(1) (Useful basic fact that everyone should know) Let $E_{i, j}$ denote the matrix whose (i, j)-entry is 1 and all other entries are 0 . Show that $M_{n}(F)$ is an F-vector space with basis $\left\{E_{i, j}: 1 \leq i, j \leq n\right\}$ and $E_{i, j} E_{s, t}=\delta_{j, s} E_{i, t}$ where $\delta_{j, s}=1$ if $j=s$ and is zero otherwise. Use this to show that if a matrix commutes with every matrix, then in particular it must commute with every $E_{i, j}$, and then show it must be a scalar multiple of the identity.
(2) Let A be the companion matrix of the polynomial $x^{2}-x-1$. Guess and prove a formula for A^{n} in terms of well known mathematical sequences.
(3) Let V be a finite-dimensional F-vector space and let T be a linear operator on V. We call the centralizer of T, which we denote $C(T)$, the set of linear operators $U: V \rightarrow V$ such that T and U commute (i.e., $T \circ U=U \circ T$). Show that the centralizer is closed under addition, scalar multiplication (i.e., if $\lambda \in F$, and $U \in C(T)$, then $\lambda U \in C(T)$) and under composition.
(4) Suppose that every linear operator $U: V \rightarrow V$ is in $C(T)$ for some linear operator $T: V \rightarrow V$. Show that there is some $c \in F$ such that $T(v)=c v$ for every $v \in V$ and that the converse holds.
(5) Let T be a linear operator on a vector space V. Show that every polynomial in $T, c_{0}+c_{1} T+\cdots+c_{d} T^{d}$, is in $C(T)$.
(6) Let T be a linear operator on a finite-dimensional space V. Recall that a vector v is a cyclic vector (if it exists) for a linear operator T if $v, T v, T^{2} v, \ldots, T^{n-1} v$ is a basis for V, where n is the dimension of V. Prove that T has a cyclic vector if and only if every linear operator U on V that commutes with T is a polynomial in T.
(7) (Very Useful Fact for Linear Algebra) Let F be a field and let x_{1}, \ldots, x_{n} be variables. We let $F\left[x_{1}, \ldots, x_{n}\right]$ denote the set of finite F-linear combinations of monomials $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ with multiplication given by $c x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \cdot c^{\prime} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}=$ $c c^{\prime} x_{1}^{i_{1}+j_{1}} \cdots x_{n}^{i_{n}+j_{n}}$, and then extending by linearity. Notice that if

$$
P\left(x_{1}, \ldots, x_{n}\right)=\sum c_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

is a polynomial (so $c_{i_{1}, \ldots, i_{n}}=0$ for all but finitely many $\left(i_{1}, \ldots, i_{n}\right)$) and $c_{1}, \ldots, c_{n} \in F$ then we can evaluatie P at $\left(c_{1}, \ldots, c_{n}\right)$ via the rule

$$
P\left(c_{1}, \ldots, c_{n}\right)=\sum c_{i_{1}, \ldots, i_{n}} c_{1}^{i_{1}} \cdots c_{n}^{i_{n}} \in F
$$

Show that if F is an infinite field and $p\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$ is a nonzero polynomial then there exist $c_{1}, \ldots, c_{n} \in$ F such that $P\left(c_{1}, \ldots, c_{n}\right) \neq 0$. (Hint: try induction!)
(8) Let F be a field and let K be a field that contains F. Suppose that $A_{1}, \ldots, A_{d} \in M_{n}(F)$ have the property that $c_{1} A_{1}+\cdots+c_{d} A_{d}$ is invertible for some $c_{1}, \ldots, c_{d} \in K$. Show that if F is infinite then there exist $b_{1}, \ldots, b_{d} \in F$ such that $b_{1} A_{1}+\cdots+b_{d} A_{d}$ is invertible.
(9) Prove that the above does not necessarily hold if F is a finite field.
(10) Prove that if F is an infinite field then every matrix in $M_{n}(F)$ can be written as a sum of two invertible matrices. (Hint: Try to see if you can use the Very Useful Fact.)
(11) Let F be the field with 5 elements. How many invertible 2×2 matrices in $M_{2}(F)$ are there? How many invertible 3×3 matrices in $M_{3}(F)$ are there?

