En, Sn−1, s0) →
(X,A, x0). Without loss of generality, we can consider s0 = (1, 0, · · · , 0). The natural
coordinate system in En determines an orientation of En and therefore, it also defines a
generator ξn of the free cyclic homology group Hn (En, Sn−1). We know that a map φ from
(En, Sn−1) into (X,A) induces a homomorphism:

φ∗ : Hn (En, Sn−1)→ Hn (X,A).

Since homology is invariant under homotopy of maps, φ∗ only depends on α ∈ πn (X,A, x0).
This means that we have just defined a transformation:

ψn : πn (X,A, x0)→ Hn (X,A) ,

where ψn(α) = φ∗(ξn). This transformation, for n > 1, (or for A = x0) defines a group
morphism, which will be called the natural (Hurewicz) homomorphism of πn (X,A, x0) to
Hn (X,A) .

It can be checked that ψn commutes with any map f :(X,A, x0) → (Y,B, y0) and also
commutes with the boundary operator defined above. In particular, this gives us a map
hn : πn(X, x0) → Hn(X), which makes the following infinite homotopy-homology ladder
commutative:

· · · ∂→ πn+1 (X,A, x0)
j∗→ πn (A, x0)

i∗→ πn (X, x0)
∂→ πn (X,A, x0)

j∗→ · · ·
↓ ↓ ↓ ↓

· · · ∂→ Hn+1 (X,A, x0)
j∗→ Hn (A, x0)

i∗→ Hn (X, x0)
∂→ Hn (X,A, x0)

j∗→ · · ·

Theorem 2.18 (Hurewicz Theorem) If X is an (n − 1)-connected finite simplicical
complex with n > 1 (i.e. if πk (X) = 0, for k < n), then the natural homomorphism hn is
an isomorphism.

Proof. We will consider two cases, first the case when X is n-dimensional, and then the
case when it has a higher dimension.

In the first case, we can define Y = X/Xn−1, by identifying its (n− 1)-skeleton to a
single point, y0 (we can contract it this way since X is (n− 1)-connected). More formally,
we have the projection:

9



p :
(
X,Xn−1)→ (Y, y0).

This projection is, furthermore, an homotopy equivalence of pairs, which implies both
the induced map in homotopy p∗ : πk (X,Xn−1) → πk(Y, y0) and the induced map in
homology p# : Hk (X,Xn−1)→ Hk(Y, y0) are isomorphisms.

This implies that calling hn, and kn the corresponding Hurewicz morphisms for (X,X0)
and (Y, Y0) , we have the following commutative diagram:

πn (X,Xn−1) ∼= πn(Y, y0)
↓ hn ↓ kn

Hn (X,Xn−1) ∼= Hn(Y, y0).

Now, clearly the pair (Y, y0) is homeomorphic to a one point union of several n-spheres,
and using (inductively) Proposition 2.15 , we obtain:

πn (Y, y0) = πn

(∨
i

(Sni )

)
∼=
⊕
i

πn(Sni ) ∼= Hn

(∨
i

(Sni )

)
.

This implies that kn is an isomorphism, and therefore, by the commutativity of the diagram
above, hn has to be an isomorphism as well.

Now, when considering the case when Xn  X, we can consider the pair (Xn+1, Xn) ,
and a piece of the homotopy ladder, namely,

πn+1 (Xn+1, Xn, x0)
∂→ πn (Xn, x0)

i∗→ πn (Xn+1, x0)
j∗→ 0

↓ χn+1 ↓ kn ↓ hn
Hn+1 (Xn+1, Xn, x0)

∂→ Hn (Xn, x0)
i#→ Hn (Xn+1, x0)

j#→ 0,

where πn (Xn+1, Xn, x0) = 0 by Proposition 2.12, and by the previous part, kn is an
isomorphism, which helps us to chase the diagram above to prove that hn is surjective.
In fact, for β ∈ Hn(X, x0), we can find γ ∈ Hn(Xn, x0) with β = i∗(γ), such that g =
i∗k
−1
n (γ) ∈ πn (Xn+1, x0) satisfies hn (g) = β, by the commutativity of the ladder.

It can be proved that χn+1 is surjective, and therefore taking g ∈ πn (Xn+1, x0) such
that hn (g) = 0. One can follow the diagram and find an element β ∈ Hn (Xn, x0) , such
that g = i∗k

−1
n (β) . By exactness of the chain and by the surjectivity of χn+1, we can finally

find δ ∈ πn+1 (Xn+1, Xn, x0) , such that β = ∂χn+1 (δ) . Therefore g = i∗k
−1
n ∂χn+1 (δ) =

10



i∗k
−1
n kn∂ (δ) = 0 by the exactness of the sequence, proving that hn is injective, and con-

cluding that hn is an isomorphism.

Finally, we can consider the inclusion Xn+1 i→ X , and since (X,Xn+1) is an (n+2)-cel,
we have the following commutative ladder:

0 → πn (Xn+1, x0)
i∗→ πn (X, x0) → 0

↓ hn ↓ kn
0 → Hn (Xn+1, x0)

i#→ Hn (X, x0) → 0

Since hn, i∗, and i# are isomorphisms, kn also is, which finishes the proof.

2.5 Homotopy of Fibrations

Let p be a fibering of E over B. Choose a base point b0 ∈ B such that the fiber F = p−1 (b0)
is not empty. For the fiber F, which we will call a standard fiber, we can pick a base point
and obtain a triplet (E,F, e0).

Since p(F ) = b0, the projection p : (E, e0) → (B, b0) defines a map q : (E,F, e0) →
(B, b0) and p = qj , where j : (E, e0)→ (E,F, e0) denotes the inclusion map. Furthermore,
in this case, we obtain an isomorphism q∗ : πn(E,F, e0) → πn(B, b0) for each n ≥ 1. For
the proof of this fact see, for example [13, III.9.VI].

Let:

d∗ = ∂q−1∗ : πn(B, b0)→ πn−1 (F, e0) , n ≥ 1.

By the functoriality of homotopy groups, p∗ = q∗j∗, and from the long exact sequence
in homotopy of the triplet (E,F, e0), we get the exact sequence:

· · · p∗→ πn+1 (B, b0)
d∗→ πn (F, e0)

i∗→ πn (E, e0)
p∗→ πn (B, b0)

d∗→ · · ·

· · · p∗→ π1 (B, b0)
d∗→ π0 (F, e0)

i∗→ π0 (E, e0) .

which is called the homotopy sequence of the fibering p : E → B based at e0.

From this exact sequence, we get several properties for some fibrations.

Proposition 2.19 If the standard fiber F is totally pathwise disconnected, then πn(E, e0) ∼=
πn(B, b0), n ≥ 2; and p∗ is a monomorphism for n = 1.
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Proof. If F is totally pathwise disconnected, then πn(F, e0) = 0 for n ≥ 1. Hence, we can
split the long exact sequence, obtaining the required isomorphisms and monomorphism.

Example 2.20 We have πn (S2) = πn (S3) , n ≥ 3.

It suffices to consider the Hopf fibration, p : S3 → S2, whose fiber is S1. This result can
be seen easily when considering S3 embedded in C2 as S3 = {(x, y) ∈ C2 : ‖(x, y)‖ = 1} ,
and S2 = {(x, y) ∈ C2 : ‖(x, y)‖ = 1, y ∈ R} . Since we know that S1 has trivial higher
homotopy groups, applying the exactness of the sequence in the same way as it was done
in the last proposition, the result follows.

In particular, since a covering space is a fibration, we get the following results:

Proposition 2.21 For a covering space E over a base space B relative to a projection
p : (E, e0)→ (B, b0), we have:

p∗ : πn(E, e0) ∼= πn(B, b0), n ≥ 2,

and p∗ is a monomorphism if n = 1.

In particular, for the universal cover, we get:

πn(B̃, b̃0) ∼= πn(B, b0), n ≥ 2, π1(B̃) = 0,

and using Theorem 2.18, we get the following result:

Proposition 2.22 If B is a connected, locally pathwise connected and semilocally simply
connected space, the second homotopy group π2(B) is isomorphic to the second homology

group H2(B̃) of its universal cover.

3 Homotopy Groups of 2-Complexes

In this section, we will consider some properties of 2-complexes; in particular, we will
see that for a 2-complex being aspherical is equivalent to simply having a trivial second
homotopy group, as stated before. Such properties will let us study the homotopy of
2-complexes in a different manner.
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For example, given a connected 2-complex K2, we can find a spanning tree T, for K1,
and since it is contractible, we can consider without loss of generality, that the complex
K2 has only one 0-cell.

This observation implies that the complex K2 can be expressed in the form of a group
presentation:

P = 〈x|r〉 .

Here, the generators, x, correspond to the 1-cells and the relators, r, correspond to the
2-cells of K2,. The notation 〈x|r〉 stands for F (x) /N (r) , the quotient group of the free
group generated by x, by the normal closure of the relators r.

Consider the complexes K, L regarded as their corresponding group presentations,
P = 〈x|r〉 , Q = 〈x|s〉 , respectively, which have the same generator set and whose normal
closures are the same N (r) = N (s) ; therefore, actually, P = Q = π1 (K) = π1 (L) .

Consider the 2-complexes K, L such that K1 = L1; we have the following lemmas,
whose proofs can be found in [10, Section 2.2]:

Lemma 3.1 Any map G : K → L that induces the identity isomorphism on the funda-
mental group π1 (K) = π1 (L) is based homotopic to one that is the identity when restricted
to the common one skeleton, K1.

Lemma 3.2 Any extension G : K → L of the identity map on the common 1-skeleton
that induces an isomorphism G∗ : π2 (K)→ π2 (L) is an homotopy equivalence.

The lemmas above let us prove the 2-dimensional version of a theorem proved by
Whitehead [28]. For this, we should also consider that given two presentations of a given
group, one can expand them trivially in such a way that the new presentations have the
same set of generators.

Theorem 3.3 A map f : K → L of connected 2-complexes is a based homotopy equiva-
lence if and only if it induces isomorphisms on the first and second homotopy groups.

Proof. When f is an homotopy equivalence, it follows immediately that the corresponding
homotopy groups are isomorphic.

13



Conversely, K and L may be assumed to be models of group represantations, say, P =
〈x|r〉 and Q = 〈y|s〉 , of isomorphic groups G, H , respectively. Let f∗1 : π1 (K)→ π1 (L) be
the corresponding isomorphism and let g∗1 be its inverse. We can expand the corresponding
presentations by adding trivial terms corresponding to the other presentations, namely:

P ′ = 〈x,y|r,g∗1(y)y−1 (y ∈ y)〉 , and Q′ = 〈x,y|s,f∗1(x)x−1 (x ∈ x)〉 .
These new expanded presentations have the same generators and present the same

group. Let K ′ L′ be the corresponding topological models for those presentations, which
are trivially homotopically equivalent to K and L, respectively. Using the previous re-
sult, the corresponding extended map f̂ : K ′ → L′ induces the identity isomorphism on
π1 (K ′) = π1 (L′), and an isomorphism on π2. Therefore, using the lemmas, K ′ and L′ are
homotopy equivalent, and by transitivity, the same holds for K and L.

Let’s remember the long exact sequence in homotopy for a pair (X,A) :

· · · i∗→ πn+1 (X,A, x0)
∂→ πn (A, x0)

j∗→ πn (X, x0)
i∗→ πn (X,A, x0)

∂→ · · · j∗→ π0 (X, x0)

We will see that an homotopy action of π1 (A) on the modules appearing in this sequence
exists; this action is given by “dragging” the image of the base point backwards along a
loop.

More precisely, given a based map F : (Bn+1, Sn) → (X,A) and a loop α : I → A,
consider the map 〈F, α〉 : (Bn+1, Sn) ∨ I → (X,A), which is defined by F on (Bn+1, Sn)
and by α on I. Consider a retraction R : (Bn+1, Sn) × I → (Bn+1, Sn) ∨ I, then we have
found an homotopy H = 〈F, α〉 ◦ R : (Bn+1, Sn) × I → (X,A) such that H0 = F, the
homotopy class of the corresponding function G = H1 is defined to be the action of [α]
over [F ] , and is denoted by:

[G] = [α] · [F ] .

This gives us, for each n ≥ 2 a group homomorphism:

h : π1 (A)→Aut(πn (X,A)) ,

hα [F ] = [α] · [F ] .

The above homomorphism can be extended linearly on πn (X,A) making it a π1 (A)
module over the group ring Z (π1 (A)) .

Similarly, we can find homomorphisms:

h : π1 (X)→Aut(πn (X)) ,
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hα [F ] = [α] · [F ] .

These properties let us consider π1 (X) as a group of operators on πn (X) . For n = 1,
the above action is simply conjugation, and as above, for n > 1, this action makes the
abelian group πn (X) a left module over Z (π1 (X)) .

The following proposition summarizes the preoperties that the action of π1 (A) on
π2 (X,A) has. For a proof of it, we recommend the reader to read [10].

Proposition 3.4 In particular, the action of π1 (A) on π2 (X,A) has the following prop-
erties:

(∂ [G]) [F ] = [G] [F ] [G]−1 ,

∂ (α [F ]) = α∂ [F ]α−1.

The second property is known as the Pfeifer identity.

This gives the last part of the sequence a structure known as a crossed module which
will be detailed in the next (sub)section. Furthermore, if X\A consists only of open 2-cells,
the basis for π2 (X,A) as a π1 (A) free module has a one-to-one correspondence with the
two cells in X\A.

Considering now only connected 2-complexes K = K2, we have that πn (K1) = 0 for
n ≥ 2, splitting the long exact sequence into shorter ones

0→ πn
(
K2
) j∗→ πn

(
K2, K1

)
→ 0, for n ≥ 3,

and

0→ π2
(
K2
) j∗→ π2

(
K2, K1

) ∂→ π1
(
K1
) i∗→ π1

(
K2
)
→ 0. (1)

Actually, Whitehead, completely characterized the homotopy classfication of 2-complexes
as the classification of free crossed modules whose action groups are free groups [28].

4 Whitehead’s Question

Let’s go back to the main topic of our paper, Whitehead’s Question. Now that we have the
required background to understand its statement, we will summarize some of the properties

15



that have been proven and conjectured about low dimensional topology that would make
it really tough to “guess” whether Whitehead’s conjecture is true or false and to see why
it is an “interesting” question. In the second part of this section, we will summarize some
classical results that are known about Whitehead’s question, which are used in further
sections which study some approaches to the mentioned question.

4.1 Related Problems

For instance, if for a pair of 2-complexes K2 ⊂ L2 there existed an injective homomorphism
π2 (K2)→ π2 (L2) , the answer to this question would be trivial. But we can see that it is
not the case by considering the following example:

Example 4.1 Consider K2 = S1 ∨ S2, L2 = D2 ∨ S2. In this case, we have π1 (K2) ∼= Z,
where the generator is the homotopy class of the loop α that goes one lap around the S1

component of K2. Furthermore, in this case π2 (K2) ∼= Z (π1 (K2)) is a module on which
π1 (K2) acts, and is generated by the homotopy class of a homomorphism f from S2 to
the S2-component of K2(as it was detailed in the previous section). Consider the element
[g] = (α− 1) [f ] ∈ π2 (K2) . When we consider the same element as a map to K2 (i.e,
composing it with the inclusion of K2 into L2), such a map is homotopic to the constant
path, [g] = 0 ∈ π2 (L2) .

We can think of similar problems, like what happens when we allow cells of higher
degree in a complex K. Is it possible to annihilate π2 (K) 6= 0 by adding a 2-cell in this
case? (So the new complex would be aspherical and the original would be a non-aspherical
subcomplex of the latter).

Example 4.2 (Adams 55 [1]) Consider a 3-complex K3 whose 2-skeleton is K2 = S1 ∨
S2, and has a single 3-cell attached by a map homotopic to (2α− 1) [f ] ∈ π2 (K2) . Consider
L3 ⊃ K3, the cell complex obtained by attaching a 3-cell to L2 = D2 ∨ S2 ⊃ K2 in the
same way as it was done for K. Therefore, L3\K3 is a 2-cell. Now, by the same argument
as in the former example, the attaching map is (2α− 1) [f ] = [f ] ∈ π2 (L3) , but L3 and
D2 ∨D3 share the same 2-skeleton, and since the latter is collapsible, so is L3. Therefore
the Whitehead conjecture would be false in the case of general CW-complexes.

Similarly, we may think of a straightforward generalization of Whitehead’s Asphericity
Conjecture, namely,
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Having Kn ⊂ Ln with πn (Ln) = 0, does this imply that πn (Kn) = 0?

It is trivially true in dimension 1, since π1 (K1) → π1 (L1) is always injective. On the
other hand, for dimension n ≥ 3, it is false. Consider K = Sn−1 and L = Dn. For n = 3,
the Hopf map gives a non-trivial element of π3 (S2) , and similarly it was checked that for
n ≥ 4, πn (Sn−1) ∼= Z2, see, for example, [13, Thm 15.1].

So, only the 2-dimensional case, namely Whitehead’s Conjecture remains open.

As another motivation for the study of the Whitehead conjecture, one can consider the
problem of finding the second homotopy group of a knot complement in S3.

Problem 4.3 Given any knot K ⊂ S3, the space S3\K is the knot complement. What is
π2 (S3\K)?

Proposition 4.4 ([25, Thm 1.1]) If Whitehead’s Asphericity Conjecture is true, then
knot complements are aspherical.

Proof. Glue a thickened meridian disk into S3\K to get a 3-ball which collapses to an
aspherical 2-complex, say L. So if Whitehead’s Asphericity Conjecture were true then L
has to be aspherical and the asphericity of knot complements would be shown.

This fact would give us an option to prove that Whitehead’s Conjecture is false in
the case that we could find a knot in S3 whose complement is not aspherical. Papakyr-
iakopoulos proved the asphericity of knot complements in [24] using other techniques for
3-manifolds, and therefore Whitehead’s Conjecture remains open.

4.2 Classical Results

Now, we will summarize some results that have led to partial answers to Whitehead’s
question, as well as some classical theorems involving asphericity of 2-complexes.

It has been already verified that for particular cases, Whitehead’s conjecture holds.

Among the results obtained for the Whitehead’s Asphericity Conjecture, we are going
to state the following particular cases:

Consider a 2-complex L, K ⊂ L2, and π2(L) = 0 :

Proposition 4.5 [6] Whitehead’s Conjecture is true if:
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• K has at most one 2-cell, or

• π1(L) is finite and non-trivial, abelian, or free.

Theorem 4.6 (Cockroft [6]) If f : π1(K)→ π1(L) is injective then π2(K) = 0.

Proof. Let L̃ be the universal cover of L and p : L̃ → L the corresponding covering
projection. Since K is a subcomplex of L, we can consider a component of p-1(K), say K.

It is known that K is a regular cover of K. Thus, since any loop in ker f ⊂ π1(K)
can be lifted to one in π1(K), considering the corresponding induced morphism for the
fundamental group, p∗ : π1(K)→ π1(K), we get:

p∗
(
π1(K)

)
= ker(f) = 0.

Therefore, K is the universal cover of K. The fundamental group of the universal cover of
a CW-complex is always trivial, so by Theorem 2.18 we have,

π2(K) ∼= H2(K) < H2(L̃) ∼= π2(L) = 0,

proving the required result.

Another classical result, is the following:

Theorem 4.7 (Howie 1979 [11]) If the answer to Whitehead’s question is no, then there
exists a connected 2-complex L, such that either:

1. L is finite and contractible and L− e is not aspherical for some open 2-cell e of L.

2. L is the union of an infinite ascending chain of finite connected non-aspherical sub-
complexes K0 ⊂ K1 ⊂ . . . where each inclusion is nullhomotopic.

Notice that the word ‘contractible’ can be substituted with ‘aspherical’ to obtain a
weaker version of part 1 of the theorem.

Proof. (of the weaker version) Suppose Whitehead’s Conjecture is false for finite com-
plexes, then we may assume that there exists a finite aspherical 2-complex Y, containing
a non-aspherical subcomplex X. Let {ei} be the set of 2-cells in Y − X and let m be
the minimum i such that X ∪ Y 1 ∪ e1 ∪ e2 ∪ · · · ∪ ei is aspherical. Then we can take
L = X ∪ Y 1 ∪ e1 ∪ e2 ∪ · · · ∪ em and e = em and obtain an example of the form 1.
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Now, assume that Whitehead’s Conjecture is false in general, but is true for finite
connected complexes. Let Y be an aspherical 2-complex, and X be a non-aspherical
subcomplex of Y. Let X be one connected component of p−1 (X) for the universal cover

p : Ỹ → Y. Then, X is not aspherical and has a finite connected non-aspherical subcomplex,
say, K0. Now, since Ỹ is contractible, the inclusion map K0 → Ỹ is nullhomotopic, so, we
can extend it over the cone CK0 → Ỹ . Since K0 is finite, its image is a finite subcomplex
K1 of Ỹ . Repeating inductively the argument for Ki+1 in the place of Ki and defining
L = ∪iKi, we get the example as required in part 2.

Furthermore, this result was strengthened by Lüft, getting the following:

Theorem 4.8 (Lüft 1996 [19]) If Whitehead’s Conjecture is false, then there is a coun-
terexample of type 2 of Theorem 4.7.

Several approaches have been taken for this problem using different methods: all of
them have provided just partial answers to Whitehead’s question and some translations
of Whitehead’s Conjecture to other setups. The methods include the study of crossed
modules, geometric invariants such as the Betti numbers, using group presentations, simple
homotopy types and using discrete homotopy defined in the poset of simplical complexes.

The next sections provide a review of two of those methods. Section 5 deals with
crossed modules and Section 6 studies the approaches using discrete homotopy.

5 Crossed Modules

In the current section, we will study some of the properties of crossed modules which will
allow us to study some properties of aspherical 2-complexes. In particular, we will see that
any pair (X,A) where X is a 2-complex, naturally induces a structure of a crossed module
over the group π1(A) which has some particular properties and can facilitate the study of
2-complexes.

Definition 5.1 Consider the triple (C, ∂,G) where G,C are groups. If G acts on C on
the left and the morphism ∂ : C → G satisfies the following conditions:

1. ∂ (gc) = g∂cg−1. ∀c ∈ C, ∀g ∈ G, and

2. ∂ (d) c = dcd−1, ∀c, d ∈ C,
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then the triple is called a G-crossed module. If the triplet only satisfies the first condition,
the structure is called a pre-crossed module.

Notice that K = ker ∂ is contained in the center of C and N =im∂ is a normal subgroup
of G. Therefore, we get:

0→ K → C → N → 0.

In particular, as it was noticed before, for a pair (X,A) , the left action of π1(A) on
π2(X,A), together with the boundary homomorphism ∂, form a π1(A)-crossed module.

Definition 5.2 A morphism of crossed modules (α, β) : (C, ∂,G) → (C ′, ∂′, G′) is a pair
of group homomorphisms α : C → C ′, β : G → G′ such that ∂′ ◦ α = β ◦ ∂ and α (gc) =
β (g)α (c) , for all g ∈ G, c ∈ C.

In the case that A = X1, we note that the crossed module (π2 (X2, X1) , ∂, π1 (X1))
is free in the category of π1 (X1)−crossed modules, meaning that it satisfies the follow-
ing universal property: For any indexed minimal generator set T = {cα : α ∈ A} ⊂ C,
and any G′−crossed module ∂′ : C ′ → G′, and any homomorphism τ : G → G′ such
that (τ ◦ ∂) (cα) = ∂′ (c′α) for each α ∈ A, there exists a minimal generator set T ′ =
{c′α : α ∈ A} ⊂ C ′ and a unique homomorphism η : G → G′ such that the pair (η, τ) is a
morphism of crossed modules, and η (cα) = c′α for each α ∈ A.

In particular, free modules over a group are an example of free crossed modules.

Now, we will see what that result means in the case of the pair (K2, K1) .

5.1 Relation Between Crossed Modules and 2-Complexes

As it was stated at the end of section 3, the exact sequence in (1) can be regarded equiv-
alently as a crossed module. In what follows, we will show there exists an equivalence
between free crossed modules over a free group and 2-complexes. Furthermore, we also
consider another equivalent algebraic structure, namely, the category of Cat1-groups.

Consider a 2-complex K which is the model for a presentation P = 〈x, r〉 = F (x)/N(r).
Define the group E (P) as the free group on the set F (x) × r. Then, we can construct a
pre-crossed module associated to that representation by considering the action of F (x) on
E (P) by v · (w, r) = (vw, r) .

Let the action of F (x) on itself be conjugation, and define the boundary homomorphism
∂ : E (P) → F (x) by defining it on the elements of the basis by ∂ (w, r) = wrw−1. From
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this, we can notice that im∂ = N (r) is the normal closure of r in F (x) . The subgroup
I (P) = ker ∂ is called the group of identities of the presentation P = 〈x, r〉 .

This operator is a pre-crossed module, since for all v ∈ F (x) and all (w, r) ∈ E (P) ,
we have:

∂ (v (w, r)) = ∂ ((vw, r)) = vwrw−1v−1 = v∂ (w, r) v−1.

We can construct a crossed module by forcing the second property of the definition
to hold by factoring E (P) by the normal closure P (P) of the Pfeifer elements, i.e, the
elements of the form:

(w, r) (v, s) (w, r)−1
(
wrw−1v, s

)−1
.

Furthermore, notice that the Pfeiffer elements belong to the group of identities I (P) .

Therefore, we define the F (x)-crossed module associated with the presentation P = 〈x, r〉
by considering the induced homomorphism of ∂ (which we will still call ∂) acting on
the group C (P) = E (P) /P (P) . For the crossed module just defined, we have ker ∂ =
I (P) /P (P) and im∂ = N (r) .

This means we have an analogue to the fundamental sequence for 2-complexes:

(P) : 0→ I (P) /P (P)→ C (P)→ F (x)→ F (x) /N (r)→ 0. (2)

We can easily see that the last two terms in this sequence are isomorphic to the last
two terms of the corresponding sequence (1) for the pair (X2, X1) , where we will call τ
the corresponding homomorphism between F (x) and π1 (X1) .

It can be seen, for example in [10, II.Lemma 2.5], that the τ -morphism η : E (P) →
π2 (X,X1) is surjective and its kernel is the group of Pfeiffer identities, P (P) . By consid-
ering the induced morphism on C (P) , we can verify the following theorem:

Theorem 5.3 (Reidemeister) The F (x)-crossed module ∂ : C (P) → F (x) associ-
ated with the presentation P = 〈x, r〉 is isomorphic to the π1 (X1)-crossed module ∂ :
π2 (X,X1)→ π1 (X1) , for the model X of the presentation P .

We actually have the commutative ladder:

0 → I (P) /P (P) → C (P) → F (x) → F (x) /N (r) → 0
↓ η|| τ || ||

0 → π2 (X) → π2 (X,X1) → π1 (X1) → π1 (X) → 0.

21



So, using the five-lemma, we get that there is also an isomorphism:

I (P) /P (P) ∼= π2 (X) .

And therefore, we have a characterization of asphericity in terms of crossed modules.
Namely, given a group presentation P , its topological model X is aspherical if and only if
I (P) = P (P).

Also, this characterization permits us to see that the crossed module ∂ : π2 (X,X1)→
π1 (X1) is a free π1 (X1)-crossed module. This follows directly from the fact that F (x) is
a free group and acts freely on C (P).

Similarly, one can define the notion of a projective crossed module, as being projective
in the corresponding category, meaning that a G-crossed module (M,∂,G) is called G-
projective, if for any epimorphism f := (f, id) : (M1, ∂1, G) → (M2, ∂2, G) and any G-
homomorphism h := (h, id) : (M,∂,G) → (M2, ∂2, G), there exists a morphism q :=
(q, id) : (M,∂,G)→ (M1, ∂1, G), such that fq = h.

When we consider the general case of a pair (X,A), the crossed module may not be
projective (and therefore not free either). Although, Dyer [8] proved that if X is a 2-
complex and A ⊂ X, then the corresponding crossed module associated to the pair (X,A)
is projective in the category of crossed modules.

These properties let us translate asphericity in terms of crossed modules.

Similarly, it can also be proven that a crossed module is equivalent to a different type
of algebraic structure, namely a Cat1-group.

Definition 5.4 Let G be a group and let s, t ∈End(G). A triple (G, s, t) is called a Cat1-
group if the following conditions hold:

1. st = t and ts = s,

2. [ker(s), ker(t)] = 1.

Proposition 5.5 (Loday [18]) The category of crossed modules, CM, and the category
of Cat1-groups, Cat1, are equivalent.

Proof. Let (M,∂,G) be a crossed module. Consider the following functor:
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S : (M,∂,G) 7→ (M oG, s : (m, g) 7→ g, t : (m, g) 7→ ∂(m)g) ,

Clearly, the triplet (M oG, s, t) satisfies the properties of a Cat1-group, since st(m, g) =
s (∂(m)g) = ∂(m)g, ts(m, g) = t (g) = g. The inverse functor is given by M = ker s and
∂ = t|ker s, and the action of G on M is conjugation. The Pfeifer identity for a crossed
module is equivalent to the second axiom for a Cat1-group, since if x = (m, 1) ∈ ker s
and y = (n−1, ∂(n)) ∈ ker t with m and n ∈ M , we have xy = (mn−1, ∂(n)) and yx =
(n−1∂(n)m, ∂(n)). Therefore xy = yx is equivalent to nmn−1 = ∂ (n)m.

5.2 Approaches Using Crossed Modules

As seen in section 3, a 2-complex L can be regarded equivalently as a free π1 (L1)-crossed
module ∂ : π2 (L,L1) → π1 (L1) , and in this case a subcomplex K of L would again be a
crossed module ∂′ : π2 (K,K1)→ π1 (K1) .

Under this assumption, Conduché [7] has obtained a characterization for K being as-
pherical using the crossed module structure.

Using a morphism between the respective crossed modules, it has been proved that for
subcomplexes of aspherical 2-complexes, the second homotopy module can be expressed as
the intersection of the lower central series of the corresponding crossed module. Here we
will sketch the proof given by Mikhailov in [23], although this result was first proved by
Conduché [7], using different arguments.

In what follows, we will call the crossed module L1 (X) , ∂ : π2 (X,X1) → π1 (X1) the
fundamental crossed module associated to X, and similarly, L1 (X) = π2 (X,X1)oπ1 (X1)
the fundamental Cat1-group.

Consider the crossed module (M,∂,G). For g ∈ G, m ∈M , define [g,m] := (g ◦m)m−1.
Let {γτ (M,G)} be the lower central series of (M,∂,G), defined recursively by:

γ1(M,G) = M,

γi+1(M,G) = [γi(M,G),M ] = 〈[g,m]|g ∈ γi(M,G),m ∈M〉 ,

γω(M,G) = ∩∞i=1γi(M,G).

A crossed module (M,∂,G) is called residually nilpotent if γω(M,G) = {1} .
Similarly, for transfinite ordinals, one can define again the transfinite lower central

series by γτ (M,G) = ∩α<τγα(M,G). A similar definition works for the lower central series
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of a group G. In particular, define [x, y] := xyx−1y−1,

γ1(G) = G,

γτ+1(G) = [γτ (G), G] = 〈[x, y]|x ∈ γτ (G), y ∈ G〉 ,

γω(G) = ∩α<ωγα(G).

Remark 5.6 It is a fact that a free group F is residually nilpotent since any non-trivial
word in γn(F ) must have length at least n, and therefore the only word belonging to γω(F ) =
∩n∈Nγn(F ) is the empty word.

We will state the result that implies the characterization of asphericity of a subcomplex
of an aspherical 2-complex here.

Lemma 5.7 Let F be a free group and (M,∂, F ) an F -crossed module. Then γω (M,F ) ⊂
ker ∂.

Proof. If m ∈ γ2 (M,F ), then m is presented as the product of the elements of the
form (g ◦ s) s−1, s ∈ M, g ∈ F. But ∂((g ◦ s)s−1) = [g, ∂(s)] by the Pfeiffer identity.
Therefore ∂ (m) ∈ γ2(M,F ). We can extend the same argument and inductively prove
that ∂(m) ∈ γn(M,F ), m ∈ γn(M,F ) for all n ≥ 1. Since F is a free group, it is residually
nilpotent. Then m ∈ ker(∂) for m ∈ γω(M,F ) as required.

As can be seen in the proof, we do not really need F to be free, but just residually
nilpotent. This requirement is not really a restriction in the case of a pair (K,K1) since
we know from section 3 that the fundamental crossed module L1 (K) of a 2-complex is
a π1 (K1)-free crossed module, where π1 (K1) is a free group. Therefore, we have that
γω (π2 (K,K1) , π1 (K)) ⊂ ker ∂ = π2 (K) .

The other result relevant for the proof is the following theorem whose proof can be
found in [23].

Theorem 5.8 Let F be a free group and (M,∂, F ) a residually nilpotent non-aspherical
projective F -crossed module. Then the group coker(∂) is residually nilpotent.

From this theorem we can get a straightforward corollary.
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Corollary 5.9 Let (M,∂, F ) be a projective F -module with F free and coker(∂) not resid-
ually nilpotent. Then the following conditions are equivalent:

1. ker ∂ = 0;

2. γω (M,F ) = {1} .

Theorem 5.10 Let K be a subcomplex of a contractible 2-dimensional CW-complex L.
Then the following conditions are equivalent:

1. π2 (K) = 0;

2. γω (π2 (K,K1) , π1 (K1)) = {1} .

Proof. It is known from the exact sequence (1) that coker ∂ = π1 (K). If we suppose that
π2 (K) 6= 0, the above mentioned group π1 (K) is not residually nilpotent since it has a
nontrivial perfect radical [1]. Applying Lemma 5.7 and Corollary 5.9 to the free crossed
module (π2 (K,K1) , ∂, π1 (K)), we get the result.

Using these results, together with a similar technique to the one used in [4] and the
equivalence between Cat1-groups and crossed modules, Mikhailov [22] proved another group
theoretical characterization of asphericity.

Theorem 5.11 ([22]) Let L be an aspherical 2-complex, and K a subcomplex of L. Then
the following conditions are equivalent:

1. K is aspherical;

2. The fundamental Cat1-group L1(K) is residually solvable.

Furthermore, using the same kind of argument as Bradenburg and Dyer in [4] one can
also obtain the following result.

Theorem 5.12 ([23]) Let K be a two-dimensional complex such that H1(K) is torsion-
free and H2(K) = 0. Then the following conditions are equivalent:

1. L1(K) is residually solvable;

2. K is aspherical.
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6 Homotopy of Finite Spaces

To the knowledge of the author, the most recent approach to Whitehead’s question is a
discrete approach, which considers the posets associated with simplicial complexes. The
first part of the present section introduces the theory of Homotopy of finite spaces. Next,
we will review some results for this theory and finally study the applications to Whitehead’s
Conjecture.

We can first consider that for a finite partially ordered set, there exists a (canonical)
way to give it the structure of a topological space, as follows.

Given a preorder ≤ in a set X and an element x ∈ X, we set

Ux := {y ∈ X : y ≤ x} .

This gives X a T0 topology for which the sets Ux form a basis.

Conversely, for a finite topological space, we can define a preorder in the following way.
Let X be a topological space, define the order ≤, by

x ≤ y ⇐⇒ x ∈ U for every open set U containing y.

In particular, if the space X is T0, we can find for any pair of points x 6= y ∈ X an
open set U containing only one of them, which makes the preorder above actually a partial
order. Furthermore, these definitions give a one-to-one correspondence between finite T0
topological spaces and finite posets.

Remark 6.1 Since we are considering finite spaces, for a given poset, the opposite poset
will also induce a T0-space (i.e., defining the basic open sets as Fx := {y ∈ X : y ≥ x}).

To represent a poset, we will use its Hasse diagram which represents each element of X
as a vertex in the plane and draws a line segment that goes upward from x to y whenever
x < y and there is no z such that x < z < y. A chain in a poset is a totally ordered subset
of it. We define the length of a chain as the number of edges it has in the Hasse diagram,
i.e. the number of points in the chain minus one, and the height of a finite poset as the
height of its longest chain.

In this context, continuity of a function f : X → Y between posets translates simply to
preserving the order relation for their Hasse diagrams. That is, it preserves edges if seen
as a graph.
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We define a fence as the following discrete structure:

X = N, and the relation is given by:

n � n, ∀n ∈ N,
2n � 2n± 1, ∀n ∈ N.
Given this definition, it is not difficult to see that for a finite topological space X, it is

connected if and only if is path connected, which is also equivalent to having a continuous
function from the fence into X.

Since we can also define an order on the space of functions Y X , by defining f ≤ g ⇐⇒
f (x) ≤ g (y) , ∀x ≤ y, we can define homotopy equivalences between posets by considering
two functions f, g ∈ Y X to be homotopic if there is a path between them in Y X . As usual,
we will say that a pair X, Y of spaces are homotopy equivalent if there exists a pair of
continuous functions f ∈ Y X , g ∈ XY , such that f ◦ g is homotopic to the identity on Y,
and g ◦ f is homotopic to the identity on X. In particular, a discrete topological space is
called contractible if it is homotopy equivalent to a point.

An important feature is that if a space has a maximum, (or a minimum since in this
case, its opposite poset has a maximum) it is contractible.

We can also use the usual notion of homotopy groups as defined in the first section
and furthermore, the homotopy group for a poset is naturally isomorphic to the usual
homotopy group for its realization complex.

Other results let us prove, for example, that two finite posets are homotopy equivalent
if and only if they are homeomorphic, see [2].

Applying these definitions to the poset X (K) associated to a simplicial complex K,
it can be seen that the homotopy groups defined on the discrete structure X (K) are
isomorphic to their continuous counterparts in the realization |K| of K, [2], [17].

Also, given a finite poset X, we can consider each chain on it as a simplex, and obtain
a simplicial complex K (X), which has the same homotopy groups. Furthermore, if we
consider a simplicial complex K, then K (X (K)) is the baricentric subdivision of the
simplicial complex K, and therefore, its realization is the same as the one for K.

Another important fact is that using this transformation between simplicial complexes
and posets, the length of a chain starting at the bottom is the dimension of the simplex
associated to it, and therefore the height of a poset coincides with the dimension of the
simplicial complex.

We say that two finite posets are weakly equivalent if they have the same homotopy
groups. For instance, two different subdivisions of a 1-sphere will have the same homotopy
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groups since they are both simplicial models for the same space, although their correspond-
ing posets may not be homotopy equivalent (as shown in Figure 2).

Figure 2: Two different subdivisions of S1

6.1 Simple Homotopy of Finite Spaces

In what follows, we will consider operations on a finite poset that do not change the
homotopy type of it.

A point x ∈ X is called a down beat point if Ûx = {y ∈ X : y < x} has a maximum
and an up beat point if F̂x = {y ∈ X : y > x} has a minimum. In both cases the subspace
X\ {x} ⊂ X is a strong deformation retract. Two finite spaces X and Y have the same
homotopy type if and only if Y can be obtained from X by removing and adding beat
points. The characterization of homotopy equivalent spaces in terms of beat points is
credited to Stong [26]. In particular, if a finite space X has a maximum, all the points
immediately below it in its Hasse diagram will be beat points. Hence, we can remove them
without changing the homotopy type. Doing this procedure inductively, we end up with a
space which contains only one point. In other words, this proves that a finite space with a
maximum is contractible.

A point x ∈ X is called a weak point if Ûx or F̂x is a contractible finite space. In this
case, the inclusion X\ {x} ⊂ X is a weak homotopy equivalence.

Since finite spaces with a maximum or a minimum are contractible, the notion of weak
point generalizes that of beat point.

Definition 6.2 An elementary collapse is the process of removing a beat point. A space X
is called collapsible if there is a sequence of elementary collapses starting in X and finishing
in a singleton.

It is also worth noticing that in this approach via finite spaces, the usual notion of
simple homotopy type for a simplicial complex coincides with the simple homotopy type
of its associated face poset.
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Remark 6.3 In this context, collapsibility coincides with the collapsibility of the associated
simplicial complex, but contractibility in finite spaces does not coincide with its analogue
for general topological spaces. For instance, while with the usual definition of collapsibility,
a collapasible space is contractible, for finite spaces the implication goes the other way.
Contractible finite spaces are collapsible and collapsible spaces are weakly homotopically
trivial (meaning that its homotopy groups are trivial). None of the converse implications
hold [2], [3]. Figure 3 is an example of a collapsible, but not contractible finite space.

x

Figure 3: Collapsible and non-contractible poset of height 2

Definition 6.4 Let X be a finite space of height 2 and let a, b ∈ X be two maximal points.
If Ua ∪ Ub is contractible, we say that there is a qc-reduction from X to Y \ {a, b}, where
Y = X ∪{c} with a, b < c. If after several qc-reductions starting in a finite space of height
2, one obtains a space with a maximum, the original space will be called qc-reducible.

Remark 6.5 The important feature of qc-reducibility is the fact that it doesn’t change the
simple homotopy type of a space.

Given a discrete space X, the following lemma gives us a nice way to find spaces with
less points, that are homotopically equivalent spaces to X. We recommend the reader see
[2] for their proofs.

Lemma 6.6 ([2]) Let X be a finite space of height at most 2 such that H2(X) = 0. Let
(a, b) be two maximal elements of X. Then the following are equivalent:

1. Ua ∪ Ub is contractible,

2. Ua ∩ Ub is nonempty and connected,

3. Ua ∩ Ub is contractible.
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6.2 Whitehead’s Conjecture and Finite Spaces

For a particular class of complexes, it has been proved using finite homotopy theory that
Whitehead conjecture holds. In this part of the document, we will review the results
obtained in [5] where the authors define quasi-constructible complexes, and verify that
for these, an aspherical complex L does not admit a non-aspherical subcomplex of the
form L − e, where e is a 2-cell. Finally, applying Theorem 4.7, Whitehead’s asphericity
conjecture will be proved for these complexes.

Definition 6.7 A finite simplicial complex K of dimension at most 2 is said to be quasi-
constructible if K is a simplex or, recursively, if it can be written as K = K1 ∪K2 in such
a way that:

• K1 and K2 are quasi-constructible, and

• K1 ∩K2 is nonempty and connected, and

• No maximal simplex of K1 is in K2, and no maximal simplex of K2 is in K1.

Using definition 6.7, the following proposition is proved in [2].

Proposition 6.8 ([2]) Let K be a finite simplicial complex of dimension at most 2. Then
the following are equivalent:

1. K is quasi-constructible and H2(|K|) = 0,

2. X(K) is qc-reducible,

3. K is quasi-constructible and contractible.

This gives us an equivalent statement to Whitehead’s Conjecture by considering the
corresponding face poset associated to a triangulation of a given 2-complex.

Conjecture 6.9 Let X be a homotopically trivial (contractible) finite space of height 2 and
let a ∈ X be a maximal point such that X\ {a} is connected. Then X\ {a} is aspherical.
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Proof of equivalence. Suppose that there exists a counterexample of type (1) in
Theorem 4.7. It is well known that a finite CW-complex has the same homotopy type of a
simplicial complex of the same dimension. It follows that there is a contractible 2-complex
L and a subcomplex K = L\σ with σ a 2-simplex of L, such that K is connected and non-
aspherical. Let X(L) and X(K) be their face posets. Then X(L) is a homotopically trivial
space of height 2 and X(K) is a connected, non-aspherical subspace of X(L), obtained by
removing the maximal point σ ∈ X(L). The truth of Conjecture 6.9 would imply that
there is no counterexample of the first type in Theorem 4.7.

Similarly, suppose that Whitehead’s conjecture is true. Given a homotopically trivial
finite space X of height 2 and a maximal point a ∈ X such that X\a is connected, the
associated simplicial complex K(X) is contractible and the subcomplex K(X\a) of K(X)
is connected. Hence, since we are assuming that Whitehead’s conjecture is true, K(X \ a)
and X \ a are both aspherical. This means that, in this case, Conjecture 6.9 also holds.
In other words, we have found a translation of the finite case of Whitehead’s asphericity
conjecture to finite spaces of height 2.

Furthermore, in this setup we have another partial answer for Whitehead’s Conjecture,
namely:

Theorem 6.10 ([5]) Let X be a finite qc-reducible space of height 2 and let a ∈ X be a
maximal point such that X\ {a} is connected. Then X\ {a} is aspherical.

6.3 Homotopy of Reflexive Structures

Similarly to the above notion, Larose and Cardiff [17] have defined discrete homotopy
for reflexive structures, generalizing the notion defined for posets and confirming that for
a simplicial complex, the usual homotopy groups agree with the discrete ones that they
define. In [17] the authors define the functor σk from the category of pointed/based binary
reflexive structures (in particular for posets) to the category of groups. They prove an
isomorphism between the group σk (X, x0), which is a discrete version of the homotopy
group and will be defined in the current section, and the homotopy group πk (K (X)),
where K (X) is the simplicial complex obtained by considering each ascending chain in X
as a simplex. The results in [16] relating discrete homotopy and Taylor operations let us
identify a property of weak homotopically trivial finite spaces which leads us to another
possible approach to Whitehead’s Question, this time relating it to a problem in universal
algebra. We will briefly describe the above mentioned results and state the possible use of
them to study Whitehead’s Asphericity Conjecture.
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Definition 6.11 A reflexive structure is a set together with a reflexive binary relation θ.
We write the relation (x, y) ∈ θ as x → y. A morphism f : X → Y between reflexive
structures is a map which preserves θ.

Definition 6.12 A (weak) path from x to y within a space X is a sequence of elements
x = x0, x1, . . . , xn = y in which xi → xi+1 or xi+1 → xi. This is equivalent to saying that
there is a morphism from a fence, F (set of integers such that 2k → 2k ± 1) to the space
X sending 0 to x and staying at y after it arrives at some time N.

The space of paths from x0 to x0 is called F (X, x0) . More generally, if we denote by
F k the Cartesian product of F with itself k times, we can define F k (X, x0) to be the set of
homomorphisms from F k to X, which after some time N becomes constantly equal to x0
and are x0 if any coordinate is 0. (Notice that this is intuitively equivalent to considering
the interval [0, 1] as the set of steps {0, 1, . . . , n} and therefore the cube Ik as a product
{0, 1, . . . , n1}×{0, 1, . . . , n2}× · · ·× {0, 1, . . . , nk}). We can define a reflexive relation φ in
F (X, x0) by setting f → g if and only if f(x)→ g(y),∀x→ y. This lets us define a notion
of homotopy for finite spaces. Two maps in F (X, x0) are homotopic if there exists a path
between them in F (X, x0).

The quotient of this space by the discrete homotopy mentioned above is the so-called
discrete homotopy group σk(X, x0), where the product is given as usual by gluing one map
after the other in one of the directions (although no rescaling is needed). It is proved that
σk is a functor from the category of reflexive structures to the category of groups.

Finally, Larose and Cardiff [17] prove that for a finite reflexive structure X, and for its
poset of simplices (ascending chains in X), the groups σk coincide, which implies that the
(weak)-homotopy type of reflexive structures is completely equivalent to the one for the
posets.

In a very similar fashion to the usual notion, as described in Section 1, Witboi [29],
defines the relative homotopy for relational structures. In particular, for posets it is also
possible to get a long exact sequence in homotopy, which resembles the one described in
Section 2.3.

Some results of [17] are summarized in [16], where the author also gives some applica-
tions to the case of finite digraphs relating the higher homotopy groups to the existence of
polymorphisms satisfying certain conditions.

Definition 6.13 Let X be a binary reflexive structure. A Taylor operation is an n-ary
map r : Xn → X which satisfies the following properties:
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• r is idempotent (meaning r(x, x, . . . , x) = x,∀x ∈ X),

• r is not a projection,

• r preserves the relation in X, and satisfies identities of the form

r (x1, . . . , xi−1, y, xi+1, . . . xn) = r
(
x′1, . . . , x

′
i−1, z, x

′
i+1, . . . x

′
n

)
,

for some y, z ∈ X and all x1, x2, . . . , xn, x
′
1, x
′
2, · · · , x′n ∈ X.

Using these polymorphisms, Larose proves the following theorem.

Proposition 6.14 ([16]) Let X be a finite connected binary reflexive structure. If it ad-
mits a Taylor operation, all of its (discrete) homotopy groups are trivial.

Another couple of sufficient conditions for a reflexive structure to be idempotent trivial
can be found in [17].

Given an aspherical space X, consider a 2-cell e (or just a 2-simplex, if we consider a
simplicial model for X). In this case, to prove the finite case of Whitehead’s Conjecture,
we could find a Taylor operation for the universal cover of X − e.

It is worth noticing that for the case of posets of height 1, they admit a Taylor operation
if they do not have cycles, and are idempotent trivial if every point belongs to a cycle.
Therefore proposition 6.14 implies that for the first case, we have a contractible space
agreeing with the fact that a tree is contractible, and in the other case we have a bouquet
of circles which is a non-homotopically trivial space. To the knowledge of the author, there
are no characterizations of admitting Taylor operations for the case of posets of height 2.

7 Other Approaches and Open Questions

As it was already stated, other different approaches have been taken for the study of
Whitehead’s Conjecture. Ivanov [15] for example, uses the group presentation to translate
an aspherical complex into a group whose presentation is faithful, and describes a group
theoretic approach, where Whitehead’s conjecture translates into proving that for a faithful
presentation, any subpresentation (presentation where the generators and relators are a
subset of the ones for the original) remains faithful. Rosebrock [25] uses another graph
representation for some particular kinds of group presentations, and studies what he calls
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Labelled Oriented Trees (LOTs). These are directed graphs in which each generator x is
written in a node of a tree and there is a labeled arc z from x to y if there exist a relator
which writes y as the conjugate of x by z, namely y = z−1xz.

Considering the approaches that have been described in the current paper, we can ask
the following questions:

Problem 7.1 What is the precise description of the translation of Dyer’s result on pro-
jectivity of crossed modules to the Cat1-groups language?

Problem 7.2 Knowing that crossed modules admit a transfinite generalization of the lower
central series, is it possible to find a transfinitely nilpotent crossed module, that is not
residually nilpotent?

Problem 7.3 How does qc-reducibility of finite spaces translate into a group theoretical
representation for the corresponding presentation of a 2-complex?

Problem 7.4 Under which conditions does the converse of Proposition 6.14 hold? This
would give us a (-n almost complete) translation from Whitehead’s conjecture to a universal
algebra setup.

Problem 7.5 For posets of height 2, when do they admit Taylor operations?

The reader, as the author did, could realize a very interesting feature in Mathematics
(and in other fields of life as well); there could exist many different valid approaches to a
given problem. We may not get a complete solution, but a step forward is always worthy.
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