
MATH 245: Assignment 1, Due Sept. 14, 2018 (to be submitted via crowdmark)

(1) (Useful basic fact that everyone should know) Let Ei,j denote the matrix whose (i, j)-entry is 1 and all other entries
are 0. Show that Mn(F ) is an F -vector space with basis {Ei,j : 1 ≤ i, j ≤ n} and Ei,jEs,t = δj,sEi,t where δj,s = 1
if j = s and is zero otherwise. Use this to show that if a matrix commutes with every matrix, then in particular it
must commute with every Ei,j , and then show it must be a scalar multiple of the identity.

(2) Let A be the companion matrix of the polynomial x2 − x − 1. Guess and prove a formula for An in terms of well
known mathematical sequences.

(3) Let V be a finite-dimensional F -vector space and let T be a linear operator on V . We call the centralizer of T , which
we denote C(T ), the set of linear operators U : V → V such that T and U commute (i.e., T ◦U = U ◦T ). Show that
the centralizer is closed under addition, scalar multiplication (i.e., if λ ∈ F , and U ∈ C(T ), then λU ∈ C(T )) and
under composition.

(4) Suppose that every linear operator U : V → V is in C(T ) for some linear operator T : V → V . Show that there is
some c ∈ F such that T (v) = cv for every v ∈ V and that the converse holds.

(5) Let T be a linear operator on a vector space V . Show that every polynomial in T , c0 + c1T + · · ·+ cdT
d, is in C(T ).

(6) Let T be a linear operator on a finite-dimensional space V . Recall that a vector v is a cyclic vector (if it exists) for a
linear operator T if v, Tv, T 2v, . . . , Tn−1v is a basis for V , where n is the dimension of V . Prove that T has a cyclic
vector if and only if every linear operator U on V that commutes with T is a polynomial in T .

(7) (Very Useful Fact for Linear Algebra) Let F be a field and let x1, . . . , xn be variables. We let F [x1, . . . , xn] denote

the set of finite F -linear combinations of monomials xi11 · · ·xinn with multiplication given by cxi11 · · ·xinn ·c′x
j1
1 · · ·xjnn =

cc′xi1+j1
1 · · ·xin+jn

n , and then extending by linearity. Notice that if

P (x1, . . . , xn) =
∑

ci1,...,inx
i1
1 · · ·xinn

is a polynomial (so ci1,...,in = 0 for all but finitely many (i1, . . . , in)) and c1, . . . , cn ∈ F then we can evaluatie P at
(c1, . . . , cn) via the rule

P (c1, . . . , cn) =
∑

ci1,...,inc
i1
1 · · · cinn ∈ F

Show that if F is an infinite field and p(x1, . . . , xn) ∈ F [x1, . . . , xn] is a nonzero polynomial then there exist c1, . . . , cn ∈
F such that P (c1, . . . , cn) 6= 0. (Hint: try induction!)

(8) Let F be a field and let K be a field that contains F . Suppose that A1, . . . , Ad ∈ Mn(F ) have the property that
c1A1 + · · ·+ cdAd is invertible for some c1, . . . , cd ∈ K. Show that if F is infinite then there exist b1, . . . , bd ∈ F such
that b1A1 + · · ·+ bdAd is invertible.

(9) Prove that the above does not necessarily hold if F is a finite field.
(10) Prove that if F is an infinite field then every matrix in Mn(F ) can be written as a sum of two invertible matrices.

(Hint: Try to see if you can use the Very Useful Fact.)
(11) Let F be the field with 5 elements. How many invertible 2 × 2 matrices in M2(F ) are there? How many invertible

3× 3 matrices in M3(F ) are there?
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