(1) Let X be a set and let $V \subseteq k\langle X\rangle$ denote the k-span of the elements of X. For each $i \geq 1$, let V^{i} denote the k-span of all products of i elements of V. Show that

$$
k\langle X\rangle=k \oplus V \oplus V^{2} \oplus V^{3} \oplus \cdots
$$

(2) A Lie algebra is a k-vector space V with a k-bilinear map $[\cdot, \cdot]: V \times V \rightarrow V$ (called a Lie bracket) that satisfies $[v, w]=-[w, v]$ for $v, w \in V$ and $[[v, w], u]=[[v, u], w]+[v,[w, u]]$ (the Jacobi identity) for all $v, w, u \in V$. Show that if R is an associative algebra then $[r, s]:=r s-s r$ is a Lie bracket and makes R a Lie algebra.
(3) Let X be a set with order $<$, and suppose that we extend $<$ to a degree lexicographic order on X^{*} and let $V \subseteq k\langle X\rangle$ denote the k-span of the elements of X. Suppose that V has a Lie bracket $[\cdot, \cdot]$. Show that the set S given by $\{y x-x y-[x, y]: y>x$, with $y, x \in X\}$ is a Gröbner-Shirshov basis with respect to $<$.
(4) Let X be a set with order $<$, and suppose that we extend $<$ to a degree lexicographic order on X^{*} and let $V \subseteq k\langle X\rangle$ denote the k-span of the elements of X. Suppose that V has a Lie bracket $[\cdot, \cdot]$. Show that if I Is the ideal generated by $\{y x-x y-[x, y]: y>x$, with $y, x \in X\}$ then $k\langle X\rangle / I$ has a basis consisting of images of monomials of the form $x_{1} x_{2} \cdots x_{s}$ with $s \geq 0$ and $x_{1}, \ldots, x_{s} \in X$ with $x_{1} \leq x_{2} \leq \cdots \leq x_{s}$.
(5) Let $X=\{A, C, T, G\}$ and let $f(n)$ denote the number of words of length n over the alphabet A, C, T, G that do not have $G A T$ or $T A G$ as subwords. Find a linear recurrence satisfied by $f(n)$.
(6) Let k be a field and let $R=k[x, y] / I$ (so R is commutative!) where I is generated by the polynomials $x^{2}+y^{3}-2$ and $x^{3}+y^{2}-2$. Show that R is finite-dimensional and find its dimension.
(7) For the next few exercises, we'll work with a commutative ring $R=k\left[x_{1}, \ldots, x_{d}\right] / I$. Suppose that we put some order on $\left\{x_{1}, \ldots, x_{d}\right\}$ and use this to impose a degree lexicographic order on (commutative) monomials in x_{1}, \ldots, x_{d}. Let V be the image of the space $k+k x_{1}+\cdots+k x_{d}$ in R. Show that V^{n} has dimension given by the size of the set of monomials m in $\operatorname{Irr}(S)$ of degree at most n.
(8) The Hilbert series of the commutative ring $R=k\left[x_{1}, \ldots, x_{d}\right] / I$ is defined as follows. One puts a degree lexicographic order on monomials in x_{1}, \ldots, x_{d} and computes a Gröbner basis S for I. Then one lets T denote the set of monomials in $\operatorname{Irr}(S)$ and finally one lets $f(n)$ denote the number of monomials of length n in $\operatorname{Irr}(S)$. Then one defines the Hilbert series to be the formal power series

$$
\sum_{n \geq 0} f(n) t^{n} \in \mathbb{Z}[[t]]
$$

Show that the Hilbert series is independent of how one assigns the order on x_{1}, \ldots, x_{d} when giving the degree lexicographic order. (Hint: use the preceding question).
(9) Show that the Hilbert series of the ring R is the power series expansion of a function of the form $P(t) / Q(t)$ where $P(t)$ and $Q(t)$ are integer polynomials, $Q(0)=1$, and all the roots of $Q(t)$ are roots of unity. (Hint: first use the fact that in the commutative case that Gröbner bases are finite to show that $f(n)$ satisfies a linear recurrence. Next use this fact to show that the Hilbert series is of the form $P(t) / Q(t)$ with P and Q integer polynomials and $P(0)=1$. Finally, show that if $f(n)$ is the coefficient of t^{n} in the Hilbert series of R then $f(n) \leq n^{d}$ and use this to show that $Q(t)$ must have all of its roots as roots of unity.

