
Assignment 4: Due April 2, 2019

Let’s do some basic things with division rings. Recall that a division ring is an associative ring in which every nonzero
element has an inverse. Some theorems that you might not know, but that are useful are the Artin-Wedderburn theorem.
We’ll use a very special case that you might have seen if you took representation theory: if F is an algebraically closed field
and A is a finite-dimensional simple F -algebra then A ∼= Mn(F ) for some n.

1 Let D be a division ring. Show that the centre Z = {x ∈ D : zx = xz} is a field.
2 Let D be a division ring and let Z be its centre. We say that D is finite-dimensional if [D : Z] <∞; i.e., D is finite-

dimensional as a Z-vector space. Show that if D is a finite-dimensional division ring and F is a field extension of Z
then B := D⊗Z F is a simple F -algebra whose centre is F ∼= Z⊗Z F and dimF (B) = dimZ(D). (Hint: to show that
it is simple, first do the part about the centre. Now Let I be a nonzero ideal and pick nonzero x =

∑s
i=1 ai⊗ λi ∈ I

with s minimal, where the ai ∈ D and λi ∈ F . First show by minimality of s that you may assume that the ai are
linearly independent over Z and the λi are linearly independent over Z and that a1 = 1 and λ1 = 1. Next show
that if s = 1 then x = 1 under these assumptions, so if you can show that s = 1, you’re done. So now assume s > 1.
Show that if x(b⊗ γ)− (b⊗ γ)x has shorter length, so show that x is central and use your description of the centre
to finish things off.)

3 Use the Artin-Wedderburn theorem to show that if D is a finite-dimensional division ring then [D : Z] is a perfect
square. (Hint: Look at D ⊗Z Z̄, where Z̄ is the algebraic closure of Z.)

4 Let K be a field and assume that there is ω ∈ K with ω an n-th root of unity. Let a, b ∈ K \ {0}. Define a ring
R = K{x, y}/(xn − a, yn − b, xy − ωyx). Show that R is an n2-dimensional K-algebra. (Hint: put a dlex order on
monomials by declaring that x > y and show that the relations given yield a Gröbner-Shirshov basis and that the
monomials that do not have initial terms as subwords are those of the form yixj with i, j < n. Show also that R is
simple.

5 Let K be a field, let n = 2, ω = −1, a = b = −1. Show that the R from the preceding example is a division ring if
zero cannot be written as a non-trivial sum of at most four squares in K (e.g., fields such at Q and R) and show that
it is isomorphic to M2(K) if 0 can be written as a sum of at most four nonzero squares (e.g., fields like Q(i) and C).
In the former case, we call R the division ring of quaternions over K. (Hint: Show that 1, i := x, j := y, and k := xy
is a K-basis for R now show that if u := a+ bi+ cj+ dk is a zero divisor then so is uu∗, where u∗ = a− bi− cj− dk
and that uu∗ = u∗u = a2 + b2 + c2 + d2.)

6 Let H = {a+ bi+ cj + dk : 2a, 2b, 2c, 2d ∈ Z, 2a ≡ 2b ≡ 2c ≡ 2d (mod 2)}. Show that H is a subring of the division
ring of quaternions over Q and that if u ∈ H then N(u) := uu∗ = u∗u is a positive integer and is nonzero whenever
u is nonzero, and that N(uv) = N(u)N(v).

7 Show that H has a left-division algorithm given as follows: If a, b ∈ H with b 6= 0 then there exist q, r ∈ H such
that a = qb+ r with N(r) < N(b). (Hint: this is a bit tricky, but it is much easier when b is a positive integer, so do
this case first. Now let n = bb∗ > 0 and do the case you’ve just done to get ab∗ = qn + r with N(r) < N(n) = n2.
Now here’s the fun part: r = ab∗ − qn = ab∗ − qbb∗ = (a− qb)b∗. Let r′ = a− qb. Show that N(r′) < N(b)!)

8 Use the preceding result to show that every left ideal of H can be generated by a single element as a left ideal.
9 Show that if a, b ∈ H are nonzero and are such that N(a) = N(b) and a = ub with u ∈ H, then u is a unit of H.

10 Show that every positive integer can be written as a sum of 4 squares (including 0 as a square). (Hint: using
questions 5 and 6 that it is enough to prove that every prime number is a sum of four squares. Let p ≥ 3 be
prime (I assume you can write p = 2 as a sum of four squares) and let Rp be the algebra produced in question
4 with K = Fp, n = 2, ω = −1, a = b = −1. Show Rp is not commutative if p > 2 and use Wedderburn’s
theorem to show that Rp cannot be a division ring. OK, so now let I denote the two-sided ideal of H given by
{a+ bi+ cj+dk : 2a, 2b, 2c, 2d ∈ Z, 2a ≡ 2b ≡ 2c ≡ 2d ( mod 2), p|2a, p|2b, p|2c, p|2d}. Show that I is indeed an ideal
and that H/I is isomorphic to Rp. What next? Since Rp is not a division ring it has a nonzero proper left ideal
J . Then by correspondence, there is a proper left ideal J ′ of H that properly contains I. Show that every element
u ∈ J ′ must have the property that N(u) is a multiple of p since otherwise we could generate the unit ideal. By the
preceding question, J ′ can be generated by a single element a := A+Bi+Cj+Dk ∈ J ′ \ I with N(a) a multiple of
p. Since p ∈ J ′ we have p = ba for some b ∈ H. Then N(p) = N(b)N(a). Now N(p) = p2 and N(b) and N(a) are
integers and N(a) is a multiple of p, so N(a) ∈ {p, p2}. Show using question 9 that if N(a) = p2 then p = ba with b
a unit of H and this cannot occur since J ′ properly contains I. Conclude that N(a) = p. What does this mean? It
means p = A2 +B2 +C2 +D2. There’s just one problem: A,B,C,D are not necessarily integers—they are only half
integers and 2A, 2B, 2C, 2D have the same parity. But we’re close. But let A′ = 2A, B′ = 2B, C ′ = 2C, D′ = 2D,
so now we have integers and we have 4p = (A′)2 + (B′)2 + (C ′)2 + (D′)2 and A′, B′, C ′, D′ have the same parity.
OK, now let X = (A′ −B′)/2, Y = (A′ +B′)/2, Z = (C ′ −D′)/2, W = (C ′ +D′)/2. What happens?)
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