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Chapter 1

Introduction

In this paper we will discuss two specific calibrations on C™ and their corresponding sub-
manifolds.

A calibration on an oriented Riemannian manifold M is a closed k-form ¢ such that
for any orientable submanifold N we have

¢y < vol|y

where vol is the volume form on M. We call a submanifold calibrated if we have equality
in the above relation. We will show that calibrated submanifolds are volume-minimizing
in their homology class. The calibrations on C" that we are interested in are the special
Lagrangian calibration and the Kéahler calibration.

The Kahler calibration is given by w”/k! where w is the standard Kihler form on C".
It is a 2k-form so the submanifolds it calibrates are 2k-dimensional. In fact we will show
that the submanifolds of C" calibrated by the Kéhler calibration are precisely the complex
submanifolds of C". We can derive the Cauchy-Riemann equations on C" from the relation
defining a calibrated submanifold and we will do this derivation for C2.

The special Lagrangian calibration is @ = Re(dz'A- - - Adz™) and the submanifolds of C"
it calibrates are the special Lagrangian submanifolds. We will show that being calibrated
by « is essentially equivalent to a submanifold N satisfying

1. wly =0 and

2. ITm(dz' A -+ - Adz™)|y = 0.

Note that submanifolds satisfying condition (1) are generally called Lagrangian and so our
submanifolds are special Lagrangian. We can also change the phase of the form « defined
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above and still have a calibration, and the submanifolds it calibrates will still be called
special Lagrangian. We do this by taking ap = Re(e®dzt A --- A dz").

We will also derive partial differential equations defining the special Lagrangian in two
special cases: when the submanifold is the graph of a function and when the submanifold is
the level set of functions fi,..., f, such that Vfi,..., Vf, are linearly independent. Both
of these equations will be very non-linear and hence very difficult to solve in general. In
each case we will work out a specific example: in the first case we will work out a specific
example of submanifolds that are invariant under the diagonal action of SO(n) and in the
second case we will work out a specific example of submanifolds that are invariant under
T ! as a subgroup of SU(n).

We will end the paper by noting a correspondence between complex submanifolds and
special Lagrangian submanifolds on C? when it is identified with the quaternions H.



Chapter 2

Background

Definition 2.0.1. A volume form on a smooth orientable n-manifold M is an n-form o
such that o(p) #0Vp € M.

The existence of a volume form on a manifold is equivalent to that manifold being
orientable [1]. We say that two volume forms o, p are equivalent if o = fp for f € C*(M)
with f(p) >0Vp e M.

Definition 2.0.2. An orientation on an orientable manifold is a choice of equivalence class
of volume forms.

If M is orientable and connected there are always two choices of orientation. To see
this, let o = s(x)dz' A -+ Adz" for some s € C°(M) be a local coordinate representation
of a volume form on an orientable n-manifold M. Then —o is also a volume form and it is
clearly not in the equivalence class of 0. Let p = r(x)dz! A--- A dz™ for some r € C®(M)
be another volume form on M. Suppose, without loss of generality, that s(z) > 0 and let
f(z) = r(zx)/s(z). If r(z) > 0 then f(z) > 0 and p = f(x)o which implies that p € [o].
Otherwise if r(z) < 0 then —f(z) > 0 and p = (—f(x))(—0) and so p € [—o]. Since p
was arbitrary, every volume form is either in [o] or [—0], so there are only two equivalence
classes of volume forms and hence two choices of orientation.

On a oriented Riemannian n-manifold (M, g) we can choose a canonical volume form,
vol, for an orientation by requiring, for a local orthonormal frame ey, ..., e, of TM, that
vol(ey, ..., e,) = 1. We will show that in coordinates this form becomes vol = y/det(g)dz' A
s Adx.

Given an oriented local orthonormal frame eq,...,e, of T M we have the associated
oriented coframe e, ..., e". Then we must have vol = e! A --- Ae™. Let dz',... dz" be a



local coordinate coframe for T*M and e = Aéd:cj . Then

vol = e'A---ne”

Al dz™ A+ N A7 da’n
A e AR At N A dat
det(A)dz* A -+ A da”

Now,

g = Spefel
gijda‘de) = 6, AFALdaida’,

50 gi; = O A AL or in matrix form g = AA*. This gives us det(g) = det(AA’) or det(A) =

/det(g). So we have
vol = /det(g)dz' A --- A da".

It is easy to show that this local coordinate description of the volume form associated to
a Riemannian metric g and a choice of orientation is a well-defined global n-form.

Definition 2.0.3. The wvolume of a compact oriented submanifold N of a Riemannian
manifold (M, g) is given by

Vol(N):/ voly
N

where voly is the volume form on N associated to the induced Riemannian metric ¢|x and
the given orientation.

We will also need Stokes’ theorem to prove a later result so we will state it now.

Theorem 2.0.4 (Stokes’ Theorem). Let M be a oriented n-manifold with boundary OM ,
and let w be a (compactly supported) smooth (n — 1)-form. Then

/dw:/ w.
M oM

For a proof of Stokes’ theorem see [1].



Chapter 3

Calibrations

Definition 3.0.5. A k-form ¢ on a Riemannian n-manifold (M, g), is called a calibration
if

1. ¢ is closed, i.e. dp =0

2. for every k-dimensional orientable submanifold N of M, if voly is the induced volume
form on N then ¢|y < voly.

Condition (2) in the above definition is equivalent to the condition that for every set
of k orthonormal tangent vector fields Xi,..., X} we have p(Xy,..., X;) < 1. We can
define an object called the comass on forms and condition (2) is also called the comass one
condition.

Definition 3.0.6. If ¢ is a calibration on (M, g) then an orientable submanifold N of M
is called a calibrated submanifold or p-submanifold if p|n = voly.

Likewise, definition 3.0.6 is equivalent to: for any p € N and any oriented orthonormal
basis Xi, ..., Xy of T,N we have that p(Xy,...,X;) = 1.

Now we will give a very rough idea of what it means for two orientable manifolds to be
in the same homology class. It will be enough for our purposes.

Definition 3.0.7. Two orientable manifolds (/NVq, voly), (N3, voly) with volume forms voly
and vol, respectively are in the same homology class if there exists a manifold with bound-
ary L such that 0L = (Ny,vol;) U (Ng, —voly). See figure 3.1.

Theorem 3.0.8 (Fundamental Theorem of Calibrations). Let (M, g) be a Riemannian
manifold, ¢ a calibration on M, and N an orientable compact @-submanifold of M. Then
N is volume-minimizing in its homology class.

>



Figure 3.1: The manifold with boundary L such that 0L = (N, vol;) U (N, —voly) with
arrows indicating the corresponding orientations.

Proof. Let N' be another compact oriented submanifold of M in the homology class of N.
Let voly and volys be the volume forms of N and N’ respectively. Let L be a submanifold
of M such that 0L = (N, voly) U (N’, —volys). Then

/90|N—/ oy = /90
N 4 oL
L

= 0

/S0|N=/ ol
N N’

and so

Now we have

Vol(N) = / voly
N

= / ©oln because N is calibrated
N

= / o[
N/

< / voly by condition (2) in definition 3.0.5
= Vol(N').
So Vol(N) < Vol(N’) and so N is volume-minimizing in its homology class. O
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The idea for this proof is from a book by Gross, Huybrechts and Joyce, [2].






Chapter 4

Structures on C"

For the rest of the paper the manifold we are working over will always be C* = R" 4 :R"
with coordinates (z',... 2"y, ... y") or (z},..., 2" 2!, ... ") where 2/ = 27 +iy’. The
metric is the standard Euclidean metric on R?" denoted (-, -). There is also a Kéhler form
w=).(i/2)dz’ NdZ =37, drv’ Ady’. The complex structure on C" is given by a bundle

map J : T(C") — T(C") defined by J (5%) = 32 and J<i> = -2

Bz ) T Oy oyJ 27

Lemma 4.0.9. For all VW € T(C"), (JV,W) = w(V,W).

Proof. Let V,W € T(C") with V = V{32 + Vi 2 and W = W{ 5% + W52 Then

2 9y
0 0 0 0
W — ‘/] _ ‘/’] ”f] ”7]
<JV7 > - < 1 ayj 2 6$j7 lal‘j + Qayj>

- Y (- viw)

J

and
o, o, .o, -0
_ i Y i Y wi Y i Y
- Y (W),
J
Therefore (JV, W) = w(V,W). O






Chapter 5

The Kahler calibration

In this chapter we will show that the 2k-form w*/k! is a calibration and that the subman-
ifolds that it calibrates are the complex submanifolds.

Definition 5.0.10. An oriented 2k-submanifold N is complex if every tangent space is
invariant under multiplication by ¢, i.e. for all p € N we have J(T,N) = T,N and the
orientation is given by the ordered local basis vy, Jui, ve, Jvs, ..., vk, Jur where vy, ..., v
is a linearly independent set of local vector fields.

Since w is closed, so is w*/k!. To show that w”*/k! is a calibration it remains to show
that it satisfies the comass one condition.

Theorem 5.0.11 (Wirtinger’s Inequality). Let N be an oriented 2k real dimensional sub-
manifold and let {Xy,..., Xox} be a local frame for TN. Then

WX, Xog) < klvoly (X, ..., Xop)
with equality if and only if N is a complex submanifold.

Proof. First note that a change of frame will multiply both sides of the inequality by det B
where B is the change of frame matrix. So we can choose any frame for T'N.

Let p € N be arbitrary.

Suppose k = 1. Let X,Y € T,N be an orthonormal basis. Then we have w(X,Y) =
(JX,Y) and by the Cauchy-Schwartz inequality [(JX,Y)| < [|[JX||||]Y] = 1 with equality
if and only if JX and Y are linearly dependent. So w(X,Y) < 1 with equality if and only
if JX =Y ie N is complex.
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Let k be arbitrary. Define a map A : T,N — T,N by (AX,Y) = w(X,Y) VY € T,N.
Note that AX 1 X for all X # 0 e T,N since (AX,X) = w(X,X) =0. We have

(AX,AY) = w(X,AY)
— (JX,AY)
= (AY,JX)
= wY,JX)
— (JY,JX)
= (X,Y),

so A is an orthogonal matrix, i.e. AT = A~!. Also
(Y, APX) = (42X, V)
=w(AX)Y)

= —w(Y, AX)
= —(AY, AX)

=

YTA2X = —(AY)TAX
YTA’X = - YTATAX

=
A= —ATA
=—A"'A
=—1. (5.1)
Suppose that for some X # 0 € T,N we have that AX = 0. Then since 0 = (AX,Y) =

w(X,Y) = (JX,Y) for all Y € T,N we have that JX L T,N and so T,N cannot be
complex. Also, if we take any frame for 7, N that includes X, say {X,Ys,..., Y5}, then

WF(X,Ya, ..., Yor) =0 < klvol, (X, Y, ..., Yop).

So, Wirtinger’s inequality is satisfied trivially.

Suppose that AX # 0 for all X # 0 € T,N. Let X; be a unit vector in T, N. Let
X2 = AXl/HAX1H Then AXl = a1X2 where a; = ||AX1|| and X2 1 Xl, HX2|| = 1.
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Choose X3 € T,N so that X3 1 X, X5, and || X;5]| = 1. Then we can find a; € R and
Xy € T,N so that AX3 = ax Xy, X4 L X3 and || Xy]| = 1. Continuing this process we

get orthonormal vectors X1, ..., Xy, and real numbers aq, . .

Now

and for 1 <1 <2k, [ #25—1

., ag SO that AXQj_l = anQj.

(AXj, Xoj-1)
w(X2j, X2j-1)
—w(Xaj-1, Xo5)
—(AX2;-1, X2)
—(a; X2j, X25)

_a/j’

1
(AXoj, Xi) = (A(—AXoj 1, X))

J

So AXy; = —a;jXs;_1. Then we have
a;

<

by (5.1)

as | # 27 — 1.

(AXs;, Xoj-1)
w(Xa2j, Xaj-1)
(JX25, X2j-1)
[ X[ [| Xaj—1]| = 1

with equality if and only if JX5; = Xy;_; by the Cauchy-Schwartz inequality.

Note that
So

i=j—1land2l=1iorj
0 otherwise ’

(5.2)

wk(Xl,...,ng) = (Ld/\"'/\bd)(Xl,...,XQkM
= Z w(Xsay, Xo@)] - |w(Xo@r-1), Xo(k))-

UESQk
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We can rewrite this using equation 5.2 to get

KX Xa) =) w X Xoan)| - [w(Xowys Xow+1)

oESk

= > {AX0), Xorn) - (AXo(, Xo(m 1)

€Sk

Z Qo(1) """ Qo (k)
€S}

= klay---ag

< k!

with equality if and only if Xy; 1 = JXy;, ie N is complex. O]

The idea for this proof is from a book by Balmann [3]. So w*/k! is a calibration on C"
and from Wirtinger’s inequality we see that the calibrated submanifolds are exactly the
complex submanifolds.

5.1 Cauchy-Riemann Equations in C?

Let L be a w-calibrated submanifold of C? which is a graph. Then L = {(z,y, u(z,y), v(x,y)) :
z,y € R} for some smooth maps u, v : R* — R. Let p € L. Then T,,L = span{(1, 0, uy,v,), (0,1, u,, v,)}.

In this chapter we will derive the Cauchy-Riemann equations using the fact that L is
calibrated by w. Recall that the calibration condition is w = vol|, and that the canonical
volume form in coordinates on L is v/det gdz A dy. So we will need to compute w and ¢ in
coordinates on 7,L.

On T,L we have that

w = dax' Ady' 4 da® A dy?

= dx ANdy+duNdv
ou ou ov ov
= dxANd —d —dy | N | —d —d
T y+(ax :c+ay y) (8x x+ay y)

= (14 uzvy — uyv,)dz A dy,

and
T+ 0wy + v,
| uguy +vv, 1+ ug + US
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Now,

w = 4/det gdx A dy
(14 ugvy — uyve)® = (14 w2 4+ 02) (1 +ul + 0]) — (ugtsy + v:0,)?

2.2 2.2
1+ 2uzvy — 2uyv, + UV, — 2UVyUy Uy + Uy, Uy

T e

_ 2 2,2 .2 2,2 2 2
=1+ uy +uy + vy + v, +uzv, + vpu, — 2uuyv,v,

& ui—quvy%—v;—}—quLQuyvx—l—vg:O
& (up—vy)* + (uy +v,)* =0,
which is equivalent to u, = v, and w, = —v, which are indeed the Cauchy-Riemann

equations.
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Chapter 6

Special Lagrangian submanifolds of

(Cn

Definition 6.0.1. A submanifold L of C*" is called Lagrangian if w|;, = 0.
The form w is in fact a symplectic form and Lagrangian submanifolds are important in
symplectic geometry [4].

Let a, 8 be n-forms such that dz! A --- A dz™ = a + i. In this chapter we will show
that « is a calibration and that submanifolds calibrated by « are in fact Lagrangian with
an extra condition. To do this will will first need to prove Hadamard’s inequality.

Lemma 6.0.2 (Hadamard’s Inequality). Let A be an n x n matriz with column vectors
aiy...,a,. Then

[ det A < T flal
i=1
with equality if and only if the a;’s are orthogonal.

Proof. The inequality in trivial if the columns of A are linearly dependent. Assume the
columns of A are linearly independent. Then using Gram-Schmidt find an orthonormal
basis by, ...,b, of R™ such that

spang{ay,...,a;} = spang{by,...,b;} V1l <i < n. (6.1)

Let B=| b --- b, |.Now for any v € R" we have

| |
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by orthonormality, and

ol =) (v, b:)". (6.3)

i=1
From equations (6.1) and (6.2) we get

i

a; =Y {ai,b;)b;. (6.4)

j=1
Let C' = [c] be an upper-triangular n x n matrix such that

e = (a, b)) 1<k<Il<n
ce =0 I <k<n.

Then equation (6.4) is equivalent to A = BC. So
(det A)? = det(ATA)
det(CTBTBC)
(

det(CTO) by orthogonality of B
= (det C)?

= H (aj, bi>2 by properties of upper-triangular matrices
i=1

[T (3 o0

i=1 \j=1

IN

= H las)® by equations (6.3) and (6.4).
i=1

Equality occurs if and only if (a;,b;) = 0 for all j # 4, which occurs if and only if the a;’s
are orthogonal. Then equation (6.4) becomes a; = (a;, b;)b; and so the a;’s are orthogonal.

If the a;’s are orthogonal then the Gram-Schmidt process will give a; = (a;, b;)b; which
will give equality in the above equations. ]

Recall that for a matrix A with column vectors ay, . .., a, that |det A| = a3 A--- Aay].

Proposition 6.0.3. Let N be an n-dimensional submanifold of C™* over some open set U
and letey, ... e, be alocal orthonormal frame for TN. Then |eyA---NepAJeg A+ -Ney| <
1 with equality if and only if N is Lagrangian over U.
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Proof. Lemma 6.0.2 states that [eyA---Ae,Ader A= ANJey| < er] -+ |enl|Jen] -+ [Jen| =1
with equality if and only if €, ..., ¢&,, Je1, ..., Je, are orthogonal. Since as a block matrix

J is
0 —I
I 0

it is clearly orthogonal and therefore angle-preserving. The vectors e4,...,e,, Je1, ..., Je,
are orthogonal if and only if (Je;, e;) = 0. This is true if and only if w(e;, ;) = 0 by lemma
4.0.9. This gives us w|y = 0 which is the definition of Lagrangian. O]

For the next lemma we will need to use two different notions of the determinant of
a complex matrix. The first is the complex determinant denoted detc and it is what we
would ordinarily think of as the determinant of a complex matrix. The second is the
real determinant denoted detg, to find this determinant we think of a complex matrix
A = B +1iC as a block matrix
A — { B -C 1
C B

and take its determinant. We then get that detg A = (det B)? + (det C)? = Re(detcA)? +
Im(detcA)2.

Proposition 6.0.4. For a local orthonormal tangent frame 1, ..., &, of an n-dimensional

submanifold N of C",
aler,...,en)? + Bl .. en)? =|ert A Aeg Ader A+ A Jey).

Proof. Leteq,...,e,, Jeq,...,Je, be an oriented basis for R*@R"™ = C". Let A be a linear
map defined by A(e;) = ¢;, A(Je;) = Je;. Note that A is C-linear by construction. Now

dz' Ao Nd2"(e1, -+ en)
= dz' Ao ANd2"(Aey, -, Aey)
= det(cA,

by the definition of det¢. Then
aler,...,en) = Re(detcA)

B(e1,...,e,) = Im(detcA)

19



SO

aler,...,en)? 4+ Ber, ... en)?
= Re(detcA)? + Im(detcA)?
= detpAd
= |detgA| since detg A is positive
= |Aes NAJey A--- N Ae, N Ade,|
= |let A ANep ANder Ao A Jey|

Theorem 6.0.5. The n-form « is a calibration.

Proof. Let €1, ..., &, be orthonormal vector fields. By propositions 6.0.3 and 6.0.4 we have

aler, ..., en)? +Bler, .. en)? =ler A Aen Ader Ao ANJey| < 1

and so
aler,....en) <aler,...,en)* +B(e,...,en)* < L.
Also,
da = d(Re(dz' A--- Adz™))
= Re(d(dz' A--- A d2"))
= 0.
So « is a calibration. 0

Definition 6.0.6. An oriented n-submanifold L is called special Lagrangian if it is cali-
brated by «.

Theorem 6.0.7. Let L be an oriented n-dimensional submanifold and let €q,...,&, be a
local orthonormal frame for TL. Then L is special Lagrangian (up to a change of orienta-
tion) if and only if

(1) wlp =0
(2) Bl =0.
Moreover, if A is a complex linear map such that Ae; = €;, then B(eq,...,e,) = ImdetcA.
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Proof. Suppose L is special Lagrangian, then «a(eq,...,¢,) = 1. Then since

1=ale,...,en) §a(gl,...,5n)2+ﬁ(81,...,5n)2 <1

we have
aler,...,en)?+Bler,...,en)? =1
but a(eq,...,e,) =1s0
1+ B(er,...,e0)* =1
=
Ber,...,en) =0.
Also,

l=oaler,...,e0)* +B(er,...,en)* = a1 A~ Nep Ader A A Jgy|

and on any open neighborhood of L, and by proposition 6.0.3 this equality happens if and
only if L is Lagrangian and by the definition of Lagrangian w|;, = 0.

Conversely, suppose that w|;, = 0 and 3|, = 0. Then L is Lagrangian and by proposition
6.0.4
aler, ..., en)?+ Ber, ... en) = 1.

Since | = 0 the above equation becomes

aler,...,en)* =1

aler, ..., en) = 1.

So L is calibrated by « up to change of orientation.

Let A be a complex linear map such that Ae; = ¢;, then ((ey,...,&,) = ImdetcA as
shown in the proof of proposition 6.0.4. O]

6.1 Phases of the Special Lagrangian Calibration

We can "rotate” the form « from above and still get a calibration. We do this by taking
ap = Re(e?dz! A -+ Adz™) for 0 < 0 < 2. Then we have a = ay.

To see that «y is a calibration first note that day = dRe(e®dz! A --- A dz") = 0. For
the comass 1 condition we need to make the following change in the proof of proposition

21



6.0.4. We let A be a linear map defined by A(e%wei) = ¢; and A(Je%wei) = Je;. Then we
get

ePdr N Nd2 ey, L Ep)

= e®d? AN dz"(Ae%wel, e Aew en)
= <5i9((377i9)’”‘dz1 A ANdz"(Aeq, -, Aey)
= det(cA,
and
|detg A| = |Ae;s AAJeg A--- A Ae, N Ade,|

= Jener Ao Aene  Aendeg A Aen Jey)
= [(e)|er A Aen Ader Ao A Jey|
= |let A ANep Adeg A A Jeyl.

So proposition 6.0.4 remains true.

Definition 6.1.1. If L is an n-dimensional submanifold that is calibrated by ay then we
say that L is special Lagrangian of phase 6.

However this change will also change the statement of theorem 6.0.7. Let (B =
Im(edzt A -+ A d2").

Theorem 6.1.2. Let L be an oriented n-dimensional submanifold and let eq,...,&, be a
local orthonormal frame for T L. Then L is special Lagrangian of phase 0 (up to a change
of orientation) if and only if

(1) wlr =0

(2) ﬁH|L = 0.
Moreover, if A is a complex linear map such that Ae_Twej = ¢j, then B(e1,...,&n) =
Imdet(cA.
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Chapter 7

The Special Lagrangian Differential
Equation

Let L be an n-dimensional submanifold of C". We may consider L to be given as the graph
of a function, i.e. L = {(z, f(z)) : « € U} where f : U — R". We can definitely do this
locally.

Proposition 7.0.3. Suppose U C R" is open and f : U — R" is a smooth map. Let L be
the graph of f in C* = R™ +iR". Then L is Lagrangian if and only if the Jacobian of f
1s symmetric. In particular if U is simply connected, then L is Lagrangian if and only if
f=VF for some FF e C*(U,).

Proof. Let p € L and let U be an open neighborhood of p. Let ¢ : U — L be defined by
o(z) = (x, f(z)) =z +if(z). Then the pushforward ¢, will map % to

O\ O 0 N[ O\ 0
o <8x]‘) = w1~ 2 (‘% tipg ) o

So T,L = {v + iJac(f)v : v € R"}. Let X,Y € T,L, then X = v + iJacf(p)v and

23



Y = w+ iJacf(p)w for some v and some w in R™. Then L is Lagrangian if and only if

(JX,

(—Jacf(p)v +iv,w +iJacf(p)w
—(Jacf(p)v, w) + (v, Jacf (p)w
(v, Jacf (p)w

0
=0
0
0

(Jacf(p)v, w)

vTJacf(p)w = (Jacf(p)v) w

TJacf(p)U) = o' (Jacf(p)) w
Jacf(p) = (Jacf(p))”,

i.e., Jacf(p) is symmetric for all p € L or Jacf is symmetric. The Poincaré lemma states
that on a simply connected domain any smooth closed k-form is exact [1]. Suppose U is
simply connected. Now if Jacf is symmetric then we have that

Jacf = (Jacf)T
Jacf]i; = [Jacfl;i
dofi  0f;
oxd — Oxi

(7.1)

Using the Euclidean metric on R” we can regard f as a 1-form on U by taking f = f;dx’.
So we have

df = g?d A da?
- afz‘ afj i j
— Z (&vj — &Ui) dz* N\ dx
1<)
p— O’

by equation (7.1). By the Poincaré lemma if U is simply connected then f is exact which
is equivalent to the existence of a potential function F' € C°(U) such that dF = f. We
can then use the metric to get a vector field VF from dF to get VF = f. ]

Definition 7.0.4. Let U C R" be open and let F': U — R. The Hessian of F'isann xn

matrix defined by
0?F

For a matrix A let 0;(A) denote the jth elementary symmetric function of the eigen-
values of A.
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Theorem 7.0.5. Let U C R™ be open and F € C®(U). Let f = VF be the gradient of
F and let L be the graph of f in C". Then L is special Lagrangian (up to a change of
orientation) if and only if

(n— 1)/2J
Yoo i1(HessF) = 0, (7.2)
k=0
or, equivalently
Im [detc(] + iHessF')] = 0. (7.3)

Proof. By proposition 7.0.3 L is Lagrangian if and only if the matrix Jacf(= HessF) is
symmetric. Let A = I + iJacf; then A is clearly complex linear (it is real linear and
preserves multiplication by i) and by definition A sends the standard basis e, ..., e, of R"
to the basis of T{, ¢(»))L. By theorem 6.0.7 it follows that L is special Lagrangian if and
only if (7.3) holds. It remains to prove the equivalence of (7.2) and (7.3). Let Ay,...,\,
be the eigenvalues of HessF'. Since HessF' is symmetric there exists a matrix P such that
A1 0
P~ (HessF)P = =D,

so HessF' = PDP~!. Then
Im(detc(I + iHessF)) = Im(detc(PP~' +iPDP™'))
= Im(dete(P(I +iD)P™1))
etc(I +iD))

= Im(d
= Im (ﬁ(l - mj))
I (1 + i@'jaj(HessF)> :

j=1
Expanding the first few terms we get

Im (1 + Z ijaj(HessF)> = Im (1 + ioy (HessF') — o9(HessF') — iog(HessF) + -+ ),
j=1
so taking the imaginary part results in only odd elementary symmetric functions with
alternating sign. Therefore
(n—1)/2]
Im(detc (I + iHessF)) Z V¥ o o1 (HessF)
k=0
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as desired.

]

For n = 1,2,3 we get very simple equations from equation 7.3. Let \; be the j™"

eigenvalue of HessF'.

Case n=1: We have

dz?

d’F
HessF = (—)

2
and A\ = %. So

Z(_l)ka2k+1(HeSSF) -0

k=0

& op(HessF) =0
d*F

& — =0
dx?

& F(r) =ax+b.

Therefore f = VF = a and L = {(x,a)} is a horizontal line.

Case n=2: We have
F,. F
HessF = ey ) )
< ny Fyy

So

0
> (1) fogs1 (HessF) = 0
k=0
o1(HessF) =0

A+ A=0
Tr(HessF) =0
Fro+ F,y =0
AF =0.

S

Case n=3: We have

8

<
n

HessF' =

I\
I
I
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So

1
> (—1)fogyi (HessF) = 0
k

=0
o1(HessF') — o3(HessF) =0
AL+ A2+ A3 = AtAag
Tr(HessF') = det(HessF')
AF = det(HessF).

Tt

Note that the above is equation is equivalent to
2 2 2
Fxr_l'Fyy_l'Fzz :FxxFnyzz_FxxFyz_Fnyxz_Fzzny+2nyFyzsz

which a non-linear second order partial differential equation and thus very hard to solve.

7.1 Phases of the Special Lagrangian Differential equa-
tion
Let L is an n-dimensional Lagrangian submamfold that is the graph of a function f, so we

have f = VF. Let A = I + iHessF and let A = en ¢ A. Then by theorem 6.1.2 L is special
Lagrangian of phase # if and only if

Im(detcA) = 0
Im(detc (e (I + iHessF)))) = 0
Im(e“dete (I + iHessF))) 0

Im( (1—1—2230] HessF)) = 0.
7j=1

For phase ¢ = 7 this becomes
Im <z + Z ij+10_j(HeSSF)> =0, (7.4)
j=1
and for n = 1, 2,3 we can explicitly write out this differential equation.

Case n = 1: Equation (7.4) becomes

0 = Im(i + i°0; (HessF)) =
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This is a contradiction, so there are no special Lagrangian submanifolds of phase 7 that are
graphs of functions. Since the 1-dimensional special Lagrangian submanifolds of phase 0
where horizontal lines and changing phase is a rotation we would expect the 1-dimensional
submanifolds of phase 7 to be vertical lines which are not graphs of functions.

Case n = 2: Equation (7.4) becomes
0 = Im(i+i’o;(HessF) + i*oy(HessF))
= 1 — 0y(HessF)
= 1 — det(HessF),
or det(HessF') = 1.
Case n = 3: Equation (7.4) becomes
0 = Im(i+ %0y (HessF) + i*oy(HessF) + i*o3(HessF))
= 1— oy(HessF),
or o9(HessF') = 1. If we expand this in terms of the partials of F' we get
FouFyy+ FyyF.. + Fo Fpy — F — F) — F2 = 1.

7.2 A Specific Example

We look for an L that is invariant under the diagonal action of SO(n). That is L is the
orbit of a curve o : U C R — C with Re(a(t)) > 0) and Im(«(t)) > 0. Since SO(n) acts
transitively on the unit sphere, we will have L = {(z,y) € C" : |z|y = |y|z and (|z|, |y|) €
a(U)}. Let r = |z] and p = |y| be a function of r. Choose P(r) to be an antiderivative of
p(r). Then VP = p(r)Vr = p(r)(xz/r) and since y = |y|x/|z| = p(r)z/r by definition of L,
we see that L is the graph of VP and hence by proposition 7.0.3 L is Lagrangian.

Theorem 7.2.1. Let
L.={(z,y) € C" : ry = pr and Im(r +ip)" = ¢}

for c € R. Then L. (up to orientation) is a special Lagrangian submanifold of C™.

Proof. From the arguments above L. is Lagrangian and is the graph of f(z) = p(r)(z/r).
The Jacobian of this map is given by the matrix with entries

aii (@Ij)

o, () 2

T dr T

r

28



Claim 7.2.1.1. The matrix Jacf(x) has x as an eigenvector with eigenvalue %ﬁ. In addition,
the hyperplane orthogonal to z is an eigenspace with eigenvalue @ of multiplicity n — 1.

Proof of claim 7.2.1.1. Let a = p(r)/r and b = L (p(r)/r)(1/r). Then

a+ bxlx! bxlax? . brlam !
bx?xt  a+ bx?x? - bx2a" x?

Jacf(x) = | . |
br™at bx"z? .-+ a4+ bx"a" x"

azt + brl(x')? + bat (2?)? + - -+ + bl (2)?
az? + ba?|z|?

ax™ + bx"|z|*

and

Ay () - A ()

p(r) dp  p(r)
T dr T

dp

dr’

So dp/dr is an eigenvalue of Jacf(x) with eigenvector z.
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Let y be orthogonal to x then

a+bxtzt  bxlz? ... bxla® y?
b2zt a4+ ba?z? .- brz" y?

Jacf(z)y =
bx"a! bx"x? .-+ a+ ba"a" y"

ay' + bl (zy') + bt (2?y?) + - + bl (a"y")
ay® + bx*(z,y)

ay” + bx"(z,y)

= (since x and y are orthogonal)

So p(r)/r is an eigenvalue of Jac f(x) with eigenspace the hyperplane orthogonal to z. Since
the hyperplane orthogonal to = has dimension n — 1, the associated eigenvalue, p(r)/r, has
multiplicity n — 1. ]

From theorem 7.0.5 we know that L is special Lagrangian if and only if
Im[detc(I +iJacf)] =0

and since Jacf is symmetric we can diagonalize it so the eigenvalues of I + iJacf are
1 +ip(r)/r (with multiplicity n — 1) and 1 + idp/dr. So the above equation becomes

(1 + i@)n_l (1 + Z%)] =0.

Im [detc (I +iJacf)dr] =

Im

Now

Im [(r +ip)" "' (dr + idp)] =0

rn—l

is equivalent to
Im [(r + ip)" "' (dr + idp)] = 0.

This is an exact differential equation with solutions
Im((r +1p)") = ¢

as desired. O]
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Figure 7.1: The dotted lines are when ¢ < 0, the plain lines are when ¢ = 0 and the dashed
lines are when ¢ > 0.

The graphs of p versus r for n = 3 and n = 5 are displayed below (see figure 7.1).

Note that for n = 3 the submanifold L. will always have one component and for ¢ = 0
the submanifold will be a hyperplane without the origin. For n = 5 the manifold L. has
one component for negative ¢ and two components for positive ¢ but when ¢ is zero L. is
the union of two hyperplanes without the origin which is not a manifold (see figure 7.2).
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Figure 7.2: Ly when n =5
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Chapter 8

The Implicit Formulation

Lemma 8.0.2. If L is a real n-dimensional subspace of C" then L is Lagrangian if and
only if L* is Lagrangian.

Proof. Let L be an real n-dimensional subspace of C". Suppose that L is Lagrangian then
JL 1L L and so we have
Lo JL=C"=LoL".

Since JL and L+ both have real dimension n and both decompositions are orthogonal, the
direct sum must be unique. So,

JL = L+
= L=JL"
= JLt 1Lt

and therefore L+ is Lagrangian. The other direction is similar. [

Lemma 8.0.3. Let U C C" be open and fi,..., f, € C®°(U) such that Vfi,...,Vf, are
linearly independent on the submanifold M = {z € U : fi(z) = --- = fu(2) = 0}. Then M
is Lagrangian if and only if all of the Poisson brackets

" (0f; 0fi  Of; Of ~—~ (0f;0f Of; Of
o =3 (5h5m - Gagh) =y (4% - %)

=1

vanish on M.
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Proof. Let «(t) be a curve on M. Then for all 1 < j <mn

fila(t)) =0
= Vjlaw () =0

Since V f1,..., V[, are linearly independent, NM = spang{V fi,...,Vf,}. Note that

" "Of 0 Of 0 <~0fc 0 0fp 0
, _ ! I j j
w(Vf3r V1) (; d A dy) (5:1 Oxs Ox* * oys Oys’ “— Oz" Ox" + oy" 83/")

i 0f; 0 _ 0f; 0fk
oxt oyt Oyt Ot

— ()

So winm = 0 & {fj, fu} = 0. Therefore NM is Lagrangian if and only if all of the
Poisson brackets {f;, fx} are zero. Since TM = (NM)*+,we see by lemma 8.0.2 that M is
Lagrangian if and only if all of the Poisson brackets are zero. O

Theorem 8.0.4. Suppose that M s the Lagrangian submanifold described in the lemma
above. Then M is special Lagrangian if and only if

(1) Im (detc [WJD =0 on M forn even

or

(2) Re (det@ [WJ]) =0 on M forn odd.

Proof. From the proof of the above lemma, NM = spang{V fi,...,Vf,} and since M is
Lagrangian TM = J(NM). Therefore

™ = SpanR{Jvfla"'ajvfn}
g ) d n of,  of,
— spanR{Z(—a—;;;Jr aﬁ) €, ,Z( aJy: aij)ej}
Jj=1 j=1
= spanR{ZQZ _(% afl) , Z %(% g£n>€}
=1
= spanR{ZmaJ_E e, 222%63}
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Let A = [2i0f;/0z"]. Then Ae; = Y ;_, 2i0fx/0Zex. So from theorem 6.0.7 M is special
Lagrangian if and only if Im(detcA) = 0. Now,

Of;
Im(detcA) = Im (detc |2i—=-
m(detcA) m(e@{zazk}>
. af;
)
+Im ( 2"det¢ % for n even
B +Re ( 2"det¢ % for n odd.
So
Im ( detc % =0 for n even
Im(detcA) =0 < of;
Re (detc |52| ) =0 for n odd.
as desired. O

8.1 A Specific Example

We will consider a family of submanifolds that are invariant under
et 0
71 = O+ +6,=0p CSU(n).
0 eifn
Let M. be the set of solutions of the following equations:
2P = )P =¢j §=2,...,m, (8.1)

Re(z!---2")=¢; ifniseven
Im(z'---2") =¢; ifnisodd.

1|2

Lemma 8.1.1. Then M, as defined above is invariant under T" 1.

Proof. Let z = (z,--- ,2") € M,. Let A€ T"" . Then

€i61 0 Zl
Az =
0 eifn 2"
i1 51
6@'0” pes
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Equation (8.1) becomes

’61;9121'2 . |ei0jzj‘2
’ei91|2|21|2 . ‘eiaj’2|zj|2

|21 — |27

Equation (8.2) becomes

So M, is invariant under 77 1.

ey = ¢ if nis even

ey = ¢ if nis odd
)l ") = ¢ if nis even
)l ") =¢; if nis odd

2") =¢; if nis even

2") =¢ if nis odd.

Lemma 8.1.2. Let fj(z) = |2'* — |z;]* —¢j for j =2,...,n and let

fi(z) :{

Re(z!
Im(z?

n)_cl

ceez if n is even
---Zn)—cl

if n is odd

Then the Poisson bracket of f; and f; for any 1 <1 < j <mn is zero.

Proof. For j = 2,...,n we have
9 _
0zF
and
o _
ozk

19, B o
@( T2l — 2970 —¢))

o — 28]

0
pEL

151 VEY]
270, — 205

22N — 205 —¢j)
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We also have

0zF
0z W for n odd

8 [ zt.zngzl.zn
OzF 2

1....,m_3z1 . .3n
L (2222 ) for noodd

1..n
{ LA A for n even

% { oRe(! -2 for n even

for n even

k
221

—a cee n
“= for n odd.

Similarly we get

of, =z~ for n even
Aok o
0z iz for p odd.

Then for 7 =1,...,n and n even
~~ (0f0f;  9fi 0
1 9 _
U fid Z; (azk 92k 92k Oz
.n 21...’2”7 i Zl...zn .
= 2 Z ( E (746 — 75]) — - (2165 — zkéi))
k=1

z1 =n 1 n

. 21...2n_1 ZheeeZ —j Zr ez 1 Zl“'Zn ]
= 0 — 7 - — 2z — —Z + —
2z 2727 2z 229

= 0.
The calculation for n odd is similar. For 2 < j <1 < n we have

~=~[Of; 0f; Of; Of
{fjafl} = QZZ(azkaz’i _821‘“52’1)
k=1

= 20y ((z'6p — 26])(2'6} — 2'0}) — (20, — 26)) (20} — 2'6})
k=1
= 2i(2'2' — 22t 4 AF6T — F

= 0.

]

Theorem 8.1.3. Let M, be as above. Then M., with the correct orientation, is a special
Lagrangian submanifold of C™.
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Proof. By lemma 8.0.3 and lemma 8.1.2, M, is Lagrangian

If n is even then, i
ozk : :
kA 0 —2" ]
Expanding detc[0f;/0z"] around the first row gives
afj ... Wl o . ... n,gzl"'zn
detc [8 k} = o (=) 2= 2 — 55 (—1) =
21.._271 Zl"‘Zn
-1 n—-1%~  ~ -1 n—2
T > .
e WERSL
B 2|zl|2 +Z 2|Zj|2
So Im(detc[0f;/0Z"]) = 0 as desired and M, is special Lagrangian by theorem 8.0.4
If n is odd then,
[ izl...3n izl.zn ]
S B
% 21 —22 0
ozk : :
i 2! e

..z

af;| i~ 11|z
det@{@]“ 2|z1|2 *Z B

So Re(detc[0f;/0z"]) = 0 as desired and M. is special Lagrangian by theorem 8.0.4

Similarly to n even, expanding detc[0f;/0zF] around the first row gives
: n|2
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Chapter 9

Calibrated Submanifolds of H

In this chapter we will consider calibrated submanifolds of H = C?. On C? the Kéhler form
w and the special Lagrangian calibration «a are both 2-forms and so we want to establish
a relationship between complex submanifolds and special Lagrangian ones.

Now, we can identify H with C? in three different ways by choosing the complex struc-
ture of C to be i, j or k. For a point p € H we have

p=a"1+ 2% + 2% + 23k
= (2" + i1 + (2 +iz?)j
= (2" + j2*)1 + (2 + ja" )k
= (2 4+ ka®)1 + (2" + ka?)i.

Each complex structure gives rise to different complex coordinates: {z! = 20 + izt 2? =

22 +ixd}, {w' = 2% + j2tw? = 23 + jx'} or {u! = 2° + k23 w? = 2! + kx?}. The
corresponding Kahler forms are:
wi = da® A dx! 4 da® A da®,
wy = da’ A dx? + da® A dat,
ws = dz® A dz® + dxt A da?.
The volume forms become
QO = dztAdZ?
= (dz°+idz") A (d2? + idz?)
= d2’ Ada® +da® Adat +i(da® A da? + dat A da?)

= W2 + iw:;,
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Then the special Lagrangian calibration «; = Re(€);) with respect one set of complex
coordinates is the Kahler calibration with respect to another set of complex coordinates.
This is very nice since we have seen that special Lagrangian submanifolds are hard to find
in general, but complex submanifolds are in fact easy to find. For example, level sets of

dw' A dw?
(dz° + jda*) A (da® + jdat)
dz’ A da® + dx' A da® + j(da® A dat + do? A do®)

w3 + Jwi,

du' A du®
(dz° + kdz®) A (dz' + kdz?)
dz°’ A dz' + da® A da® + k(da® A do® + da® A dat)

wy + kws.

holomorphic functions will be complex submanifolds when they are smooth.

To summarize, we have:

complex | Kéhler | volume | special Lagrangian | corresponding form
structure | form form calibration 0

1 w1 wo + iCU3 a1 = Wo ﬁl = W3

J w2 | w3+ Jjwr gy = Wy P2 = w1

k w3 w1 + sz 3 = Wy ﬁ; = W2
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Chapter 10

Conclusion

In the paper we have looked at two special calibrations, the Kahler calibration and the
special Lagrangian calibration, on C" and briefly demonstrated the connection between
complex and special Lagrangian submanifolds on H. There is a lot more that one can
do with calibrations in general and even with just the Kahler and special Lagrangian
calibrations. There are more complicated relations between complex submanifolds and
special Lagrangian submanifolds on H" for n > 1 as well. It is possible to define the
Kahler and the special Lagrangian calibrations on more general manifolds. For the Kahler
calibration to be defined we need the manifold to be Kahler and then the calibration will
be w*/k! where w in the Kihler form. For the special Lagrangian calibration we need the
manifold to be Calabi-Yau. We can also define other types of calibrations, for example
associative and coassociative calibrations on R” or more generally G5-manifolds. See the
paper by Harvey and Lawson [5] for this and other examples.

We can even define other kinds of calibration by replacing the comass 1 condition
with something different. For example we can use calibrations to find connections whose
curvature forms minimize the Yang-Mills functional. See the paper by Conan Leung for
more details [6].
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