(1) Let F be the field with p elements, p a prime. Recall that an $n \times n$ matrix A in $M_{n}(F)$ is invertible if and only if its columns v_{1}, \ldots, v_{n} form a basis for F^{n}. Use this to show that the number of $n \times n$ invertible matrices in $M_{n}(F)$ is the same as the number of ordered bases for F^{n}, which is the same as the number of sequences v_{1}, \ldots, v_{n} such that v_{1}, \ldots, v_{i} is linearly independent for $i=1, \ldots, n$. Now let's count! Show that we have $p^{n}-1$ choices for the first vector v_{1}. In general, show that if you have picked v_{1}, \ldots, v_{i} so that they are linearly independent then there are p^{i} elements in their span and the only constraint on picking v_{i+1} is that it cannot be in the span of v_{1}, \ldots, v_{i}. How many choices do you have for v_{i+1}. Put it together to get a formula for the number of invertible matrices in $M_{n}(F)$.
(2) Let $X_{1}, \ldots, X_{n^{2}}$ be a basis for $n \times n$ matrices over a field F. Suppose that Y is an $n \times n$ matrix with entries in F such that $\operatorname{Trace}\left(Y X_{i}\right)=0$ for $i=1, \ldots, n^{2}$. Show that Y is the zero matrix.
(3) Let A be an $n \times n$ integer matrix and suppose that $A^{s}=I$ for some $s \geq 1$. Show that the trace of A is in the set

$$
\{-n,-n+1, \ldots, 0,1, \ldots, n\} .
$$

(4) Suppose that $S \subseteq M_{n}(\mathbb{Z})$ is a set of matrices with the following properties: (1) S contains a basis for $M_{n}(\mathbb{Q})$; (2) every element A in S satisfies $A^{s}=I$ for some $s \geq 1$, depending upon $A ;(3)$ if $A, B \in S$ then $A \cdot B \in S$. Show that S is finite and in fact has size at most $(2 n+1)^{n^{2}}$.
(5) Let p be prime. Show that if $0 \leq i, j<p$ and $0 \leq a<b$ are integers then the binomial coefficients satisfy

$$
\binom{p b+j}{p a+i} \equiv\binom{b}{a} \cdot\binom{j}{i}(\bmod p)
$$

where we take $\binom{i}{j}$ to be zero if $i<j$ and we take $\binom{0}{0}=1$, which aligns with the usual convention that an empty product is 1 . Use this to show by induction that $\binom{p^{d}}{i} \equiv 0(\bmod p)$ for $i=1,2, \ldots, p^{d}-1$.
(6) A matrix N is called nilpotent if $N^{d}=0$ for some $d \geq 1$. Show that if F is a field of characteristic p, with p a prime, then if N is an $n \times n$ nilpotent matrix in $M_{n}(F)$ then $(I+N)^{p^{d}}=I$ whenever $p^{d} \geq n$.
(7) Let H_{n} denote the $n \times n$ matrix whose (i, j)-entry is $1 /(i+j-1)$. Show that if $w=\left[w_{0}, w_{1}, \ldots, w_{n-1}\right]^{T}, v=$ $\left[v_{0}, v_{1}, \ldots, v_{n-1}\right]^{T} \in \mathbb{R}^{n}=\mathbb{R}^{n \times 1}$ then $w^{T} H_{n} v$ is equal to

$$
\int_{0}^{1} p(t) q(t) d t
$$

where $p(t)=v_{0}+v_{1} t+\cdots+v_{n-1} t^{n-1}$ and $q(t)=w_{0}+w_{1} t+\cdots+w_{n-1} t^{n-1}$.
(8) Show that $v^{T} H_{n} v$ is strictly positive whenever v is a nonzero vector in \mathbb{R}^{n} and that H_{n} is an invertible matrix.
(9) Let V be a finite-dimensional vector space and let $T: V \rightarrow V$ be a linear operator. Suppose that $V=W_{1} \oplus \cdots \oplus W_{d}$ where each W_{i} is T-invariant. Show that there is a basis B for V such that we obtain a block-diagonal matrix

$$
[T]_{B}=\left(\begin{array}{ccccc}
A_{1} & 0 & 0 & \cdots & 0 \\
0 & A_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & A_{d-1} & 0 \\
0 & 0 & \cdots & 0 & A_{d}
\end{array}\right)
$$

where A_{i} is the matrix of the restriction operator $\left.T\right|_{W_{i}}: W_{i} \rightarrow W_{i}$ with respect to some basis for W_{i}. Show also that the minimal polynomial of T is the least common multiple of the minimal polynomials of the matrices $A_{1}, A_{2}, \ldots, A_{d}$ and that the characteristic polynomial of T is the product of the characteristic polynomials of the A_{i}.
(10) Let T be a linear operator on a finite-dimensional vector space V. We saw in class that for a vector v, the T annihilating polynomial, $p_{v}(T)$ always divides the minimal polynomial. Show that the minimal polynomial is in fact the least common multiple of the polynomials $p_{v}(T)$ as v ranges over all vectors in V.

