Let's do some basic things with division rings. Recall that a division ring is an associative ring in which every nonzero element has an inverse. Some theorems that you might not know, but that are useful are the Artin-Wedderburn theorem. We'll use a very special case that you might have seen if you took representation theory: if F is an algebraically closed field and A is a finite-dimensional simple F-algebra then $A \cong M_{n}(F)$ for some n.

1 Let D be a division ring. Show that the centre $Z=\{x \in D: z x=x z\}$ is a field.
2 Let D be a division ring and let Z be its centre. We say that D is finite-dimensional if $[D: Z]<\infty$; i.e., D is finitedimensional as a Z-vector space. Show that if D is a finite-dimensional division ring and F is a field extension of Z then $B:=D \otimes_{Z} F$ is a simple F-algebra whose centre is $F \cong Z \otimes_{Z} F$ and $\operatorname{dim}_{F}(B)=\operatorname{dim}_{Z}(D)$. (Hint: to show that it is simple, first do the part about the centre. Now Let I be a nonzero ideal and pick nonzero $x=\sum_{i=1}^{s} a_{i} \otimes \lambda_{i} \in I$ with s minimal, where the $a_{i} \in D$ and $\lambda_{i} \in F$. First show by minimality of s that you may assume that the a_{i} are linearly independent over Z and the λ_{i} are linearly independent over Z and that $a_{1}=1$ and $\lambda_{1}=1$. Next show that if $s=1$ then $x=1$ under these assumptions, so if you can show that $s=1$, you're done. So now assume $s>1$. Show that if $x(b \otimes \gamma)-(b \otimes \gamma) x$ has shorter length, so show that x is central and use your description of the centre to finish things off.)
3 Use the Artin-Wedderburn theorem to show that if D is a finite-dimensional division ring then $[D: Z]$ is a perfect square. (Hint: Look at $D \otimes_{Z} \bar{Z}$, where \bar{Z} is the algebraic closure of Z.)
4 Let K be a field and assume that there is $\omega \in K$ with ω an n-th root of unity. Let $a, b \in K \backslash\{0\}$. Define a ring $R=K\{x, y\} /\left(x^{n}-a, y^{n}-b, x y-\omega y x\right)$. Show that R is an n^{2}-dimensional K-algebra. (Hint: put a dlex order on monomials by declaring that $x>y$ and show that the relations given yield a Gröbner-Shirshov basis and that the monomials that do not have initial terms as subwords are those of the form $y^{i} x^{j}$ with $i, j<n$. Show also that R is simple.
5 Let K be a field, let $n=2, \omega=-1, a=b=-1$. Show that the R from the preceding example is a division ring if zero cannot be written as a non-trivial sum of at most four squares in K (e.g., fields such at \mathbb{Q} and \mathbb{R}) and show that it is isomorphic to $M_{2}(K)$ if 0 can be written as a sum of at most four nonzero squares (e.g., fields like $\mathbb{Q}(i)$ and \mathbb{C}). In the former case, we call R the division ring of quaternions over K. (Hint: Show that $1, i:=x, j:=y$, and $k:=x y$ is a K-basis for R now show that if $u:=a+b i+c j+d k$ is a zero divisor then so is $u u^{*}$, where $u^{*}=a-b i-c j-d k$ and that $u u^{*}=u^{*} u=a^{2}+b^{2}+c^{2}+d^{2}$.)
6 Let $H=\{a+b i+c j+d k: 2 a, 2 b, 2 c, 2 d \in \mathbb{Z}, 2 a \equiv 2 b \equiv 2 c \equiv 2 d(\bmod 2)\}$. Show that H is a subring of the division ring of quaternions over \mathbb{Q} and that if $u \in H$ then $N(u):=u u^{*}=u^{*} u$ is a positive integer and is nonzero whenever u is nonzero, and that $N(u v)=N(u) N(v)$.
7 Show that H has a left-division algorithm given as follows: If $a, b \in H$ with $b \neq 0$ then there exist $q, r \in H$ such that $a=q b+r$ with $N(r)<N(b)$. (Hint: this is a bit tricky, but it is much easier when b is a positive integer, so do this case first. Now let $n=b b^{*}>0$ and do the case you've just done to get $a b^{*}=q n+r$ with $N(r)<N(n)=n^{2}$. Now here's the fun part: $r=a b^{*}-q n=a b^{*}-q b b^{*}=(a-q b) b^{*}$. Let $r^{\prime}=a-q b$. Show that $\left.N\left(r^{\prime}\right)<N(b)!\right)$
8 Use the preceding result to show that every left ideal of H can be generated by a single element as a left ideal.
9 Show that if $a, b \in H$ are nonzero and are such that $N(a)=N(b)$ and $a=u b$ with $u \in H$, then u is a unit of H.
10 Show that every positive integer can be written as a sum of 4 squares (including 0 as a square). (Hint: using questions 5 and 6 that it is enough to prove that every prime number is a sum of four squares. Let $p \geq 3$ be prime (I assume you can write $p=2$ as a sum of four squares) and let R_{p} be the algebra produced in question 4 with $K=\mathbb{F}_{p}, n=2, \omega=-1, a=b=-1$. Show R_{p} is not commutative if $p>2$ and use Wedderburn's theorem to show that R_{p} cannot be a division ring. OK, so now let I denote the two-sided ideal of H given by $\{a+b i+c j+d k: 2 a, 2 b, 2 c, 2 d \in \mathbb{Z}, 2 a \equiv 2 b \equiv 2 c \equiv 2 d(\bmod 2), p|2 a, p| 2 b, p|2 c, p| 2 d\}$. Show that I is indeed an ideal and that H / I is isomorphic to R_{p}. What next? Since R_{p} is not a division ring it has a nonzero proper left ideal J. Then by correspondence, there is a proper left ideal J^{\prime} of H that properly contains I. Show that every element $u \in J^{\prime}$ must have the property that $N(u)$ is a multiple of p since otherwise we could generate the unit ideal. By the preceding question, J^{\prime} can be generated by a single element $a:=A+B i+C j+D k \in J^{\prime} \backslash I$ with $N(a)$ a multiple of p. Since $p \in J^{\prime}$ we have $p=b a$ for some $b \in H$. Then $N(p)=N(b) N(a)$. Now $N(p)=p^{2}$ and $N(b)$ and $N(a)$ are integers and $N(a)$ is a multiple of p, so $N(a) \in\left\{p, p^{2}\right\}$. Show using question 9 that if $N(a)=p^{2}$ then $p=b a$ with b a unit of H and this cannot occur since J^{\prime} properly contains I. Conclude that $N(a)=p$. What does this mean? It means $p=A^{2}+B^{2}+C^{2}+D^{2}$. There's just one problem: A, B, C, D are not necessarily integers-they are only half integers and $2 A, 2 B, 2 C, 2 D$ have the same parity. But we're close. But let $A^{\prime}=2 A, B^{\prime}=2 B, C^{\prime}=2 C, D^{\prime}=2 D$, so now we have integers and we have $4 p=\left(A^{\prime}\right)^{2}+\left(B^{\prime}\right)^{2}+\left(C^{\prime}\right)^{2}+\left(D^{\prime}\right)^{2}$ and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ have the same parity. OK, now let $X=\left(A^{\prime}-B^{\prime}\right) / 2, Y=\left(A^{\prime}+B^{\prime}\right) / 2, Z=\left(C^{\prime}-D^{\prime}\right) / 2, W=\left(C^{\prime}+D^{\prime}\right) / 2$. What happens?)

