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Abstract

I will present the mean curvature flow in Euclidean spaces and the

Lagrangian mean curvature flow. We will first study the mean curva-

ture evolution of submanifolds in Euclidean spaces, with an emphasis

on the case of hypersurfaces. Along the way we will demonstrate the

basic techniques in the study of geometric flows in general (for exam-

ple, various maximum principles and the treatment of singularities).

After that we will move on to the study of Lagrangian mean curvature

flows. We will make the relevant definitions and prove the fundamen-

tal result that the Lagrangian condition is preserved along the mean

curvature flow in Kähler-Einstein manifolds, which started the exten-

sive, and still ongoing, research on Lagrangian mean curvature flows.

We will also define special Lagrangian submanifolds as calibrated sub-

manifolds in Calabi-Yau manifolds.

Finally, we will study the mean curvature flow of conormal bundles

as submanifolds of Cn. Using some tools developed recently, we will

show that if a surface has strictly negative curvatures, then away from

the zero section, the Lagrangian mean curvature flow starting from a

conormal bundle does not develop Type I singularities.
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1 Basic Settings

In this thesis, all manifolds will be smooth. Let M be an m-dimensional

manifold. A submanifold N in M is a subset of M that admits adapted

coordinates: for every point p ∈ N there exists a coordinate neighborhood

U of p in M such that in the local coordinates (xi) corresponding to U ,

the intersection N ∩ U corresponds to xn+1 = ... = xm = 0. This n is

independent of the point or the choice of chart chosen. In this case, we say

N is an embedded n-dimensional submanifold of M and the codimension of

N is m−n. In the case where the codimension is 1 we call N a hypersurface of

M . It can be proved that with the subspace topology, N is an n-dimensional
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manifold itself and the inclusion map is an embedding. That is, it is a smooth

topological embedding that is an immersion (the differential at each point

assumes full rank).

Alternatively, we can consider a wider class of submanifolds, the immersed

submanifolds. Let N be an abstract manifold, and M as above. If there exists

an immersion i : N 7→M , then we say i(N) is an immersed submanifold ofM .

In what follows, we will identify N with its image i(N), and the immersion i

in this case would become the inclusion. Note that an important difference

between an immersed submanifold and an embedded submanifold is that an

immersed submanifold with the subspace topology need not be a manifold

itself. An example illustrating this point is the figure-eight, which can be

thought of as R immersed in R2, but with the subspace topology, the subset

fails to be a manifold precisely at the centre.

The tangent space at a point p of the submanifold N (embedded or immersed)

can be thought of as a subspace of the tangent space at p of the ambient

manifold M , via the push-forward of the inclusion. That i∗ is injective follows

from our very definition of submanifolds, hence this identification is justified.

Most of our results will be true for both types of submanifolds, although for

simplicity we may just state the proof for the embedded ones.

Now in what follows, we assume that M is equipped with a metric g, which

is a smoothly varying inner product on the tangent spaces.

The metric g on M naturally induces a metric g′ on N via the pull-back

of the inclusion. More specifically, if U, V ∈ TpN , we define g′(U, V ) =
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g(i∗(U), i∗(V )). Another equivalent way to say this is to define g′ such that

with respect to g′ and g, the inclusion is an isometry.

Let ∇̄ be the Levi-Civita connection on M with respect to g, and X, Y be

local vector fields on N , and p a point in the intersection of their domains

of definition. We can always extend X and Y to local vector fields X̃, Ỹ

in M , such that X̃ and Ỹ agree with X and Y respectively on N . Define

∇̄T
X(Y ) to be the tangential part of ∇̄X̃(Ỹ ) to N , i.e. its projection onto the

tangent space of N . It is easy to prove that ∇̄T is well-defined, and defines

the Levi-Civita connection of N with respect to the induced metric.

The normal part of ∇̄X̃(Ỹ ), namely ∇̄⊥
X̃

(Ỹ ) = ∇̄X̃(Ỹ )−(∇̄X̃(Ỹ ))T , is denoted

B(X, Y ). This B is called the second fundamental form of N and it is well-

defined and symmetric inX, Y (see [2], chapter 6). From the fact that ∇̄X(Y )

is tensorial in X, symmetry of B also means that B(X, Y ) is tensorial in both

X and Y .

Note that B : TpN × TpN 7→ (TpN)⊥ is symmetric, hence for a normal

vector field η, the bilinear map Sη(X, Y ) = g(B(X, Y ), η) = 〈B(X, Y ), η〉 is

also symmetric. So there exists a self-adjoint map Sη : TpN 7→ TpN such

that g(Sη(X), Y ) = Sη(X, Y ) = g(B(X, Y ), η). It can be easily proved that

Sη(X) = −(∇̄Xη)T . Any of these maps may be called the second fundamental

form, depending on convention.

Hence, now we have two pieces of information. The first is the intrinsic

information on N , here expressed by the tangential component of ∇̄; the

second one, given by the second fundamental form, is extrinsic and depends
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on the way N is embedded in M .

Thus, in addition to the intrinsic curvature of N defined by the metric, B

measures the way N sits in M , and this defines other notions of curvature as

a measurement of this. In particular, the mean curvature will be of interest

to us.

To formulate this, at any point p ∈ N we take an orthonormal basis {ei} of

TpN . Let η be a normal vector field. The mean curvature Hη with respect to

η at p is defined to be Hη =
∑n

i=1 Sη(ei, ei) =
∑

i g(B(ei, ei), η), namely, the

metric trace of Sη. Let η1, η2, ..., ηm−n be a local orthonormal basis of normal

vector fields. The mean curvature vector H is then defined to be
∑

iHηiηi.

Depending on the convention, there may be a factor of 1/n.

For later use, we need two important equations, the Gauss and Codazzi

equations, relating the curvature information of the submanifold N and the

ambient manifold M .

The first one compares the difference between the two curvatures. Let R̄ be

the curvature of M , defined by

R̄(X, Y, Z,W ) = g(∇̄X∇̄YZ − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z,W ),

where ∇̄ is the Levi-Civita connection of the ambient manifold M . Equiva-

lently, we can define

R̄(X, Y )Z = ∇̄X∇̄YZ − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z.
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Similarly, let R be the curvature of N with respect to the induced metric.

Then the Gauss equation states that if X, Y, Z,W ∈ TpN ,

R̄(X, Y, Z,W )−R(X, Y, Z,W ) = 〈B(Y,W ), B(X,Z)〉−〈B(X,W ), B(Y, Z)〉 .

(1.1)

Hence the difference between the curvatures is precisely given by the second

fundamental form.

The Codazzi equation is about switching indices of the covariant derivative

of the second fundamental form. Briefly, it states that switching index cor-

responds to a curvature term, which is a common phenomenon in geometric

analysis. More precisely, for X, Y, Z ∈ TpN and η a normal vector field,

〈
R̄(X, Y )Z, η

〉
= (∇̄YB)(X,Z, η)− (∇̄XB)(Y, Z, η). (1.2)

Notationally, we will denote Aij = B(ei, ej) at p ∈ N , and Aνij = 〈Aij, ν〉.
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2 Minimal submanifolds and the volume func-

tional

Definition 2.1. Let N be an n-dimensional submanifold of M , as in the last

section. Then N is said to be minimal in M if the mean curvature vector

H = 0.

A classical interpretation of this condition is as follows: let Nt be a small

variation of N , with t ∈ (−ε, ε). Each Nt is an n-dimensional submanifold of

M , varying smoothly with t, and N0 = N . The metric on M induces metrics

on each Nt, and it is natural to ask what condition guarantees that N has

the smallest or largest volume with respect to all its small variations.

An equivalent mathematical way of formulating this problem is to consider

the volume functional. Let ft : N → M be a smooth family of immersions.

The collection f = {ft} corresponds to the smooth variations of N we con-

sidered above.

Let I(t) = If (t) =
∫
N
d(f ∗t g), where g is the metric on M , and t ∈ (−ε, ε).

We use d(f ∗t g) to denote the volume form on N with respect to the metric

f ∗t g. Differentiating with respect to t,

d

dt
I(t) =

∫
N

d

dt
(d(f ∗t g)).

Denote gt = f ∗t g. Let p ∈ M , and consider a coordinate system (xi) of N

around p. Let ei be the i-th coordinate vector field, and gt,ij = gt(ei, ej).
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Then it is well-known that dgt =
√

det(gt,ij)dx
1 ∧ ... ∧ dxn where dgt is the

volume element with respect to gt (see [10]). From this, it follows that

dgt = (
√

det(gt,ij)/
√

det(g0,ij))dg0.

Hence it suffices to compute ∂
∂t

(
√

det(gt,ij)/
√

det(g0,ij)).

By considering a normal coordinate system at p, we can assume that at p,

g0,ij = δij. We have

∂

∂t
(
√

det(gt,ij)/
√

det(g0,ij))|t=0 =
1

2

∂

∂t
(det(gt,ij))|t=0.

On the other hand,

∂

∂t
(det(gt,ij))|t=0 = tr(

∂

∂t
gt,ij|t=0) =

n∑
i=1

∂

∂t
gt(ei, ei)|t=0.

Now for simplicity we denote ∇̄t = ∇̄ ∂
∂t

and ∇̄i = ∇̄ei(recall that ∇̄ is the

Levi-Civita connection on the ambient submanifold M). We can interchange

the time derivative and space derivative and see that

∂

∂t
gt(ei, ei) = 2gt(∇̄tei, ei) = 2gt(∇̄i

∂

∂t
ft, ei),

which, evaluated at (p, 0) is 2g0(∇̄iV, ei)|p, where V is the variational field of

ft, evaluated by taking the derivative with respect to t at 0. This V is the
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direction in which the submanifold N0 moves under ft. We can decompose

V = V T + V ⊥, where V T is tangential to N and V ⊥ is normal to N . Then

∑
i

2g0(∇̄iV, ei) =
∑
i

(2g0(∇̄iV
T , ei) + 2g0(∇̄iV

⊥, ei)) = 2divN(V T )− 2HV ⊥ ,

where HV ⊥ is the mean curvature with respect to the V ⊥ direction and the

metric g0. Integrating on N and dividing by 2, we get

∂

∂t
I(t)|t=0 =

∫
N

divN(V T )−
∫
N

HV ⊥ .

Now we assume N is closed (compact without boundary), then, by Stokes’

Theorem, this is equal to −
∫
N
HV ⊥ = −

∫
N
g0(H, V ).

This leads to the following theorem:

Theorem 2.2. The closed submanifold N is a critical point of the volume

functional if and only if the mean curvature vector vanishes, i.e. N is mini-

mal.

One direction is immediate. The other direction follows from choosing

the variation V to be H.

It also follows that deformation in the direction of mean curvature, i.e. choos-

ing V = H, decreases the volume.

This theorem also shows that the term “minimal” can be misleading; it can

be a local maximum, minimum or saddle point of the volume functional of
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its variations. There are other conditions to guarantee a submanifold to be

volume minimizing in its homology class. One such is the condition of being

calibrated, i.e. there is a closed n-form η on M that has value less than or

equal to 1 on any orthonormal n-frame in TpM , but is 1 on TqN , for any

q ∈ N . The proof is just a simple application of Stokes’ Theorem. More

details of this can be found in [4].
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3 The Mean Curvature Flow in Euclidean space

Let N be an n-dimensional submanifold of an m-dimensional Riemannian

manifold M , as in the last section.

Due to the technicalities, for now we will only restrict ourselves to studying

the case M = Rm.

A motion by mean curvature flow of N is defined to be a smooth family of

embeddings Ft : N → M , for t ∈ (−ε, ε) with F0 the original embedding of

N into M (or inclusion), such that at each point p ∈ N ,

∂

∂t
Ft(p) = Ht(p)

in the domain of definition of t, where Ht(p) denotes the mean curvature

vector of Nt at Ft(p). We shall drop the subscript t when there is no confu-

sion.

3.1 Short-time Existence and Uniqueness

In Rm, the Levi-Civita connection is the flat one. The mean curvature vector,

defined for an orthonormal frame {ei} to be
∑n

i=1(∇̄eiei)
⊥, is easily seen to be

the metric trace of the second fundamental form. Hence for a general coordi-

nate frame (instead of an orthonormal frame), we can write H = (gij ∂2F
∂xi∂xj

)⊥,

where gij is the metric on N .
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The equation ∂
∂t
Ft(p) = Ht(p) can then be written as

∂

∂t
F (p) = (gij

∂2F

∂xi∂xj
)⊥ = gij

∂2F

∂xi∂xj
−
〈
gij

∂2F

∂xi∂xj
,
∂F

∂xk

〉
Rm

gkl
∂F

∂xl
.

In components,

∂

∂t
Fα(p) = gij

∂2Fα

∂xi∂xj
− gijgkl

m∑
β=1

∂2F β

∂xi∂xj
∂F β

∂xk
∂Fα

∂xl
.

By computing the symbol, it can be shown that this equation is not strictly

parabolic (i.e. the right side is not strictly elliptic). Hence the standard the-

ory of existence and uniqueness theorems of parabolic differential equations

does not apply here.

Yet another way of writing the mean curvature flow equation is as follows:

H = (gij ∂2F
∂xi∂xj

)⊥ = gij( ∂2F
∂xi∂xj

− ( ∂2F
∂xi∂xj

)T ). Notice that the last term is the

Levi-Civita connection on N (which we denote by ∇ without a bar), we have

H = gij( ∂2F
∂xi∂xj

− ∇ ∂F

∂xi

∂F
∂xj

). Consider now F as a vector-valued function, so

component-wise it makes sense to talk about its Laplacian. Recall that for

a function h on N (see [7]),

∇2
X,Y h = ∇X∇Y h−∇∇XY h.

Hence we have established

Ht = gijt ∇2
∂F

∂xi
, ∂F
∂xj
F = 4g(t)F,
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where in the last equation, the metric g(t) = gt is the induced metric on N

by the immersion at time t. The above equation means that each compo-

nent of H is the Laplacian on (N, gt) of the corresponding component of F .

The introduction of the subscript t again is to emphasize the fact that this

Laplacian depends on the metric g(t) as it evolves - for this reason it is not

strictly parabolic as it may seem.

To prove the short-time existence and uniqueness, we will use deTurck’s trick,

which is to fix a connection through a diffeomorphism.

Theorem 3.1. If N is compact, then there is a unique short-time solution

to the mean curvature flow equation of N .

Proof. Suppose for some choice of vector field v, the equation

∂F̃

∂t
= 4g(t)F̃ + vk∇kF̃ (3.1)

with initial value F0 is uniquely solvable for a short time (here we denote

∇kF̃ = ∂F̃
∂xk

for simplicity). We show that this means that same holds for the

mean curvature flow of F0.

Indeed, consider a family of time-dependent diffeomorphisms ϕt : N×[0, T )→

N of N . Let Ft(p) = F̃t(ϕt(p)) := F̃ (ϕt(p), t) (and similarly, to emphasize

time dependence we may write a time-dependent function At(p) as A(p, t)).
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By the chain rule, (3.1) is transformed to

∂Ft
∂t

(p) =
∂

∂t
F̃ (ϕt(p), t) +∇kF̃ (ϕt(p), t)

∂ϕt(p)
k

∂t

= 4g(t)F̃ (ϕt(p), t) +∇kF̃ (ϕt(p), t)(v
k +

∂ϕt(p)
k

∂t
)

= 4g(t)F (p, t) +∇kF̃ (ϕt(p), t)(v
k +

∂ϕt(p)
k

∂t
).

So to obtain the mean curvature flow equation it suffices to find ϕt such that

∂ϕt
∂t

= −v, ϕ0 = id.

This is a system of ODE, and ϕt exists for compact initial data.

Hence the problem is to choose a suitable vector field v such that the first

system is short-time uniquely solvable.

Now choose a fixed connection ∇̃ on N . Choose the vector field v such that

vk = gij(Γkij − Γ̃kij), where Γ̃kij are the Christoffel symbols for ∇̃. Then (3.1)

becomes

∂F̃

∂t
= (gij

∂2F̃

∂xi∂xj
− gijΓkij

∂F̃

∂xk
) + gij(Γkij − Γ̃kij)

∂F̃

∂xk

= gij
∂2F̃

∂xi∂xj
− Γ̃kij

∂F

∂xk
.

Then since we have changed Γkij to Γ̃kij, which is independent of t, this right

side expression is strictly elliptic. Hence the theory of parabolic equations

applies to show that the equation, hence the mean curvature flow of F0, has
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a unique short-time solution (see [12]).

3.2 Evolution of geometry

In this section, we will study how geometric quantities evolve under the mean

curvature flow.

Theorem 3.2. Under the mean curvature flow, the metric and the volume

form evolve as follows:

∂

∂t
gij = −2 〈H, Aij〉 (3.2)

∂

∂t

√
det g = −|H|2

√
det g. (3.3)

Proof. As above, F : M → Rm is the immersion, and ei is ∂
∂ui
F .

Interchanging the time and space derivatives, we compute:

∂gij
∂t

=
∂

∂t

〈
∂F

∂ui
,
∂F

∂uj

〉
=

〈
∇t
∂F

∂ui
,
∂F

∂uj

〉
+

〈
∂F

∂ui
,∇t

∂F

∂uj

〉
=

〈
∇iH,

∂F

∂uj

〉
+

〈
∂F

∂ui
,∇jH

〉
= −〈H,∇iej〉 − 〈H,∇jei〉

= −〈H, Aij〉 − 〈H, Aji〉 = −2 〈H, Aij〉

by symmetry of the second fundamental form.

The second equation is essentially proved in the first variation formula.

From (3.3), we can see that as long as |H|2 is bounded, say |H|2 ≤ C

14



throughout, then ∂
∂t

√
det g ≥ −C

√
det g as long as the flow exists. Then

this means
√

det g(t) ≥
√

det g0e
−Ct along the flow, hence it stays positive

since
√

det g0 is positive. This means that under the mean curvature flow, F

remains an immersion as long as the flow exists and the second fundamental

form is bounded throughout.

There is also an unexpected connection of the Mean Curvature Flow with

the Ricci flow. Suppose {ei} is an orthonormal basis of TpN . Then the Ricci

tensor is defined to be (in components) Rij =
∑n

l=1 〈R(ei, el)el, ej〉. From the

Gauss equation (1.1) in the first section,

Rij =
n∑
l=1

〈Aij, All〉 −
n∑
l=1

〈Alj, Ail〉 = 〈Aij,H〉 −
n∑
l=1

〈Alj, Ail〉 .

Hence the evolution of the metric becomes ∂
∂t
gij = −2Rij −

∑n
l=1 〈Alj, Ail〉 ,

which is the Ricci flow with a correction term.

The above are only the evolution of intrinsic geometry on the submanifold

N . We are also interested in how the extrinsic geometry -the way N is

embedded- evolves. For simplicity, we will assume that the codimension is

one. We will also point out at the end how we can generalize the formulas

to higher codimensions.

Before we start to investigate the evolution of the second fundamental form,

we need Simons’s identities, which tell us about the Laplacian of the second

fundamental form.

Since we are in codimension one, we have only one direction (up to sign) for

15



the normal vector. We shall fix one choice ν, and denote H = Hν := 〈H, ν〉.

To distinguish from the general situation, we shall denote hij = Aνij, and h

to be the second fundamental form tensor h(X, Y ) = 〈B(X, Y ), ν〉.

Lemma 3.3. The following two identities hold:

4hij = ∇2
i,jH +Hh2

ij − |h|2hij (3.4)

1

2
4|h|2 =

〈
hij,∇2

i,jH
〉

+ |∇h|2 +H Tr(h3)− |h|4 (3.5)

where h2
ij = hilg

lmhmj, and h3
uv = hukg

kihilg
lmhmv. To avoid confusion, hij

squared will be denoted by (hij)
2, while h2

ij will denote tensor components

of the tensor h2, and similarly for h3. The norm |h| = (gijgklhikhjl)
1/2 is the

norm of the tensor h with respect to the metric g.

Proof. At a point p, assume the coordinate system we chose is normal, namely

with vanishing Christoffel symbols at p.

Then we have (4h)ij =
∑

k∇k∇khij (4h is a tensor whose definition can

be found in [11]). From the Codazzi equation (1.2), since the ambient

space is flat and we are using a normal coordinate system,
∑

k∇k∇khij =∑
k∇k∇ihkj. Switching the first two indices i and k results in curvature

terms:
∑

k∇k∇ihkj = ∇i∇khkj + Rikjαhαk + Rikkβhβj (we omit the sum-

mation when it is obvious). Now the Gauss equation (1.1), and again the
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Codazzi equation (1.2) give:

∆hij = ∇i∇khkj + (hiαhkj − hijhkα)hαk + (hiβhkk − hikhkβ)hβj

= ∇i∇jhkk + hiαhkjhαk − hijhkαhαk + hiβhkkhβj − hikhkβhβj

= ∇i∇jH + hiαh
2
jα − hij|h|2 +Hh2

ij − hikh2
jk

= ∇i∇jH − |h|2hij +Hh2
ij

as desired. Next, we compute:

1

2
4|h|2 = 1

2
4(
∑
i,j

(hij)
2) =

1

2
∇k∇k(hij)

2 = ∇k(hij∇khij)

= (∇khij)
2 + hij∇k∇khij

= |∇h|2 + hij(∇2
i,jH +Hh2

ij − |h|2hij)

= |∇h|2 +
〈
hij,∇2

i,jH
〉

+H Tr(h3)− |h|4.

We now derive the evolution of extrinsic geometric quantities.

Theorem 3.4. (Evolution of extrinsic geometry) The extrinsic geometric

quantities evolve under the flow as follows:

∂

∂t
ν = −∂H

∂xi

∂F

∂xj
gij (3.6)

∂

∂t
hij = 4hij − 2Hh2

ij + |h|2hij (3.7)
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∂

∂t
H = 4H + |h|2H (3.8)

∂

∂t
|h|2 = 4|h|2 − 2|∇h|2 + 2|h|4 (3.9)

Proof. Denote ui = ∂F
∂xi

. Since ui’s are a basis, we have:

∂

∂t
ν = gij

〈
∂

∂t
ν, ui

〉
uj

= −gij
〈
ν,
∂

∂t
ui

〉
uj = −gij 〈ν,∇iH〉uj

= −gij∇i 〈ν,Hν〉uj = −gij(∇iH)uj (since 〈∇iν, ν〉 = 0).

Similarly, we have:

∂

∂t
hij =

∂

∂t

〈
∇̄iuj, ν

〉
=

〈
∇̄i∇̄j(Hν), ν

〉
+
〈
∇̄iuj,−guv(∇uH)uv

〉
=

〈
∇̄i((∇̄jH)ν −Hglkhjluk), ν

〉
− guvΓkijgkv∇uH

=
〈
(∇̄i∇̄jH)ν −Hglkhjl∇̄iuk, ν

〉
− Γkij∇kH (

〈
∇̄iν, ν

〉
= 〈uk, ν〉 = 0)

= ∇̄i∇̄jH −Hglkhjlhik − Γkij∇kH

= ∇2
i,jH −Hglkhjlhik

= 4hij − 2Hglkhjlhik + |h|2hij

where we have used Lemma 3.3 in the last line.
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To derive the evolution of the mean curvature, we note that by (3.2)

∂

∂t
gij = −gil∂glk

∂t
gkj = 2Hgilhlkg

kj = 2Hhij.

Then we see:

∂

∂t
H =

∂

∂t
(gijhij) = (

∂

∂t
gij)hij + gij

∂

∂t
hij

= 2Hhijhij + gij(4hij − 2Hglkhjlhik + |h|2hij)

= gij4hij + gij|h|2hij = 4H + |h|2H.

Finally, we compute:

∂

∂t
|h|2 =

∂

∂t
(gikgjlhijhkl)

= 2Hhikgjlhijhkl + gik(2Hhjl)hijhkl + gikgjl(4hij − 2Hh2
ij + |h|2hij)hkl

+gikgjlhij(4hkl − 2Hh2
kl + |h|2hkl)

= 4Hhikgjlhijhkl + 2gikgjlhkl(4hij − 2Hguvhiuhjv + |h|2hij)

= 4Hgklhkl + 2gikgjlhkl4hij − 4gikgjlhklHg
uvhiuhjv + 2gikgjlhkl|h|2hij

= 2 〈h,4h〉+ 2|h|4.

Since 2 〈h,4h〉 = 4|h|2 − 2|∇h|2, this last equation is equal to

∂

∂t
|h|2 = 4|h|2 − 2|∇h|2 + 2|h|4
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as desired.

In the case of higher codimensions, many of the quantities above become

tensors. For example, the second fundamental form Aνij will depend on the

choice of the unit normal vector field ν. If, in addition, the ambient space

is not Rn, then our method above will not work anymore because these are

only computations in local coordinates, and the same method may not hold

when the ambient space is not flat. A more detailed account, and the parallel

computations in higher codimensions, can be found in [18].

3.3 Maximum principles of Elliptic and Parabolic PDEs

One sees from the above evolution equations that many of the geometric

quantities evolve by their own Laplacians. This is a general phenomenon that

happens with geometric flows. In general, we cannot solve for the quantities

directly. Thus there is a need to study the qualitative behaviours of these

quantities without knowing the exact solutions.

The following theorem can be found in [20].

Theorem 3.5. For t ∈ [0, T ], let g(t) be a smooth family of metrics on

M . Let X(t) a smooth family of vector fields, and K(x, t) a function on

M × [0, T ]. Suppose a smooth function u on M × [0, T ] satisfies

∂u

∂t
≤ 4g(t)u+ 〈X(t),∇u〉+K(u, t).
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Let ϕ : [0, T ]→ R be a function such that d
dt
ϕ = K(ϕ(t), t) and ϕ(0) = α.

If u(x, 0) ≤ α for all x, then u(x, t) ≤ ϕ(t) for all t ∈ [0, T ].

Proof. Consider ϕε where dϕε
dt

= K(ϕε(t), t) + ε and ϕε = α + ε. It is easy

to see that such ϕε exists for all ε > 0 by classical ODE theory, and that

ϕε → ϕ uniformly as ε → 0. Then it suffices to prove that u ≤ ϕε for all

ε > 0.

Suppose this is false, so for some ε0, t0 and x ∈ M we have u(x, t0) >

ϕε(t0). If t0 is the first such time, then ∂
∂t

(u − ϕε) ≥ 0 at (x, t0). Without

loss of generality x is a maximum of u at t0, so 4u ≤ 0 and ∇u = 0.

Hence the original equation becomes ∂
∂t
u(x, t0) ≤ K(x, t0) < ∂ϕε

∂t
, which is a

contradiction.

Remark 3.6. Clearly the above theorem is still true with ≥ replaced by ≤,

and ε by −ε everywhere.

In the following, we will denote the second order partial derivatives with

respect to xi and xj by D2
ij.

Theorem 3.7. Let Lu =
∑

ij a
ijD2

iju + 〈X(t),∇u〉 + c(x, t)u− ∂
∂t
u on Ω =

Ω′×[0, T ] where Ω′ is some bounded domain on which aij is a positive definite

matrix, X(t) is a time-dependent vector field, and c(x, t) is a smooth function

on Ω. Assume that Lu ≤ 0, and assume that u can be extended to Ω̄. Then

if u starts off non-negative at t = 0 and on ∂Ω × (0, T ), then it remains so

throughout.
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Proof. For now we assume that Lu < 0 everywhere.

Let S = {(x, t) ∈ Ω̄ : u(x, t) ≤ 0}. This set is compact. There is a first

t0 > 0 for which there is (x0, t0) such that u(x0, t0) ≤ 0. By continuity, since

u(x, t) ≥ 0 for t < t0, we have u(x0, t0) = 0 and that fixing the time slice

t0, it is easy to see that x0 is an interior local minimum with respect to the

x-component. This means that ∂
∂t
u ≤ 0 and ∇u = 0 there. So by positive

definiteness of aij, Lu =
∑

ij a
ijD2

iju + 〈X(t),∇u〉 + c(x, t)u − ∂
∂t
u ≥ 0 at

that point, contradicting Lu < 0.

In the case that Lu ≤ 0, bound Ω′ by Ω′ ⊂ {||x1|| < d}. Consider

uε = u− εeαx1 , where α > 0 is to be chosen. It is easy to compute that

Luε = Lu− ε(α2a11(x, t) + αX1(x, t) + c(x, t))eαx1

≤ −ε(α2a11(x, t) + αX1(x, t) + c(x, t))eαx1

≤ −ε(α2a11(x, t)− |α|||X1||∞ − ||c(x, t)||∞)eαx1 .

Choose α > 0 sufficiently large, this is less than 0 (recall a11 > 0 by positive

definiteness), hence we can apply the result in the first case (that Lu < 0)

to show that uε ≥ 0 for ε > 0. Letting ε→ 0 we get the result.

Remark 3.8. The same is true if we replace non-negativity by positivity: if

u starts positive, then it remains so throughout.

Corollary 3.9. If in the above notation, Lu ≤ 0 and Lv ≥ 0, then if u ≥ v

on the boundary, we have that u ≥ v throughout.
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Proof. Apply Theorem 3.7 to u− v.

Corollary 3.10. If the mean curvature is non-negative at time t = 0 on

a compact hypersurface M , then along the mean curvature flow, the non-

negativity is preserved.

Proof. Apply the above corollary to the evolution equation (3.8) for H:

∂

∂t
H = 4H + |h|2H,

and compare with the zero function. In fact, the positivity would also be

preserved, using the strong maximum principle (see [12]).

Let u be a function defined on some domain Ω in Rn, which is of the form

∪t∈[0,T )Ω(t) × {t}, where each Ω(t) is some domain not necessarily open in

Rn−1. For a function a(X, u,Du) of the point X ∈ Ω, the function u and its

derivative Du, the operator Pu = −∂u
∂t

+ aij(X, u,Du)D2
iju+ a(X, u,Du) is

parabolic on S ⊂ Ω × R × Rn if the matrix aij(X, z, p) is positive definite

for all (X, z, p) ∈ S.

The following comparison principle is derived in [12].

Theorem 3.11. Suppose aij is independent of z, and there is a constant

k(L) (that increases with L) such that a(X, z, p) − k(L)z is an increasing

function of z on Ω× [−L,L]×Rn for L > 0. Suppose u(x, t) and v(x, t) are

functions such that Pu ≥ Pv in the interior of Ω and u ≤ v on the boundary
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of Ω, and that P is parabolic with respect to u or v. Then u ≤ v throughout

Ω.

Proof. Let L = max{sup |u|, sup |v|}, and w = (u − v)eλt, where λ is a

constant to be determined. At a positive interior maximum X0 = (x0, t0) of

w, we have

(Du−Dv)eλt = 0⇒ Du = Dv

D2
iju−D2

ijv ≤ 0

((u− v)t + λ(u− v))eλt =
∂

∂t
w = 0.

Denote R = (X0, u(X0), Du(X0)), and S = (X0, v(X0), Dv(X0)). At this

point, Du(X0) = Dv(X0), and by the assumption that aij is independent of

z, aij(R) = aij(S). Now we have

0 ≤ Pu(X0)− Pv(X0) = aij(R)Diju− aij(S)Dijv + [a(R)− a(S)]− (u− v)t

≤ aij(R)D2
ij(u− v) + [a(R)− a(S)] + λ[u− v]

≤ a(R)− a(S) + λ[u− v] (D2
ij(u− v) ≤ 0)

≤ k(L)(u− v) + λ(u− v) = (k(L) + λ)(u− v).

Now we could have chosen λ < −k(L), which would mean (k(L)+λ)(u−v) <

0, a contradiction. Hence no interior positive maximum is possible.
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3.4 Some explicit examples

We now discuss some explicit examples of mean curvature flow.

Example 3.12. (Graphs)

Let u : Rn → R be smooth. Then the graph of u is {(x, u(x)) : x ∈ Rn}.

The characterization of a hypersurface M being a graph is that there exists a

constant unit vector ω for which 〈ν, ω〉 > 0 for a choice of nowhere vanishing

normal vector field ν of M . To study the evolution of graphs, we first prove

that under the mean curvature flow, a graph remains a graph.

Let ν be a unit normal vector field on M , and H = Hν. Then from our

evolution equation, we have ∂
∂t
νt = − ∂H

∂xi

∂F
∂xj
gij = −∇H by (3.6), where

−∇H is the coordinate free way of writing this equation (∇H = (∇eiH)ei

for an orthonormal tangent frame {ei} of M).

Denote rt = 〈νt, w〉, where w is a constant unit vector such that on M ,

〈ν, w〉 > 0. It suffices to prove that rt > 0 for all t. Indeed, under the mean

curvature flow,

∂

∂t
rt = −〈∇H,w〉 .

On the other hand, let ei be a system of normal coordinates at a point p of
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the hypersurface, so 〈ei, ej〉 = δij and ∇T
ei
ej = 0 at p. Then we have

4r = ei(ei(rt)) = ei(〈∇eiν, w〉) = ei 〈−hilel, w〉

= −〈ei(hil)el, w〉 − hil 〈∇eiel, w〉

= −〈el(hii)el, w〉 − hil 〈hilν, w〉 (Codazzi equation (1.2))

= −〈∇H,w〉 − |h|2r.

This shows that the evolution of rt satisfies

∂

∂t
r = 4r + |h|2r.

Hence r remains positive along the mean curvature flow by the remark fol-

lowing Theorem 3.7. It is easy to see that the normal vector ν remains a

normal vector to the evolving hypersurface:

∂

∂t
〈ν, ej〉 = −〈(∇iH)ei, ej〉+ 〈ν,∇tej〉

= −∇jH + 〈ν,∇jH〉 = −∇jH + 〈ν,∇j(Hν)〉

= −∇jH +∇jH +H 〈ν,∇jν〉 = 0.

Hence we have proven:

Proposition 3.13. Graphs remain graphs along the mean curvature flow.

Now we will write down the evolution equation for ut. The graph of

u is {(x, u(x)) : x ∈ Rn}. Hence the normal vector field ν is, up to sign,
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1√
1+|∇u|2

(−∇u, 1). Note that the mean curvature in the direction of a normal

vector field ν is −divTν, where divT is the tangential divergence.

Hence the mean curvature is div ∇u√
1+|∇u|2

.

Writing the immersion as

F : Rn → Rn+1 F (p, t) = (x(p, t), u(x(p, t), t)),

we want ∂F
∂t

= Hν. So from ν = 1√
1+|∇u|2

(−∇u, 1), we see that

∂F

∂t
= (

∂x

∂t
,

〈
∇u, ∂x

∂t

〉
) + (0,

∂u

∂t
) = H

1√
1 + |∇u|2

(−∇u, 1)

⇒ ∂x

∂t
= −H ∇u√

1 + |∇u|2

⇒ ∂u

∂t
= (1 + |∇u|2)H

1√
1 + |∇u|2

= H
√

1 + |∇u|2

=
√

1 + |∇u|2div
∇u√

1 + |∇u|2
.

This is a quasi-linear parabolic system for u. Indeed, direct expansion gives

∂u

∂t
= δijD

2
iju−

1

1 + |Du|2
D2
ijuDiuDju = (δij −

DiuDju

1 + |Du|2
)D2

iju.

Let aij(X, z, p) = δij − pipj
1+|p|2 . In the notation of Theorem 3.11, we also have

a = 0, and from our definition aij does not depend on z. The equation is

parabolic because if p = 0, the matrix aij is the identity, and for p 6= 0, for
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a vector x with |x| = 1,

xia
ij(X, z, p)xj = 1− 〈x, p〉

1 + |p|2
> 0

by the Cauchy-Schwarz inequality. Thus Theorem 3.11 applies to this setting.

In particular, one consequence will be the following

Theorem 3.14. (Avoidance principle) Let M0 and N0 be hypersurfaces with-

out boundary that do not intersect. Under the mean curvature flow, Mt and

Nt remain disjoint.

Proof. Suppose Mt and Nt intersect at a point p at the first time t0, then

it can be shown that they share the same tangent plane, hence the normal

vectors coincide possibly up to a sign.

Using this normal vector, we can form graphical coordinates for Mt0 and Nt0

near p. Then they can be represented as graphs of two functions ut0 and

vt0 respectively. Shortly before t0, there is ε > 0 such that ut − ε − vt > 0.

Run the mean curvature flow from there, then both u − ε and v solve the

quasi-linear parabolic system. We have proved that Theorem 3.11 applies,

hence at time t0 we see a contradiction to the maximum principle.

This is a property of mean curvature flow that happens only in the case

of codimension one. In general this does not hold for higher codimensions.

For example, one can easily see that two intertwining embedded circles in R3

would touch each other some time during the flow. Essentially, this avoidance
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principle works in codimension one because in this case, we can essentially

reduce the flow to a scalar PDE.

The above theorem also has the following consequence.

Theorem 3.15. (Containment principle) If M0 and N0 are hypersurfaces of

Rn+1 and M0 is contained in the region bounded by N0, then along the mean

curvature flow, as long as the flow exists we have that Mt is contained in Nt

for all t.

Example 3.16. (Sphere) As a sphere and its mean curvature vector H are

rotationally symmetric, the symmetry is preserved under the mean curvature

flow. It suffices to calculate how the radius r(t) transforms along the flow.

Let x ∈ Sn ⊂ Rn+1 be a position vector. Then d
dt

(r(t)x) = H = Hx, where

H is the mean curvature with respect to the position vector x itself.

To compute the mean curvature, we shall use the spherical coordinates to

parametrize Rn+1. For notational simplicity, we will only do the case n = 2.

The general situation is done in exactly the same way.

The parametrization is given by (r, θ, ϕ) 7→ (r cos θ sinϕ, r sin θ sinϕ, r cosϕ).

Then the coordinate vectors are given by

E1 =
∂

∂r
= (cos θ sinϕ, sin θ sinϕ, cosϕ)

E2 =
∂

∂θ
= (−r sin θ sinϕ, r cos θ sinϕ, 0)

E3 =
∂

∂ϕ
= (r cos θ cosϕ, r sin θ cosϕ,−r sinϕ)
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It is then clear that these vectors are mutually orthogonal, and ∂
∂θ

, ∂
∂ϕ

have

length r sinϕ and r respectively. Now we use the formula

Γkij =
1

2

∑
l

gkl(∂igjl + ∂jgli − ∂lgij).

It is then clear that Γ1
22 = −r cos2 ϕ and Γ1

33 = −r. So the mean curvature is

given by g22(−r cos2 ϕ) + g33(−r) = −2
r
, by the standard formula for mean

curvature of a surface in R3 (see for example [2]).

In general, for Snr ⊂ Rn+1, where r is the radius, the mean curvature with

respect to the outward normal is −n
r
.

Going back to our evolution of r(t), plugging the mean curvature back in the

equation ∂
∂t

(r(t)x) = H = Hx we find

dr

dt
= −n

r
.

Solving this ODE we have

r(t) =
√
r2

0 − 2nt.

Hence spheres remain spheres along the mean curvature flow, and shrink to

a point at time t =
r20
2n

.

In particular, this implies the following:

Proposition 3.17. Compact hypersurfaces develop singularity in finite time
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under the mean curvature flow.

Proof. Let M0 be a compact hypersurface. Choose a large sphere S0 such

that M is strictly contained in the region bounded by it. Let Mt be the

solution of the mean curvature flow of M at time t, and similarly for St. The

containment principle means that Mt is contained in the region bounded by

St. But St shrinks to a point, and develops singularity at a finite time t0. So

either Mt develops a singularity before t0, at which the flow will not continue,

or it shrinks to a point at t0, where singularity occurs. This completes the

proof.

3.5 A few words on singularities

It can be shown that at the singularity, what will happen is that the norm

of the second fundamental form will blow up somewhere. It was shown in

[6] that if towards the singularity, the norm of the second fundamental form

|A|2 = gijgklAikAjl remains bounded, then in fact one can uniformly bound

all the derivatives of the second fundamental form, and that the metric also

converges to a positive definite tensor.

It also follows from the inequality |F (x, t)−F (x, s)| ≤
∫ t
s
|H| and the bound

on |H| that the F (·, t) converges to some pointwise limit, and by the above

and an application of the Arzela-Ascoli theorem we can conclude that the

limiting surface is a smoothly immersed submanifold, with bounded second

fundamental form. Hence the flow will continue by local existence.
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Therefore, singularities occur precisely when the second fundamental form

blows up. Hence it is natural to study the rate at which it grows.

Proposition 3.18. Let U(t) = maxMt |A|2, where Mt is a solution to the

mean curvature flow with first singularity time T . Then U(t) ≥ 1
2(T−t) .

Proof. Recall the evolution equation for |A|2:

∂

∂t
|A|2 = 4|A|2 − 2|∇A|2 + 2|A|4.

At the maximum point, 4|A|2 ≤ 0. So ∂
∂t
U ≤ 2U(t)2.

This means − 1
U(t)
≤ 2t + C, for some constant C. Since the second funda-

mental form blows up at t = T , we have 1
U(t)
→ 0 as t → T , which means

C = −2T . These combine to give

U(t) ≥ 1

2(T − t)
.

Definition 3.19. The singularity is said to be of type I if there exists a

constant C such that the blow-up rate satisfies U(t) ≤ C
2(T−t) , namely, the

slowest possible blow-up rate asymptotically.

A lot of research has been done to understand type I singularities. To

study what happens at a type I singularity, we will often do a scaling so

that we obtain a modified flow in which the second fundamental form re-

mains bounded. More precisely, let s = −1
2

log(T − t) and F̃ (p, s) = (2(T −
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t))−1/2F (p, t). The mean curvature flow transforms to

∂

∂s
F̃ (p, s) = H̃(p, s) + F̃ (p, s).

Denote α = (2(T − t))−1/2. It can be easily seen with this scaling that

g̃ij = α2gij, g̃
ij = α−2gij and h̃ij = αhij. Hence

|Ã|2 = g̃ij g̃klh̃ikh̃jl = α−2gijgklhikhjl = (2(T − t))|A|2.

Assuming type I singularity, the second fundamental form of the modified

flow remains bounded, so we can see more clearly what happens there before

it blows up to a singularity. Also, s goes to ∞ as t → T , so we study the

convergence properties as s→∞.

To give a sense of what happens there, we shall need a well-known formula by

Huisken, which is one of the most important tools in studying mean curvature

flow.

Denote Φ(x0, T )(x, t) = 1
(4π(T−t))n/2 e

− |x−x0|
2

4(T−t) . We have the following:

Theorem 3.20. (Huisken’s monotonicity formula) If Mt are closed subman-

ifolds of Rn satisfying the mean curvature flow for t < T , and assuming all

quantities are finite, then

d

dt

∫
Mt

Φ(x0, T )(x, t)dµt = −
∫
Mt

Φ(x0, T )(x, t)|H +
1

2(T − t)
(x− x0)⊥|2dµt

where dµt is the volume element of Mt, and (x − x0)⊥ is the projection of
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x− x0 onto the normal plane.

Proof. Denote ρ = Φ(x0, T ). We shall prove the following:

∂

∂t
(ρdµt) = (−4ρ− ρ|H +

1

2τ
(x− x0)⊥|2)dµt

where τ = T − t. We know that ∂
∂t
dµt = −|H|2dµt by (3.3), and

∂

∂t
ρ =

nρ

2τ
+ ρ(−|x− x0|2

4τ 2
− 〈H,x− x0〉

2τ
).

From |H + 1
2τ

(x− x0)|2 = |H|2 + 1
τ
〈H,x− x0〉+ 1

4τ2
|x− x0|2, we get

∂

∂t
(ρdµt) = (

n

2τ
− |x− x0|2

4τ 2
− 〈H,x− x0〉

2τ
− |H|2)ρdµt (3.10)

= (
n

2τ
+

1

2τ
〈x− x0,H〉 − |H +

1

2τ
(x− x0)|2)ρdµt. (3.11)

Let {ei} be a basis of vector fields induced from normal coordinates. Now

we compute grad(ρ) = ρ(− 1
2τ
〈x− x0, ei〉)ei = −ρ

2τ
(x− x0)T .

For a vector field Y , not necessarily tangential to M = Mt, we have

the formula divMY = 〈∇iY, ei〉 =
〈
∇iY

T +∇iY
N , ei

〉
= divMY

T − 〈Y,H〉.

Hence letting Y = ρ(x−x0)
2τ

, using the product rule, divMY = nρ
2τ

+ 1
2τ
〈x− x0, gradρ〉 =

nρ
2τ
− ρ

4τ2
|(x− x0)T |2, and so we have have

ρ

2τ
〈x− x0,H〉 = −nρ

2τ
+

ρ

4τ 2
|(x− x0)T |2 + divMY

T .

But divMY
T = −divMgrad(ρ) = −4ρ. Plugging the above into (3.2), we
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have

∂

∂t
(ρdµt) = (−4ρ− ρ|H +

ρ

2τ
(x− x0)|2 +

ρ

4τ 2
|(x− x0)T |2)dµt

= (−4ρ− ρ|H +
ρ

2τ
(x− x0)⊥|2)dµt.

Integrating, using the closedness of M and Stokes’ theorem to eliminate the

Laplacian we get the desired conclusion. In fact, the above theorem is true

for more general submanifolds on which ρ decays fast enough for us to apply

Stokes’ theorem.

For the rescaled flow, define ρ̃(x) = e−
1
2
|x|2 . By the same argument as in

the above theorem, the formula is tranformed to

∂

∂s

∫
M̃s

ρ̃dµ̃s = −
∫
M̃s

ρ̃|H̃ + x̃⊥|2dµ̃s.

At a type I singularity, |At|2 ≤ C
2(T−t) , so |H| ≤

√
nC

(2(T−t))1/2 . Towards the

singularity, the rescaled submanifolds remain bounded:

|F̃ (p, t)| = (2(T − t))−1/2|F (p, t)| ≤ (2(T − t))−1/2

∫ T

t

|H(p, τ)|dτ

≤
√
nC(2(T − t))−1/2

∫ T

t

1

2(T − τ)1/2
dτ = constant.

In fact, it can be proved in this case that the rescaled flow converges

to some limiting submanifold. The monotonicity formula, taking the limit

as s → ∞, means that at this limiting submanifold we have H̃ + x̃⊥ = 0
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(this is because at the steady state limit, ∂
∂s

∫
M̃s
ρ̃dµ̃s = 0). Suppose now a

submanifold satisfies H0 + x⊥0 = 0. The deformation

x(t) = (2(T − t))1/2x0

satisfies that (∂x
∂t

)⊥ = 1
(2(T−t))1/2 H0 = Ht. This means that up to deformation

in the tangential direction, this flow is self-similar (namely, a scaling of the

original submanifold). Hence at any type I singularity, the mean curvature

flow is asymptotically self similar.

It has been proved in [5] that if a hypersurface of dimension at least 2 is

compact with nonnegative mean curvature, then if it also satisfies H+x⊥ = 0,

it has to be a sphere.
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4 Lagrangian Mean Curvature Flow

The following is a brief introduction to the relevant terminology in symplectic

geometry and complex geometry. For a more detailed explanation of the

concepts, see [13].

4.1 Definitions

Definition 4.1. Let V be a vector space. A skew-symmetric bilinear map

α : V × V → R is called non-degenerate if the induced map α∗ : V → V ∗

has trivial kernel. If V is equipped with such a structure then we say V is a

symplectic vector space.

It can be proved by an analogue of the Gram-Schmidt process that every

symplectic vector space with symplectic structure ω admits a basis {ei, fi}

such that ω =
∑

i e
i ∧ f i. Such basis is called a symplectic basis.

Therefore, not every vector space can have a symplectic structure, only the

even dimensional ones can.

Definition 4.2. A manifold M is called symplectic if there is a closed 2-form

ω on M such that it is a symplectic form on each of its tangent spaces.

The closedness of ω is to relate the algebraic structure of the symplectic

form to the differential geometry of M .

A fundamental theorem in symplectic geometry is that locally there is always

a coordinate chart such that the coordinate vector fields induce a symplectic
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basis at every point in the domain. Hence essentially, there is no local ge-

ometry on a symplectic manifold, because any symplectic form on M can be

induced by a coordinate chart. More often we are concerned with the global

behaviour, and hence also the topology, of symplectic manifolds when there

is only the symplectic structure.

Definition 4.3. Let (M,ω) be symplectic. A half dimensional submanifold

N of M is said to be a Lagrangian submanifold of M if at every point of N ,

the form ω restricts to zero.

Definition 4.4. Let (M, g) be a Riemannian manifold with an almost com-

plex structure J (a smoothly varying endomorphism of tangent spaces of M

satisfying J2 = −1). Then we say M is almost Hermitian if g(JX, JY ) =

g(X, Y ) for all X, Y .

It is clear that J is diagonalizable with eigenvalues ±i. At p ∈ M , we

denote the i-eigenspace of J (in the complexified tangent space) to be T 1,0
p M .

A tangent vector in T 1,0
p M is said to be of type (1, 0). Similarly, we define

the (−i)-eigenspace of J at p to be T 0,1
p M . Its elements are said to be of type

(0, 1).

If M is a complex manifold, we can choose J to be the canonical complex

structure defined by

J
∂

∂x
=

∂

∂y
, J

∂

∂y
= − ∂

∂x
.

A complex almost Hermitian manifold is called a Hermitian manifold.
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Now suppose M is Hermitian. Define ω(X, Y ) = g(JX, Y ). Suppose ω is

closed. Then M is automatically symplectic, with symplectic form ω. In this

case, we call M a Kähler manifold, and ω the Kähler form. Another more

geometric condition for a Hermitian manifold M to be Kähler is that the

almost complex structure is parallel: ∇J = 0. This is also equivalent to the

condition that parallel transport preserves the types of complexified tangent

vectors.

Definition 4.5. A Kähler manifold is said to be Calabi-Yau if its Riemannian

metric is Ricci-flat, namely, the Ricci curvature is zero.

The following theorem is useful for our purpose, but we will not state the

proof. A proof can be found in, for example, [8].

Theorem 4.6. If M2n is Calabi-Yau, then there exists a global non-vanishing

holomorphic (n, 0)-form that is parallel.

A form of type (n, 0) is an n-form such that whenever it takes any vector

field of type (0, 1) as one of the n input arguments, it will vanish.

It is possible to study Lagrangian submanifolds in the setting of a sym-

plectic manifold. But with additional structures, we can say much more.

For example, suppose M is Kähler-Einstein, namely ρ = kω where k is a con-

stant depending only on the metric of M , and ρ is the Ricci form on M , given

by ρ(X, Y ) = Ric(JX, Y ). Define a 1-form on a Lagrangian submanifold N

by σH = Hyω, called the mean curvature 1-form. Using the Codazzi equation
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(1.2), it is easy to compute that dσH = ρ|N . Since N is Lagrangian, by Car-

tan’s magic formula we have LHω = dσH + Hy(dω) = ρ|N + 0 = kω|N = 0.

This means that H is a symplectic vector field (i.e. its corresponding 1-

parameter family of diffeomorphisms preserve ω).

4.2 Lagrangian submanifolds in Calabi-Yau Manifolds

Let M2n be Calabi-Yau. Then we can find a global non-vanishing holomor-

phic parallel (n, 0)-form, which we will denote by Ω. Let Nn be a submanifold

of M .

Since Ω is parallel, it has constant length. Moreover, it is clear that Ω|N is

a top form on N . Hence ∗N(Ω|N) is a function on N , and after normalizing

by its length, ∗N(Ω|N) = eiθ for some θ. We call N special Lagrangian with

phase eiθ if θ is a constant.

Since we have normalized Ω, it has length 1 everywhere, namely, for Ei or-

thonormal, Ω(E1, ..., En) ≤ 1 with 1 attainable. It is easy to see that Ω is

closed because it is a holomorphic (n, 0) form, or we can see it from the fact

that it is parallel. That means α = Re Ω is a calibration (see [4] for discussion

on calibrations). We could have chosen β = Im Ω, or more generally, an S1

family of all such choices (given by the real part of Ω rotated by an angle)

and get the same conclusion. For this α, we can see the following immediate

conclusion.

Proposition 4.7. In the above notation, Nn of M2n is calibrated with respect
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to α if and only if eiθ = 1, or equivalently, θ = 0 mod 2π.

To justify the term special “Lagrangian”, we have

Proposition 4.8. If N is special Lagrangian with a phase, then it is auto-

matically Lagrangian.

Proof. It is easy to see that being special Lagrangian with a phase is equiva-

lent to being calibrated with respect to Re(e−iθΩ) for some constant θ, and in

particular, at any point p, |Ω(Π)| = 1, where Π = TC
p N = q1∧q2∧ ...∧qn, for

an orthonormal frame {qi} that spans TC
p N . Using the formula | detC A|2 =

detRA, this means |Π ∧ JΠ| = |Ω(Π)|2 = 1 hence by Hadamard’s inequality

this implies that Π is orthogonal to JΠ. That is, ω(u, v) = g(u, Jv) = 0 for

all u, v ∈ TpN . So N is Lagrangian with respect to ω.

We also have the following more explicit relationship between θ and the

mean curvature vector, whose elegant proof is due to Richard Schoen and

can be found in [21].

Theorem 4.9. For a Lagrangian submanifold N in a Calabi-Yau manifold

M , we have

H = J∇θ

on N .

Proof. It is equivalent to proving ∇θ = −JH and hence that for every vector

field X on N , we have Xθ = 〈∇θ,X〉 = −〈JH, X〉. We can choose a local
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basis ei of TN induced by normal coordinates such that {ei} is orthonormal

at p and since N is Lagrangian, {ei, Jei} span TM around p. Let f i be the

dual basis of ei and gj = −f j ◦ J be dual to Jej. In this basis, since Ω is

holomorphic, Ω = eiθ(e1 + if 1) ∧ ... ∧ (en + ifn).

Since Ω is parallel, we have

e−iθ∇XΩ = 0 = i∇Xθ(f
1 + ig1) ∧ .... ∧ (fn + ign)

+
∑
k

(f 1 + ig1) ∧ ... ∧∇X(fk + igk) ∧ ... ∧ (fn + ign).

By the fact that (fk + igk)( ei−iJei
2

) = δik, we have

i(∇Xθ)(f
1 + ig1) ∧ .... ∧ (fn + ign)

= −
∑
k

(f 1 + ig1) ∧ ... ∧∇X(fk + igk) ∧ ... ∧ (fn + ign)

=
∑
k

(f 1 + ig1) ∧ ... ∧ (
∑
r

br(f
r + igr)) ∧ ... ∧ (fn + ign),

where br = (∇X(fk + igk))( er−iJer
2

). Since (f r + igr)∧ (f i + igi) = 0 if i = r,

we get

i(∇Xθ)(f
1 + ig1) ∧ .... ∧ (fn + ign)

= −
∑
k

∇X(fk + igk)(
ek − iJek

2
)(f 1 + ig1) ∧ ... ∧ (fn + ign)
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=
1

2

∑
k

((fk + igk)(∇X(ek − iJek)))(f 1 + ig1) ∧ ... ∧ (fn + ign)

=
1

2

∑
k

(fk(∇X(−iJek)) + igk(∇Xek))(f
1 + ig1) ∧ ... ∧ (fn + ign)

(we have chosen {ek} to be induced by normal coordinates, and so ∇Xek is

normal and ∇XJek is tangent, whereas fk is tangent and gk is normal). Now

this sum is equal to

i(∇Xθ)(f
1 + ig1) ∧ .... ∧ (fn + ign)

=
1

2

∑
k

(−ifk(J∇Xek) + igk(∇Xek))(f
1 + ig1) ∧ ... ∧ (fn + ign)

due to the fact that ∇J = 0, so that ∇ek(JX) = J∇ekX. On the other hand,

−〈JH, X〉 = −
∑

i 〈J∇eiei, X〉 = −
∑

i 〈ei, J∇eiX〉. Now by the formula

∇ST −∇TS = [S, T ]

we have that ∇eiX − ∇Xei = [ei, X] which is tangent to N . So J [ei, X] is

normal since N is Lagrangian. Hence

−〈JH, X〉 =

〈∑
i

(∇eiei)
⊥, JX

〉
=
∑
i

〈∇eiei, JX〉 = −
∑
i

〈ei, J∇eiX〉

= −
∑
i

〈ei, J∇Xei + J [ei, X]〉 = −
∑
i

〈ei, J∇Xei〉 .
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So it suffices to prove that

1

2

∑
k

(−ifk(J∇Xek) + igk(∇Xek)) = −i
∑
i

〈ei, J∇Xei〉 .

Now gk(∇Xek) = −fk(J∇Xek) (recall that gk = −fk ◦ J), hence the left

hand side is
∑

k(−ifk(J∇Xek)) = −i
∑

k 〈ek, J∇Xek〉, as desired.

Corollary 4.10. If L is a Lagrangian submanifold of a Calabi-Yau manifold

M , then L is minimal if and only if L is special Lagrangian with some phase.

Proof. By Theorem 4.9, H = J∇θ. So H = 0 if and only if θ is constant,

since J is invertible.

Of course, we have seen that a special Lagrangian submanifold has to be

area-minimizing hence minimal, because it is calibrated.

We remark that the concept of special Lagrangian submanifolds can be de-

fined on an almost Calabi-Yau manifold, which is a 2n-dimensional Kähler

manifold with a global non-vanishing holomorphic (n, 0) form ϕ. In this case

we can conformally deform the Kähler form so that ϕ has constant length,

and this is all we need in the preceding discussion. For details, see [3].

4.3 Lagrangian condition preserved along the Mean

Curvature Flow

This section will be based on Smoczyk’s paper [19].

LetN0 be a Lagrangian submanifold in a Kähler Einstein manifold (M,J, ḡ, ω)
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(i.e. there exists a constant k with Ric = kḡ, where Ric is the Ricci curva-

ture tensor of M), so that ω is zero on N0. To show that the Lagrangian

condition is preserved along the Mean Curvature Flow, we shall prove that

ω restricted to Nt is zero as long as the flow exists. To do this we will derive

the evolution equation for |ω|2, and use the maximum principle.

Note that while the general strategy is similar to our techniques in tackling

hypersurfaces, the situation is more complicated in that there is more than

one normal vector. Hence we will need to derive new evolution equations for

quantities like the second fundamental form.

Let F : Ln → M2n be an immersion, not necessarily Lagrangian, and let ∇̄

and ∇ be the connections on M and L respectively . Define a new tensor

(generalizing our second fundamental form in hypersurfaces) by h(u, v, w) =〈
N(u), ∇̄vw

〉
= −

〈
∇̄vN(u), w

〉
where u, v, w ∈ TpL, N(u) = (Ju)⊥.

If L was Lagrangian, then N(u) = J(u) because J maps TpL to its orthogo-

nal complement in M . We shall assume that, for now, N is an isomorphism

along the flow. This assumption will not hurt our arguments to follow, by

the following arguments:

First we start with a Lagrangian submanifold L and run the mean curvature

flow, and at the beginning N(u) = J(u) since L is Lagrangian, which means

that N is an isomorphism at the start. So in any compact neighborhood of

p ∈ N , at least for a short time N will remain an isomorphism, by continuity.

Suppose now we have proved that Lt remains Lagrangian as long as N is an

isomorphism, but along the mean curvature flow there is some time t0 such
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that N fails to be an isomorphism on Lt0 . Without loss of generality t0 is

the first such time. Then by continuity ω will restrict to zero on Lt0 because

Lt are Lagrangian for t < t0 (because we have proved the theorem for the

case that N is an isomorphism), and this means that Lt0 is Lagrangian. So

N = J at time t0, which is an isomorphism.

Let ei = ∂F
∂xi

, i = 1, 2, ..., n be a basis of coordinate vector fields in TL near

some point p ∈ L. Denote hkij = h(ek, ei, ej). One immediate consequence

is that hkij = hkji. Using this notation, the mean curvature vector is clearly

H = ηklHkN(el), where ηkl = 〈N(ek), N(el)〉 and Hk = gijhkij, the mean

curvature with respect to N(ek). In this setting, the mean curvature 1-form

σH, defined by σH(X) = ω(H, X), can be written as σH = −Hie
i.

We have the following evolution equations:

Lemma 4.11. Under the mean curvature flow,

∂

∂t
ω = dσH

Proof. In what follows, we will sum from 1 to 2n the indices α, β, γ, and 1

to n the indices i, j, k and so on. Assuming {ẽα} is a basis of tangent vector

fields to the ambient manifold M , we have

∂

∂t
ωij =

∂

∂t
(ω(

∂F

∂xi
,
∂F

∂xj
))

=
∂

∂t
(ω(

∂Fα

∂xi
ẽα,

∂F β

∂xj
ẽβ)) =

∂

∂t
(ωαβ

∂Fα

∂xi
∂F β

∂xj
)

= (
∂

∂t
ωαβ)

∂Fα

∂xi
∂F β

∂xj
+ ωαβ

∂

∂t
(
∂Fα

∂xi
)
∂F β

∂xj
+ ωαβ

∂Fα

∂xi
∂

∂t
(
∂F β

∂xj
)
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= ωαβ,γ
∂F γ

∂t

∂Fα

∂xi
∂F β

∂xj
+ ωαβ

∂

∂xi
(
∂Fα

∂t
)
∂F β

∂xj
+ ωαβ

∂Fα

∂xi
∂

∂xj
(
∂F β

∂t
).

Since dω = 0, we have ωαβ,γ + ωβγ,α + ωγα,β = 0. Hence

∂

∂t
ωij = −ωβγ,α

∂F γ

∂t

∂Fα

∂xi
∂F β

∂xj
− ωγα,β

∂F γ

∂t

∂Fα

∂xi
∂F β

∂xj

+ωαβ
∂

∂xi
(
∂Fα

∂t
)
∂F β

∂xj
+ ωαβ

∂Fα

∂xi
∂

∂xj
(
∂F β

∂t
)

=
∂

∂xi
(ωγβ

∂F γ

dt

∂F β

∂xj
)− ωγβ

∂F γ

∂t

∂2F β

∂xi∂xj

− ∂

∂xj
(ωγα

∂F γ

dt

∂Fα

∂xi
) + ωγα

∂F γ

∂t

∂2Fα

∂xj∂xi

=
∂

∂xi
(ωγβ

∂F γ

dt

∂F β

∂xj
)− ∂

∂xj
(ωγα

∂F γ

dt

∂Fα

∂xi
).

Now ωγβ
∂F γ

dt
∂Fβ

∂xj
= ω(∂F

∂t
, ∂F
∂xj

) = ω(H, ej) = σH(ej). Hence, ∂
∂t
ωij = ei(σH(ej))−

ej(σH(ei)) = (dσH)(ei, ej), because ei, ej have zero bracket (since they are co-

ordinate vector fields). On the other hand,

(
∂

∂t
ω)(ei, ej) =

∂

∂t
(ω(ei, ej))− ω(

∂

∂t
ei, ej)− ω(ei,

∂

∂t
ej)

=
∂

∂t
(ω(ei, ej))− ω(∇iH, ej)− ω(ei,∇jH)

=
∂

∂t
(ω(ei, ej))− g(J∇iH, ej)− g(Jei,∇jH).
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Now using the fact that J is parallel, we can simplify this to

∂

∂t
(ω(ei, ej)) + g(JH,∇iej)− g(∇jei, JH)

=
∂

∂t
(ω(ei, ej)) + g(JH,∇iej −∇jei)

=
∂

∂t
(ω(ei, ej)) + g(JH, [ej, ei]) =

∂

∂t
(ω(ei, ej))

since {ei} is a coordinates basis ( [ei, ej] = 0). Therefore,

(
∂

∂t
ω)(ei, ej) =

∂

∂t
(ω(ei, ej)) = (dσH)(ei, ej),

which proves that ∂
∂t
ω = dσH.

Next we have a technical lemma on switching indices:

Lemma 4.12. (index switching)

hkij = hikj −∇jωik (4.1)

∇lhikj −∇khilj = R̄îjkl − η
mnωn

s(hmljhski − hmkjhsli) (4.2)

−ηmnωis(hmkjhnls − hmljhnks)

∇lhkij −∇khlij = R̄îjkl −∇j∇iωlk + ωi
sR̄sjkl + ωk

sRsilj (4.3)

+ωl
sRsijk − ηmnωns(hmljhski − hmkjhsli)

where an index with a hat means the corresponding component is the image
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by N , for example Rijkl̂ = 〈R(ei, ej)ek, N(el)〉.

The proof mainly uses the Gauss equation (1.1) which is the reason why

there are curvature terms. The proof is in the same flavour as all the tensor

computations we did before, hence we will omit it, so as to focus on the

geometric content. The detailed computations can be found in [19]. The

following will be the main part in the proof of our main theorem, that the

Lagrangian condition is preserved by the mean curvature flow.

Proposition 4.13. For each compact interval [0, T ], there exists a constant

c such that

∂

∂t
|ω|2 ≤ 4|ω|2 + c|ω|2.

Here ω is restricted to L, and |ω| is the norm of ω|L.

Proof. We begin by computing:

∂

∂t
|ω|2 =

∂

∂t
(gijgklωikωjl) = 2

∂gij

∂t
gklωikωjl + 2gijgkl

∂ωik
∂t

ωjl.

Using the formula ∂gij

∂t
= −giu ∂guv

∂t
gvj and our evolution equations, we get

∂

∂t
|ω|2 = −2giu(−2ηmnHmhnuv)g

vjgklωikωjl + 2gijgkl(−∇iHk +∇kHi)ωjl

where the term −∇iHk +∇kHi is from the fact that σH = −Hie
i. Using our
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index switching lemma 4.12, since Hk = gmnhkmn and everything is tensorial,

−∇iHk +∇kHi = gmn(R̄m̂nik −∇n∇mωki + ωm
sR̄snik + ωi

sRsmkn

+ωk
sRsmni − ηuvωvs(huknhsim − huinhskm)).

Plugging it back, we have

∂

∂t
|ω|2 = −2giu(−2ηmnHmhnuv)g

vjgklωikωjl

+2ωjlg
ijgklgmn(R̄m̂nik −∇n∇mωki + ωm

sR̄snik + ωi
sRsmkn

+ωk
sRsmni − ηuvωvs(huknhsim − huinhskm)).

To simplify this, note that4|ω|2 = gnm∇n∇m(gijgklωikωjl) = gnmgijgklωjl∇n∇m(ωik)+

2|∇ω|2 = −gnmgijgklωjl∇n∇m(ωki) + 2|∇ω|2. Therefore, we have

∂

∂t
|ω|2 = 4ηmnHmhnuvω

ulωvl

+2ωikR̄p̂
p
ik +4|ω|2 − 2|∇ω|2 + 2ωikωm

sR̄s
m
ik + 2ωikωi

sRsmk
m

+2ωikωk
sRsp

p
i − 2ωikηuvωv

s(huk
mhsim − huimhskm)

≤ 4|ω|2 + 2ωikR̄p̂
p
ik + 4ηmnHmhnuvω

ulωvl

+2ωikωm
sR̄s

m
ik + 2ωikωi

sRsmk
m

+2ωikωk
sRsp

p
i − 2ωikηuvωv

s(huk
mhsim − huimhskm).

Now we try to bound the absolute value of the terms other than 4|ω|2 by

c|ω|2, for some constant c (which may depend on T in [0, T ]). Observe that
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all of these terms, except for 2ωikR̄p̂
p
ik, depend quadratically on ω, and they

are essentially of the form 2ωslωmlasm for some tensor asm which depends on

η, h, and curvature. We bound them as follows (assume that we are working

in normal coordinates which would not affect the bound because both sides

are independent of coordinates). By repeated applications of the Cauchy-

Schwarz inequality:

2ωslωmlasm = 2
∑
s,l,m

ωslωmlasm ≤ |ω|2 +
∑
s,l

(
∑
m

ωmlasm)2

≤ |ω|2 + n
∑
s,l,m

(ωmlasm)2 ≤ (1 + n|a|2)|ω|2.

To bound the remaining term 2ωikR̄p̂
p
ik, assume that we have chosen a nor-

mal coordinates system for the submanifold L such that ei diagonalizes ηij,

and a corresponding coordinate system for M given by ei, N(ei). Then clearly

〈ei, ej〉 = δij, 〈ej, N(ej)〉 = 0 and 〈N(ei), N(ej)〉 = 0 for i 6= j because ei was

chosen to diagonalize η. Finally, 〈N(ei), N(ei)〉 = 〈Jei − ωilel, Jei − ωikek〉

(recall that N(u) = (J(u))⊥). Hence 〈N(ei), N(ei)〉 = 1−
∑

l ω
2
il −

∑
k ω

2
ik +∑

l ω
2
il = 1− ai where

ai =
n∑
l=1

ω2
il. (4.4)

We have assumed that N is an isomorphism throughout, hence 1 − ai 6= 0,

and it is bounded by some constant depending on T .

Since the manifold is Kähler-Einstein, there is a constant k such that kḡ(X, Y ) =

Ric(X, Y ), where Ric is the Ricci tensor. Expressing this equation in the
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aforementioned basis, and by the fact that

R̄(X ′, Y ′, Z ′,W ′) = R̄(JX ′, JY ′, Z ′,W ′) = R̄(X ′, Y ′, JZ ′, JW ′)

for vector fields X ′, Y ′, Z ′,W ′ on M (see for example chapter 6 in [14]), we

have

kḡ(X, Y ) = Ric(X, Y ) =
∑
i

R̄(X, ei, ei, Y ) +
∑
i

1

1− ai
R̄(X,N(ei), N(ei), Y )

=
∑
i

R̄(X, ei, Jei, JY ) +
∑
i

1

1− ai
R̄(X,N(ei), JN(ei), JY )

=
∑
i

R̄(X, ei, Jei, JY ) +
∑
i

R̄(X,N(ei), JN(ei), JY )

+
ai

1− ai
R̄(X,N(ei), JN(ei), JY ).

Now we use the equation Jei = N(ei) + ωilel and get

kḡ(X, Y )

=
∑
i

R̄(X, ei, Jei, JY ) +
∑
i

R̄(X,N(ei), JN(ei), JY )

+
ai

1− ai
R̄(X,N(ei), JN(ei), JY )

=
∑
i,l

R̄(X, ei, N(ei) + ωilel, JY ) +
∑
i,l

R̄(X,N(ei),−ei + ωilJel, JY )

+
∑
i

ai
1− ai

R̄(X,N(ei), JN(ei), JY )

=
∑
i,l

(ωilR̄(X, ei, el, JY ) + ωilR̄(X,N(ei), Jel, JY ))
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+
∑
i

ai
1− ai

R̄(X,N(ei), JN(ei), JY )

+
∑
i

(R̄(X, ei, N(ei), JY )− R̄(X,N(ei), ei, JY )).

Now we use the Bianchi identity to get

R̄(X, ei, N(ei), JY )− R̄(X,N(ei), ei, JY ) = −R̄(ei, N(ei), X, JY ).

Hence,

∑
i

R̄(ei, N(ei), X, JY ) =
∑
i,l

(ωilR̄(X, ei, el, JY ) + ωilR̄(X,N(ei), Jel, JY ))

+
∑
i

ai
1− ai

R̄(X,N(ei), JN(ei), JY )− kḡ(X, Y ).

Choosing X = em and Y = −Jek, recall that the index with a hat is the

image of that index element by N :

R̄îimk = kωkm +
∑
i,l

(ωilR̄milk + ωilR̄(em, N(ei), Jel, ek))

+
∑
i

ai
1− ai

R̄(em, N(ei), JN(ei), ek).

Multiplying by 2ωkm, and summing over k,m,

2ωkmR̄îimk = 2kω2
km +

∑
i,l,k,m

(2 ωkmωilR̄milk + 2ωkmωilR̄(em, N(ei), Jel, ek))

+
∑
i,k,m

2ai
1− ai

ωkmR̄(em, N(ei), JN(ei), ek).
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Using the previous argument we can bound every term but the last on the

right hand side by some c3|ω|2 because they depend quadratically on ω. To

bound the last term on the right hand side, we proceed as follows:

2
∑
i,k,m

ai
1− ai

ωkmR̄(em, N(ei), JN(ei), ek)

≤
∑
i

(
ai

1− ai
)2 +

∑
i

(
∑
k,m

ωkmR̄(em, N(ei), JN(ei), ek))
2.

The second term depends quadratically on ω, hence can be bounded by a

constant multiple of |ω|2. Now, recall that | 1
1−ai | is bounded by a constant

C1 > 0 depending on T because N is an isomorphism, hence

| ai
1− ai

| = |1− 1

1− ai
| ≤ 1 + C1.

On the other hand,
∑

i ai = |ω|2 using (4.4), so we have

∑
i

(
ai

1− ai
)2 ≤ (1 + C1)

∑
i

ai
1− ai

≤ (1 + C1)C1

∑
i

ai = (1 + C1)C1|ω|2.

This provides a bound for the term
∑

i,k,m
2ai

1−aiωkmR̄(em, N(ei), JN(ei), ek),

and since we are working in normal coordinates, we have bounded 2ωikR̄p̂
p
ik

by a constant multiple of |ω|2, which was what we needed to complete the

argument.

Theorem 4.14. If L0 is Lagrangian in a Kähler-Einstein manifold M , then

the Lagrangian condition is preserved under the mean curvature flow.
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Proof. By the previous proposition, for each compact interval we can find a

constant c depending on T such that

∂

∂t
|ω|2 ≤ 4|ω|2 + c|ω|2.

Using Theorem 3.5, we compare |ω|2 with the zero function and find that

|ω|2 ≤ 0 on Lt. Since |ω|2 ≥ 0 also we get the result.

If M is in addition Calabi-Yau, then we can talk about special Lagrangian

submanifolds. Constructing new special Lagrangian submanifolds is an im-

portant problem and a lot of research has been done on this. In particular,

one approach is to study the behaviour of Lagrangian submanifolds under

the mean curvature flow and investigate when it will converge to a special

Lagrangian (after rescaling near a singularity). In [21], Thomas and Yau

made an important conjecture which says that if, in a Calabi-Yau manifold,

a compact embedded Lagrangian submanifold has zero Maslov class (namely,

the integral cohomology class of the mean curvature 1-form σH is zero), then

the mean curvature flow has long time existence and converges to a special

Lagrangian submanifold in the same Hamiltonion deformation class (it can

be proved that in this case, the mean curvature flow preserves the Hamilto-

nian deformation class).

Schoen and Wolfson in [17] constructed examples that show this is not true if

we do not assume the Lagrangian submanifold has zero Maslov class. It is not

known whether the examples they constructed have zero Maslov class, and if
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they did, they will be counterexamples. Incidentally, non-compact examples

that develop finite time singularities have also been found (see [15]).
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5 Conormal Bundles

In this section, we shall study the mean curvature deformation of a particular

class of Lagrangian submanifolds in Cn.

5.1 Bundle Construction of Lagrangian Submanifolds

Let Mp be a submanifold of Rn. Consider the bundle T ∗Rn, which can be

locally described by

(x1, x2, ..., xn, t1, t2, ..., tn) 7→ (x1, x2, ..., xn, t1dx
1 + t2dx

2 + ...+ tndx
n).

Clearly this can be identified with Cn, with the complex structure given by

J( ∂
∂xi

) = ∂
∂ti

= dxi. We can define the conormal bundle N∗M of M to be

N∗M = {(x, v) ∈ T ∗Rn : v(E) = 0 for any E ∈ TpM}.

Let x ∈ M and e1, ..., ep be a local frame of tangent vectors which are or-

thonormal at x. Let e1, ..., ep be their dual coframe. Similarly, let ν1, ..., νn−p

be a local frame of normal vectors orthonormal at x and let ν1, ..., νn−p be

their dual coframe. They can be chosen to be induced by local coordinates.

Notice that T ∗Rn is symplectic, with symplectic structure explained below.

Now for a 1-form µ on M , we define the submanifold Xµ = N∗M + µ to

be locally {(x, v + µx) : (x, v) ∈ N∗M}. Namely, it is the conormal bundle

translated by µx at every x. In what follows, we shall adopt the notations
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ēi = (ei, 0) and ěi = (0, ei), and ēi, ěi are their duals. The same convention

of notations apply similarly to ν’s.

Proposition 5.1. In the notation above, Xµ is Lagrangian in T ∗Rn if and

only if µ is closed.

Proof. Let α be the tautological 1-form on T ∗Rn, defined by α|(x,β) = π∗β,

where π is the projection onto the base manifold Rn. The symplectic form

ω is given by dα, and in a local coordinate system at x described above, it

has the representation ω =
∑

k ē
k ∧ ěk +

∑
l ν̄

l ∧ ν̌l. At a point (x, ξ+µx) the

tautological 1-form α is then given by π∗(ξ + µ) = π∗µ when restricted to

TM since ξ is in the conormal bundle. Hence dα = 0 if and only if dπ∗µ = 0

if and only if π∗dµ = 0 if and only if dµ = 0 on M .

In fact, it was proved in [1] that in the case of a surface, i.e. p = 2, Xµ

is special Lagrangian with a phase that depends only on the codimension if

and only if M is a minimal surface, and µ is harmonic (see also [9]). Note

that Cn is automatically Calabi-Yau.

5.2 The Mean Curvature

With the natural Euclidean metric on Cn, we can compute the mean curva-

ture vector of Xµ.

Without loss of generality, by parallel transport we can assume that the
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coordinates we have chosen at the beginning satisfy

(∇̄eiej)|Tx = 0 and (∇̄eiνj)|Nx = 0

at some fixed point x (here ∇̄ is the Levi-Civita connection on Cn). Denote

Akij = Aνkij = Akji. Now ∇̄eiej has no tangential component at x, by our

assumption. Hence ∇̄eiej =
∑n−p

k=1

〈
∇̄eiej, νk

〉
νk =

∑q
k=1A

k
ijνk, where we

denote q = n − p. Similarly, ∇̄eiνj =
∑p

k=1

〈
∇̄eiνj, ek

〉
ek = −

∑p
k=1A

j
ikek.

From these two formulas it follows immediately that ∇̄eie
j =

∑q
k=1A

k
ijν

k

and ∇̄eiν
j = −

∑p
k=1 A

j
ike

k.

Let the embedding of M into Rn be F . In a local coordinate system, let

Φ : (x1, x2, ..., xp, t1, t2, ...tq)→ (F (x1, ..., xp), t1ν
1 + ...+ tqν

q + µ)

be a local coordinate system of Xµ. The tangent space to Xµ at x is spanned

by the vectors

Ei = Φ∗(
∂

∂xi
) = (ei,∇ei(t1ν

1 + ...+ tqν
q + µ))

Fj = Φ∗(
∂

∂tj
) = (0, νj),
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where i = 1, 2, ..., p, and j = 1, 2, ..., q. Since we know that, at this particular

point x, ∇̄eiν
j = −

∑p
k=1A

j
ike

k, at x we have

Ei = ēi −
p∑

k=1

Aνikě
k +∇eiµ̌,

where we denote ν = tiν
i.

The above is just coordinate vectors at the point x. Since we will be taking

second derivatives, we have to know also the coordinate vectors around x. In

fact, the above argument goes through, except that ∇̄eiν
j may have conormal

components (since we assumed a normal coordinate system at x, this has no

conormal components at x). Therefore, we write ∇̄eiν
j = −

∑p
k=1A

j
ike

k +

Bj ν̌
j, where Bj(x) = 0. The actual expression for Bj is not important for our

purpose, as will be obvious in what follows (it will be automatically cancelled

out). The tangent space to Xµ is then spanned by the vectors

Ei = (ei, ∇̄eiν + ∇̄eiµ+
∑
j

Bjν
j) = ēi −

p∑
k=1

Aνikě
k +

∑
j

Bj ν̌
j + ∇̄eiµ̌,

where Bj(x) = 0 (here i = 1, ..., p), and

Fj = (0, νj) = ν̌j,
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where j = 1, ..., q.

The metric at x is then given by

hij(x) = 〈Ei, Ej〉 = δij +
∑
l

AνilA
ν
jl −

∑
l

Aνil∇̄jµl −
∑
l

Aνjl∇̄iµl,

〈Ei, Fj〉 = 0 and 〈Fi, Fj〉 = δij.

The Levi-Civita connection ∇̄ on Cn is just the flat one. Hence it is clear

that ∇̄FiFj = 0, and ∇̄FiEj = 0. Since 〈Ei, Fj〉 = 0, to compute the mean

curvature vector we need only consider ∇̄EiEj.

A frame of normal vector fields are given by

γl =
∑
i

(Aνil − ∇̄iµl)ēi + ěl, l = 1, ..., p,

γl = ν̄j, l = p+ 1, ..., n.

Denote uij = 〈γi, γj〉. The mean curvature vector at x is then found to be

H = uαβ
〈
hij∇̄EiEj, γα

〉
γβ

= uαβ

〈
hij∇̄ēi ēj − hij

p∑
k=1

∇̄ēi(A
ν
jkě

k) + hij
∑
k

∇̄ēi(Bkν
k) + hij∇̄ēi∇̄ej µ̌, γα

〉
γβ.
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Using our assumption that Bk(x) = 0, and that ∇̄ēi ě
k has no tangential

components,

H = uαβ

〈
hij∇̄ēi ēj − hij

p∑
k=1

∇̄ēi(A
ν
jk)ě

k + hij∇̄ēi∇̄ej µ̌, γα

〉
γβ.

From here we observe that when ν = 0 and µ = 0, hij = uij = δij. So in

the case of a conormal bundle without twisting, the mean curvature vector

at the zero section is the mean curvature vector of the original submanifold

M .

Suppose now we have chosen the coordinate vectors such that they diagonal-

ize Aν at x, with Aνii = λi. In this case,

hij(x) = δij(1 + λ2
i )− λi∇̄iµj − λj∇̄jµi

uij(x) = δij(1 + λ2
i ) +

∑
l

∇̄lµi∇̄lµj − λj∇̄jµi − λi∇̄iµj.

Further away from the zero section, say changing ν → λν, the product of

these metric terms scale at least quadratically. Hence the mean curvature

vector is zero asymptotically.

Now run the mean curvature flow on conormal bundles. The key result

we want to prove is

Theorem 5.2. Suppose p is even, and the Gauss-Kronecker curvatures sat-

isfy detAν < 0 if p = 2 mod 4 and detAν > 0 if p = 0 mod 4. Then there

62



exists a cut function α : M → R+ such that the submanifold of Xµ locally

given by Sα = {(x, ν + µ) ∈ Xµ : |ν| > α(x)} does not develop any type I

singularity under the mean curvature flow.

As a very special case, the result holds for surfaces with negative curva-

tures.

Since the mean curvature vector goes to zero asymptotically, it is natural to

think ofXµ as being “almost” minimal, or in this context, “almost” calibrated

in some sense. This is a major observation that motivates the theorem. To

prove the theorem, we need the concept of almost calibrated submanifolds,

which we discuss next.

5.3 Almost Calibrated Submanifolds and Type I Sin-

gularities

To see things more clearly, we will go back to the more general case of a

Calabi-Yau ambient manifold. Now we restrict our setting to a Lagrangian

submanifold Ln in a Calabi Yau manifold (M2n, J, ḡ, ω) which has unit par-

allel holomorphic (n, 0) form Ω. We have seen that on L, ∗LΩ = eiθ for some

θ which may be a multi-valued function on L. Then L is calibrated with

respect to Re Ω if Re Ω = 1 on L. More generally, we have the following

Definition 5.3. A Lagrangian submanifold L is said to be almost calibrated

by Ω if there exists a constant ε > 0 such that Re ∗LΩ ≥ ε on L.

First we derive the evolution equation of α = ∗LΩ.
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Proposition 5.4.

∂

∂t
α = 4α + |H|2α (5.1)

Proof. Choose a local basis ei of TL induced by normal coordinates such that

{ei} is orthonormal at p and {ei, Jei} span TM around p, which is possible

because L is Lagrangian. Let f i be the dual basis of ei and gj = −f j ◦ J be

dual to Jej. In this basis, Ω = eiθ(e1 + if 1) ∧ ... ∧ (en + ifn).

In the proof of the identity H = J∇θ (Theorem 4.9), we have seen that

i∇̄Xθ =
1

2

∑
k

(−ifk(J∇̄Xek) + igk(∇̄Xek)) = −i
∑
k

〈
J∇̄Xek, ek

〉
.

Since α = eiθ, choosing X = ∂
∂t

we have

∂

∂t
α = iα∇̄ ∂

∂t
θ = −iα

∑
k

〈
J∇̄ ∂

∂t
ek, ek

〉
= −iα

∑
k

〈
J∇̄iH, ek

〉
.

On the other hand, we have proved that H = J∇θ, so ∇θ = −JH, which

means ∇α = −iαJH. Since we are working in normal coordinates,

4α =
∑
i

∇i∇iα =
∑
i

∇i 〈−iαJH, ei〉

= −i
∑
i

〈
(∇̄iα)JH + α∇̄i(JH), ei

〉
− i
∑
i

〈
αJH, ∇̄iei

〉
= −i

∑
i

〈(〈−iαJH, ei〉)JH, ei〉 − i
∑
i

α
〈
J∇̄iH, ei

〉
− 0
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where we have used the fact that J is parallel, and that JH is in TL while

∇̄iei has only normal components (because we are working with normal co-

ordinates on L). Plugging in what we got for ∂
∂t
α, we have

4α = −
∑
i

α 〈JH, ei〉2 +
∂

∂t
α

= −
∑
i

α 〈H, Jei〉2 +
∂

∂t
α

= −|H|2α +
∂

∂t
α

because Jei, i = 1, 2, ..., n span NL. This proves the proposition.

Writing Re ∗LΩ = cos θ, we see that ∂
∂t

cos θ = 4 cos θ+ |H|2 cos θ. Hence

by the parabolic maximum principle (Theorem 3.7), we have

Corollary 5.5. If L is almost calibrated, then it remains so under the mean

curvature flow.

An important result on singularities of mean curvature flow of almost

calibrated submanifolds is as follows.

Theorem 5.6. If L is almost calibrated, then it does not develop any type I

singularity along the mean curvature flow.

Since many technicalities which are beyond the topics we have discussed

will be used in the proof, we will only provide a sketch of the proof. The

reader may find a complete proof in [22]. The major technical tools used to

understand singularities, including what follows, can also be found in [16].
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Denote Φ(x0, T )(x, t) = 1
(4π(T−t))n/2 e

− |x−x0|
2

4(T−t) . First we need the following

variant of Huisken’s monotonicity formula (cf. Theorem 3.20):

Lemma 5.7. If ft are smooth functions on Lt, where Lt are boundaryless

solutions to the mean curvature flow, then

d

dt

∫
Lt

ftΦ(x0, T ) =

∫
Lt

(
∂ft
∂t
−4ft)Φ(x0, T )−

∫
Lt

ft|H+
(x− x0)⊥

2(T − t0)
|2Φ(x0, T )

where the integration is with respect to the metric on Lt.

Proof. Denote ρ = Φ(x0, T ). We have seen in Huisken’s monotonicity for-

mula that

∂

∂t
(ρdµt) = (−4ρ− ρ|H +

1

2τ
(x− x0)⊥|2)dµt

where dµt is the volume element of Lt, and τ = T − t. Thus we have

∂

∂t
(ftρdµt) = (

∂

∂t
ft)ρdµt + ft(−4ρ− ρ|H +

1

2τ
(x− x0)⊥|2)dµt.

Now we integrate both sides, and use the Green’s identities to get

∫
Lt

∂

∂t
(ftρdµt) =

∫
Lt

(
∂

∂t
ft)ρdµt +

∫
Lt

ft(−4ρ− ρ|H +
1

2τ
(x− x0)⊥|2)dµt

=

∫
Lt

(
∂

∂t
ft)ρdµt −

∫
Lt

(4ft)ρdµt +

∫
Lt

ft(−ρ|H +
1

2τ
(x− x0)⊥|2)dµt

=

∫
Lt

(
∂

∂t
ft −4ft)ρdµt −

∫
Lt

ρft|H +
1

2τ
(x− x0)⊥|2dµt

as desired.
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We shall need the following regularity theorem, which is a fundamental

tool in the study of regularity of mean curvature flows. The Gaussian density

ratio is defined to be θt(x0, l) =
∫
Mt

Φ(x0, l)(x, 0) where Mt is a smooth

solution to the mean curvature flow of a k-dimensional submanifold of RN .

Theorem 5.8. (White’s regularity theorem) There exist constants ε(N, k)

and C(n, k) such that if ∂Mt ∩ B2R is empty, and θt(x, l) ≤ 1 + ε0 for all

l ≤ R2, and x ∈ R2R, and t ≤ R2, then the C2,α-norm of Mt in BR is bounded

by Ct−1/2 for all t ≤ R2.

The motivation and the proof can be found in [23].

Proof. (sketch of proof of Theorem 5.6)

Using the modified monotonicity formula and the evolution equation (5.1)

for cos θ we obtain

∂

∂t

∫
Lt

Φ(x0, T )(1− cos θ)dµt = −
∫

Φ(x0, T )|H|2 cos θdµt

−
∫

Φ(x0, T )|H + 1
2(T−t)(x− x0)⊥|2(1− cos θ)dµt.

Now we do a rescaling to study the type I singularity. Take λi → ∞,

let si = −λ2
i (T − t), and rescale the immersions F λi

si
(x) = λi(Ft(x) − y0)

where (y0, T ) is the point where the singularity occurs. This is to enlarge the

behaviour at the singularity time T by letting λi → ∞, and by doing this

we also have that the second fundamental forms of the rescaled submanifolds

are uniformly bounded. It can be proved that the above equations continue
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to hold after rescaling, with 2(T − t) replaced by −s.

Hence a type I singularity means there exists a subsequence of rescaled sub-

manifolds with smooth limit satisfying |H|2 = |H − 1
2s

(x − x0)⊥|2 = 0, and

one checks easily that this must be flat. Since the Gaussian density ratio is

1 for a plane, White’s theorem can be used to show that (y0, T ) is in fact a

smooth point and the flow can be continued.

A more detailed proof can be found in [22], in which Wang proves this result

on symplectic surfaces in four dimensional Kähler-Einstein manifolds, but

the same argument applies to show the result for almost calibrated subman-

ifolds.

5.4 Proof of Theorem 5.2

Our aim is to prove that there exists an α for which Sα is almost calibrated,

with respect to some i−qΩ.

Let Ω = (ē1 + iě1)∧ ...∧ (ēp + iěp)∧ (ν̄1 + iν̌1)∧ ...∧ (ν̄q + iν̌q). Once again,

by a rotation if necessary, we can assume that the ek’s diagonalize Aν at x,

with Aν(ek) = λkek. Then we have

(ēj + iěj)(Ei) = δji − iλiδji + i∇eiµ(ej)

(ēj + iěj)(Fi) = 0 = (ν̄j + iν̌j)(Ei)

(ν̄j + iν̌j)(Fi) = iδji.
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Hence Ω(E1, ..., Ep, F1, ..., Fq) = iq det(δji − iλiδji + i∇eiµ(ej)) = iq det(I +

i(−D + H)) where D is the diagonal matrix consisting of the eigenvalues

λ1, ..., λp and H is the matrix Hij = ∇eiµ(ej).

It suffices to prove that we can choose α so that on Sα, there exists ε such

that Re(i−qΩ) ≥ ε Im(i−qΩ). Since p is even, the real part is a polynomial

in the λ’s with highest degree term being the p-th power ipλ1λ2...λp. All the

terms in the imaginary part have degree less than p.

Suppose that we change ν → ξν, then the homogenous polynomials of degree

d in the λi’s scale by ξd. From this it can be seen that with the assumption on

the Gauss-Kronecker curvatures, ipλ1λ2...λp > 0 always. Hence there exists

Cν such that if ξ > Cν , then the real part can be made arbitrarily greater

than the imaginary part.

Now we vary ν. By compactness of the unit sphere, it is easy to see that

there exists a maximum over all the choices of Cν . We choose α(x) to be this

maximum. This completes the proof.

From the proof of the theorem, we see that as the ξ goes to infinity,

Re(i−qΩ)
||Ω|| can be arbitrarily close to 1, hence it is “close” to being calibrated

(the calibration has to be normlized). This confirms with our computation

of the mean curvature vector, where it becomes zero asymptotically.

Also, this could be close to the best we can say about this analysis, namely

we cannot include also the zero section and expect the entire Xµ to develop

no type I singularity. This is because the mean curvature vector at the zero
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section is exactly the one of the submanifold, hence by local uniqueness, at

least in short time the flow of that piece would be the mean curvature flow

of the submanifold itself, and this can develop singularities of any type.

Remark 5.9. It can be shown that in the case of a minimal surface M

with curvature bounded above by a strictly negative constant, and if ∇µ is

bounded, then this α can be chosen to be a constant function on M .
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