
MATH 245: Assignment 2, Due Sept. 21, 2018 (to be submitted via crowdmark)

(1) Let F be the field with p elements, p a prime. Recall that an n× n matrix A in Mn(F ) is invertible if and only if its
columns v1, . . . , vn form a basis for Fn. Use this to show that the number of n × n invertible matrices in Mn(F ) is
the same as the number of ordered bases for Fn, which is the same as the number of sequences v1, . . . , vn such that
v1, . . . , vi is linearly independent for i = 1, . . . , n. Now let’s count! Show that we have pn − 1 choices for the first
vector v1. In general, show that if you have picked v1, . . . , vi so that they are linearly independent then there are
pi elements in their span and the only constraint on picking vi+1 is that it cannot be in the span of v1, . . . , vi. How
many choices do you have for vi+1. Put it together to get a formula for the number of invertible matrices in Mn(F ).

(2) Let X1, . . . , Xn2 be a basis for n × n matrices over a field F . Suppose that Y is an n × n matrix with entries in F
such that Trace(Y Xi) = 0 for i = 1, . . . , n2. Show that Y is the zero matrix.

(3) Let A be an n× n integer matrix and suppose that As = I for some s ≥ 1. Show that the trace of A is in the set

{−n,−n + 1, . . . , 0, 1, . . . , n}.
(4) Suppose that S ⊆ Mn(Z) is a set of matrices with the following properties: (1) S contains a basis for Mn(Q); (2)

every element A in S satisfies As = I for some s ≥ 1, depending upon A; (3) if A,B ∈ S then A ·B ∈ S. Show that

S is finite and in fact has size at most (2n + 1)n
2

.
(5) Let p be prime. Show that if 0 ≤ i, j < p and 0 ≤ a < b are integers then the binomial coefficients satisfy(

pb + j

pa + i

)
≡
(
b

a

)
·
(
j

i

)
(mod p),

where we take
(
i
j

)
to be zero if i < j and we take

(
0
0

)
= 1, which aligns with the usual convention that an empty

product is 1. Use this to show by induction that
(
pd

i

)
≡ 0 (modp) for i = 1, 2, . . . , pd − 1.

(6) A matrix N is called nilpotent if Nd = 0 for some d ≥ 1. Show that if F is a field of characteristic p, with p a prime,

then if N is an n× n nilpotent matrix in Mn(F ) then (I + N)p
d

= I whenever pd ≥ n.
(7) Let Hn denote the n × n matrix whose (i, j)-entry is 1/(i + j − 1). Show that if w = [w0, w1, . . . , wn−1]T , v =

[v0, v1, . . . , vn−1]T ∈ Rn = Rn×1 then wTHnv is equal to∫ 1

0

p(t)q(t) dt

where p(t) = v0 + v1t + · · ·+ vn−1t
n−1 and q(t) = w0 + w1t + · · ·+ wn−1t

n−1.
(8) Show that vTHnv is strictly positive whenever v is a nonzero vector in Rn and that Hn is an invertible matrix.
(9) Let V be a finite-dimensional vector space and let T : V → V be a linear operator. Suppose that V = W1⊕ · · · ⊕Wd

where each Wi is T -invariant. Show that there is a basis B for V such that we obtain a block-diagonal matrix

[T ]B =


A1 0 0 . . . 0
0 A2 0 · · · 0
...

...
. . .

...
...

0 0 · · · Ad−1 0
0 0 · · · 0 Ad

 ,

where Ai is the matrix of the restriction operator T |Wi : Wi →Wi with respect to some basis for Wi. Show also that
the minimal polynomial of T is the least common multiple of the minimal polynomials of the matrices A1, A2, . . . , Ad

and that the characteristic polynomial of T is the product of the characteristic polynomials of the Ai.
(10) Let T be a linear operator on a finite-dimensional vector space V . We saw in class that for a vector v, the T -

annihilating polynomial, pv(T ) always divides the minimal polynomial. Show that the minimal polynomial is in fact
the least common multiple of the polynomials pv(T ) as v ranges over all vectors in V .
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