Assignment 2. Due October 15 in class. Feel free to assume the results from any questions in doing the later questions.

- (1) Show that $|\text{Re}((1+\sqrt{-2})^n)| \to \infty$ as $n \to \infty$.
- (2) Let Δ be a finite set and let $p \geq 2$ be a natural number. Show that a map $f : \mathbb{N}_0 \to \Delta$ is p-automatic if and only if the p-kernel of f is finite and show that if g(n) is in the p-kernel of f then the p-kernel of g(n) is contained in the p-kernel of f(n).
- (3) Prove the pumping lemma: If $\mathcal{L} \subseteq \Sigma^*$ is an infinite regular language then there exist words $a, b, c \in \Sigma^*$ with b having length at least one such that $ab^nc \in \mathcal{L}$ for all $n \geq 0$.
- (4) Let Δ be a finite subset of a ring R and suppose that $f, g : \mathbb{N}_0 \to \Delta$ are p-automatic. Show that f + g and fg are both p-automatic (now the ranges are respectively $\Delta + \Delta$ and Δ^2).
- (5) Let $p \ge 2$ and let S and T be p-automatic sets and let a and b be nonnegative integers with $a \ge 1$. Show that $aS + b = \{an + b : n \in S\}$ is p-automatic and that $S \cup T$ and $S \cap T$ are p-automatic.
- (6) Let K be a finitely generated field extension of \mathbb{F}_p and let $K^{\langle p \rangle} = \{x^p : x \in K\}$. Show that $K^{\langle p \rangle}$ is a field and that K is finite-dimensional as a $K^{\langle p \rangle}$ -vector space. Show that K can be finite-dimensional or infinite-dimensional if K is not finitely generated.
- (7) Let $\Sigma = \{0, 1, \dots, p-1\}$ and let $w_0, w_1, \dots, w_m, t_1, \dots, t_m \in \Sigma^*$. Show that there exist rational numbers c_0, c_1, \dots, c_m and nonnegative integers s_1, \dots, s_m such that

$$\{[w_0t_1^{i_1}w_1t_2^{i_2}\cdots w_{m-1}t_m^{i_m}w_m]_p\colon i_1,i_2,\ldots,i_m\geq 0\}$$

is exactly the set of natural numbers from

$$\{c_0 + c_1 p^{s_1 j_1} + c_2 p^{s_1 j_1 + s_2 j_2} + \dots + c_m p^{s_1 j_1 + \dots + s_m j_m} : j_1, \dots, j_m \ge 0\}.$$

- (8) Show directly that the set $S = \{1, 3, 3^2, 3^3, \ldots\}$ is p-automatic if and only if p is a power of 3.
- (9) Show that if \mathcal{L} is a regular language then if f(n) is the number of words in \mathcal{L} of length n, then f(n) satisfies a linear recurrence over \mathbb{Q} .
- (10) Let K be a field. We say that a power series $F(x) \in K[[x]]$ is algebraic (over K(x)) if there exist $m \ge 1$ and polynomials $P_0(x), \ldots, P_m(x) \in K[x]$, not all zero, such that

$$\sum_{i=0}^{m} P_i(x) F(x)^i = 0.$$

Notice that power series expansions of rational functions (consider just ones that do not have a pole at x = 0) are all algebraic where we can take m = 1. Show that if q is a power of a prime p and $f: \mathbb{N}_0 \to \mathbb{F}_q$ is p-automatic then

$$F(x) := \sum_{n \ge 0} f(n) x^n \in \mathbb{F}_q[[x]]$$

is algebraic. (Hint: this isn't so easy. Using exercise 2, we know that the *p*-kernel of f(n) is finite. Let $f(n) = f_1(n), \ldots, f_r(n)$ denote the distinct sequences in the *p*-kernel and let $F_i(x) = \sum_{n\geq 0} f_i(n)x^n$. Then $F(x) = F_1(x)$. Now for each *i* show that

$$F_i(x) = \sum_{j=0}^{q-1} \sum_{n=0}^{\infty} f_i(qn+j)x^{qn+j}.$$

By the second part of Q2, we have that $f_i(pn+j)$ is in the *p*-kernel of f and hence is equal to some $f_{m_{i,j}}(n)$. From this show that

$$F_i(x) = \sum_{j=0}^{q-1} x^j F_{m_{i,j}}(x)^q$$

(Here you should use the fact that $a^q = a$ for $a \in \mathbb{F}_q$.) Conclude that $F_i(x)$ is in the $\mathbb{F}_q(x)$ -vector subspace of $\mathbb{F}_q((x))$ (the field of fractions of $\mathbb{F}_q[[x]]$) spanned by $F_1(x)^q, \ldots, F_r(x)^q$. Show by induction that for each m and each $j \leq m$ we have that $F_i(x)^{q^j}$ is in the $\mathbb{F}_q(x)$ -vector subspace

- of $\mathbb{F}_q((x))$ spanned by $F_1(x)^{q^m}, \ldots, F_r(x)^{q^m}$. Now argue by dimensions that if we pick m > r then $F_1(x), F_1(x)^q, \ldots, F_1(x)^{q^{m-1}}$ must have a non-trivial linear dependence over $\mathbb{F}_q(x)$.)
- (11) In fact the converse holds—this is the well-known Christol's theorem. It says that $F(x) \in \mathbb{F}_q[[x]]$, q a power of p, is algebraic if and only if its sequence of coefficients is p-automatic. Use Christol's theorem to show that $\sum_{j=0}^{\infty} x^{3^j} \in \mathbb{Q}[[x]]$ is not algebraic over $\mathbb{Q}(x)$.
- (12) Use the pumping lemma to prove the following theorem of Minsky and Pappert: the set of prime numbers is not a k-automatic set for any $k \geq 2$. (Hint: if there were some k for which it were, then we would have some input alphabet Σ and words $a, b, c \in \Sigma^*$ with b of length ≥ 1 such that $[ab^n c]_k$ is always a prime number. Now show that there is some prime q such that $[ab^i c]_k = q$ with $q > k^{i \cdot \text{length}(b)}$ and show that $[ab^{iq}c]_k \equiv [ab^i c]_k \equiv 0 \pmod{q}$ and conclude that $[ab^{iq}c]_k = q$. Why is this a problem?)