Syllabus: Jacobson density theorem, Artin-Wedderburn structure theorem for Artinian rings, the Jacobson radical, Goldie’s theorem and noncommutative localization, PI theory, Gelfand-Kirillov dimension, Brauer groups, other topics.

Throughout this course our focus will be on noncommutative rings, which will mean “not necessarily commutative but definitely associative rings” that have a 1 and $0 \neq 1$. I’ll assume that you know the following concepts: ring, left ideal, left module, quotients of modules and submodules, $k$-algebra, correspondence theorem, first isomorphism theorem, maximal ideal, centre of a ring, idempotent elements, Zorn’s lemma, nilpotent elements, the Chinese remainder theorem for rings, short exact sequences, and I’ll assume you know about tensor products (see the appendix, if you don’t).

Let’s begin by answering the question of how one studies noncommutative rings. For us the main approach will be via seeing “shadows” of the ring and putting together enough of this information to say something meaningful about the ring we are studying. One metaphor I like to employ is that of a bat in a cave; the bat cannot see its surroundings but creates some image of its surroundings by using reflected sound. We can see this as how one can understand a given ring. Under this metaphor a representation of the ring can be seen as the result of emitting a shriek (or whatever it is that bats do) in a specific direction and listening to what is reflected back. A single representation does not tells us so much about the ring, but the sum total of all of them can tell us everything we need to know.

Of course, it’s possible that you don’t know what a representation is. For us, a representation of a ring $R$ will be a ring homomorphism (not necessarily injective) from a ring $R$ into a ring of linear operators over a division ring $D$. We recall that a division ring $D$ is a ring in which every nonzero element has a multiplicative inverse; that is, for every nonzero $x \in D$ there is some $y \in D$ such that $yx = xy = 1$. A division ring can be seen as a noncommutative analogue of a field. Just as we can talk about vector spaces over fields, we can do the same with division rings, although we need to differentiate between left and right.

Given a division ring $D$, a left vector space $V$ over $D$ is an abelian group endowed with a map $D \times V \to V$ (which we write as $\cdot$) with the property that for $\alpha, \beta \in D$ and $v, w \in V$ we have $\alpha \cdot (v + w) = \alpha \cdot v + \alpha \cdot w$; $\alpha \cdot (\beta \cdot v) = (\alpha \beta) \cdot v$; $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$; $1 \cdot v = v$. Notice this is the same thing as a left module over $D$.

Just as with fields, the notion of linear independence and spanning go through verbatim and the same Zorn’s lemma argument you’ve seen for ordinary vector spaces over a field shows that a left $D$-vector space $V$ has a basis and all bases have the same size. We can define right $D$-vector spaces analogously. We can even have vector spaces $V$ that are both left and right $D$-vector spaces. Somewhat unexpectedly, there even exist division rings $D$ that have a left-and-right vector space $V$ with the property that as a left vector space $V$ is finite-dimensional and as a right vector space $V$ is infinite dimensional.

**Exercise 1.** Give a division ring $D$ and a division subring $E$ such that $D$ is finite-dimensional as a left $E$-vector space, but infinite-dimensional as a right $E$-vector space.

Let’s be careful! All left bases have the same size and all right bases have the same size, but left bases and right bases do not necessarily have the same size when both notions make sense.

Now just as with linear algebra, if we have a division ring $D$ and a left $D$-vector space $V$, we can consider the ring of $D$-linear endomorphisms $\text{End}_D(V)$, which consists of all maps $\phi : V \to V$ with the property that for $v, w \in V$ and $\alpha \in D$ we have $\phi(\alpha \cdot v + w) = \alpha \cdot \phi(v) + \phi(w)$. Then we shall call a ring of endomorphisms of this form, a ring of linear operators over a division ring $D$. When $D$ is a field and $V$ is finite-dimensional, this is isomorphic to the ring of $n \times n$ matrices over $D$, where $n$ is the dimension of $D$. Then we define a representation of $R$ to be a ring homomorphism from $R$ to a ring of the form $\text{End}_D(V)$. Intuitively, we are mapping $R$ into a ring that looks a lot like a ring of matrices. More generally, if $R$ is a ring and $N$ is a left $R$-module then we can produce a ring of $R$-linear endomorphisms $\text{End}_R(N)$, where multiplication is given by composition, addition is addition of maps and the identity is the unit of this ring.

The general philosophy in ring theory is that if one understands enough or ever all representations of $R$ then one understands $R$. This philosophy is something you’ve probably encountered before in a few settings. The first is in PM445 (I don’t assume you’ve taken this). Here we have a finite group $G$. We can then make a ring $R = \mathbb{C}[G]$, which is, as a set, all elements of the form

$$
\sum_{g \in G} \alpha_g g
$$

with $\alpha_g \in \mathbb{C}$. Multiplication and addition are performed as one would reasonably expect. Representations of $R$ then reduce to group homomorphisms from $G$ into $\text{GL}_d(\mathbb{C})$; equivalently, homomorphisms of $R$ into $M_d(\mathbb{C})$. An important part of representation theory is that if one understands all irreducible representations of $G$ (don’t worry if you don’t know what an irreducible representation of $G$ is) then you have a pretty good picture of the group.

Another place you might have seen this is if you’ve taken PM446 and seen the Nullstellensatz. Here, to make things easy let’s work with a polynomial ring $R = \mathbb{C}[t_1, \ldots, t_d]$. Since $R$ is commutative, we don’t have to worry about representations in which $D$ is not commutative or $\dim(V) > 1$. In fact, all representations reduce to just studying maps from $R$ to $M_1(\mathbb{C}) = \mathbb{C}$. The Nullstellensatz says that the maximal ideals of $R$ correspond exactly to these maps.\footnote{We recall that in a ring $R$ a maximal left ideal is a left ideal $M$ that is proper but has the property that if $M \subseteq N \subseteq R$ for some other left ideal $N$ then either $N = M$ or $N = R$; such ideals exist by Zorn’s lemma.} In general there are various
local-global principles that say understanding what occurs at the maximal ideals of \( R \) can be lifted back to say things about \( R \).

If you know about these examples, great; if not, don’t worry. But if you do, these examples can really help shape how one produces representations of a ring \( R \). In the case of a polynomial ring, we saw that it suffices to really understand representations that came from reduction maps of the from \( R \rightarrow R/M \) where \( M \) is a maximal ideal of \( R \). In group representations, it is the same thing. In general, if \( R \) is a ring and \( M \) is a maximal left ideal of \( R \) then we can produce a left \( R \)-module \( N := R/M \). This module \( N \) has the advantage of being simple; that is, the only \( R \)-submodules of \( N \) are \((0)\) and \( N \). In fact, every simple left \( R \)-module is isomorphism to a module of the form \( R/M \) with \( M \) maximal.

As it turns, each simple left \( R \)-module \( N \) yields a representation of \( R \) and to really understand the representations of \( R \) it suffices to understand those arising in this manner. (In groups, these correspond to the irreducible representations; in commutative algebra, these correspond to the closed points of the corresponding affine scheme.)

So how do we produce a representation of \( R \) from a left \( R \)-module \( N \)?

First we need to produce a division ring. This is done via Schur’s lemma.

**Lemma 0.1.** Let \( R \) be a ring and let \( N \) be a simple left \( R \)-module. Then \( D := \text{End}_R(N) \) is a division ring.

**Proof.** We know that \( D \) is a ring. Let \( f : N \rightarrow N \) be a nonzero \( R \)-linear map. Then the kernel of \( f \) is a submodule of \( N \) and since \( N \) is simple it is either \((0)\) or \( N \); if it is \( N \) then \( f \) is zero, which we assumed not to be the case; thus the kernel is trivial and \( f \) is one-to-one. Similarly, the image must of \( f \) must be \( N \). Thus \( f \) is onto. Hence \( f \) is bijective and has a set-theoretic inverse \( g : R \rightarrow R \). It is straightforward to check that \( g \) is also \( R \)-linear and \( g \circ f = f \circ g = \text{id} \).

Now as it turns out, if \( R \) is a simple left \( R \)-module and \( D := \text{End}_R(N) \), then \( N \) inherits the structure of a left \( D \)-vector space. To see this, let \( f : N \rightarrow N \) be an element of \( D \). Then we define \( f \cdot n := f(n) \in N \). It is routine to check the various axioms of a left vector space hold, but a good rule of thumb is that everything is obvious except for the axioms involving multiplication, where it is easy to get the order wrong. So let’s just check that if \( f, g : N \rightarrow N \) then \( f \cdot (g \cdot n) = (fg) \cdot n \). Then left side is \( f \cdot (g(n)) = f(g(n)) \); the right side is \( (fg) \cdot n = f \circ g(n) \). OK, that works and was easy, but there really are times where you can screw things up, so be careful.

Now \( \text{End}_D(N) \) is a ring of linear operators and we have a map \( \phi : R \rightarrow \text{End}_D(N) \) given as follows. We define \( \phi(r) : N \rightarrow N \) via the rule \( \phi(r)(n) = r \cdot n \). Then \( \phi(r) \) is \( D \)-linear: if \( f : N \rightarrow N \) is an \( R \)-linear homomorphism, then \( \phi(r)(f(n_1 + n_2)) = \phi(r)(f(n_1) + f(n_2)) = f(\phi(r)(n_1) + \phi(r)(n_2)) = f(\phi(r)(n_1) + \phi(r)(n_2)) = \phi(f(r))(n_1 + n_2) = f \cdot (r \cdot n_1 + r \cdot n_2) \). Now \( f \) is \( R \)-linear, so this is just \( f(r \cdot n_1) + (r \cdot n_2) = f(\phi(r)(n_1)) + \phi(r)(n_2) \). We can also see this is a homomorphism. Again, the important thing to check is multiplicative. Notice that for \( r, s \in R \), \( \phi(rs)(n) = rs \cdot n \), while \( \phi(r) \cdot \phi(s) = \phi(r) \circ \phi(s) \), so \( \phi(r) \circ \phi(s)(n) = \phi(r)\phi(s)(n) = \phi(r)(s \cdot n) = r \cdot s \cdot n \).

So the general philosophy in representation theory is that if one can understand all representations, one can understand the ring; and to understand all representations, it generally suffices to understand those of the form \( R \rightarrow \text{End}_D(N) \) with \( N \) a simple left \( R \)-module. Thus we have the meta-theorem: it suffices to understand the simple left \( R \)-modules to understand \( R \). This is where things take a turn for the worse. With \( R = \mathbb{C}[G] \), \( G \) a finite group, or \( R = \mathbb{C}[t_1, \ldots, t_n] \), it’s fairly easy to get a description of the simple modules. This isn’t the case in general. This is where we now move to Dixmier’s philosophy. One can obtain a coarser understanding of the simple \( R \)-modules by instead understanding their annihilators and one can hope that from there one can still obtain insight into one’s ring \( R \). This is actually a very powerful philosophy, but we probably should say more.

Given a ring \( R \) and a left \( R \)-module \( N \), we define the annihilator of \( N \) to be the set of \( x \in R \) such that \( xn = 0 \) for all \( n \in N \). We’ll denote this set by \( \text{Ann}(N) \). It’s actually a two-sided ideal of \( R \). Notice that \( \text{Ann}(N) \) is in fact the kernel of the representation \( \phi : R \rightarrow \text{End}_D(N) \). Let’s check this. If \( x \in \text{Ann}(N) \), then \( \phi(x)(n) = x \cdot n = 0 \) for all \( n \in N \) and so \( x \) is in the kernel of \( \phi \); conversely, if \( x \) is in the kernel of \( \phi \), then \( \phi(x) \) is the zero map, so \( x \cdot n = 0 \) for all \( n \in N \) and \( x \) is in the annihilator. Annihilators of simple left \( R \)-modules have a special name: they are called (left) primitive ideals. In general, we’ll see that it’s possible for an ideal to be primitive in the left sense but not the right, but for most nice rings there is no distinction between the two notions, and we’ll simply use the term primitive ideal to talk about annihilators of simple left \( R \)-modules.

**Exercise 2.** (Bergman) Show that the \( R \) produced as follows is right primitive but not left primitive. We’ll have to give a few steps.

(i) Let \( K = \mathbb{Q}(x) \) and let \( \sigma : K \rightarrow K \) be the endomorphism \( \sigma(f(x)) = f(x^2) \). Let \( A \) denote the ring of polynomials \( c_0 + c_1y + \cdots + c_dy^d \), \( d \geq 0 \), \( c_0, \ldots, c_d \in K \) with sum as usual and multiplication given by \( (cy^i)(cy^j) = c\sigma^i(c)y^{i+j} \). Show that \( A \) is a ring and every left ideal of \( A \) is principal (that is, it is generated by a single element).

(ii) For each prime \( p \geq 2 \), let \( \omega_p \) be a primitive \( p \)-th root of unity and let \( \nu_p : K \rightarrow \mathbb{Z} \cup \{\text{infty}\} \) be the map (its called a valuation) defined by \( \nu_p(0) = \infty \) and if \( f(x) \) is nonzero then \( \nu_p(f(x)) = 0 \) if \( f(x) \) does not a zero or pole at \( \omega_p \); is a if \( f(x) \) has a zero of order \( a \) at \( \omega_p \) and \( a \) if \( f(x) \) has a pole of order \( a \) at \( \omega_p \). Show that \( \nu_p(\sigma(f(x))) = \nu_p(f(x)) \) for all \( f(x) \in K \) and that for a given nonzero \( f(x) \in K(x) \), \( \nu_p(f(x)) = 0 \) for all but finitely many primes \( p \geq 3 \).
We extend $\nu_p$ to $A$ by declaring that $\nu_p(c_0 + c_1y + \cdots + c_dy^d) = \min \nu_p(c_i)$. Show that the set $A_p$ of elements in $A$ such that $\nu_p(a) \geq 0$ is a subring of $A$ and that it contains $x$ and $y$.

Let $B = \bigcap_{p \geq 3, p \text{ prime}} A_p$. Show that $B$ is not left primitive as follows. Suppose it were! Then there would exist a maximal left ideal $I$ of $B$ such that $B/I$ has zero annihilator. Let $J = AI$ be the principal left ideal of $A$ and let $g(y) = c_0 + c_1y + \cdots + c_dy^d$ be a generator.

We'll first show that $g(y)$ must have degree 0 in $y$. To do this, suppose that $g$ has degree $> 0$. Show there is a prime $p \geq 3$ such that $\nu_p(c_j) = 0$ for $j = 0, \ldots, d$ and show that $(x - \omega_p) \not\in I$. Since $I$ is a maximal left ideal we then have $b(x - \omega_p) + a = 1$ for some $a \in I$ and some $b \in B$. But then show $1 - b(x - \omega_p)$ is of the form $a_0 + a_1y + \cdots + a_r y^r$ with $\nu_p(a_0) = 0$ and $\nu_p(a_i) > 0$ for all $i > 0$. Show that an element of this form cannot be in $Ag(y)$ and get a contradiction.

So conclude that $J = AI = A$ and so we can take $g(y) = 1$. Then we have $1 = a_1i_1 + \cdots + a_mi_m$ for some $a_1, \ldots, a_m \in A$ and $i_1, \ldots, i_m \in I$. Show that there is some finite product $u := (x - \omega_{p_1}) \cdots (x - \omega_{p_n})$ such that $b_i := u a_i \in B$ for all $i$. Then we have $u = b_{i_1} + \cdots + b_{i_m} \in I$. Conclude that $I \subseteq Bu$. Show that $uB = Bu$ and conclude that the two-sided ideal $B \subseteq I$. Show that this gives that $u$ annihilates $B/I$ and so $B$ is not left primitive.

OK. That was hard. Now let's show that $B$ is right primitive. To do this, we note that $\mathbb{Q}(x)$ is a right $A$-module via $m \in \mathbb{Q}(x)$, $m \cdot s = (ms)$ for $s \in \mathbb{Q}(x)$ and $m \cdot y = m'(x)$ where $m'(x^2) = (m(x) + m(-x))/2$. Show that this makes $\mathbb{Q}(x)$ a right $A$-module.

Now let $M$ denote the right $B$-submodule of $\mathbb{Q}(x)$ given by $M := xB$. Show that $M$ is a faithful simple right $B$-module.

Exercise 3. Show that a commutative primitive ring is a field and hence an ideal in a commutative ring $R$ is primitive if and only if it is maximal.

We now come to the Jacobson density theorem, which shows that primitive rings embed densely in a ring of linear operators.

Theorem 0.1. (Jacobson density theorem) Let $R$ be a primitive ring, let $M$ be a faithful simple left $R$-module, and let $\Delta = \text{End}_R(M)$. Then $R$ embeds in $\text{End}(M)$ via the rule $r \mapsto \Phi_r$, where $\Phi_r(m) = rm$. Moreover, if $m_1, \ldots, m_n$ are left $\Delta$-linearly independent elements of $M$ and $w_1, \ldots, w_n$ are in $M$ then there exists some $r \in R$ such that $r \cdot m_i = w_i$ for $i = 1, \ldots, n$.

Proof. The fact that the map $r \mapsto \Phi_r$ is a homomorphism is routine. The fact that it is injective comes from looking at the kernel: if $\Phi_r = 0$ then $rm = 0$ for all $m \in M$ and so $r = 0$ since $M$ is faithful.

So now we prove the density part by induction on $n$. When $n = 1$ we have $Rm_1 = M$ since $m_1$ is nonzero and $M$ is simple, so there is some $r \in R$ such that $rm_1 = w_1$. Now suppose that the claim holds for sets of size less than $n$. Then we may assume without loss of generality that $rm_1 = \cdots = rm_{n-1} = 0$ implies $rm_n = 0$. This means (using the induction hypothesis) that we have a well-defined $R$-module homomorphism

$$
\Psi : M^{n-1} \rightarrow M
$$

given by $\Psi((rm_1, \ldots, rm_{n-1})) = rm_n$. Now by the induction hypothesis, there for $j = 1, \ldots, n-1$ there is some $r_j$ such that $r_j m_i = \delta_{i,j}m_j$ for $i = 1, \ldots, n-1$. In particular, $\Psi((0, 0, \ldots, m_j, 0, \ldots, 0)) = \Psi((r_j m_1, \ldots, r_j m_{n-1})) = r_j m_n$. Now the map $f_j : M \rightarrow M$ given by $m \mapsto \Psi((0, 0, \ldots, m_j, 0, \ldots, 0))$, where $m$ is in the $j$-th slot is an element of $\Delta = \text{End}_R(M)$. So we see that $f_j(m_j) = r_j m_n$. Now consider $(r_1 + \cdots + r_{n-1} - 1)m_i = r_j m_i - m_i = 0$. So since $(r_1 + \cdots + r_{n-1} - 1)$ kills $m_1, \ldots, m_{n-1}$, by our assumption, it must also kill $m_n$. This

$$
\sum_{i=1}^{n-1} r_i m_n = m_n,
$$

In other words,

$$
\sum_{i=1}^{n-1} f_i(m_n) = m_n,
$$

or

$$
m_n - f_1 m_1 - \cdots - f_{n-1} m_{n-1} = 0,
$$

contradicting independence over $\Delta$. The result follows. \qed

This is a theorem that a lot of people don’t know, but it’s actually very powerful and ties in to Jacobson’s reduction philosophy for studying rings. We make the remark that if $M$ is finite-dimensional as a left $\Delta$-module then the map from $R$ to $\text{End}_R(M)$ in JDT is in fact an isomorphism. The reason for this is that a $\Delta$-linear endomorphism of $M$ is completely determined by the image of a left $\Delta$ basis for $N$. But such a basis is finite and by JDT we can find an element of $R$ that sends this basis wherever we’d like, and so the map from $R$ to $\text{End}_R(M)$ is onto.

To explain his philosophy, we let $R$ be a ring. We let $J$ denote the intersection of all primitive ideals of $R$. (This is called the Jacobson radical of $R$—more on this later.) Notice we have an injective homomorphism $R/J \rightarrow \prod_{P \in \text{Prim}(R)} R/P$ given

by \( r \mapsto (r + P)_{P \in \text{Prim}(R)} \), where \( \text{Prim}(R) \) denotes the set of all primitive ideals of \( R \) (often called the primitive spectrum of \( R \)).

Thus \( R/J \) is a subring of a direct product of primitive rings; by JDT, each primitive ring is a dense subring of a ring of linear operators, so we can understand \( R/J \) by studying its image in each of these rings of operators.

Notice that \( J \) is the intersection of all primitive ideals; consequently, \( J \) is the collection of elements that annihilate every simple left \( R \)-module.

Jacobson’s philosophy, while not a panacea for dealing with all ring theoretic problems, is a very powerful approach. The setting in which one works is that one has a ring with certain properties and one wishes to prove something about this ring. The first step is to show that one can reduce to the case of studying \( R/J \) (note: one cannot always implement this step). After that, one uses the fact that \( R/J \) is a subring of a direct product of primitive rings and one uses the Jacobson density theorem to try to reduce one’s problem to linear algebra.

We’ll illustrate this approach by proving Jacobson’s famous \( x^n = x \) theorem.

**Theorem 0.2.** (Jacobson’s commutativity theorem) Let \( R \) be a ring and suppose that for each \( x \in R \) there is some \( n = n(x) > 1 \) such that \( x^n = x \). Then \( R \) is commutative.

Let me be honest about this result: it’s beautiful but it’s not very useful. Why? Most times I don’t need a theorem to worry. The relevant fact is that it is a ring \( R \) in which \( 1+3 \) is necessarily commutative. This is quite a bit harder and will give us an appreciation for the power of Jacobson’s philosophy.

We’ll illustrate this approach by proving Jacobson’s famous \( x^n = x \) theorem.

Before we do this, let’s introduce some terminology. A ring \( R \) is reduced if \( x^2 = 0 \) implies \( x = 0 \). A useful remark is that in a reduced ring \( R \) every idempotent element \( e \) (i.e., \( e^2 = e \)) is in the centre of \( R \). To see this, let \( R \) be reduced and let \( e \in R \) be idempotent and let \( r \in R \). Then \( er(1-e) \) has square zero. Since \( R \) is reduced, this tells us that \( 0 = er(1-e) = er - ere \). Similarly, \( (1-e)re = 0 \) and so \( 0 = re - ere \). Thus \( er = ere = re \) and so \( re = er \) for all \( r \in R \).

**Exercise:** Show more generally that if \( R \) is a ring and \( e \) is idempotent then \( e \) is central if and only if it commutes with all nilpotent elements of \( R \).

Now let’s get back to studying rings \( R \) in which \( x^3 = x \) for all \( x \in R \). Notice that such a ring is reduced, since if \( x^2 = 0 \) then \( x^3 = 0 \). Also

\[(x^2)^2 = x^4 = x^3 \cdot x = x^2\]

and so \( x^2 \) is idempotent in \( R \) for all \( x \in R \). Thus by the above remark, we see that all squares in \( R \) are central. Next we have \( 1 + x = (1 + x) \cdot 3x = 1 + 3x + 3x^2 + x^3 = 1 + 3x + 3x^2 + x \) and so \( 3x = -3x^2 \) and so \( 3x \) is central for every \( x \in R \). Also since \( (x + 1)^2 \) and \( x^2 \) are central, \( 2x + 1 = (x + 1)^2 - x^2 \) is central, and so \( 2x \) is central for every \( x \in R \). Thus \( x = 3x - 2x \) is central for every \( x \in R \).

That wasn’t too bad, but try doing rings with \( x^5 = x \). I hope you can appreciate that it would not be easy to prove Jacobson’s result without some machinery. To employ Jacobson’s philosophy we need to know a bit about the Jacobson radical. We’ll see more about it later, but for now we’ll content ourselves with knowing the following.

**Proposition 0.2.** Let \( R \) be a ring and let \( J \) denote its Jacobson radical. Then \( x \in J \) if and only if \( 1 + ax \) is left invertible for every \( a \in R \).

**Proof.** Suppose that \( x \in J \) and \( 1 + ax \) is not left invertible. Then \( I := R(1 + ax) \) is a proper left ideal of \( R \). Then by Zorn’s lemma there is a maximal left ideal \( M \) of \( R \) that contains \( I \) (work this out if you haven’t seen this fact before). Now \( x \in J \) and so it annihilates the simple left \( R \)-module \( R/M \). Equivalently, we have \( xR \subseteq M \) and since \( M \) is a left ideal, we see \( R \subseteq M \). Thus \( ax \in M \). But by construction \( 1 + ax \in M \) and \( 1 \in M \), a contradiction, since \( M \) is proper.

Next suppose that \( 1 + ax \) is left invertible for every \( a \in R \). We claim that \( x \) is in the Jacobson radical. To see this, suppose that this is not the case. Then there is a simple left \( R \)-module \( N \) such that \( xN \neq 0 \). Pick \( n \in N \), nonzero, such that \( xn \neq 0 \). Since \( N \) is simple, there is some \( a \in R \) such that \( axn = -n \). Then \( (1 + ax)n = n - n = 0 \). But by assumption there is some \( r \in R \) such that \( r(1 + ax) = 1 \) and so \( n = r(1 + ax)n = r \cdot 0 = 0 \), a contradiction. \( \square \)

This brings us to the first reduction in Jacobson’s theorem.

**Lemma 0.3.** If \( R \) is a ring in which for each \( x \in R \) there is some \( n = n(x) > 1 \) such that \( x^n = x \), then the Jacobson radical of \( R \) is \( 0 \).
Proof. Let $J$ denote the Jacobson radical of $R$ and let $x \in J$. Then $x^n = x$ for some $n > 1$ and so $(1 - x^{n-1})x = 0$. Now $1 - x^{n-1} = 1 + ax$ with $a = -x^{n-2}$, and so $1 - x^{n-1}$ is left invertible. Thus multiplying the equation $(1 - x^{n-1})x = 0$ by the left inverse of $1 - x^{n-1}$ gives $x = 0$. \hfill $\square$

Now since $J = \{0\}$ we get that $R$ is a subring of a product of rings of the form $R/P$ where $P$ ranges over the primitive ideals of $R$. Notice that if $R$ has the property that for each $x \in R$ there is some $n = n(x) > 1$ such that $x^n = x$, then so does each $R/P$. Thus to show $R$ is commutative it suffices to prove it for primitive rings with this property. So now we have reduced to the primitive case. Next we’ll use the density theorem to reduce to the case of a division ring.

Suppose that $R$ is a primitive ring such that for each $x \in R$ there is some $n = n(x) > 1$ such that $x^n = x$. Let $N$ be a faithful simple left $R$-module and let $D = \text{End}_R(N)$. Then we claim that $N$ must be 1-dimensional as a left $D$-vector space. To see this, suppose that it is not. Then there exist $n_1, n_2$ in $N$ that are linearly independent over $D$. By JDT, there exists some $x \in R$ such that $xn_1 = n_2$ and $xn_2 = 0$. Then we see that for all $n > 1$ we have $x^n n_1 = 0$. But by assumption $x^n = x$ for some $n > 1$ and so we must have $n_2 = xn_1 = 0$, a contradiction. This means that $N \cong D$ as a left $R$-module and so $R$ is a dense subring of $\text{End}_D(D)$. Since $N$ is finite-dimensional as a left $D$-vector space, we see that $R = \text{End}_D(D)$ by the above remark. But now you can check that $\text{End}_D(D) \cong D^{op}$, the opposite ring of $D$; that is, it is $D$ as a set but with multiplication $ab = b \cdot a$. (The map from $\text{End}_D(D) \to D^{op}$ is just $f : D \to D$ is sent to $f(1)$. Notice that $f \circ g$ is sent to $f \circ g(1) = f(g(1)) = f(g(1) \cdot 1) = g(1)f(1)$, where the last step uses $D$-linearity.) Since $R$ is dense in $\text{End}_D(D)$, we see that $R = D^{op}$. So $R$ is a division ring.

So where are we now? Of course we see that to prove Jacobson’s commutativity theorem, it suffices to prove it for division rings. Most of this will do using the following two exercises (Assignment 1).

Exercise 4. Let $D$ be a division ring of characteristic $p > 0$ and suppose that $a \in D$ is such that $a^{p^n} = a$ for some $n \geq 1$. If $a$ is not central, then there exists some $x \in D$ and some $i > 1$ such that $a^i \neq a$ and $x a x^{-1} = a^i$.

Exercise 5. Prove that a finite division ring is a field using the following steps. Let $D$ be a finite division ring.

1. Show that the centre $Z$ of $D$ is a field and has size $q$ for some prime power $q$. Show that $D$ has size $q^n$ for some $n \geq 1$.
2. Let $G = D^\times$ be the multiplicative group of $D$. Then $|G| = q^n - 1$. Use the class equation to show that
   \[ q^n - 1 = |Z| + \sum_g |C_g| = q - 1 + \sum_g (q^n - 1)/|C(g)|, \]
   where the sums run over a complete set of non-central conjugacy class representatives and $C_g$ denotes the conjugacy class of $g$ and $|C(g)|$ denotes the centralizer of $g$ in $G$.
3. Show that if $g \in D^\times$ then the centralizer of $g$ in $D$ is a division ring $E$ that properly contains $Z$. Conclude that $|C(g)| = q^m - 1$ for some $m$.
4. Show that $q^m - 1$ divides $q^n - 1$ if and only if $m$ divides $n$. Conclude that $|C(g)| = q^d - 1$ for some $d$ dividing $n$ and $d > 1$.
5. Rewrite the class equation as
   \[ q^n - 1 = (q - 1) + \sum_{j=1}^r (q^n - 1)/(q^{d_j} - 1), \]
   where $r$ is the number of non-central conjugacy class representatives $d_1, \ldots, d_r > 1$ are divisors of $n$.
6. Remember! Our goal is to show that $D$ is a field, so we want to show $D = Z$ and so $n = 1$. Let $P(x) = \prod(x - \zeta)$, where $\zeta$ runs over all primitive $n$-th roots of unity. You can use the following fact: $P(x)$ is a monic polynomial with integer coefficients. (We’ll show this later on when we talk about characters, but if you know a bit of Galois theory, you can convince yourself that the coefficients of $P(x)$ are fixed by the Galois group of $\mathbb{Q}(\exp(2\pi i/n))$ over $\mathbb{Q}$ and so the coefficients are rational; also $\zeta$ is an algebraic integer since it satisfies $\zeta^n - 1 = 0$—since the algebraic integers form a ring we see the coefficients are rational algebraic integers and hence integers. If you don’t understand this, don’t worry about it.) Show that $(x^n - 1) = P(x)Q(x)$ where $Q(x)$ is a monic integer polynomial and $x^{d_j} - 1$ divides $Q(x)$ in $\mathbb{Z}[x]$ for every divisor $d$ of $n$ with $d < n$.
7. Now show from step 5 that $P(q)$ divides $q - 1$.
8. Now we’re ready to finish. Show that if $n > 1$ then $|P(q)| > q - 1$ and conclude that $n = 1$ and $D = Z$.

OK. Let’s finish off Jacobson’s commutativity theorem.

**Proposition 0.4.** Suppose that $D$ is a division ring such that for each $x \in D$ there is some $n = n(x) > 1$ such that $x^n = x$. Then $D$ is commutative.

**Proof.** Notice that $2^n = 2$ for some $n > 1$ and so $D$ has positive characteristic. In particular, there is some prime number $p$ such that $D$ has characteristic $p$. Then let $P$ be the copy of $\mathbb{F}_p$ in $D$ coming from the set $\{0, 1, \ldots, p - 1\}$. If $D$ is not commutative then there exists some $a \in D$ that is not central. Let $F = P[a]$. Notice that $F$ is commutative since $P$ is a central subfield of $F$. By hypothesis, for each $x \in F$ we have $x^n = x$ for some $n > 1$ and so each nonzero $x$ in $F$ is invertible
and thus $F$ is a field. Moreover, since $a^n = a$ for some $a > 1$, we see that $F$ is a finite field. Thus there is some $m$ such that $a^{nm} = a$. By the above exercise, there is some $x \in D$ such that $xax^{-1} = a^d \neq a$. Now we have that $x^d = x$ for some $d > 1$. Let

$$E = \{ \sum_{s=0}^{p-1} \sum_{j=0}^{d-1} p_{s,j} a^s x^j : p_{s,j} \in P \}.$$  

Since $P$ is finite, we see that $E$ is finite. Notice that $E$ is a ring, since for $p, p' \in P$ we have

$$pa^s x^d p'a^s x^\ell = pp'a^s (x^d ax^{-j})^t x^{\ell+j} = pp'a^s a^{i+j} x^{\ell+j} \in E.$$  

Then $E$ is a subring of $D$ and so it inherits the Jacobson property; in particular, every nonzero element of $E$ has an inverse and so $E$ is a finite division ring and hence commutative, a contradiction, since $x$ and $a$ do not commute. The result follows. \(\square\)

**The Artin-Wedderburn theorem**

We recall that a ring $R$ is left artinian if every descending chain of left ideals of $R$

$$I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$$

terminates; i.e., there exists some $n$ such that $I_n = I_{n+1} = \cdots$. A ring is left noetherian if every ascending chain of left ideals terminates. Right artinian and noetherian are defined analogously and a ring that is both left and right artinian is called artinian; a ring that is both left and right noetherian is called noetherian.

**Exercise 6.** Show that being left artinian is equivalent to every non-empty set of left ideals having a minimal element (not necessarily unique) with respect to inclusion. Conversely show that being left noetherian is equivalent to every non-empty set of left ideals having a maximal element and is equivalent to all left ideals being finitely generated.

Similarly, if $R$ is a ring we can define left artinian $R$-modules as those satisfying the descending chain condition on left submodules and we can define left noetherian $R$-modules.

We won’t spend a lot of time on the Artin-Wedderburn theorem, but artinian rings play an important role in the study of rings, which we’ll see when we study noncommutative localization and Goldie’s theorem. The intuition one should have is that we’ll see that if $R$ is a commutative artinian ring whose Jacobson radical is zero then $R$ is a finite product of fields. In general, a reduced commutative ring (i.e., $x^2 = 0 \implies x = 0$) has something like a field of fractions; one can invert the nonzero divisors in the ring and one obtains a finite product of fields.

We’ll see that one has a noncommutative analogue of a field of fractions and what one ultimately obtains is an artinian ring with Jacobson radical zero. We pause to highlight the main results that we’ll show about artinian rings.

(i) The Jacobson radical of an artinian ring is nilpotent.

(ii) An artinian ring with trivial Jacobson radical is a finite direct product of matrix rings over division rings.

(iii) (Hopkins’ theorem) A left artinian ring is left noetherian.

**The Jacobson radical**

Let’s say a bit about the Jacobson radical. The most important result about Jacobson radicals is Nakayama’s lemma.

**Theorem 0.3.** (Nakayama’s lemma) Let $R$ be a ring and let $J$ denote its Jacobson radical. If $M$ is a finitely generated left $R$-module and $JM = M$ then $M = (0)$.

**Remark 0.5.** This is not true if $M$ is not finitely generated. For example, let $R = \{a/b : a, b \in \mathbb{Z}, b \text{ odd}\}$. Then $R$ is a ring and one can check using our left invertibility criterion that the Jacobson radical of $R$ is precisely $2R$. Notice that $\mathbb{Q}$ is a left $R$-module and $J\mathbb{Q} = \mathbb{Q}$ but $\mathbb{Q}$ is nonzero.

**Proof.** Suppose that $M$ is nonzero. Let $d \geq 1$ be the size of a minimal generating set and let $m_1, \ldots, m_d$ be a set of generators. Then since $JM = M$ we see that $m_d = j_1 m_1 + \cdots + j_{d-1} m_{d-1}$ for some $j_1, \ldots, j_d \in J$. In particular, $(1 - j_d)m_d = j_1 m_1 + \cdots + j_{d-1} m_{d-1}$. But $1 - j_d$ is left invertible and so $m_d \in Rm_1 + \cdots + Rm_{d-1}$, contradicting the minimality of our generating set. \(\square\)

We recall that a left ideal $I$ in a ring $R$ is nil if for each $x \in I$ there is some $n = n(x) \geq 1$ such that $x^n = 0$. A left ideal $I$ is nilpotent if there is some $n$ such that $I^n = (0)$. A nilpotent ideal is obviously nil. An important fact is that every nil left ideal is contained in the Jacobson radical. To see this, if $I$ is a nil left ideal and $x \in I$ then $ax$ is nilpotent for each $a \in R$ and so $1 + ax$ is left invertible (use the geometric series). This means that $x$ is in the Jacobson radical. The remark above, however, shows that the Jacobson radical need not be nil. For left artinian rings, however, we have a very strong description of the Jacobson radical.

**Proposition 0.6.** Let $R$ be a left artinian ring. Then the Jacobson radical, $J$, of $R$ is nilpotent. That is, there is some $n > 1$ such that $J^n = (0)$.
Proof. Consider the chain
\[ J \supseteq J^2 \supseteq J^3 \supseteq \cdots. \]
Then since \( R \) is artinian, there is some \( n > 1 \) such that \( J^n = J^{n+1} = \cdots \). In particular, \( J^n = J^{2n} \). Suppose that \( J^n \) is nonzero. Now let \( S \) denote the collection of left ideals \( L \) contained in \( J^n \) for which \( J^n L \) is nonzero. Notice that \( S \) is nonempty since \( J^n \) is in \( S \). We can pick a minimal element \( L \) of \( S \). Then there is some \( x \in L \) such that \( J^n x \neq 0 \) and so \( Rx \subseteq L \) is in \( S \). By minimality of \( L \), we see that \( Rx = L \). Also, \( J^n(J^n L) = J^{2n} L = J^n L \neq (0) \) and so \( J^n L = L \) and so we see that \( J = J^{n+1} L = J^n L = L \) and \( L \) is finitely generated. By Nakayama’s lemma, \( L = (0) \), a contradiction.

A ring with trivial Jacobson radical is called semiprimitive. In general, if the intersection of all ideals with a property \( P \) is equal to zero, then we call a ring semi-P. So semiprimitive really means that the intersection of the primitive ideals (that is, the Jacobson radical) is zero; semiprime means that the intersection of the prime ideals is zero, etc.

Artin and Wedderburn completely give the structure theory of semiprimitive left artinian rings.

**Theorem 0.4. (Artin-Wedderburn)** Let \( R \) be a semiprimitive left artinian ring. Then \( R \) is isomorphic to a direct product of matrix rings
\[ \prod_{i=1}^{s} M_{n_i}(D_i), \]
where the \( D_i \) are division rings.

In the case that \( R \) is commutative, notice that the matrix rings must be \( 1 \times 1 \) matrix rings and the division rings are fields, so in this case the conclusion is stronger: \( R \) is a direct product of fields when \( R \) is a commutative artinian ring with no nonzero nil ideals, which is what we asserted above. We make the remark that any ring of the form
\[ \prod_{i=1}^{s} M_{n_i}(D_i) \]
is semiprimitive and left artinian. To do this, we remark that \( M_n(D) \) is a simple ring (see below for a proof) and thus is primitive\(^2\). It is left artinian since it is \( n^2 \)-dimensional as a left \( D \)-vector space; since left ideals are \( D \)-vector subspaces, looking at dimensions we see that a descending chain must terminate. Now we leave it to the reader to show that a finite product of primitive left artinian rings is semiprimitive and left artinian.

**Proposition 0.7.** If \( R \) is a left artinian primitive ring then \( R \) is isomorphic to \( M_n(D) \) for some division ring \( D \) and some \( n \geq 1 \).

**Proof.** Let \( M \) be a faithful simple \( R \)-module and let \( \Delta = \text{End}_R(M) \). We claim that \( M \) is finite-dimensional as a left \( \Delta \)-vector space. To see this, suppose that we have an infinite linearly independent set \( m_1, m_2, \ldots \). Then by the Jacobson density theorem, for each \( i > 0 \) there is some \( r_i \in R \) such that \( r_i m_1 = \cdots = r_i m_i = 0 \) and \( r_i m_{i+1} \neq 0 \). Now let \( I_i = \{ r \in R : r m_1 = \cdots = r m_i = 0 \} \). Then each \( I_i \) is a left ideal and notice that \( I_i \supseteq I_{i+1} \) by definition. Finally, \( r_i \in I_i \) but is not in \( I_{i+1} \) so we get an infinite descending chain of ideals
\[ I_1 \supseteq I_2 \supseteq \cdots, \]
contradicting the left artinian hypothesis. Thus \( M \) is finite dimensional—let’s say the dimension is \( n \). Now if \( \Delta \) were a field, we’d feel pretty good: \( M \) would be a finite-dimensional vector space and we’d know that the endomorphism ring is matrices over \( \Delta \). In the division ring setting there is one subtlety. We have to introduce the opposite ring. Given a ring \( R \) the opposite ring \( R^{\text{op}} \) is just \( R \) as set with multiplication \( r \ast s = s \cdot r \); that is, we reverse the order of multiplication. If \( R \) is commutative then its opposite ring is itself. If \( R \) is a division ring then so is \( R^{\text{op}} \). Now let \( m_1, \ldots, m_n \) be a basis for \( M \) as a left \( \Delta \)-vector space. We claim that
\[ S := \text{End}_\Delta(M) \cong M_n(\Delta)^{\text{op}} \cong M_n(\Delta^{\text{op}}). \]
To define the isomorphism, let \( f \in S \). Then \( f(m_i) = \sum_j a_{i,j} m_j \) for some \( a_{i,j} \in \Delta \). We define a map \( \Phi : S \to M_n(\Delta)^{\text{op}} \) by \( \Phi(f) = (a_{i,j}) \). This is definitely well-defined and it’s fine to see that \( \Phi(f + g) = \Phi(f) + \Phi(g) \). Suppose that \( \Phi(g) = (b_{i,j}) \). Notice that
\[ f \circ g(e_i) = f(\sum_k b_{i,k} e_k) = \sum_k b_{i,k} \sum_j a_{k,j} m_j. \]
Thus the \((i,j)\) entry of \( \Phi(f \circ g) \) is \( \sum_k b_{i,k} a_{k,j} \), and so \( \Phi(f \circ g) \) is just the product of \( (b_{i,j}) \) and \( (a_{i,j}) \) in \( M_n(\Delta) \). This is a homomorphism. To see that it is 1-to-1, we remark that if \( f \) is in the kernel then it must send each \( m_i \) to 0 and so it is the zero map. It remains to see why this map \( \Phi \) is onto. But this just comes from the fact that \( M \) is a free \( \Delta \)-module so we can send \( m_1, \ldots, m_n \) wherever we’d like! Finally, we remark that \( M_n(\Delta)^{\text{op}} \cong M_n(\Delta^{\text{op}}) \), which is a matrix ring over a division ring.

**Remark 0.8.** Observe that \( M_n(D) \) is a simple ring.

---

\(^2\)Why is this, you ask? Well, take a maximal left ideal of a simple ring; the quotient is a simple module. It’s faithful because the annihilator is a proper two-sided ideal and hence must be zero. This means that our ring is simple
Suppose we have some nonzero ideal $I$. Then there is some nonzero $A = (a_{i,j}) \in I$. Pick $k, \ell$ such that $a_{k,\ell} \neq 0$. Then $E_{k,\ell}AE_{i,j} = a_{k,\ell}E_{i,j}$. Since $a_{k,\ell}$ is in $D$ and nonzero, $E_{i,j} \in I$. But now $1 = \sum E_{i,j} \in I$.

**Corollary 0.9.** If $R$ is a primitive left artinian ring then $R$ is simple and so every primitive ideal in a left artinian ring is a maximal ideal.

Now to finish the proof of Artin-Wedderburn, we introduce the notion of a prime ring. A two-sided ideal $P$ of a ring $R$ is called prime if whenever $a, b \in R$ are such that $aRb \subseteq P$ we must have either $a$ or $b$ is in $P$. A ring is a prime ring if $(0)$ is a prime ideal. We note that primitive ideals are a subset of the prime ideals of a ring. Usually the collection of prime ideals of a ring $R$ is denoted $\text{Spec}(R)$ and the primitive ideals are denoted $\text{Prim}(R)$. We saw from the exercise above that when $R$ is a commutative ring primitive ideals are precisely the maximal ideals.

**Proposition 0.10.** A primitive ring is prime; consequently every primitive ideal of a ring is a prime ideal.

**Proof.** Let $R$ be a primitive ring and let $M$ be a faithful simple left $R$-module. Suppose that $aRb = (0)$. Then if $b \neq 0$ there is some $m \in M$ such that $bm \neq 0$ since $M$ is faithful. Thus $Rbm = M$ since $M$ is simple. But $(0) = aRbm = aM$ and so $a$ annihilates $M$ and thus must be zero. Hence $R$ is prime.

**Remark 0.11.** If $R$ is a ring and $P_1, \ldots, P_n$ are distinct maximal ideals then $P_1 \nsubseteq P_2P_3 \cdots P_n$.

**Proof.** We prove this by induction on $n$. When $n = 2$ it is clear. Suppose that it is true up to $n-1$. Then $P_1 \nsubseteq I := P_2 \cdots P_{n-1}$. In particular, there is some $a \in I \setminus P_1$. Also there is some $b \in P_n \setminus I$. So if $P_1 \subseteq IP_n$ then we have $aRb \subseteq P_1$ with $a, b \not\in P_1$, a contradiction since $P_1$ is prime.

**Proposition 0.12.** Let $R$ be a left Artinian ring. Then $R$ has only finitely many primitive ideals.

**Proof.** If $P_1, P_2, \ldots$ is an infinite set of distinct primitive ideals, then since we know primitive ideals are maximal in a left Artinian ring, we have $P_{n+1} \nsubseteq P_1 \cdots P_n$. But

$$P_1 \supseteq P_1P_2 \supseteq \cdots$$

is a descending chain, so we must have $P_1P_2 \cdots P_n = P_1P_2 \cdots P_nP_{n+1} \subseteq P_{n+1}$, contradiction.

**Corollary 0.13.** Let $R$ be a semiprimitive left artinian ring. Then $R$ is a product of matrix rings over division rings.

**Proof.** Let $P_1, \ldots, P_n$ be the distinct primitive ideals of $R$. We note that the $P_i$ are all maximal and hence $P_i + P_j = R$ for $i \neq j$. Then since $R$ is semiprimitive the intersection of the $P_i$ is trivial. We now use the Chinese Remainder theorem: If $P_1, \ldots, P_n$ are distinct maximal ideals whose intersection is $(0)$ then $R \cong \prod R/P_i$ via $r \mapsto (r + P_1, \ldots, r + P_n)$. This is 1-to-1 since the intersection of the $P_i$ is zero. To see that it is onto, by the remark we have that $P_1 + \prod_{j \neq i} P_j = R$ since $P_i$ is maximal. So there exists $b_i \in \cap_{j \neq i} P_j$ such that $b_i \in 1 + P_i$. Then $\Phi(b_i) = e_i$, where $e_i$ is the $i$-th coordinate function. So $\Phi(\sum r_i b_i) = (r_1 + P_1, \ldots, r_n + P_n)$ and so $\Phi$ is onto.

In general a left artinian ring need not be right artinian (and vice versa).

**Exercise 7.** Let $K$ be a field extension of $F$ and suppose that $K$ is infinite-dimension over $K$. Show that the ring

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a \in F, b, c \in K \right\}$$

is right artinian but not left artinian. Let $C$ be the subring of rational numbers consisting of those numbers that can be written with an odd denominator. Show that the ring

$$S = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a \in C, b, c \in \mathbb{Q} \right\}$$

is right noetherian but not left noetherian. (This works more generally when $C$ is a commutative noetherian ring and we replace $\mathbb{Q}$ by the field of fractions of $C$.)

**Exercise 8.** Show that the intersection of the powers of the Jacobson radical of $S$ is nonzero, where $S$ is as in the preceding exercise. (non-Hint: it’s probably a good idea to figure out what the Jacobson radical is first.)

Finally, we note that a left artinian ring is left noetherian. The converse isn’t true (e.g., $\mathbb{Z}$). We note that this is trivial for semiprimitive left artinian rings. To see this, observe that such a ring is of the form $\prod_{i=1}^d M_n(D_i)$. It is straightforward to show that a finite product of left noetherian rings is left noetherian, so it suffices to show $M_n(D)$ is noetherian. But $M_n(D)$ is $n^2$-dimensional as a left $D$-vector space (regarding $D$ as the subring of scalar matrices) and each left ideal is a $D$-subspace of $M_n(D)$ and so any ascending chain must terminate.

**Exercise 9.** Show more generally that if $R$ is a semiprimitive left artinian ring then an artinian left $R$-module is left noetherian.

We’ll prove a more general result now.

**Theorem 0.5.** Let $R$ be a left artinian ring and let $M$ be an artinian left $R$-module. Then $M$ is left noetherian.
Proof. Let \( J \) be the Jacobson radical of \( R \). Then \( J^n = (0) \) for some \( n \). Then we have a chain

\[
M \supseteq JM \supseteq J^2M \supseteq \cdots \supseteq J^{n-1}M \supseteq (0).
\]

Notice that each \( J^iM/J^{i+1}M \) is an \( R/J \)-module and by correspondence we see it is left artinian. Hence by the exercise it is left noetherian. Now we claim that \( M \) is left noetherian. To do this, suppose that \( M \) is not left noetherian. Then there is a biggest \( j \geq 0 \) with \( j < n \) such that \( J^jM \) is not left noetherian. Then we have a short exact sequence

\[
0 \to J^{j+1}M \to J^jM \to J^jM/J^{j+1}M.
\]

We now leave it to the reader to verify the following straightforward claim: in a short exact sequence, if the modules on the ends are left noetherian then so is the modules in the middle. Then \( J^{j+1}M \) is left noetherian by maximality of \( j \); \( J^jM/J^{j+1}M \) is annihilated by \( J \) and hence can naturally be viewed as an \( R/J \)-module, where we saw it was left noetherian. The result follows.

\[\square\]

**Noncommutative localization and Goldie’s theorem**

**Ore’s theorem**

One of the important facts in commutative algebra is that an integral domain has a field of fractions. One obtains this field by inverting the nonzero elements of the integral domain, a process that falls under the umbrella of what is called localization. In the noncommutative setting, inverting elements is not so straightforward. For example, imagine we have a noncommutative ring \( R \) with no nontrivial zero divisors. Then we’d like to form a division ring of fractions as a generalization of the field of fractions construction in commutative ring theory. The problem one first encounters is that writing \( rs \) for \( r, s \in R \) with \( s \) nonzero is now ambiguous since if \( r \) and \( s \) do not commute then \( sr \neq rs \) and so if we try to multiply both sides on the left and right by \( s^{-1} \), we see that we should expect \( rs^{-1} \neq s^{-1}r \). This first problem is easy enough to resolve: we can just declare that we are only going to work with left fractions; i.e., elements of the form \( s^{-1}r \). But now one encounters a much more serious problem: multiplication. If we take \( s_1^{-1}r_1 \) and multiply it on the right by \( s_2^{-1}r_2 \), we’d like to be able to write this as some \( s_3^{-1}r_3 \). But all we actually get is \( s_1^{-1}r_1s_2^{-1}r_2 \). Ore (although he is not the first person to notice this) discovered a fix! Suppose in our ring \( R \) we could somehow ensure that any element of the form \( rs^{-1} \) could be written as \( (s')^{-1}r' \) for some nonzero \( s' \) and some \( r' \in R \)? Then we could take the expression \( s_1^{-1}r_1s_2^{-1}r_2 \) and write it as \( s_1^{-1}(r_1s_2^{-1})r_2 \). We could then rewrite \( r_1s_2^{-1} \) as \( (s')^{-1}r' \) for some nonzero \( s' \) and some \( r' \in R \) and then we would have

\[
s_1^{-1}r_1s_2^{-1}r_2 = s_1^{-1}(r_1s_2^{-1})r_2 = s_1^{-1}(s')^{-1}r'r_2 = (s's_1)^{-1}(r'r_2),
\]

and so we would have a way, at least in principle, of multiplying fractions. This is obviously very imprecise and needs to be made rigorous, but this is the main idea behind how one performs localization in the noncommutative setting. We now make these notions precise.

**Definition 0.15.** Let \( R \) be a ring and let \( S \) be a subset of \( R \) that is closed under multiplication and has no left or right zero divisors (we call such a set with no left or right zero divisors regular and an element that is not a left or right zero divisor is called a regular element). We say that \( S \) is a left Ore set in \( R \) if whenever \( r \in R \) and \( s \in S \) there exist \( r' \in R \) and \( s' \in S \) such that \( s'r = r's \). Equivalently \( Sr \cap Rs \) is non-empty.

Intuitively, this is saying that we can rewrite \( rs^{-1} = (s')^{-1}r' \) as described above.

**Theorem 0.6.** (Ore’s theorem) Let \( R \) be a ring and let \( S \) be a regular multiplicatively closed left Ore subset of \( R \). Then there exists a ring, which we denote \( S^{-1}R \) with the following properties:

(i) there is an injective ring homomorphism from \( R \rightarrow S^{-1}R \), so that we can regard \( R \) as a subring of \( S^{-1}R \);
(ii) every element of \( S \) is left and right invertible in \( S^{-1}R \);
(iii) every element of \( S^{-1}R \) can be written in the form \( s^{-1}r \) for some \( s \in S \) and some \( r \in R \).

We note that the converse holds: that is, if there exists an overring of \( R \) with the above properties then by the third condition we can write \( rs^{-1} \) in the form \( (s')^{-1}r' \) and so \( sr' = s'r \).

**Proof.** We let \( T = \{(s, r) : s \in S, r \in R\} \). (We think of a pair \( (s, r) \) as corresponding to the element \( s^{-1}r \).) Then just as when we form the field of fractions, we have to put an equivalence on elements of \( T \). By hypothesis, there is some \( r_1 \in R \) and \( s_1 \in S \) such that \( s_1s = r_1s' \). We then declare that \( (s, r) \sim (s', r') \) if \( s_1r = r_1r' \) for some \( s_1 \in S \) and \( r_1 \in R \) such that \( s_1s = r_1s' \). Notice that \( s_1s \) plays the role of a “common denominator” for \((s, r)\) and \((s', r')\) in the sense that \( s_1ss^{-1} \in R \) and \( s_1(s's)^{-1} = r_1 \in R \).

**Exercise 10.** Show that this is an equivalence relation on \( T \) and that if \( s_1r = r_1r' \) for some \( s_1 \in S \) and \( r_1 \in R \) such that \( s_1s = r_1s' \) then it holds for every tuple \((s_i, r_1) \in S \times R \) such that \( s_1s = r_1s' \).
We let \( s^{-1}r \) denote the equivalence class of \((s,r)\) in \(T\). (We’ll also denote it as \([s,r]\) if we want to be careful.) We now show that \(T\) is a ring with identity \(([1,1])\) and zero \(([1,0])\). Notice that if we think of \(s,s\) as being a common left denominator then addition in \(T\) is performed as follows \(s^{-1}r + (s')^{-1}r' = (s,s^{-1}s_1r + (s,s^{-1}s_1r')\). Similarly, multiplication is defined using the left Ore condition. It is tedious to check, but it can be seen that \(T\) becomes a ring under these operations. (I leave it to you to check!) Now we have a homomorphism from \(R \to T\) given by \(r \mapsto [(1,1)]\). It is easy to see that under our addition and multiplication that this gives a homomorphism from \(R\) to \(T\). Moreover \(([s,1]) \cdot [(1,s)] = [(1,s)] \cdot [(s,1)] = [(1,1)]\) and so all elements of \(S\) are left and right invertible in \(T\). Finally, we have \([s,r] = [(s,1)] \cdot [(1,r)] = s^{-1}r\).

When \(S\) is the set of regular elements of \(R\), we’ll often denote \(S^{-1}R\) by \(Q(R)\) and think of it as the quotient ring of \(R\) (like a field of fractions).

Anyway, this is great, but unfortunately the Ore condition is not always satisfied. For example, if we take a free algebra \(R = k[x,y]\), that is a noncommutative polynomial ring on \(x\) and \(y\) with no relations, and we let \(S\) denote the set of nonzero elements of \(R\) then \(xS = yR\) has no solutions.

**Goldie to the rescue!**

Alfred Goldie determined exactly when one can invert the nonzero regular elements of a ring \(R\) to obtain a noncommutative analogue of the field of fractions. Rings satisfying Goldie’s conditions are today called Goldie rings in his honour. The most important fact here is that a semiprime noetherian ring is a Goldie ring and so we have the analogue of the field of fractions construction in this setting.

**Definition 0.16.** Let \(R\) be a ring. We say that a left ideal \(L\) is a left annihilator if there is some subset \(S\) of \(R\) such that \(\{x \in R : xs = 0 \forall s \in S\}\). We say that \(R\) is (left) Goldie if \(R\) satisfies the ascending chain condition on left annihilators and \(R\) contains no infinite direct sum of left ideals.

It is clear that a left noetherian ring is left Goldie. The converse is not true!

**Exercise 11.** Give an example of a left Goldie ring that is not left noetherian.

We’ll try to give an overview of the strategy behind Goldie’s theorem. We recall that a ring \(R\) is semiprime if \(R\) has no nonzero nilpotent ideals. Equivalently, if \(I\) is a nonzero ideal and \(I^2 = (0)\) then \(I = (0)\).

**Theorem 0.17.** (Goldie) Let \(R\) be a semiprime left Goldie ring. Then \(S\) is the set of regular elements of \(R\) then \(S\) is a left Ore set and \(Q(R) := S^{-1}R\) is a semiprimitive Artinian ring. In particular when \(R\) is a domain, we have a division ring of quotients.

To prove this, we need the notion of an essential ideal. One can intuitively think of essential as meaning “large”. A left ideal \(I\) is an essential left ideal of \(R\) if \(I \cap L \neq (0)\) for every nonzero left ideal \(L\) of \(R\). For example in \(R \times R\) the ideal \(R \times \{0\}\) is not essential, but if \(R\) is a commutative integral domain then every nonzero ideal is essential. So the strategy behind proving Goldie’s theorem can be summed up as follows.

(i) Show that if \(a \in R\) is a regular element then \(Ra\) is an essential left ideal of \(R\).

(ii) So now we’d like to show that \(S\), the set of regular elements of \(R\), is a left Ore set, so we need to show that if \(a \in S\) and \(r \in R\) then \(r'a = a'r\) for some \(a' \in S\) and some \(r' \in R\). To do this, we let \(J = \{x \in R : xR \subseteq Ra\}\). Since \(Ra\) is essential, we know \(J\) is non-empty. So the next step is to show that \(J\) is essential.

(iii) (Tricky step) Then show that if \(J\) is essential then it contains a regular element. From there we’ll get the Ore condition: there is some \(a' \in J \cap S\) such that \(a'r \in Ra\) and we are done with the Ore condition.

(iv) So now we at least know we can form the quotient \(Q(R) := S^{-1}R\). We’d like to show that this is a semiprimitive Artinian ring. (That is, it’s isomorphic to a finite product of matrix rings over division rings.)

(v) First we show that \(Q(R)\) has no nonzero nilpotent ideals. The reason for this is that if \(I\) is a two-sided nilpotent ideal then if \(I\) is nonzero, then there is some nonzero \(s^{-1}r \in I\) and so \(r \in I \cap Q(R)\). Then \(I \cap Q(R)\) is a nilpotent ideal of \(R\). Since the Jacobson radical contains all nil ideals of \(R\) we see that \(Q(R)\) has zero Jacobson radical.

(vi) (Other tricky step) Next we want to show that \(Q(R)\) is left artinian. This takes a bit of arguing, but it is not so bad.

So let’s look at Step 1.

**Lemma 0.18.** Let \(R\) be a left Goldie ring and let \(a\) be an element whose left annihilator is zero (in particular if \(a\) is regular then this holds). Then \(Ra\) is an essential left ideal.

**Proof.** If \(Ra\) is not essential then there is some nonzero left ideal \(I\) such that \(I \cap Ra = (0)\). Now consider the left ideals \(I, Ia, Ia^2, \ldots\). We claim these must form an infinite direct sum. To see this, suppose that this is not direct. Then there is some \(n \geq 1\) and \(x_0, \ldots, x_n \in I\), not all zero, such that \(x_0 + x_1a + x_2a^2 + \cdots + x_na^n = 0\). Notice that \(x_0 \in I \cap Ra\) so \(x_0 = 0\). Since the left annihilator of \(a\) is zero, we then see \(x_1 + \cdots + x_n a^{n-1} = 0\) and we can repeat this and get that all the \(x_i = 0\). Since \(R\) is left Goldie, we can’t have an infinite direct sum of left ideals and so \(Ra\) is essential.
On to Step 2. Let’s see that the left ideal $J$ is an essential left ideal. Suppose that there is some left ideal $I$ such that $I \cap J = \{0\}$. Now if $Ir$ is nonzero then $Ir \cap Ra$ is nonzero and so there is some nonzero $x \in I$ such that $xr \in Ra$ and so $x \in J \cap I$; if $Ir = 0$ then $I$ is contained in $J$. Either way, we have $J$ is essential. $Jr$ is contained in $Ra$, which is essential, so if $Ir$ is nonzero then there is some $x \in I$ such that $xr$ is nonzero and $xr = ua$ for some $r \in R$. That means that $Ir \oplus Jr$ is direct. And we’re done with step 2.

Let’s move on to Step 3. Like I said, this is a bit tricky. The good news is that once we are done with this, the only step that remains unproven is Step 6 (which is also tricky). To do this, we need a few lemmas and we’ll start with a basic remark, which is easy but very important: the acc on left annihilators in a ring is equivalent to dcc on right annihilators (and vice versa). First basic lemma.

**Lemma 0.19.** (proper containment of right annihilators give a direct sum) Let $R$ be a semiprime left Goldie ring. If $A \supseteq B$ are left ideals of $R$ with distinct right annihilators then there is some $a \in A$ such that $Aa \neq \{0\}$ and $Aa \cap B = \{0\}$.

**Proof.** Notice that $rann(A) \subseteq rann(B)$ by hypothesis, this containment is proper. Now since $R$ is left Goldie we have acc on left annihilators. Thus we have dcc on right annihilators. It follows that there is some right annihilator $U$ which is minimal with respect to being contained in $rann(B)$ and strictly containing $rann(A)$. Since $U$ properly contains $rann(A)$ we see that $AU$ is nonzero. It’s a two-sided ideal! Since $R$ is semiprime $(AU)^2$ is nonzero, so there is $u \in U$, $a \in A$ such that $AuaU \neq \{0\}$. Now we have $ua \in A$, $Aua$ is nonzero, and we claim that $Aua \cap B = \{0\}$—this will finish the proof. Steps.

(i) So if not, there is $x \in A$ such that $xua \in B$ is nonzero. That means that $xua \cdot rann(B) = 0$.

(ii) Since $U$ is contained in $rann(B)$, we see that $xuaU = \{0\}$.

(iii) That means that $uaU$ is contained in $rann(x)$.

(iv) Notice that $uaU$ is also contained in $U$ since $u \in U$ and $uaU$ is a right ideal.

(v) Thus $rann(x) \cap U \subseteq U$; since $x \in A$, $rann(x) \supseteq A$.

(vi) Thus $rann(x) \cap U$ is either $A$ or $U$ by minimality of $U$.

(vii) It can’t be $A$, since $A(uaU)$ is nonzero and $uaU$ is in the intersection.

(viii) So $rann(x) \cap U = U$. That means $rann(x) \supseteq U$. But $xua$ is nonzero and $uaU \neq \{0\}$. Done! □

This gives us the interesting fact: in a Goldie ring we also have dcc on left annihilators.

Let’s see why. If

$$L_1 \supseteq L_2 \supseteq L_3 \supseteq \cdots$$

is an infinite strictly descending chain of left annihilators then we know that

$$rann(L_1) \subseteq rann(L_2) \subseteq rann(L_3) \subseteq \cdots$$

is an infinite strictly ascending chain of right annihilators. By the lemma, since the containments are proper, there is some $a_i \in L_i$ such that $L_i a_i$ is nonzero and $L_i a_i \cap L_{i+1}$ is zero. Then

$$L_1 a_1 + L_2 a_2 + \cdots$$

is direct. To see this, suppose that $x_1 a_1 + \cdots + x_n a_n = 0$ with $x_i \in L_i$. Then since $a_2, \ldots, a_n$ are all in $L_2$ we have $x_1 a_1 \in L_1 a_1 \cap L_2 = \{0\}$ so $x_1 a_1 = 0$. Continuing in this manner, we see that all of the $x_i a_i = 0$ and we get directness.

Now we can prove that an essential left ideal in a semiprime left Goldie ring $R$ contains a regular element. We first do the case when $R$ is a prime ring. Let $I$ be an essential left ideal of $R$. So we proved this fact and that we have acc and dcc on left and right annihilators. Notice that as a consequence we can prove that a semiprime Goldie ring has no nonzero nil left or right ideals.

**Proof.** Suppose that $I$ is a nonzero nil left ideal. Choose $a \in I$ with $a \neq 0$ and maximal right annihilator wrt this property. If $r \in R$ then $ra$ is nilpotent so there is some $d \geq 0$ such that $(ra)^{d+1} = 0$; we take $d$ minimal. If $d > 1$ then we get $(ra)^d r = 0$, so $ra$ is in the right annihilator of $(ra)^d$. But clearly $rann((ra)^d)$ contains $rann(a)$ so by maximality they are the same unless $ra = 0$, which gives $d = 0$, a contradiction. Thus $Ra \subseteq rann(a)$ and so $aRa = \{0\}$. But this contradicts the fact that $R$ has no nilpotent ideals $(RaR)^2 = \{0\}$. So $a = 0$. □

**Lemma 0.20.** Let $R$ be a semiprime left Goldie ring. If $I$ is an essential left ideal of $R$ then $I$ contains a regular element $c$.

**Proof.** Let $a_1, \ldots, a_n \in I$ be a maximal length sequence satisfying $a_i \in lann(a_j)$ whenever $j < i$ and $lann(a_i) \cap Ra_i = \{0\}$ for all $i$. We note we cannot have an infinite sequence because $Ra_1 + Ra_2 + \cdots$ is direct. (Why?) Then $J = lann(a_1) \cap \cdots \cap lann(a_n) \cap I = \{0\}$. Why? Otherwise, there would be some $a_{n+1}$ in the intersection. Notice that $a_{n+1}$ is in the left annihilator of $a_j$ for $j < n+1$. We claim we can pick $a_{n+1}$ so that $lann(a_{n+1}) \cap Ra_{n+1} = \{0\}$. To see this notice that we can pick some $x \in J$ that is not nilpotent. Then there is some $d$ such that $lann(xd)$ is maximal. Now we’ll let $a_{n+1} = xd$. If $y = ra_{n+1}$ satisfies $ya_{n+1} = 0$ then we have $r \in lann(a_{n+1}) = lann(xd) = lann(x^d)$ and so $y = ra_{n+1} = 0$.

Now we’re almost done. We just showed that $J = \{0\}$ and since $I$ is essential this means that the intersection of the left annihilators of the $a_i$ is trivial. Now let $s = a_1 + \cdots + a_n$. Then since the sum of the left ideals is direct, $lann(s) = \bigcap lann(a_i)$ and so $s$ is left regular. Now if $s$ is not right regular then $lann(s)$ is a nonzero right ideal. As before there is some $x \in rann(s)$ that is not nilpotent. We pick $xd$ such that the left annihilators stabilize from $xd$ onward. Now since $s$ is left regular we know
from above that \( Rs \) is essential. So \( Rs \cap Rx^d \neq (0) \). Pick \( 0 \neq a = rs = r'x^d \). Then \( ax = rsx = r'x^{d+1} \). But now \( sx = 0 \) so \( 0 = r'x^{d+1} \) but the left annihilator of \( x^d \) is the same as that of \( x^{d+1} \) so \( r'x^d = 0 \), a contradiction.

\[ \square \]

OK, so now it just remains to show that Step 5 holds. As we said, we’d do this via the following lemma.

**Lemma 0.21.** Let \( I \) be a left ideal in \( Q(R) \). Then there is some left ideal \( J \) such that \( I \oplus J = Q(R) \).

**Proof.** Let \( I_0 = I \cap Q(R) \). Now by no infinite direct sums there is some left ideal \( J_0 \) such that \( I_0 + J_0 \) is essential in \( R \) and the sum is direct. Let \( J = Q(R)J_0 \). We claim that \( I \cap J = (0) \) and they sum to \( Q(R) \). If \( x \in I \cap J \) then there is some \( s \in S \) such that \( sx \in I_0 \cap J_0 = (0) \) so \( x = 0 \) since \( s \) is regular. Since \( I_0 + J_0 \) is essential there is some \( s \) in \( I_0 + J_0 \) that is essential. Then \( 1 = s^{-1}s \in I + J \).

\[ \square \]

So now to finish the proof it suffices to show that if \( A \) is a ring in which every left ideal is a direct summand then \( A \) is semiprimitive left artinian. Let’s first show semiprimitivity. If \( J \) is the Jacobson radical of \( A \) and \( J \) is nonzero then we know \( A \) is a unit so \( I \cap J = (0) \), so \( J = (0) \). Now let’s show that \( A \) is left artinian. To do this let \( I \) denote the sum of all minimal nonzero left ideals of \( A \) (a priori we don’t know these exist, so we take the sum to be \((0)\) if it is an empty sum. Notice that \( I = A \) if \( I \) is the Jacobson radical of \( A \) and \( J \) is nonzero then we know \( A \) is a unit so \( I \cap J = (0) \), so \( J = (0) \). Now let’s show that \( A \) is left artinian. To do this let \( I \) denote the sum of all minimal nonzero left ideals of \( A \) (a priori we don’t know these exist, so we take the sum to be \((0)\) if it is an empty sum. Notice that \( I = A \) since if \( I \cap J = (0) \), then \( M + J = A \) (Zorn) and then \( M \oplus J = A \) for some \( J \). Notice \( J \) is simple since \( M \) is maximal, so we get that \( I + J = \text{direct} \), a contradiction. So \( I = A \). This means \( A = \sum L_\alpha \), the \( L_\alpha \) simple. But \( 1 \) is in the sum, so the sum is finite. This means \( A = L_1 \oplus \cdots \oplus L_d \). Now each \( L_i \) is a simple module and this shows that \( A \) has finite composition length and so it is Artinian by the Jordan-Holder theorem. (See exercise on Assignment 2)

We note that a converse to Goldie’s theorem holds. First, it is possible to sometimes localize at the regular elements even when a semiprime ring is not left Goldie. But if one wishes to get a semiprimitive left Artinian ring then one needs the Goldie condition. This is not bad to see. If you start with a semiprime ring that has an infinite direct sum of left ideals, \( Q(R) \) will have this property and that’s impossible in a semiprimitive Artinian ring. (Why?) Also if our ring does not have acc on left annihilators, \( Q(R) \) will not either. But a semiprimitive artinian ring is noetherian (well, show \( M_n(D) \) is and then use the fact that a finite product of noetherian rings is noetherian to do the rest).

**POLYNOMIAL IDENTITY RINGS**

Now we’ll study PI rings. This is a mature area of study in the sense that the fundamental questions in the area have all been resolved. Having said that, it’s an interesting theory and much of it is used in the study of central simple algebras and Brauer groups. We recall that if \( k \) is a field then a ring \( R \) is a \( k \)-algebra if there is a subring of \( R \) that is isomorphic to \( k \) that lies in the centre of \( R \); I should point out that when we use the term subring we really mean that the identity of \( k \) should be the identity of \( R \), so really one can say there is an injective homomorphism from \( k \) into \( Z(R) \), the centre of \( R \). This makes \( R \) into a \( k \)-module, which, as we know, is just a \( k \)-vector space. With this in mind, we can define a polynomial identity ring.

**Definition 0.22.** Let \( k \) be a field and let \( R \) be a \( k \)-algebra. We say that a ring \( R \) satisfies a polynomial identity if there exists a nonzero noncommutative polynomial \( f(x_1, \ldots, x_d) \in k[x_1, \ldots, x_d] \) such that \( f(a_1, \ldots, a_d) = 0 \) for every \( (a_1, \ldots, a_d) \in R^d \).

The first example one should consider is a commutative ring. Here we have \( x_1x_2 = x_2x_1 = 0 \). A more exotic example is \( M_2(k) \) with \( k \) a field. That Wagner showed that it satisfies the identity \( x_1^2 - x_2^2 = (x_1 - x_2)(x_1 + x_2) \). In fact, if \( k \) is a field and \( A \) is a finite-dimensional \( k \)-algebra then \( A \) satisfies a polynomial identity. To see this, use Cayley-Hamilton. Let

\[ S_n(x_1, \ldots, x_n) = \sum_{\sigma \in \mathfrak{S}_n} \text{sgn}(\sigma)x_{\sigma(1)} \cdots x_{\sigma(n)}, \]

where \( \mathfrak{S}_n \) is the symmetric group on \( n \) letters.

Notice also that if \( A \) satisfies a PI then so does any subring and any homomorphic image, in fact they will satisfy the same PI as \( A \).

We claim if \( A \) is \( n \)-dimensional then \( A \) satisfies the identity \( S_{n+1} \). To see this, we fix a basis for \( e_1, \ldots, e_n \) for \( A \) over \( k \). We note that \( S_n \) is a special type of identity. It is called a multilinear homogeneous identity. It is homogeneous because every monomial occurring in \( S_n \) has the same degree, namely \( n \). It is multilinear, because for every \( i \), if we fix every variable except for the \( i \)-th one, then the function becomes linear.

**Remark 0.23.** If \( f(x_1, \ldots, x_n) \) is a multilinear homogeneous polynomial then \( f \) is a polynomial identity for \( A \) if and only if \( f(v_1, \ldots, v_n) = 0 \) whenever \( (v_1, \ldots, v_n) \in B^n \), where \( B \) is a basis for \( A \).

**Proof.** One direction is trivial. Let \( B \) be a basis for \( A \). Then if \( r_1, \ldots, r_n \in R \), we can write \( r_i = \sum_{b \in B} c_i,b b \), where \( c_i,b \) is zero for all but finitely many \( b \in B \). Then

\[ f(r_1, \ldots, r_n) = f(\sum_{b} c_{1,b} b, r_2, \ldots, r_n) \sum_{b} c_{1,b} f(b, r_2, \ldots, r_n), \]

notice that we can then use multilinearity in the other indices to express \( f(r_1, \ldots, r_n) \) as a linear combination of \( f(b_1, \ldots, b_n) \) with the \( b_i \in B \). \( \square \)
For us, this shows that if \(|B| = n\) and \(f\) is multilinear and homogenous of degree \(n + 1\) then \(f(b_1, \ldots, b_{n+1})\) will always have \(b_i = b_j\) for some \(i < j\). Now we claim that \(S_{n+1}(b_1, \ldots, b_{n+1}) = 0\) if \(b_i = b_j\). This isn’t hard. Notice that if \(\sigma \in S_n\) and \(r = (i, j)\) then we can pair elements in \(S_{n+1}\) off as \(\{\sigma, r\sigma\}\); this is just cosets of \(\{id, r\}\). Now what? Notice that \(\sigma\) and \(r\sigma\) have different signs and if \(\sigma(a) = i\) and \(\sigma(b) = j\) then \(r\sigma(a) = j\) and \(r\sigma(b) = i\) and you can check the two terms from each pair cancel with one another.

Then we can see from this that \(M_r(k)\) satisfies the identity \(S_{n+1}\). In fact, a theorem of Amitsur and Levitzki shows that it satisfies \(S_{2n}\), and does not satisfy an identity of degree \(< 2n\). We’ll prove that it satisfies \(S_{2n}\) on the assignment, but let’s see why it can’t satisfy any identity of degree less than \(2n\).

Let’s first prove that any ring satisfying a polynomial identity, satisfies a non-trivial homogeneous multilinear polynomial identity whose total degree is as large as that of the original identity.

**Proof.** Let \(m(f)\) be the maximum degree of a variable appearing in \(f\). Among all nonzero polynomial identities we pick one with the property that \(m(f)\) is minimal; let’s say that \(m\) is the minimum. Among all such identities with \(m(f) = m\) we pick one with the property that the number of variables of degree \(m\) is minimal. Let \(f(x_1, \ldots, x_d)\) be such a minimal polynomial identity for a ring \(R\). By permuting the variables, we may assume that \(m\) is the maximum degree of \(x_1\). Consider the identity \(g(x_1, y_1, \ldots, x_d) := f(x_1 + y_1, \ldots, x_d) - f(x_1, \ldots, x_d) - f(y_1, \ldots, x_d) \in k\{x_1, y_1, x_2, \ldots, x_d\}\). Then you can check by induction that this transforms a monomial of degree \(m\) in \(x_1\) to a monomial of total degree \(m\) in \(x_1\) and \(y_1\) and no terms of degree \(m\) in just \(x_1\) or just \(y_1\). That means that either \(m(g) < m\) or \(m(g) = m\) but the number of variables of degree \(m\) in \(g\) is strictly less than that of \(f\). By minimality of \(f\) we have that \(g = 0\). But you can show that this occurs only if \(m = m(f) = 1\). So having \(m = 1\) says that every monomial appears with degree at most \(1\). Now pick a monomial occurring in \(f\) with nonzero coefficient of smallest degree, say \(r \leq d\). By relabelling indices, we may assume that the monomial is \(x_1 \cdots x_r\). Then consider \(f(x_1, \ldots, x_{d-1}, 0, \ldots, 0)\). This is nonzero and must be homogeneous. Why? That means it’s multilinear too.

Notice this gives us an algorithm to convert an identity to a multilinear identity. The idea is that if it is not of degree \(1\) in some variable, say \(x_1\), then we add a new variable \(y_1\) and we look at \(f(x_1 + y_1, \ldots, - - -) - f(x_1, \ldots, - - -) - f(y_1, \ldots, - - -)\). This makes more variables but the degree in \(x_1\) and \(y_1\) is lower than the original degree in \(x_1\), so it is smaller in some sense. If we keep repeating this process, we can use the argument above to see that it must terminate. Then we pick a monomial of minimal length and set all variables not occurring in it equal to zero to get a homogeneous multilinear identity. Notice also that the total degree never increases at any step, so we see the total degree of the identity is at most that of the original identity.

**Exercise 12.** Run this algorithm on the Wagner identity to get a multilinear, homogeneous identity for \(M_2(k)\) of degree \(5\).

Notice that multilinearity immediately shows that PI rings behave well under base change.

**Theorem 0.7.** Let \(A\) be a PI ring over a field \(k\) and let \(F\) be a field extension of \(k\). Then \(A \otimes_k F\) is a PI \(F\)-algebra.

**Proof.** We know that \(A\) satisfies a non-trivial homogeneous multilinear identity \(f(x_1, \ldots, x_d)\). Since \(A \otimes_k F\) has an \(F\)-basis of the form \(a \otimes 1\) with \(a\) running over a \(k\)-basis for \(A\) and since \(f(a_1 \otimes 1, \ldots, a_d \otimes 1) = 0\) for all \(a_1, \ldots, a_d \in A\), we see the result follows from the above remark.

But now let’s get back to showing that \(S_{2n}\) is a minimal identity in some sense.

**Theorem 0.8.** Let \(k\) be a field. Then \(M_n(k)\) does not satisfy a non-trivial polynomial identity of total degree \(< 2n\).

**Proof.** Suppose that it did. Then it would satisfy a homogeneous multilinear identity of degree \(r < 2n\). Then by relabelling our variables if necessary and multiplying by a nonzero scalar, the identity can be assumed to be of the form

\[x_1 x_2 \cdots x_r + \sum_{\sigma \in S_r \setminus \{id\}} c_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(r)} = 0\]

with \(c_{\sigma} \in k\). Now plug in \(x_1 = e_{1,1}, x_2 = e_{1,2}, x_3 = e_{2,2}, x_4 = e_{2,3}\), and so on. Notice that if \(r = 2n - 1\) we’d end at exactly \(\epsilon_{n,n}\), so we’re not going to run out of room. Then \(x_1 \cdots x_r = e_{1,j}\) where \(j = ([r + 2]/2)\). On the other hand if \(\sigma\) is not the identity then \(x_{\sigma(1)} \cdots x_{\sigma(r)} = 0\). Why? We must have some \(x_j\) appearing immediately to the left of \(x_i\) with \(j < i\) in that case. Notice that \(x_i x_i = 0\) for \(j < i\).

Using this fact, we can quickly prove a nice theorem of Kaplansky.

**Theorem 0.9.** (Kaplansky) Let \(k\) be a field and let \(A\) be a primitive PI \(k\)-algebra. Then \(A \cong M_D(D)\) where \(D\) is a division ring that is finite-dimensional over its centre, \(Z\). Moreover, if \(A\) satisfies a polynomial identity of degree \(n\) then we must have \(4D^2 | D : Z| \leq n^2\).

**Proof.** Let \(M\) be a faithful simple left \(A\)-module and let \(D = \text{End}_A(M)\). Then by Jacobson’s density theorem, we have that \(A\) is a dense subring of \(\text{End}_D(M)\). We claim that \(M\) must be finite-dimensional as a left \(D\)-vector space. Let \(n\) be the \(PI\) degree of \(A\). We claim that \(M\) must have dimension at most \([n/2]\) as a left \(D\)-vector space. To see this, suppose that \(r > [n/2]\). Then \(2r > n\). Pick linearly independent elements \(e_1, \ldots, e_r\). By JDT for every matrix \(C := (c_{ij}) \in M_r(D)\) there exists some \(a = a(C) \in A\) such that the action of \(a\) on \(e_1, \ldots, e_r\) is the same as the action induced by \(C\). This means that
there is a subring $B$ of $A$ that surjects onto $M_i(D^{op})$. Here we're just taking $B$ to be the set of elements of $A$ that send the space $Dc_1 + \cdots + Dc_r$ into itself. Then since $A$ satisfies a PI of degree $n$, so does $B$; and since $M_i(D^{op})$ is a homomorphic image of $B$, so does $M_i(D^{op})$ as it is a homomorphic image. Finally, since $M_i(Z)$ is a subring, where $Z$ is the center of $D^{op}$, we see $M_i(Z)$ satisfies an identity of degree $n$. But by the above result, we know $M_i(Z)$ satisfies no identity of degree $< 2r$ and $2r > n$, this is a contradiction. So now we know that we have $M$ is finite-dimensional as a left $D$-vector space. Then JDT now gives that $A \cong M_d(D^{op})$ for some $d$. OK, so now let's replace $D$ by its opposite ring. Next we claim that $D$ is finite-dimensional over its centre. To see this, we remark that $D$ is isomorphic to a subring of $A$ so it satisfies a PI. Let $K$ be a maximal subfield of $D$. Why does it exist? Let $B = D \otimes_Z K$. Then $B$ is PI from the extension of scalars result. Notice that $D$ is a faithful simple $B$-module with action given by $d \otimes \lambda \cdot b = db\lambda$. (This needs $K$ to be commutative to work—that is, $K$ is equal to its opposite ring so the right action works—think about it!) Now let $\Delta = \text{End}_B(D)$. What is this? It turns out, it is exactly $K$. Think about it! If $f : D \to D$ is $B$-linear then $f$ is determined by $f(1)$ since $B$ contains $D \otimes 1$. Then we need
\[
df(1)\lambda = f((d \otimes \lambda) \cdot 1) = f(d)\lambda\]
for all $d \in D$ and all $\lambda \in K$. Now if we take $d = d\lambda$ and $\lambda = 1$ we get $d\lambda f(1) = f(\lambda) = df(1)\lambda$. So if $d$ is nonzero, we see that $f(1)$ and $\lambda$ commute for all $\lambda \in K$. Since $K$ is a maximal subfield we see $f(1) \in K$. On the other hand, if we take $f(1) \in K$, we see this gives an endomorphism. So we see that $B$ embeds densely in $\text{End}_K(D)$ by JDT. But now we just saw that since $B$ is PI we must have $D$ is finite-dimensional as a left $K$-vector space, let the dimension be $e$. Then $B \cong M_e(K)$. Notice that the centre of $B$ is $K$ and $e^2 = \dim_K(B) = \dim_Z(D)$. So finally, put it all together. We have $A \cong M_d(D)$. So $A \otimes_Z K \cong M_d(D) \otimes_Z K \cong M_d(D) \otimes_Z K \cong M_d(M_e(K)) \cong M_{de}(K)$.

Now $A \otimes_Z K$ satisfies a PI of degree $n$ by the above remark on change of basis. So by the bounds on PIs of matrix rings we have $n \geq 2de$ and we saw $e^2 = [D : Z]$, so $n^2 \geq 4d^2[D : Z]$. \hfill \Box

**Prime PI rings are Goldie**

Let's prove that a prime PI ring is a left Goldie ring. This will show us that there is a ring of quotients $Q(R)$ of a prime PI ring $R$ and this ring is simple Artinian, so it is isomorphic to $M_n(D)$. We'll show that it is PI and so Kaplansky's theorem shows that $D$ is finite-dimensional over its centre.

So first, suppose that $R$ is a prime PI $k$-algebra. Then we know $R$ satisfies a homogeneous multilinear identity
\[
f(x_1, \ldots, x_d) = x_1 \cdots x_d + \sum_{\sigma \neq 1} c_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(d)}.
\]
We claim that $R$ cannot contain a direct sum of $d$ nonzero left ideals. To see this, suppose that $I_1 + \cdots + I_d$ is direct with each $I_i$ a nonzero left ideal. We now fix $a_i \in I_i$, nonzero. We now pick the nonzero homogeneous multilinear polynomial $g(x_1, \ldots, x_e)$ with $e \leq d$ minimal such that after a suitable permutation of the $I_i$ we have $g(r_1a_1, r_ea_e) = 0$ for all $r_1, \ldots, r_e \in R$. (Notice that $f$ above works, so $e \leq d$.)

We write $g = g_1x_1 + \cdots + g_ex_e$, where each $g_i$ is homogeneous multilinear of degree $e-1$ on the variables $\{x_1, \ldots, x_e\} \setminus \{x_i\}$ and by minimality of $e$ any nonzero $f_i$ is not an identity for $R$. Pick nonzero any $a_i \in I_i$. Notice that if we take $x_i = r_ia_i$ then directness of the sum of the $I_i$ gives that $g_i(r_1a_1, \ldots, r_ea_e)r_ia_i = 0$ for all $r_1, \ldots, r_d \in R$. Now by assumption some $g_i$ is nonzero and $g_i(r_1a_1, \ldots, r_ea_e)$ is not identically zero by minimality of $e$. Then since $R$ is prime and $r_i$ can be anything and $a_i$ is nonzero, we see that $g_i(r_1a_1, \ldots, r_ea_e) = 0$ for all $r_1, \ldots, r_{i-1}, r_{i+1}, \ldots, r_e \in R$ (recall that $g_i$ does not involve the variable $x_i$). But we can then relabel our indices to get a smaller identity, a contradiction. Thus we are half-way there. Now we need to show that we have acc on left annihilators. Suppose that $L_1 \subseteq L_2 \subseteq \cdots$ is an infinite strictly ascending chain of left annihilators. Then there exist $x_1, x_2, \ldots$ in $R$ such that $x_i L_i \neq 0$ but $x_i L_j = 0$ for $j < i$. Now as before we claim that the chain must terminate after $d$ steps. We again consider a minimal identity such that $g(r_1x_1, r_e x_e) = 0$ for all $r_1, \ldots, r_e \in R$. (As before $e \leq d$.) Then we can write this as $\sum g_i(r_1x_1, \ldots, r_e x_e)r_i x_i$ and there is some smallest $i$ such that $g_i$ is nonzero. Then by assumption there is some $a \in L_i$ such that $x_i a \neq 0$. But $x_i a = 0$ for all $j > i$. Then multiplying on the left by $a$ gives that $g_i(r_1x_1, \ldots, r_e x_e)r_i(x_i a) = 0$. As before, we get a contradiction.

So this means that if $R$ is a prime PI $k$-algebra then it has a ring of quotients $Q(R)$. In fact, we'll show that we can obtain $Q(R)$ by inverting the nonzero elements of the centre of $R$. Since $Q(R)$ is simple, this means that every nonzero ideal of $R$ intersects the centre of $R$ non-trivially. This result is known as Posner's theorem.

So let's see why we get Posner's theorem. As before, let $R$ be a prime PI ring. We note that in a prime ring every nonzero element of the centre is regular. Why? If za = 0 then zRa = 0 and so a = 0. Notice if we take $Q(R)$ then $Q(R)$ is a simple ring since $R$ is prime. Let $Z = Z(Q(R))$. Then $Z$ is a field in a simple ring. Now let $A = ZR = \{z r_i : z \in Z, r_i \in R\}$. This is a subring of $Q(R)$. We note that $A$ is necessarily a prime PI. To see this, notice that $R$ satisfies a homogeneous multilinear identity $f(x_1, \ldots, x_d)$. We know $A$ has a basis of the form $z r$ with $z \in Z$ and $r \in R$ so it suffices to check our identity on elements of this form. If $a_i = z r_i$ then $f(a_1, \ldots, a_d) = (z_1 \cdots z_d)f(r_1, \ldots, r_d) = 0$. Thus $A$ satisfies the same identity. We now claim that $A$ is a simple ring. From this it will follow that $A = Q(R)$, since A Kaplansky's theorem then gives $A \cong M_d(D)$; since $A$ is a clearly a subring of $Q(R)$ and every regular element of $R$ is regular in $A$ and hence a unit in $A$, we see that we cannot localize further and so $A = Q(R)$.

**Theorem 0.10.** $A$ is simple.
Proof. Let \( I \) be a nonzero ideal of \( A \). Since \( A \) is PI, we know \( I \) is PI (regarded as a \( k \)-algebra without \( 1 \)). Let \( f(x_1, \ldots, x_d) \) be a homogeneous multilinear identity for \( I \) of smallest degree \( d \). Then we can write \( f(x_1, \ldots, x_d) = gx_d + \sum_{i=1}^r g_i x_d m_i \), where each \( g \) and \( g_i \) are multilinear and \( m_i \) is a monomial of degree at least 1. By a suitable indexing, we may assume that \( g \) is nonzero. Then by minimality, \( g = g(x_1, \ldots, x_{d-1}) \) doesn’t vanish identically on \( I \). Let \( u_1, \ldots, u_{d-1} \in I \) be such that \( u := g(u_1, \ldots, u_{d-1}) \neq 0 \). Then for \( x \in I \) we have

\[
0 = f(u_1, \ldots, u_{d-1}, x) = ux + \sum_i v_i x w_i
\]

for some \( v_i \in A \) and \( w_i \in I \). In other words,

\[
ux \cdot 1 = \sum v_i x w_i.
\]

By Lemma 0.24 this gives that \( 1 \in A u_1 + \cdots + A u_r \subseteq I \) and so \( I = A \). Thus \( A \) is simple. \( \square \)

Lemma 0.24. Let \( A \) be a prime ring as above whose extended centre is a subfield \( Z \). If \( u \neq 0 \) and \( u x a = \sum_{i=1}^r v_i x w_i \) for every \( x \) is a nonzero ideal \( I \) of \( A \) then \( a \in Z w_1 + \cdots + Z w_r \).

Proof. Let \( w_1, \ldots, w_p \) be a \( Z \)-basis for \( Z w_1 + \cdots + Z w_p \). Then we can rewrite \( u x a = \sum_{i=1}^r v_i x w_i \) as \( u x a = \sum_{i=1}^p v'_i x w_i \) and we may assume that \( V := Z w_1 + \cdots + Z w_p \) is direct. Now if \( a \in V \) then we are done, so we may assume that \( Z a = V \) is direct. Then we can rewrite this as something of the form \( \sum_{i=1}^m t_i x u_i = 0 \) with \( Z u_1 + \cdots + Z u_m \) direct and \( t_1, \ldots, t_m \) not all zero. Well now we’ll show this can’t occur by induction on \( m \). If \( m = 1 \) then \( t_1 1 u_1 = 0 \). Pick \( b \in I \) that is nonzero. Then \( t_1 a b u_1 = 0 \) and \( t_1 b, u_1 \) are nonzero. Contradiction, since \( A \) is prime. So now assume that it holds up to \( m - 1 \). WLOG we may assume that \( t_m \) is nonzero. Then \( \sum_{i=1}^m t_i x u_i = 0 \) gives \( \sum_{i=1}^m t_i m t_i x u_i = 0 \) for all \( r \in A \). Replacing \( x \) by \( r t_m x \) gives \( \sum_{i=1}^m t_i r t_m x u_i = 0 \) for all \( r \in A \). Subtracting then gives

\[
\sum_{i=1}^{m-1} (t_i r t_m - t_m r t_i) x u_i = 0.
\]

It follows by the induction hypothesis that for every \( r \in A \) we must have \( t_i r t_m = t_m r t_i \) for all \( r \in A \). Taking \( r = 1 \) gives that \( t_i \) and \( t_m \) commute for all \( i \). We note that for all we may assume that \( t_m \) is regular (I’ll explain this in class). Then if we work in the full Goldie ring of quotients \( Q(R) \). Then \( t_m^{-1} t_i r = r t_i t_m^{-1} \) for all \( r \in R \) and since \( t_i \) and \( t_m \) commute this gives that \( t_m^{-1} t_i \) is in \( Z = Z(Q(R)) \). So we can write \( t_i = z_i t_m \) with \( z_m = 1 \). Then

\[
\sum_{i=1}^{m} t_i x u_i = 0 \implies \sum_{i=1}^{m} t_m x (z_i u_i) = 0
\]

for all \( x \in I \). But now \( t_m \) is nonzero, and \( \sum_{i=1}^{m} z_i u_i \) is nonzero by independence. The result follows. \( \square \)

So now we see that if \( R \) is a prime PI ring then \( Q(R) \) is actually of the form \( M_d(D) \) with \( D \) finite-dimensional over its centre. From this, we can deduce Posner’s theorem after we prove a quick lemma.

Lemma 0.25. Let \( A \) be a simple \( k \)-algebra that is finite dimensional over its centre \( Z \). Then there exist \( m \geq 1 \) and \( a_1, \ldots, a_m, b_1, \ldots, b_m \in A \) such that \( x \mapsto \sum a_i x b_i \) is a map from \( A \) to \( Z \) that is not identically zero on any nonzero ideal \( I \) of a subring \( R \) of \( A \) which is prime PI Goldie \( k \)-algebra and has \( Q(R) = A \).

Proof. This is an exercise. \( \square \)

Theorem 0.11. (Posner) Let \( R \) be a prime PI ring. Then \( Z = Z(R) \) is nonzero, \( S := Z \setminus \{0\} \) is a left Ore set of regular elements and \( Z^{-1} R = Q(R) \). In particular every nonzero ideal of \( R \) intersects \( Z \) non-trivially.

Proof. The fact that nonzero elements of \( Z \) are regular follows from the remarks above since \( R \) is prime. If \( z \in Z \setminus \{0\} \) and \( r \in R \) then \( rz = zr \) gives that the left Ore condition holds. So we can form \( S^{-1} R \). Now it remains to show that this is \( Q(R) \). Let \( C = Z(Q(R)) \). Then \( Q(R) = CR \) so it suffices to show \( C \) is the fraction field of \( Z \). Notice that by the lemma, we have a non-trivial \( k \)-linear map \( T : Q(R) \to C \) given by \( x \mapsto \sum a_i x b_i \). There is a nonzero ideal \( J \) such that \( a_i J \subseteq R, J b_i \subseteq R \) for all \( i \). Then \( T(J) J \subseteq C \cap R \subseteq Z \). Also, \( T(J J J) \subseteq I \) so it is in \( I \cap Z \). By the lemma \( T \) is not identically zero on \( J J J ) \), so we get the result. So if we write \( x = z_1 r_1 + \cdots + z_m r_m \in Q(R), z_i \in C \), there is some ideal \( I \), nonzero, such that \( I z_j \subseteq R \) for all \( j \). So \( I a \subseteq R \). Then pick \( z \in I \cap R \) so \( a = z^{-1} r \). Done! \( \square \)

The Kurosh conjecture for PI rings

In group theory there was the famous Burnside problem, which asks whether a finitely generated group \( G \) with the property that every element is torsion is necessarily finite. This is now known to be false. The ring theoretic analogue is the Kurosh problem which asks whether a finitely generated \( k \)-algebra \( A \) with the property that every element of \( A \) is algebraic over \( k \) is finite-dimensional. This too is known to be false. On the other hand, it’s interesting to know for which classes of groups and rings these conjectures hold. Burnside and Schur proved that the Burnside problem has a positive answer for linear groups; Cantat recently proved that it holds for groups of Birational automorphisms of surfaces; if \( X \) is a \( q \)p variety over the complex numbers it is known to hold for the group of regular automorphisms of \( X \). There are many groups coming from topology where it is known to hold. We can show that the Kurosh problem holds for PI rings.
Theorem 0.12. Let \( k \) be a field and let \( A \) be a finitely generated PI algebra over \( k \). If \( A \) is algebraic over \( k \) then \( A \) is finite-dimensional over \( k \).

Proof. Suppose not. Let \( S \) denote the collection of two-sided ideals \( I \) of \( A \) such that \( A/I \) is infinite-dimensional. We claim that \( S \) has a maximal element that is necessarily prime. To see this, if \( J \) is the union of a chain in \( S \) and \( J \not\subseteq S \) then \( A/J \) is finite-dimensional. If \( a_1, \ldots, a_d \) generate \( A \) this means that there is some \( N \) such that all words of length \( N \) on \( a_1, \ldots, a_d \) can be written as a \( k \)-linear combination of shorter words mod \( J \). But then this finite set of reduction expressions all hold mod some \( J \). But then \( A/J \) is finite-dimensional, a contradiction. So \( S \) has a maximal element, call it \( J \). Then we claim that \( J \) is prime. If not there are ideals \( K \) and \( L \) containing \( J \) such that \( KL \subseteq J \). Then by maximality \( A/K \) and \( A/L \) are finite-dimensional. So \( A/(K \cap L) \) is finite-dimensional since it embeds in \( A/K \times A/L \). Let \( N := K \cap L \) then \( A/N^2 \) maps onto \( A/J \) since \( N^2 \subseteq KL \subseteq J \) so \( A/N^2 \) is infinite-dimensional. But \( A/N^2 \) has dimension \( A/N \otimes N/N^2 \). Since \( A/N \) is finite-dimensional, \( N/N^2 \) must be infinite-dimensional. But by the exercise from assignment 3, \( N \) is finitely generated left ideal of \( A \), so \( (A/N)^s \) surjects onto \( N/N^2 \) where \( s \) is the size of a generating set for \( s \). Done!

So what’s the take-away? We may replace \( A \) by \( A/J \) and assume that \( A \) is prime. Now let \( Z \) denote the centre of \( A \). Since \( A \) is algebraic over \( k \), so is \( Z \), and so \( Z \) is a field since nonzero elements of a prime ring are regular. Since \( Q(A) \) is obtained by inverting the nonzero elements of the centre and these are all invertible, we see that \( A = Q(A) \) and \( A \) is finite-dimensional over its centre. By Artin-Tate (exercise) we see that \( Z(A) \) is a finitely generated \( k \)-algebra; since it is algebraic, it is finite-dimensional over \( k \). Since \( A \) is finite-dimensional over \( Z(A) \) and \( Z(A) \) is finite-dimensional over \( k \), \( A \) is finite-dimensional over \( k \). \( \Box \)

Brauer groups and central simple algebras

Let \( k \) be a field. We say that a \( k \)-algebra is a central simple \( k \)-algebra if \( [A : k] < \infty \), \( A \) is simple, and \( Z(A) = k \).

Proposition 0.26. If \( A \) is a simple \( k \)-algebra with centre \( k \) and \( B \) is a simple \( k \)-algebra, then \( A \otimes_k B \) is simple.

Proof. Let \( J \) be a nonzero ideal of \( A \otimes B \). Pick nonzero \( x = \sum_{i=1}^d a_i \otimes b_i \in I \) with \( d \) minimal. We claim that \( d = 1 \). To see this, since \( d \) is minimal, we must have \( a_1, \ldots, a_d \) are linearly independent over \( k \) and \( b_1, \ldots, b_d \) are linearly independent over \( k \). Now since \( a_d \) is nonzero and \( A \) is simple, we have that \( \sum_{i=1}^m s_i a_i r_i = 1 \). Then letting \( a'_i = \sum_{j=1}^m s_j a_i r_j \), we see that \( x' := \sum (r_i \otimes 1) x (s_i \otimes 1) = \sum a'_i \otimes b_i \in I \)

and \( a'_d = 1 \). Notice \( x' \) is nonzero since \( a'_d = 1 \) and the \( b_i \) are linearly independent over \( k \).

Then notice that if \( r \in A \) then we have \( [r \otimes 1, x'] = \sum_{i=1}^d [r, a'_i] \otimes b_i \). By minimality of \( d \) we see that \( a'_1, \ldots, a'_d \) are central in \( A \); i.e., they are in \( k \). Then we see \( x' = 1 \otimes b \) for some \( b \in B \). But now since \( B \) is simple, we see that this generates the full ring as an ideal. \( \Box \)

Corollary 0.27. If \( A \) and \( B \) are central simple \( k \)-algebras then so is \( A \otimes_k B \).

Proof. We note that \( A \otimes_k B \) has dimension \( [A : k][B : k] \) over \( k \); it is simple by the above proposition. Finally, we claim that the centre is \( k = k \otimes_k k \). To see this, suppose that \( z = \sum_{i=1}^d a_i \otimes b_i \in Z(A \otimes B) \).

If \( z \) is zero, that’s fine; if not, we can choose an expression with \( d \) minimal so \( b_1, \ldots, b_d \) are linearly independent over \( k \). Then since it commutes with all \( r \otimes 1 \) we see that \( \sum [r, a_i] \otimes b_i = 0 \)

and by independence of the \( b_i \) we see that each \( a_i \) is central; i.e., \( a_i \in k \) and so \( z = 1 \otimes b \) for some \( b \in B \). But now \( b \) must be central in \( B \) since it commutes with \( 1 \otimes y \) for all \( y \in B \). \( \Box \)

Proposition 0.28. If \( D \) is a central simple division ring over \( k \). Then \( [D : k] \) is a perfect square.

Proof. Let \( B = D \otimes_k \bar{k} \). Then \( B \) is simple and has dimension \( [D : k] \) over \( \bar{k} \). Since \( B \) is simple, it is primitive. By Kaplansky’s theorem, \( B \cong M_n(E) \) for some division ring that is finite-dimensional over its centre \( Z \). We note that \( Z \) contains \( k \) and since \( [B : \bar{k}] < \infty \), we have \( [Z : \bar{k}] < \infty \) and so \( Z \subseteq \bar{k} \). But now \( [E : \bar{k}] < \infty \) which gives \( E = k \), so \( [B : k] = n^2 \). \( \Box \)

Corollary 0.29. Let \( A \) be a central simple \( k \)-algebra. Then \( [A : k] \) is a perfect square.

Proof. Since \( A \) is simple Artinian, we have \( A \cong M_m(D) \) where \( D \) is a finite-dimensional \( k \)-algebra. So \( [A : k] = m^2 [D : k] \). \( \Box \)

Here is an important result about central simple algebras. If \( A \) is a central simple \( k \)-algebra, then so is its opposite ring, \( A^{op} \). And we have \( m^2 = [A : k] = [A^{op} : k] \). Then \( A \otimes_k A^{op} \cong M_{m^2}(k) \). To see this, we’ll make a homomorphism \( f : A \otimes_k A^{op} \rightarrow \text{End}(A) \cong M_{m^2}(k) \) given by \( f(a \otimes b)(x) = axb \). As before, this is an endomorphism. Exercise! Now what? This map is nonzero, and so its kernel is a proper ideal; but \( A \otimes A^{op} \) is simple, so its kernel is \( (0) \). This means \( f \) is 1-to-1. Now since the domain and range both have dimension \( m^2 \), it must be onto, too.
Now we can define the Brauer group. We put an equivalence relation on central simple $k$-algebras by declaring $A \sim B$ if $A \otimes M_n(k) \cong B \otimes M_n(k)$ for some $m, n \geq 1$. This is an equivalence relation. Reflexivity and symmetry are immediate. Suppose that $A \sim B$ and $B \sim C$. Then $A \otimes M_n(k) \cong B \otimes M_n(k)$ and $B \otimes M_l(k) \cong C \otimes M_l(k)$. Now

$$A \otimes M_{nl}(k) \cong A \otimes M_n(k) \otimes M_l(k) \cong B \otimes M_n(k) \otimes M_l(k) \cong C \otimes M_{ml}(k).$$

We let $Br(k)$ denote the set of equivalence classes of central simple $k$-algebras. We call these classes Brauer classes. Then $Br(k)$ is a group with multiplication $\otimes$ and identity $[k]$. To see this, we must show that $\otimes$ is well defined on Brauer classes; once we have that, we see that $[A^{op}]$ is an inverse of $[A]$; multiplication is associative by associativity of the tensor product.

So suppose that $A \sim A'$ and $B \sim B'$. Then $A \otimes M_n(k) \cong A' \otimes M_n(k)$ and $B \otimes M_l(k) \cong B' \otimes M_l(k)$. Then

$$A \otimes B \otimes M_{nl}(k) \cong (A \otimes M_n(k)) \otimes (B \otimes M_l(k)) \cong (A' \otimes B') \otimes M_{ml}(k).$$

Notice that since $A \otimes B \cong B \otimes A$ we have that $Br(k)$ is an abelian group. We note that by AW, every central simple $k$-algebra is isomorphic to $M_n(D)$ for some division ring $D$ with centre $k$ and so $A \cong D \otimes M_n(k)$, which means that $[A] = [D]$; i.e., the Brauer class always has a division ring as a representative. **Exercise:** show that this division ring is unique up to isomorphism.

### Finite-dimensional division rings

To understand Brauer classes, we saw that it is sufficient to understand division rings $D$ with $[D : k] < \infty$ and $k = \mathbb{Z}(D)$. We now investigate these via a study of their maximal subfields. Throughout this section, we'll assume that $D$ is finite-dimensional over its centre, $k$.

**Lemma 0.30.** Let $K$ be a maximal subfield of $D$. Then $K = C(K)$, the centralizer of $K$ in $D$. Conversely, if $K = C(K)$ then $K$ is a maximal subfield of $D$.

**Proof.** If $K$ is a maximal subfield then if $C(K) \supseteq K$. If $a \in C(K) \setminus K$ then $L = K(a)$ is a subfield of $D$ that properly contains $K$, contradicting maximality. If $K = C(K)$ then every element of $K$ commutes with every element of $K$ so $K$ is commutative. Thus $C(K)$ is commutative and it is a field, since if $a \neq 0$ commutes with everything in $K$ so does $a^{-1}$. If $K$ is not a maximal subfield, then there is a subfield $L$ containing $K$ and $L \subseteq C(K)$. □

We saw when we studied PI rings that if $K$ is a maximal subfield of $D$ then $R := D \otimes_k K$ has $D$ as a faithful simple $R$-module and $K = \text{End}_K(D)$ and $R$ embeds densely in $\text{End}_K(M)$ by JDT; moreover, we showed that $M$ is finite-dimensional over $D$ and so by JDT we have that $R \cong \text{End}_K(M)$ with $M = D \cong K^d$ for some $d$ so $R \cong M_d(K)$. Notice that $d^2 = [R : K] = [D : k]$. But we also have that $d = [M : K] = [D : K]$. Thus $[D : K] = \sqrt{[D : k]}$. Since $[D : k] = [D : K][K : k]$, we have the following result.

**Theorem 0.13.** Let $D$ be a finite-dimensional division ring over $k$. Then if $K$ is a maximal subfield then $d := [D : K] = \sqrt{[D : k]}$. In particular, $[D : K] = [K : k] = \sqrt{[D : k]}$.

This has an interesting corollary.

**Corollary 0.31.** Let $D$ be a division ring with centre $\mathbb{R}$ such that $[D : \mathbb{R}] < \infty$. Then $D$ is either the quaternions or $D$ is $\mathbb{R}$.

**Proof.** If $D = \mathbb{R}$, we’re done. Otherwise, $[D : \mathbb{R}] = d^2$ for some $d > 1$. Let $K$ be a maximal subfield of $D$. Then $K$ is a finite-dimensional field extension of $\mathbb{R}$. The only proper finite-dimensional extension of $\mathbb{R}$ is $\mathbb{C}$, so $K = \mathbb{C}$. This means $[D : \mathbb{R}] = [K : \mathbb{R}]^2 = 4$. **Exercise:** Show that such a division ring is isomorphic to the ring of quaternions. (Hint: use the Noether-Skolem theorem, which we’ll do later in class.) □

This tells us that the Brauer group of $\mathbb{R}$ must be $\mathbb{Z}/2\mathbb{Z}$; well, we know there is a unique, up to isomorphism, division ring with centre $\mathbb{R}$, as a representative. There are only two of these.

### The Skolem-Noether theorem

**Theorem 0.14.** Let $A$ be a central simple $k$-algebra and let $B$ be a simple $k$-algebra, and let $f, g : B \to A$ be two $k$-algebra homomorphisms. Then there exists an invertible $x \in A$ such that $f(b) = xg(b)x^{-1}$ for all $b \in B$.

What a great theorem. Let’s notice this gives us some nice facts.

**Corollary 0.32.** Let $\phi : M_n(K) \to M_n(K)$ be a $K$-algebra automorphism. Then $\phi$ is conjugation by some element of $GL_n(K)$. In fact, this is true for any central simple $k$-algebra with a $K$-algebra automorphism.

For the proof, just take $A = B$ and take $f$ to be the identity and $g$ to be $\phi$. We recall that a map $\delta : M_n(K) \to M_n(K)$ is called a derivation of $M_n(K)$ if $\delta$ is $K$-linear and $\delta(ab) = a\delta(b) + \delta(a)b$. Notice that if $x \in R$ then $\delta(r) := [r, x] = rx - xr$ is a derivation of $R$. Now these are called inner derivations. Notice that $R = \mathbb{C}[x]$ has the non-inner derivation $d/dx$.

**Corollary 0.33.** Every derivation of $M_n(K)$ is inner.

**Proof.** Let $A = M_{2n}(K)$ and let $B = M_n(K)$. Let us consider the two maps from $x \to \text{diag}(X,X) + \delta(X)e_{1,2}$ and $X \to \text{diag}(X,X)$. Use the fact that the maps are related by conjugation in $A$ to show that $\delta$ must be inner. □
We note that this proof goes through more generally for any central simple algebra \( T \), by taking \( A = M_2(T) = T \otimes_k M_2(k) \) and doing the same trick.

**Corollary 0.34. (Dixon’s theorem)** Let \( D \) be a division ring that is finite-dimensional over its centre \( k \). Then if \( a, b \in D \) have the same minimal polynomial over \( k \) then \( a \) and \( b \) are conjugate in \( D \).

**Proof.** Let \( B = k[a] \) and let \( R = k[b] \). Both \( B \) and \( R \) are isomorphic to \( k[x]/(p(x)) \) where \( p(x) \) is the minimal polynomial of \( a \). Then we have maps from \( B \) to \( D \) given by \( a \mapsto a \) and \( b \mapsto b \). Now by Skolem-Noether we are done. \( \square \)

**Proof of Noether-Skolem theorem.** Let \( M \) be a simple left \( A \)-module and let \( D = \text{End}_A(M) \), which we know is a division ring. Then notice that the centre of \( D \) is exactly \( k \) since \( A \) is a central simple \( k \)-algebra. Recall also that \( D \) is a left \( D \)-module. Then the maps \( f \) and \( g \) give right \( B \otimes_k D \)-module structures on \( M \) via \((b \otimes \alpha) \cdot m = \alpha(f(b))m \) and \( \alpha(g(b)) \cdot m \). To avoid confusion, let’s denote these structures \( \cdot_1 \) and \( \cdot_2 \). (Does this even make sense? Notice that \((b \otimes \alpha) \cdot_1 (b' \otimes \alpha') \cdot_1 m = (b \otimes \alpha)(b' \otimes \alpha' \cdot_1 m) = \alpha(\alpha(b')(f(b') \circ_1 m)) = \alpha \circ \alpha'(\alpha(b) (f(b)m)) = \alpha \circ \alpha'(f(bb')m).\

Recall that since \( B \) is simple and since \( D \) is central simple we have \( B \otimes_k D \) is simple. Now we need the following fact: if \( B \otimes_k D \) is a finite-dimensional simple \( k \)-algebra then there is exactly one simple \( B \)-module up to isomorphism and every module is a direct sum of simple modules. **Exercise!** What does this tell us? It tells us that if \( V \) is the unique (up to isomorphism) simple \( B \otimes_k D \)-module then with either structure \( \cdot_1 \) or \( \cdot_2 \) we have \( \text{Ann}(V) \cong \text{Ann}(\text{End}_D(M) \cong A \) and so \( \phi \) is induced by left multiplication by some \( x \in \mathcal{A} \); that is \( xg(b)(m) = x(b \otimes 1)m = \phi(b)(x \otimes 1)m) = (b \otimes 1) \cdot \phi(m) = f(b)xm \) for all \( b \in B \) and \( m \in M \). Now \( x \) must be invertible in \( A \) since \( \phi \) is an isomorphism. (Look at kernel: if \( x \) is not invertible, then there is some \( y \) such that \( xy = 0 \) so pick \( m \) such that \( ym \neq 0 \) then \( x(ym) = 0 \) and so left multiplication by \( x \) has some kernel and so it is not an isomorphism.) So now we’re almost done. Look at \( xg(b)x^{-1}m = f(b)m \), so we have \( xg(b)x^{-1} - f(b) \) annihilates \( M \) and hence must be 0 since \( M \) is a simple faithful \( A \)-module. Then we are done. \( \square \)

**Crossed products**

We’ll study the Brauer group some more and to do this we need to understand a special type of division ring. A **crossed product.** To see how to construct one, we suppose that we have a field \( k \) and a CSA \( A \) over \( k \) with a Galois subfield \( K \) with \([K : k] = n = \sqrt{|A : k|}\) Then let \( G \) be the Galois group of \( K \) over \( k \). Then by Skolem-Noether, for every \( \sigma \in G \) we have that there is some invertible \( x_\sigma \in A \) such that \( x_{\sigma}c = \sigma(c)x_\sigma \) for all \( c \in K \). Now we claim that \( A = \sum_{\sigma \in G} Kx_\sigma \). To see this, by dimension considerations it is enough to show that the \( x_\sigma \)'s are linearly independent over \( K \). So suppose that \( \sum_{\sigma \in G} cx_\sigma = 0 \) is a non-trivial dependence. We pick a minimal dependence \( c_1x_{g_1} + \cdots + c_rx_{g_r} \). Notice \( r > 1 \) since the \( x_{g_i} \)'s are units. By minimality each of the \( c_i \)'s is nonzero. Then for \( \lambda \in K \) if we right multiply we get

\[
\sum_{i=1}^{r-1} c_i g_i(\lambda)x_{g_i} = 0.
\]

So if we left multiply by \( g_r(\lambda) \) and subtract, we get the dependence

\[
\sum_{i=1}^{r-1} c_i (g_i(\lambda) - g_r(\lambda))x_i = 0.
\]

By minimality we see that \( g_i(\lambda) = g_r(\lambda) \) for all \( \lambda \in K \) so \( g_1 = g_r \), contradiction.

OK, so now we have that \( A = \sum_{g \in G} Kx_g \) with the sum being direct. So how does multiplication work. If we have \((ax_g)(\beta x_h) = ax_g \beta x_h = a g(\beta)x_gx_h\). But what is \( x_gx_h \)? Notice that \((x_gh)^{-1}x_gx_h \in K \) is in the centralizer of \( K \), which is \( K \). (Why is it \( K \)?) If \( \sum c_gx_g \) is in the centralizer of \( K \) and not in \( K \) then we have some \( c_g \) is nonzero for \( g \neq 1 \). Then you just do the computation.

So this says that \( f(g, h) := x_g^{-1}x_h \) commutes with all \( c \in K \). In particular, \( f(g, h) \in K^* \). In fact, since things are invertible, it is in \( K^* \). Thus we have some structure constants \( f(g, h) \in K^* \). Notice that this \( f \) has an interesting condition coming from associativity. If \( a, b, c \in G \) then

\[
(x_ax_b)x_c = x_a(x_bx_c).
\]

The LHS is just

\[
f(b, a) x_abx_c = f(a, b) f(ab, c)x_{abc}.
\]

Let \( \lambda^g = g(\lambda) \). The RHS is just

\[
x_a \cdot f(b, c)x_{bc} = f(b, c)^a x_a x_{bc} = f(b, c)^a \cdot f(a, bc)x_{abc}.
\]

So we get a condition on our map \( f : G \times G \to K^* \). As it turns out, this is equivalent to saying that \( f : G^2 \to K^* \) is given by a 2-cocycle condition. Well, a 2-cocycle is a map \( f : G^2 \to K \) that satisfies \( f(a, b) f(ab, c) = f(a, bc)f(b, c) \).

Even more amazing is that equivalence of crossed products in the Brauer group is given exactly by saying that \( f \) is a coboundary. So if one studies the collection of crossed products with Galois subfield \( K \), one sees that they form a subgroup of the Brauer group and they are isomorphic to \( H^2(G, K^*) \). In fact, one can show that the tensor product of crossed products is a crossed product and the multiplication in the Brauer group corresponds to the group structure in cohomology. If one

\[
(x_1x_2)x_3 = x_1(x_2x_3).
\]
knows some group cohomology one will see that this is a torsion group. The one other relevant fact one gets is that the Brauer group is in fact generated by classes of crossed products. Some of this will be done on the assignment.

The other really useful result about Brauer groups to know is Tsen’s theorem. For now we’ll just assume this result, but I hope to prove it by the end of the course. Tsen’s theorem is technically a result about zeros of homogeneous forms, but we will state it as follows.

**Theorem 0.15.** (Tsen) Let $k$ be an algebraically closed field and let $K$ be a finitely generated extension of $k$ of transcendence degree one. Then $\text{Br}(K)$ is trivial. In particular, if $D$ is a division ring with centre $K$ and $[D : K] < \infty$ then $D = K$.

Notice the last part just follows because $[D] = [K]$ and by the assignment there is a unique division ring up to isomorphism in each class so $D = K$.

**Combinatorics on words and monomial algebras**

Throughout this part of the course, we’ll be dealing with finitely generated $k$-algebras with $k$ a field. As we know, these are of the form $k\{x_1, \ldots, x_d\}/I$ for some $d \geq 1$ and $I$ an ideal of relations. For computational problems, it is often better to work with ideals $I$ that are generated by monomials. In practice, one can often do this via Grobner bases. So to explain, we put a degree lexicographic order on the set of monomials in $x_1, \ldots, x_d$ as follows. We declare $x_1 < x_2 < \cdots < x_d$. Then given two words $w$ and $w'$ if $w$ is longer than $w'$ then $w$ is bigger; if they are the same length, we just see which one comes first in the dictionary where $x_d$ is like the letter ‘a’ and $x_1$ is like the letter ‘z’. Now if we do this, we see that any nonzero element of $k\{x_1, \ldots, x_d\}$ can be written as

$$a := c_1 w_1 + \cdots + c_r w_r$$

for some $r \geq 1$ and some words $w_1, \ldots, w_r$ and nonzero elements of $k$, $c_1, \ldots, c_r$. Then since $\prec$ puts a total order on monomials, we may assume $w_1 \succ w_2 \succ \cdots$. Then we declare $w_1$ to be the initial word of $a$ and we write $w_1 = \text{in}(a)$. Now given an ideal $I$ we make as associated ideal $J := \text{in}(I)$ which is the ideal generated by all words $w$ such that $w$ is of the form $\text{in}(I)$ for some $a \in I$. This $J$ is called a monomial ideal because it is generated by monomials. Notice that if $\sum c_i w_i \in J$ with the $c_i$ nonzero then all the $w_i$ must be in $J$.

**Proposition 0.35.** Let $S$ be the collection of monomials in $\{x_1, \ldots, x_d\}^*$ that are not in $J$. Then the images of elements of $S$ form a basis $B := k\{x_1, \ldots, x_d\}/J$. The images of the elements of $S$ in $A := k\{x_1, \ldots, x_d\}/I$ form a basis for $k\{x_1, \ldots, x_d\}/I$. Also, if $V$ is the span of $1, x_1, \ldots, x_n$ then the image of $V^n$ in $A$ has the same dimension as the image of $V^n$ in $B$.

**Proof.** By the remark above, the images of the elements of $S$ are linearly independent mod $J$. Since the monomials form a spanning set, we get the result. For $A$ just use the definition of $J$ to get the result. Do this also for $V^n$.

Now working with this associated monomial algebra $B$ actually can transform a lot of ring theoretic problems into problems of a combinatorial nature. So it will be useful for us to give some background in combinatorics on words. Given a finite alphabet $A = \{x_1, \ldots, x_d\}$ we say that a word of the form $x_{i_1} x_{i_2} \cdots$ is right-infinite. Equivalently, we can think of a right-infinite word as a sequence on $A$.

**Theorem 0.16.** (König’s infinity lemma) Let $A$ be a finite alphabet and let $S$ be an infinite subset of $A^*$ that is closed under the process of taking subwords.

Then there exists $w \in A^\infty$ such that every finite subword of $w$ is in $S$.

**Proof.** We define $w = a_1 a_2 \cdots$ as follows. Since $S$ is infinite, there is some $a_1 \in A$ such that $a_1$ is the first letter of infinitely many elements of $S$; now suppose that for every $i \geq 1$ we have defined a word $a_1 a_2 \cdots a_i$ with the property that it is a prefix of infinitely many elements of $S$. Then since $A$ is finite, there is some $a_{i+1} \in A$ such that $a_1 a_2 \cdots a_i a_{i+1}$ is a prefix of infinitely many elements of $S$. Continuing in this way, we obtain an infinite word $w$ with the desired property.

The next result is Furstenberg’s theorem, which is part of a more general result in Ergodic theory. We give an algebraic proof in the case in which we are interested. We recall that a right-infinite word is uniformly recurrent if each subword $u$ has the property that there is some natural number $N = N(u)$ such that whenever $u$ occurs as a subword, its next occurrence is at most $N$ positions later in our right-infinite word. As far as we know, this rather simple proof (which requires the axiom of choice) does not appear in the literature.

**Theorem 0.17.** (Furstenberg’s theorem) Let $A$ be a finite alphabet and let $w \in A^\infty$. Then there is a uniformly recurrent word $u \in A^N$ such that every finite subword of $u$ is a subword of $w$.

**Proof.** Let $K$ be a field. Write $A = \{x_1, \ldots, x_k\}$ and consider the algebra $B = k\{x_1, \ldots, x_k\}/I$, where $I$ is the ideal generated by all monomials that do not occur as a subword of $w$. Then $B$ is infinite-dimensional as a $K$-vector space since $w$ is infinite and the images of the subwords of $w$ are linearly independent in $B$. Now let $S$ denote the collection of ideals $J$ of $k\{x_1, \ldots, x_k\}$ that are generated by monomials, contain $I$, and have the property that $B/J$ is infinite-dimensional. Then $S$ is non-empty since $I$ is in $S$. We note that $S$ is closed under unions of chains, for if $L$ is the union of a chain in $S$, then $L$ is certainly generated by monomials and contains $I$; if $k\{x_1, \ldots, x_k\}/L$ is finite-dimensional, then there is some $N$ such that $L$ contains all monomials of length $\geq N$. In particular, $L$ is finitely generated as it generated by all monomials of length exactly $N$ along with the finite set of monomials of length $< N$ that are in $L$. Since $L$ is the union of a chain in $S$, and $L$ is finitely generated, there is some element in our chain that must be equal to $L$. Thus we can pick a maximal element $L$ of
S by Zorn’s lemma. Now since L is generated by monomials, \( K\{x_1, \ldots, x_k\}/L \) is spanned by the images of all monomials over \( x_1, \ldots, x_k \) that are not in the ideal L. Since \( K\{x_1, \ldots, x_k\}/L \) is infinite-dimensional and the collection of words that are not in L is closed under taking subwords, we see by König’s infinity lemma that there is a right-infinite word u with the property that all subwords of u are not in L. In particular, they are not in I and so all subwords of u are subwords of \( w \).

We claim that u is uniformly recurrent. If not, there is some finite subword \( u_0 \) such that there are arbitrarily long subwords of u that avoid \( u_0 \). Then let \( L' \) be the ideal generated by \( u_0 \) and L. Then since there are arbitrarily long words in u that avoid \( u_0 \) we see that these words have nonzero image in the ring \( K\{x_1, \ldots, x_k\}/L' \) and so \( K\{x_1, \ldots, x_k\}/L' \) is infinite-dimensional. But this contradicts maximality of L in S. The result follows.

Let’s use these ideas to prove some hard combinatorial theorems. First a right-infinite word \( u = x_i x_{i+1} \cdots \) is called eventually periodic if there is some N such that \( x_j = x_{j+N} \) for all \( j \gg 0 \). The subword complexity of a right infinite word is the function \( f(n) \) that inputs n and outputs the number of distinct subwords of length n that appear as a subword of \( f(n) \).

**Theorem 0.18.** Let \( w \) be a right-infinite word and let \( f(n) \) be its subword complexity function. If \( f(n) \leq n \) for some n then \( f(n) = O(1) \) and \( w \) is eventually periodic. That is, there is a gap in possible complexities.

**Proof.** Let \( g(n) \) denote the number of words of length n that appear infinitely often in \( w \). Then \( g(n) \leq f(n) \). WLOG \( g(1) \geq 2 \). Since \( g(1) \geq 2 \), there must be some \( i \) such that \( g(i) \geq g(i + 1) \). In fact, they must be equal. Why? So now let \( u_1, \ldots, u_r \) be the \( r \) words of length \( i \) that appear infinitely often. Then there is a unique letter \( x_m \) such that \( u_i x_m \) appears infinitely often in \( w \). That means that once we are far enough out in \( w \) whenever we get an occurrence of \( u_i \) it has to be followed by \( x_m \). Now we can write \( u_i x_m = x_n u_j \) for some \( n \) and some \( j \). Notice the next letter in \( w \) is eventually determined, so if we keep going we loop through and we get a period.

Using intricate combinatorial techniques, Shirshov proved the following beautiful result.

**Theorem 0.19.** (Shirshov) Let \( A = \{x_1, \ldots, x_k\} \) be a finite alphabet and let \( m \) be a positive integer. If \( w \) is a right-infinite word over the alphabet \( A \) then either there is some non-trivial word \( w_0 \in A^* \) such that \( w_0^m \) is a subword of \( w \) for every \( d \geq 1 \) or \( w \) contains a subword of the form \( w_1 w_2 \cdots w_m \) where \( w_1 \succ w_2 \succ \cdots \succ w_m \) are non-trivial words in \( A^* \) with no \( w_i \) equal to a prefix of \( w_j \) for \( i \neq j \) and \( \succ \) is the pure lexicographic order induced by \( x_1 \succ x_2 \succ \cdots \succ x_k \).

**Proof.** By Furstenberg’s theorem there is some uniformly recurrent right-infinite word \( v \) such that every subword of \( v \) is a subword of \( w \). Now if \( v \) is eventually periodic then \( v = v_0 v_m^\infty \) for some \( v_0, v_m \) with \( v_0 \) non-trivial, and we get the claim. If \( v \) is not eventually periodic then \( v \) must have at least \( m \) distinct subwords of length \( m - 1 \). Let \( w_1, \ldots, w_m \) be these distinct subwords and suppose that \( w_1 \succ w_2 \succ \cdots \succ w_m \). Since \( v \) is uniformly recurrent, there is a subword \( v_0 \) of \( v \) that can be written in the form \( v_0 = v_1 \cdots v_m \) where \( v_0 \) is a prefix of \( v_1 \). Then we see that \( v_{\sigma(1)} \cdots v_{\sigma(m)} \prec v_1 \cdots v_m \), where the inequality is strict whenever \( \sigma \) is not the identity. □

**Gelfand-Kirillov dimension**

Well, I did this in lecture before I wrote the notes. Recall that we defined a frame \( V \) of a finitely generated \( k \)-algebra, which is a finite dimensional space that contains 1 and a set of generators. We defined the GK dimension to be the limsup of \( \log \dim(V^n)/\log n \). We showed this was independent of choice of frame and that the GK dimension of a polynomial ring in \( d \) variables over \( k \) is equal to \( d \). We showed if \( A \subseteq B \) are two f.g. \( k \)-algebras and \( B \) is a finitely generated left \( A \)-module then they have the same GK dimension. Using Noether normalization, this gives that a f.g. commutative \( k \)-algebra has the same Krull and GK-dimension. That’s where we left off for the election day lecture. Let’s move on, shall we?

**Proposition 0.36.** Let \( A \) be a finitely generated \( k \)-algebra. Then \( \text{GKdim}(A) \in [0, 1) \) if and only if \( \text{GKdim}(A) = 0 \) if and only if \( A \) is finite-dimensional.

**Proof.** Let \( V \) be a frame. If \( V^n = V^{n+1} \) for some \( n \) then by induction, we have \( V^j = V^n \) for all \( j > n \) and so \( A = V^n \) and is finite-dimensional. On the other hand if \( V^{n+1} \) properly contain \( V^n \) for every \( n \) then \( \text{GKdim}(V) \geq 1 \) for every \( n \). This means that \( \log \dim(V^n)/\log n \geq 1 \) for every \( n \) and so the GK dimension is at least one if \( A \) is finite-dimensional. □

**Proposition 0.37.** For every \( \alpha \in [2, \infty] \) there is an algebra of GK dimension \( 2 \).

**Proof.** Let’s do this! First, let \( \alpha \in (2, 3) \) and let \( R = k\{x, y\} \), let \( S \) denote the set of natural numbers of the form \( \lfloor n^{1/(\alpha-2)} \rfloor \) and let \( J \) denote the ideal \( (y)^3 + (xy^2) : i \notin S \). We let \( A = R/J \) and we claim that \( A \) has GK dimension \( \alpha \). Let’s see why.

Let \( V = k + kx + ky \), where, as usual we should really talk about the image of \( x \) and \( y \) in \( A \). Then \( J \) is a monomial ideal, so a basis for \( V^n \) is the set of words of length \( \leq n \) in \( x, y \) that do not appear in \( J \). This is the set of words that have at most two \( y \)'s and such that if we have two \( y \)'s then they must have some \( x^i \) in between them for \( i \in S \). So let’s count these. So \( V^n \) has a basis consisting of \( 1, x, \ldots, x^n \) (the words with zero \( y \)'s), \( x^iyx^j \) with \( i + j \leq n - 1 \) (the words with 1 \( y \)), and \( x^iyx^jyx^l \) with \( i + j + l \leq n - 2 \) and \( j \in S \). So notice that

\[
\dim(V^n) \leq n + 1 + n^2 + n^2 \pi_S(n),
\]

where \( \pi_S(n) \) is the number of elements of \( S \) up to \( n \). Notice that \( \pi_S(n) \leq m \) where \( m \) is the biggest integer such that \( m^{1/(\alpha-2)} \leq n \). That gives \( m \leq n^{\alpha-2} \), so \( \dim(V^n) \leq 3n^\alpha \), so the GK dimension is at most \( \alpha \). On the other hand, \( V^{4n} \)
contains \( x^iy^j y^k \) with \( i, j \leq n \) and \( j \leq m \) with \( m \) such that \( m^{1/(\alpha - 2)} \leq n \leq (m + 1)^{1/(\alpha - 2)} \) and so \( V^{4n} \) has dimension at least \( n^2 \cdot (n^2 - 2 - 1) \leq 2n^2 + 2/2 \). Then we get \( \text{GKdim}(A) \geq \alpha \). Question: why did we need \( \alpha \in (2, 3) \) for this to work? Notice that the polynomial ring in two variables gets us 2, so we’ve shown the result for \( [2, 3) \). Next we show that if \( A \) has GK dimension \( \beta \) then \( A[t] \) has GK dimension \( \beta + 1 \). This isn’t bad. This then covers \([2, \infty)\). Finally, the free algebra on two generators has infinite GK dimension.

This leaves a famous result of Bergman, which shows that a ring of GK dimension in \([1, 2)\) has GK dimension 1. This is the famous Bergman gap theorem. We’ll prove it. We make a few preliminary results. Remember how we showed that if \( A \) is a left Ore subset of \( S \) there is some \( \ell \) such that \( \text{GKdim}(A) \leq \ell \). This then covers \([2, \infty)\). Finally, the free algebra on two generators has infinite GK dimension.

One of the most important theorems regarding localization is a theorem of Borho and Kraft. We should pause here and note that GK dimension can be extended to non-f.g. \( k \)-algebras by declaring that the GK dimension of the algebra is the supremum of the GK dimensions of all f.g. subalgebras. We note that by this definition it is immediate that if \( B \subseteq A \) is a \( k \)-algebra then \( \text{GKdim}(B) \leq \text{GKdim}(A) \).

**Theorem 0.20.** (B-K) Let \( B \subseteq A \) be \( k \)-algebras with \( A \) f.g. and suppose that \( \infty > \text{GKdim}(B) > \text{GKdim}(A) - 1 \) and that \( B \) is a domain and every nonzero \( s \in B \) has zero left annihilator in \( A \). Then \( S = B \setminus \{0\} \) is a left Ore subset of \( A \) and \( S^{-1}A = A \) is a finite dimensional left \( Q(B) \)-vector space. Moreover if \( A \) is a domain, then \( S^{-1}A = Q(A) \).

**Proof.** We make the remark that since \( B \) and \( A \) have finite GK dimension and the free algebra on two generators has infinite GK dimension, neither can contain a free subalgebra on two generators. In particular, by the assignment question we have \( S \) is a left Ore subset of \( B \) and \( S^{-1}B = Q(B) \). Now to see \( S \) is left Ore in \( A \) suppose it is false. Then there is some \( s \in S \) and some \( a \in A \) such that \( Sa \cap As = \emptyset \). This means that the sum \( Ba + Bs + Bs^2 + \cdots \) is direct. Why? If not, there is some \( n \) such that \( b_n a^n + \cdots + b_1 a = 0 \) with \( b_i \in B \) with \( b_i \neq 0 \); WLOG \( b_0 \neq 0 \) since \( s \) has zero left annihilator and so we can cancel. Thus \( bna = us \) for some \( u \) and we’re done! But notice this is going to give us a problem with GK dimension. Let \( V \) be a frame for \( B \). Then we can pick a frame \( W \) for \( A \) that contains \( V \) and contains \( a \) and \( s \). Then \( W^{2n} \) contains the direct sum \( V^{n}a + V^{n}a + \cdots + V^{n}a + V^{n}a^2 - 2 \) and so \( W^{2n} \) has dimension at least \( \lceil n \rceil \text{dim}(V^n) \geq ndim(V^n)/2 \) for \( n \) large. This contradicts the GK dimension inequality. Think about it! So \( S \) is a left Ore set. Now we know \( S^{-1}B = Q(B) \).

We claim that \( S^{-1}A \) is finite-dimensional as a left \( Q(B) \)-v.s. So now we let \( W \) still be that frame for \( A \). Then we have two cases: either \( Q(B)W^n = Q(B)W^{n+1} \) for some \( n \), or for each \( n \), there is some \( w_n \) in \( W^n \) such that \( \sum Q(B)w_n \) is direct. In the former case, we get the finite-dimensionality since the \( W \)-left algebra \( A \); in the latter case, we get a contradiction about the GK dimension inequality. Finally if \( A \) is a domain then \( T := S^{-1}A \subseteq Q(A) \) (note \( Q(A) \) exists from the assignment). Notice that right multiplication by \( a \neq 0 \) in \( A \) gives \( Q(B) \) a linear map from \( T \) to \( T \). This map is injective since \( A \) is a domain; also it’s onto since \( T \) is finite-dimensional as a \( Q(B) \)-v.s. So now that means it has an inverse in \( T \) and so \( T \) is a division ring.

**Corollary 0.38.** Let \( k \) be a field and let \( A \) be a f.g. \( k \)-algebra of GK dimension one and suppose that \( A \) is a domain. Then \( A \) is PI. Moreover if \( k \) is algebraically closed then \( A \) is commutative.

**Proof.** The steps in the proof are as follows. We first claim that the Kurosh conjecture holds for f.g. algebra of GK dimension one. This means that there is some \( t \in A \) that is not algebraic over \( k \). This means that \( k[t] \) is a subalgebra of \( A \). Now we know that \( B = k[t] \) is a domain of GK dimension one and so by B-K we have that \( S = k[t] \setminus \{0\} \) is an Ore set in \( A \) and \( S^{-1}A = Q(A) \) is a finite left vector space over \( Q(B) = k(t) \). So write \( Q(A) = k(t)e_1 + \cdots + k(t)e_r \). Then right multiplication by \( A \) gives a \( k(t) \)-linear map of \( A \) into \( \text{End}_{k(t)}(Q(A)) \), which is injective since \( A \) is a domain. This gives a \( k \)-algebra embedding of \( A \) into \( M_r(Q(B)) \), which is PI by the Amitsur-Levitzki theorem. Now suppose that \( k \) is algebraically closed. Now \( Q(A) \) is a PI division ring by Kaplansky’s theorem (it’s primitive, right?). So \( Q(A) \) is finite-dimensional over its centre \( Z \). The center is a field. We claim that \( Z \) has GK dimension 1 as a \( k \)-algebra. Why is this? By Posner, we have \( Q(A) = S^{-1}A \) where \( S \) is the centre of \( A \); by A4 we have \( Q(A) \) has the same GK dimension of \( A \), which is 1. Then \( Z \) is a subalgebra so it has GK at most 1. On the other hand there is some \( z \in Z \setminus k \) and so \( Z \ni k[z] \) and so it has GK dimension 1. Now we have to use Tsen’s theorem, which we’ll try to do by the end of the course. We claim that \( Z \) is a finitely generated extension of \( k \). To see
this, pick \( z \in Z(A) \setminus k \). Then \( F = k(z) \) is a subfield of \( Z \). We note that \( Q(A) \) is finite-dimensional over \( F \) by Borho-Kraft and so \( Z \) is too. Now \( Q(A) \) is a finite-dimensional division ring over \( Z \). By Tsen’s theorem \( Br(Z) \) is trivial. This means that \( [Q(A)] = [Z] \) and so \( Q(A) = Z \) by the assignment.

What about GK dimension 2? There is Agata Smoktunowicz’s gap theorem; there’s the Artin-Stafford theorem. These give a description of “nc projective curves”. What about surfaces? This is open. Finally it is worth talking about Gromov’s theorem. This says that if \( G \) is a f.g. group and \( k \) is a field then \( k[G] \) has finite GK dimension if and only if \( G \) has a normal nilpotent subgroup \( N \) of finite index. Amazing! This is too hard for us to prove, but believe it or not, back in 2013 I ran a 19-lecture seminar here in which I gave a complete proof from scratch of Gromov’s theorem. Never again.

The last thing we should mention is that a f.g. prime k-algebra \( A \) of GK dimension 1 is PI (this is a theorem of Small and Warfield). On A4, you’ll prove that such a ring is noetherian. This means it’s left Goldie and so there is some regular element \( t \). Now let \( S \) be the set of all regular elements. If every element of \( S \) is algebraic then all elements of \( S \) are units and so \( A = Q(A) = M_n(D) \) for some division ring \( D \). Now if we take a set of generators for \( A \) and look at the entries in the matrices, we generate a f.g. subring of \( D \). This is necessarily of GK dimension at most 1 and so \( D \) is PI and hence so is \( A \). On the other hand if some element of \( S \) is not a unit then there is some \( t \in S \) such that \( k[t] \) is a subring satisfying the hypothesis of Borho-Kraft. This means that \( A \) embeds in a finite-dimensional \( k(t) \)-vector space and so it is PI by the usual endomorphism ring trick.

**The Golod-Shafarevich theorem**

We recall that a \( k \)-algebra \( A = \bigoplus_{i=0}^{\infty} A_i \) is graded if each \( A_i \) is a \( k \)-vector subspace of \( A \) and \( A_i A_j \subseteq A_{i+j} \). It’s connected if \( A_0 = k \) and it’s finitely graded if each \( A_i \) is finite-dimensional. It’s generated in degree 1 if \( A_1 \) generates \( A \) as a \( k \)-algebra.

Notice that a polynomial ring is connected finitely graded and generated in degree 1, where the grading is induced by total degree.

The Golod-Shafarevich theorem is an incredible result about graded rings. To set the stage, let \( A = k\{x_1, \ldots, x_d\} \). Then \( A \) is a graded ring, where we let \( A_i \) denote the span of words of length \( i \). Notice it is connected finitely graded and generated in degree 1. We say that a two-sided ideal \( J \) of \( A \) is homogeneous if \( J \) is generated by elements from \( A_1 \). Notice that with the Weyl algebra we do not have a homogeneous ideal with respect to the grading described above. But a polynomial ring is homogeneous. If \( J \) is a homogeneous ideal then the grading on \( A \) induces a grading on \( A/J \) and so \( A/J \) is a graded ring. Now suppose that \( J \) is either finitely generated or countably generated; since \( J \) is homogeneous, we can write a set of generators \( (f_1, f_2, f_3, \ldots) \) where each \( f_i \) is from some \( A_j \). We let \( d_i \) denote the number of \( f_i \) on the list of degree \( j \). We note that we may assume that \( d_i = 0 \) without loss of generality. Why? So we have some numbers \( d_2, d_3, \ldots \). The Golod-Shafarevich theorem says the following.

**Theorem 0.21. (G-S) Suppose that the Taylor series expansion of**

\[
1/(1 - dt + d_2 t^2 + d_3 t^3 + \cdots)
\]

**has positive coefficients for every degree. Then the algebra \( A/J \) is infinite-dimensional.**

Think for a minute about how incredible this theorem is. It says that no matter which relations you impose. If you just verify a condition about the Taylor series then you get an infinite-dimensional ring. Let’s look at a polynomial ring in two variables as an example. We know that’s infinite-dimensional of course, but let’s use G-S. We have \( A = k\{x, y\} \) and \( J = (xy - yx) \). So \( d_2 = 1 \) and \( d_i = 0 \) for \( i > 2 \). Then we need to look at the expansion of \( 1/(1 - 2t + t^2) = 1 + 2t + 3t^2 + \cdots \). Notice that works! OK, so let’s see the idea behind GS. We’ll suppose that we have a ring \( R := k\{x_1, \ldots, x_d\} \). As pointed out in class, this has an \( N \)-grading, where we take \( R_n \) to be the span of words of length \( n \). Now we’re going to impose relations. Suppose that we have a countable or finite set of homogeneous relations (i.e., each relation is in some \( R_i \)). \( r_1, r_2, r_3, \ldots \). (Actually, any f.g. algebra can be defined with just countably many relations.) In this case, if we let \( J = (r_1, r_2, \ldots) \) then \( R/J \) has an induced grading. Think about it! So now let \( m_i \) denote the degree of \( r_i \). By reordering, we may assume that \( 2 \leq m_1 \leq m_2 \leq \cdots \). (Why is \( m_1 \geq 2 \)?) Now let \( A = R/J \). Then we let \( A_n \) denote the space of homogeneous elements of degree \( n \). Now let \( n \) be a positive integer and let \( k \) be such that \( n_k \leq n < m_{k+1} \). The key observation is that we have an exact sequence

\[
\bigoplus_{i=1}^{k} A_{n-m_i} \rightarrow A_{n-d-1} \rightarrow A_n \rightarrow 0.
\]

I’d better explain how these maps work. Map the first map \( f \) and the second map \( g \). It’s easy to see what \( g \) is: it’s just the map \( g(b_1, \ldots, b_d) = b_1 x_1 + \cdots + b_d x_d \). Notice that \( g \) is onto, so we get exactness at the end. Each relation \( r_i \) can be written as \( \sum_{i,j} s_{i,j} x_j \). Given \( a \in A_{n-m_i} \), we define \( f(a) = (a s_{1,1}, a s_{1,2}, \ldots, a s_{1,d}) \). Notice that for \( a \in A_{m_i-n} \), we have \( g \circ f(a) = a r_i = 0 \) in \( A \). So we certainly have \( Im(f) \) is contained in \( ker(g) \). Now to show exactness, let \( (u_1, \ldots, u_d) \) be in the kernel of \( g \). Then \( u_1 x_1 + \cdots + u_d x_d \in J \). This means we can write \( u_1 x_1 + \cdots + u_d x_d = \sum p_{i,j} q_{i,j} \), where we can take the \( q_{i,j} \) to be words in \( x_1, \ldots, x_d \). Notice that if the length of \( q_{i,j} \) is greater than 1 for some \( i, j \) then if \( x_0 \) is its last letter we can replace \( u_i \) by \( u_i - p_{i,j} r_{i,j} q_{i,j} \) where \( r_{i,j} \) is \( q_{i,j} \) with the last letter removed. These are the same element in \( A \) but now the right hand side of our expression for \( u_1 x_1 + \cdots + u_d x_d \) is shorter. The moral of the story is that we may assume without
loss of generality that \( u_1 x_1 + \cdots + u_d x_d = \sum p_{i,j} r_i \). Now we rewrite \( r_i \) using the \( s_{i,t} \) to get

\[
u_1 x_1 + \cdots + u_d x_d = \sum_{i,j,t} p_{i,j} s_{i,t} x_t.
\]

Note: This holds in \( R \). Now in \( R \) we can group terms that end in \( x_t \) and we get

\[
u_t x_t = \sum_{i,j} p_{i,j} s_{i,t} x_t
\]

and so \( u_t = \sum_{i,j} p_{i,j} s_{i,t} \). In particular, \((u_1, \ldots, u_d) = f(\sum_{i,j} p_{i,j})\). Thus we get exactness.

What does this mean?

A lot! By rank-plus-nullity, we have

\[
dim(A^t_{n-1}) = \dim(\text{Range}(g)) + \dim(\ker(g)).
\]

Now let \( a_i \) denote the dimension of \( A_i \). Then the left hand side is \( d a_{n-1} \). Since \( g \) is onto the dimension of the range is \( a_n \).

Now the kernel of \( g \) is the image of \( f \) and this is at most the dimension of the domain of \( f \); i.e.,

\[
\sum_{j=1}^{k} a_{n-m_j}.
\]

So we get

\[
d a_{n-1} \leq a_n + \sum_{j \geq 1} a_{n-m_j},
\]

where we define \( a_i = 0 \) if \( i < 0 \). Now let

\[
F(t) = \sum a_i t^i \in \mathbb{Z}[t].
\]

Then if we multiply \( F(t) \) by \((1 - dt - \sum_{j \geq 1} t^{m_j})\) then notice the coefficient of \( t^n \) is just

\[
a_n - d a_{n-1} - \sum_{j \geq 1} a_{n-m_j} \geq 0.
\]

Now suppose that the power series expansion of \((1 - dt - \sum_{j \geq 1} t^{m_j})\) has strictly positive coefficients. Then

\[
F(t) = F(t)(1 - dt - \sum_{j \geq 1} t^{m_j})(1 - dt - \sum_{j \geq 1} t^{m_j})^{-1}
\]

is the product of two power series, one of which has constant coefficient one and nonnegative coefficients and the other having strictly positive coefficients. Thus \( F(t) \) has strictly positive coefficients and so \( a_n > 0 \) for every \( n \) and so \( A \) is infinite-dimensional. Now it is more convenient to rewrite

\[
\sum_{j \geq 1} t^{m_j} = \sum_{i \geq 2} d_i t^i,
\]

where \( d_i = \# \{ j : m_j = i \} \). So now to invoke this theorem we need a criterion that tells us when

\[
(1 - dt + \sum_{i \geq 2} d_i t^i)^{-1}
\]

has nonnegative coefficients. Here is one easy criterion.

**Lemma 0.39.** Suppose that \( d_2 = 0 \) and \( d_i < (d/4)^i \) for every \( i \geq 3 \). Then

\[
(1 - dt + \sum_{i \geq 2} d_i t^i)^{-1}
\]

has nonnegative coefficients.

**Proof.** Let

\[
\sum_{n} c_n t^n
\]

be the Taylor series expansion of

\[
(1 - dt + \sum_{i \geq 2} d_i t^i)^{-1}
\]

Then we have \( c_0 = 1, c_1 = d \). We claim that \( c_n \geq a c_{n-1} \) for every \( n \geq 1 \), where \( a = d/3 \). To see this, we prove it by induction on \( n \geq 1 \). It’s true for \( n = 1 \). Suppose that it holds up to \( n < N \). Then we have \( c_N = d c_{N-1} - \sum_{i \geq 2} d_i c_{n-i} \). By the induction hypothesis, we have \( c_{N-1} \geq a^{i-1} c_{N-i} \) for \( i \geq 2 \) and so

\[
dc_{N-1} - \sum_{i \geq 3} d_i c_{n-i} \geq dc_{N-1} - \sum_{i \geq 2} d_i a^{i-1} c_{N-i}.
\]
But wait! \( d_i \leq (d/4)^i \) and so we see that this is at least
\[
dc_{N-1} - \sum_{i \geq 3} (d/4)^i a^{1-i} c_{N-1}.
\]

Finally, \( \sum_{i \geq 3} (d/4)^i a^{1-i} = (d/4)^3 a^{-2} (1 - da^{-1}/4)^{-1} \), since \( da^{-1}/4 < 1 \). So to finish it off, we just need to verify that \( d - (d/4)^3 a^{-2} (1 - da^{-1}/4)^{-1} \geq a \). Well, plug in \( a = d/3 \) and we get that this is equivalent to
\[
d - 9d/64 \cdot (1 - 3/4)^{-1} = d - 9d/16 = 7d/16 \geq d/3.
\]
Success!

Obviously we can do a bit better than that, but let’s see how we can use this criterion to produce an infinite-dimensional finitely generated algebraic algebra. To start, let \( k \) be a field that is countable (or finite) and let \( R = k\{x_1, \ldots, x_5\} \). Then let \( m = (x_1, \ldots, x_5) \), i.e., the homogeneous maximal ideal. Since \( k \) is countable, \( R \) is countably infinite. Let \( f_1, f_2, f_3, \ldots \) be an enumeration of the elements of \( m \). Notice that each \( f_i \) can be written as \( f_{i,1} + f_{i,2} + \cdots + f_{i,n_i} \) where \( f_{i,j} \) is homogeneous of degree \( j \); i.e., it is in \( R_j \), and \( n_i \) is the highest degree occurring. Now pick \( 3 \leq m_1 < m_2 < m_3 \cdots \) so that \( m_2 = m_1 n_1, m_3 = m_2 n_2, \ldots \). Notice that \( f_{i,m_i} = g_{i,m_i} + \cdots + g_{i,m_i} \), where \( g_{i,j} \) is homogeneous of degree \( j \). Now let \( J \) be the ideal generated by the \( g_{i,j} \). Notice that given \( i \), we have \( g_{i,j} \) is nonzero only if \( m_i \leq j \leq m_i n_i \). Since \( m_{i+1} > m_i \), we see that there is at most one element of degree \( j \) in our set of generators for \( j \geq 3 \) (notice since \( m_i \geq 2 \), we have no degree 2 generators). Thus \( d_i \leq 1 \) for all \( i \geq 3 \) and \( d_2 = 0 \). Thus \( d_i \leq (d/4)^i \) for all \( i \geq 3 \) and so we get that \( R/J \) is infinite dimensional. Now let’s show that \( R \) is algebraic and we’ll have our counter-example to the Kurosh problem.

Notice that by construction \( f_{i,m_i} \in J \) and so every element in \( m \) is nilpotent. Now if \( r \in R \) then there is some \( c \in k \) such that \( r - c \in m \) and so \( (r-c)^n = 0 \), which gives us an algebraic equation. Thus \( R \) is algebraic.

\section*{Two for the price of one}

Let’s get a counter-example to the Burnside problem. To do this, we let \( k \) be a countable field of characteristic \( p > 0 \). Then let \( R \) be the above algebra \( k\{x_1, \ldots, x_5\}/J \) that is algebraic over \( k \) and infinite-dimensional and graded. We note that each \( x_i \) is nilpotent and so there is some \( m \) so that \( x_i^m = 0 \) for \( i = 1, \ldots, 5 \). Now this gives \( (1 + x_i)^p^m = 1 \) since \( k \) has characteristic \( p \). Thus \( 1 + x_1, \ldots, 1 + x_5 \) are in the units group of \( R \). Let \( G \) be the group generated by these elements. Then \( G \) is finitely generated. We claim that \( G \) is infinite and torsion. The torsion part is easy. Notice that since \( 1 + x_1, \ldots, 1 + x_5 \) are torsion, \( G \) is generated as a semigroup by these elements, too. Now any finite product of these elements is of the form \( 1 + a \) for some \( a \in m \), where \( m \) is the maximal ideal above. We know every element of \( m \) is nilpotent so there is some \( j \) so that \( a^p^j = 0 \) so \( 1 + a \) to the \( p^j \)-th power is 1. Now we have to show that \( G \) is infinite. Suppose it is not. Then there is some \( N \) such that every product of \( N \) elements of \( \{1 + x_i : i = 1, \ldots, 5\} \) is equal to a product of length \( j \) for some \( j < N \). Now since \( R \) is infinite-dimensional we know that \( R \) is nonalgebraic since \( R_N \) is spanned by the words of length \( N \), we know there is some word \( x_{i_1} \cdots x_{i_N} \) that has nonzero image in \( R_N \). Now let \( g = (1 + x_{i_1})(1 + x_{i_2}) \cdots (1 + x_{i_N}) \). By assumption, \( g \) is equal to a product of length \( j < N \). So \( g \in R_0 + R_1 + \cdots + R_j \). But notice if we expand \( g \), we have \( g = 1 + g_1 + \cdots + g_{N-1} x_{i_1} \cdots x_{i_N} \). Since \( g \in R_0 + R_1 + \cdots + R_j \) with \( j < N \) we see that comparing the degree \( N \) part, we get \( x_{i_1} \cdots x_{i_N} = 0 \), which is a contradiction. So \( G \) is an infinite torsion group.

\section*{Where do we go from here}

The Golod-Shafarevich theorem was the one way of producing counter-examples for Kurosh- and Burnside-type problems for a long time. Back around 2002, Agata Smoktuowicz found a different method of producing counter-examples. In particular, she found an example of a finitely generated algebraic algebra \( R \) such that \( R[t] \) is not algebraic. Later, she even produced an example of a ring \( R \) that is algebraic such that \( R[t] \) contains a free algebra on two generators. This gave a counter-example to a question of Amitsur. The most famous remaining problem of this type in ring theory is the so-called Köthe conjecture. It asks the following easy question: If \( R \) is a ring and \( I \) and \( J \) are nil left ideal is \( I + J \) a nil left ideal? This is still open. Amitsur proved that this is true when \( R \) is a \( k \)-algebra and \( k \) is uncountable. This is argued as follows. First, we show that we may assume that \( R \) is finitely generated. Why? Pick \( x \in I \) and \( y \in J \) such that \( x + y \) is not nilpotent. Then the subalgebra generated by \( x \) and \( y \) still gives a counter-example. Next show that every nil left ideal is contained in the Jacobson radical. We proved this: if \( c \) is in a nil left ideal then \( 1 + ac \) is invertible for every \( a \in R \) and so \( c \) is in the Jacobson radical.

Next we show that if \( \operatorname{dim} k(R) < |k| \) then \( J(R) \) is nil. So \( I \) and \( J \) are in \( J(R) \) and so \( I + J \) is in \( J(R) \).

For countable base fields, we still do not know what is going on.

Now Krempa showed that a Köthe’s conjecture can be reduced to studying graded nil rings \( R \) generated by two elements \( x, y \) of degree 1 and then asking whether \( x + ty \) is nilpotent. So this is a very special question. Note that Agata Smoktuowicz found an example of a 3-generated graded nil ring with \( x + ty + sz \) not nilpotent. This requires a countable base field.
Tsen’s theorem

When we were studying domains of Gelfand-Kirillov dimension one over algebraically closed fields, as one point we invoked Tsen’s theorem to say that they were commutative. The fact we used, more precisely, was that if $k$ is an algebraically closed field and $K$ is a finite field extension of $k(x)$, where $k(x)$ is the field of rational functions over $k$ in one variable, then the Brauer group of $K$ is trivial.

Definition 0.40. Let $K$ be a field. We say that $K$ is a $C_1$ field if for every $n \geq 2$ we have that if $f(t_1, \ldots, t_n)$ is a homogeneous polynomial of degree $0 < d < n$, then there is some nonzero point $(a_1, \ldots, a_n) \in K^n$ such that $f(a_1, \ldots, a_n) = 0$.

We note that if $K$ is algebraically closed then $K$ is $C_1$. This is not hard to see, but let’s show this. Let $f(t_1, \ldots, t_n)$ be a homogeneous polynomial of degree $d \geq 1$. We can assume that $f$ is nonzero and we can assume that the variable $t_1$ occurs in $f$. Then we can write $f(t_1, \ldots, t_n) = g(t_1^i + \cdots + g_0$ for some $i \leq d$ with $i \geq 1$, where $g_j \in K[t_2, \ldots, t_n]$ is homogeneous of degree exactly $d - i$ and $g_i$ is nonzero. Now since $g_i$ is not identically zero, it’s an easy exercise to show there is some $(a_2, \ldots, a_n) \in K^{n-1} \setminus \{(0, 0, \ldots, 0)\}$ such that $g_i(a_2, \ldots, a_n) \neq 0$. (In fact, we’ll prove later in a lemma that given an infinite subfield $E$ of $K$ we have that $g_i$ cannot vanish identically on $E^n$.)

Then if we set $t_i = a_i$ for $i \geq 2$, we obtain a non-trivial polynomial in $K[t_1]$ of degree $i \geq 1$, which has a solution $t_1 = a_1$ in $K$ since $K$ is algebraically closed.

Thus we can think of being $C_1$ as being something close to being algebraically closed, as it is measuring whether certain polynomial equations have solutions in $K$. Our main theorem of this section is the following.

Theorem 0.22. Let $K$ be a $C_1$ field. Then $\text{Br}(K)$ is trivial.

Before we prove this, we require a simple lemma.

Lemma 0.41. Let $K$ be an infinite field and let $E$ be a finite Galois extension of $K$ and let $f(t_1, \ldots, t_n) \in E[t_1, \ldots, t_n]$. Suppose that $f(c_1, \ldots, c_n) \in K$ for every $(c_1, \ldots, c_n) \in K^n$. Then $f(t_1, \ldots, t_n) \in K[t_1, \ldots, t_n]$. 

Proof. Suppose not. Then there is some $\sigma$ in the Galois group of $E/K$ such that $f^\sigma \neq f$, where $f^\sigma$ is the polynomial obtained by applying $\sigma$ coefficient-wise to $f$. Then $g := f^\sigma - f$ is a nonzero polynomial. Notice that for $(c_1, \ldots, c_n) \in K^n$ we have $f^\sigma(c_1, \ldots, c_n) = \sigma(f(c_1, \ldots, c_n)) = f(c_1, \ldots, c_n)$, since $f(c_1, \ldots, c_n) \in K$ and so $g$ is a nonzero polynomial that is identically zero on $K^n$.

So it suffices to prove that if $K$ is infinite field and $E$ is an extension of $K$ and $g \in E[t_1, \ldots, t_n]$ is such that $g(c_1, \ldots, c_n) = 0$ for every $(c_1, \ldots, c_n) \in K^n$ then $g$ is the zero polynomial. This is a simple induction on $n$. When $n = 1$ we note that $g$ has at most $\deg(g)$ roots in $K$ and so there is some $c_1 \in K$ with $g(c_1) \neq 0$ if $g$ is nonzero. In general, if it is true up to $n - 1$ variables and if $g$ is nonzero then we can write $g = \sum_{i=0}^d g_i(t_1, \ldots, t_{n-1})t_n^i$. We may assume that $d > 0$ and that $g_d \neq 0$ since otherwise, $g$ is a polynomial in $\leq n - 1$ variables and we can apply the claim holds here. So now we pick $(c_1, \ldots, c_{n-1}) \in K^{n-1}$ so that $g_d(c_1, \ldots, c_{n-1}) \neq 0$. Then setting $t_i = c_i$ for $i < d$ gives us a one-variable polynomial that is nonzero and we know how to do this case. Done!

Now let’s prove our main result about Brauer groups.

Proof of the main theorem of this section. We shall only prove this in the characteristic zero case. In general, one can show that any division ring has a separable maximal subfield and this is enough to get the rest of the proof to go through in the case where $K$ is infinite. When $K$ is finite, we already know the Brauer group is trivial, of course, by Wedderburn’s theorem.

Let $D$ be a division ring with $[D : K] < \infty$ and $Z(D) = K$. We shall show that $D = K$. We have shown in class that $[D : K] = m^2$ for some $m \geq 1$ and that $D \otimes_K L \cong M_m(L)$ where $[L : K] = m$ and $L$ is a maximal subfield of $D$. Notice that we can take a finite Galois extension $E$ of $K$ that contains $L$ and we have $D \otimes_K E \cong M_m(E)$. So we will fix a $K$-algebra isomorphism $D \otimes_K E \cong M_m(E)$ in advance and call this map $\alpha$.

Now fix a basis $a_1, \ldots, a_m$ for $D$ over $K$. Now let $t_1, \ldots, t_m$ be commuting indeterminates and consider the element $x := a_1t_1 + \cdots + a_mt_m \in D \otimes_K K[t_1, \ldots, t_m]$. By using the embedding $\alpha$ of $D$ into $M_m(E)$, we can regard $x$ as a matrix in $M_m(E[t_1, \ldots, t_m])$. Observe that every entry of $x$ is a homogeneous linear polynomial in $t_1, \ldots, t_m$ with coefficients in $E$. This means that $f(t_1, \ldots, t_m) := \det(\alpha(x))$ is a homogeneous polynomial in $t_1, \ldots, t_m$ of total degree $m$. Now a priori all we know is that the coefficients of $f$ are in $K$, but we claim they are in fact in $K$. Once we have that, notice we’re done.

Let’s see why. First, since $K$ is a $C_1$ field if $m > 1$ then since $m^2 > m$ we see that there is a non-trivial solution $(c_1, \ldots, c_m) \in K^m$ such that $f(c_1, \ldots, c_m) = 0$. This then gives that $y := c_1a_1 + \cdots + c_ma_m \in D$ has the property that it has determinant zero when we consider it as an element in $M_m(K)$. But this is impossible since $y$ is nonzero (the $a_i$ are linearly independent over $K$ and the $c_i$ are not all zero) and it has an inverse in $D$ and hence it is invertible in $M_m(E)$.

So it only remains to show that $f$ is in $K[t_1, \ldots, t_m]$. To see this, let $\sigma$ be in the Galois group of $E/K$. Then to show that $f$ is in $K[t_1, \ldots, t_m]$ it is sufficient to show that $\sigma$ fixes $f$ where we apply $\sigma$ coefficient-wise. Now we use the Skolem-Noether theorem (yet again)! Notice that $\sigma$ induces a $K$-algebra automorphism of $M_m(E)$, by applying $\sigma$ entry-wise to our matrix. We have two maps $\alpha, \beta : D \rightarrow M_m(E)$. The first map $\alpha$ is just the usual inclusion $D \rightarrow D \otimes_K E \cong M_m(E)$ from before. Then we let $\beta = \alpha \circ \sigma$, where $\alpha$ is the automorphism described above induced by $\sigma$.

Then the Skolem-Noether theorem says that there is some invertible $v \in M_m(E)$ such that $\beta(u) = v \alpha(u) v^{-1}$ for every $u \in D$. In particular, $\det(\beta(u)) = \det(\alpha(u))$ for every $u \in D$. But notice that by construction $\det(\beta(u)) = \sigma(\det(\alpha(u)))$ and
so \( \det(\alpha(u)) \) is in \( K \) for every \( u \in D \). This means that our polynomial \( f(t_1, \ldots, t_{m^2}) \) has the property that \( f(b_1, \ldots, b_{m^2}) \in K \) for every \((b_1, \ldots, b_{m^2}) \in K^{m^2} \), since \( f(b_1, \ldots, b_{m^2}) = \det(\alpha(b_1a_1 + \cdots + b_{m^2}a_{m^2})) = \det(\alpha(D)) \).

So now to finish the proof, we just invoke the above lemma and we see that \( f(t_1, \ldots, t_{m^2}) \) has all of its coefficients in \( K \). □

We showed that \( \mathbb{R} \) has Brauer group isomorphic to \( \mathbb{Z}/2\mathbb{Z} \), so \( \mathbb{R} \) had better not be \( C_1 \). Let’s see this.

**Proposition 0.42.** Let \( K \) be a subfield of \( \mathbb{R} \). Then \( K \) is not \( C_1 \).

**Proof.** Let \( f(t_1, t_2, t_3) = t_1^2 + t_2^2 + t_3^2 = 0 \). Then since squares of real numbers are nonnegative, we see that \( f(t_1, t_2, t_3) = 0 \) has no non-trivial solutions in \( \mathbb{R} \). □

**Theorem 0.23.** Now let’s show that if \( k \) is algebraically closed then \( K := k(x) \) is a \( C_1 \) field.

**Proof.** This isn’t so bad, as it turns out. To see this, we fix \( n \geq 2 \) and a homogeneous polynomial \( f(t_1, \ldots, t_n) \) of degree \( d < n \) with coefficients in \( K \). Now we note that we can clear denominators and assume that \( f \) has coefficients in \( k[x] \). We’ll let \( m \) denote the maximum of the degrees of the coefficients of \( f \) in \( x \).

We want to show that \( f \) has a non-trivial zero in \( K^n \). To do this let \( N \) be a huge positive integer—we’ll pick it carefully later.

Now let \( V_j \) denote the space of polynomials in \( x \) of degree \( \leq j \) for every \( j \geq 0 \). So \( V_j \) has dimension \( j + 1 \). Now notice that if \( a_1, \ldots, a_n \) are elements of \( V_N \) then \( f(a_1, \ldots, a_n) \in V_{Nd+m} \) since \( f \) has total degree \( d \) and the coefficients have degree at most \( m \). So notice that \( f \) is cramming \( V_N \) into \( V_{Nd+m} \) that is, it is pushing an \((N + 1)n = Nn + n\)-dimensional space into an \( Nd + 1 + m \)-dimensional space. Since \( n > d \) we have \( Nn + n > Nd + 1 + m \) for \( N \) large enough. Thus we expect there to be something nonzero that is sent to zero. Of course, \( f \) is not linear in general, so we can’t say this right away, but our intuition tells us that there should be a solution. As it turns out, we can still get this to work.

Let \( N \) be a positive integer that is really big—now we know what we should pick. We want \( Nn + n > Nd + 1 + m \) so we want \( N(n-d) = n > 1 + m \) and so since \( n > d \) and \( m \geq 2 \), I guess \( N = m \) will do.

Now make \((N + 1)n\) indeterminates \( z_{i,j} \) with \( 0 \leq i \leq N, 1 \leq j \leq n \). Then let \( a_j := \sum_{i=0}^N z_{i,j}x^i \). Then \( f(a_1, \ldots, a_n) \) is a polynomial in \( x \) of degree at most \( Nd \) with coefficients in the ring \( R := k[z_{i,j} : 0 \leq i \leq N, 1 \leq j \leq n] \). Moreover, each coefficient is in the maximal ideal generated by the \( z_{i,j} \) in \( R \). We’d like to say that we can set the \( z_{i,j} \) to some elements in \( k \), not all zero, so that \( f \) vanishes. Notice that \( f \) will vanish if and only if the coefficient of \( x^j \) is equal to zero for \( j = 0, \ldots, Nd + m \). Let \( P(x) \) denote the coefficient of \( x^j \) in \( f(a_1, \ldots, a_n) \). Then if we can set the \( z_{i,j} \) to some elements in \( k \), not all zero, such that \( f \) vanishes then this is saying that the polynomials \( P_0, \ldots, P_{Nd+m} \) have a common non-trivial zero in \( k^{(N+1)n} \). Now let \( I \) denote the ideal in \( R := k[z_{i,j} : 0 \leq i \leq N, 1 \leq j \leq n] \) generated by \( P_0, \ldots, P_{Nd+m} \).

We use theorems from commutative algebra—Krull’s generalized principal ideal theorem and the Nullstellensatz (see PM 446—I have course notes that do these results). This says in particular that if we have an ideal \( I = (Q_0, \ldots, Q_s) \) that is generated by \( s \) elements in a polynomial ring in \( t \) variables over an algebraically closed field \( k \) and \( t > s \) and \( I \) is a proper ideal then there are infinitely many points in \( k^t \) such that \( Q_1, \ldots, Q_s \) all vanish. In particular, since our ideal \( I = (P_0, \ldots, P_{Nd+m}) \) is contained in the maximal ideal generated by the \( z_{i,j} \) and since \( Nd + m + 1 < (N + 1)n \), we get a non-trivial point in \( k^{(N+1)n} \) and we are done. □

This now shows that if \( k \) is algebraically closed then the Brauer group of \( K = k(x) \) is trivial. We’d like to be able to push this to finite extensions of \( k(x) \).

**Proposition 0.43.** Let \( E \) be a finite extension of a \( C_1 \) field \( K \). Then \( E \) is \( C_1 \).

We will only prove the characteristic zero case for reasons that I’ll explain later—the positive characteristic case is not much harder. Before we prove this, we require a basic lemma.

**Lemma 0.44.** Let \( K \) be a field of characteristic zero and let \( E \) be a finite extension of \( K \) and let \( L \) be a finite Galois extension of \( K \) that contains \( E \). Then if \( [E : K] = m \) then there exist \( \sigma_1, \ldots, \sigma_m \in \text{Gal}(L/K) \) such that if \( \sigma \in \text{Gal}(L/E) \) then \( \sigma|_E = \sigma_i|_E \) for some \( i \leq m \) and \( \sigma \circ \sigma_1|_E, \ldots, \sigma \circ \sigma_m|_E \) is a permutation of \( \sigma_1|_E, \ldots, \sigma_m|_E \).

**Proof.** By the theorem of the primitive element (I hope the class knows this), there is some \( a \in E \) such that \( E = K[a] \). Now let \( p(x) \) denote the minimal polynomial of \( a \) with coefficients in \( K \). Then \( p \) has degree \( m \) since \([E : K] = m \) and it is irreducible. Since \( K \) has characteristic zero we know that \( p \) has \( m \) distinct roots and since \( L \) is Galois we know that all of these roots must lie in \( L \) (since one of them, namely \( a \) does). Now let \( a = a_1, \ldots, a_m \) denote the distinct roots of \( p \) in \( L \). Then every element of the Galois group must send \( a \) to some \( a_i \). Moreover, we know from Galois theory that for every \( i \) there is some \( \theta_i \) that sends \( a \) to \( a_i \). Since \( \sigma \in \text{Gal}(L/E) \) is completely determined on \( E \) by where it sends \( a \), we see that \( \sigma(a) = \theta_i(a) \) for some \( i \) and so \( \sigma|_E = \sigma_i|_E \) for some \( i \). Now \( \sigma \) permutes \( a_1, \ldots, a_m \) and so we see that \( \sigma \circ \sigma_1|_E, \ldots, \sigma \circ \sigma_m|_E \) is a permutation of \( \sigma_1|_E, \ldots, \sigma_m|_E \). □

**Proof of the proposition.** We’ll only prove the characteristic zero case—the characteristic \( p > 0 \) case is not really harder, but we have to get into inseparable extensions and I’m not assuming everyone knows the theory here. So let’s assume that \( K \) is characteristic zero. Then there is a finite Galois extension \( L \) of \( K \) that contains \( E \). Now let \( f(t_1, \ldots, t_n) \) be a homogeneous
polynomial in $E[t_1, \ldots, t_n]$ of degree $0 < d < n$. Let $b_1, \ldots, b_m$ be a basis for $E$ over $K$. Then we make new indeterminates $y_{i,j}$ for $i = 1, \ldots, n$, $j = 1, \ldots, m$. We let $g(y_{i,j}: 1 \leq i \leq n, 1 \leq j \leq m) = f(u_1, \ldots, u_n)$ where

$$u_i := \sum_{j=1}^{m} b_j y_{i,j}.$$ 

Then notice that $f(t_1, \ldots, t_n)$ has a non-trivial solution in $E^n$ if and only if $h$ has a non-trivial zero in $K^{nm}$. Now $h$ is homogeneous of degree $d$ in $nm$ variables, but the main problem is that its coefficients are not in $K$—they are only in $E$. Here’s how we can fix this problem. By the above lemma, there exist $\sigma_1, \ldots, \sigma_m$ in the Galois group of $L/K$ such that for each $\sigma \in \text{Gal}(L/K)$ we have $\sigma|_E = \sigma_i|_E$ for some $i \leq m$.

Now we let $g = \prod_{i=1}^{m} h(y_{i,j})^\sigma$, where $\sigma^*$ means that we apply $\sigma$ coefficient-wise. Then $g$ now has total degree $dm$ in $nm$ variables (and is homogeneous). Since $n > d$, if we know that this polynomial $g$ has coefficients in $K$ then since $K$ is $C_1$ this gives that $g$ has a non-trivial solution in $K^{nm}$. This then tells us that some $h^*$ has a non-trivial zero in $K^{nm}$. But since $\sigma$ is an automorphism that fixes $K$ this tells us that $h$ has a non-trivial zero in $K^{nm}$ which gives that $f$ has a non-trivial zero in $E^n$.

So the only thing we have left to do is to show that $g$ has coefficients in $K$. Let’s do this! Actually this isn’t bad. Notice that applying $\sigma$ coefficient-wise in fact gives us a ring homomorphism on the polynomial ring and so for $\sigma \in \text{Gal}(L/K)$ we have $g^\sigma = \prod_{i=1}^{m} h^{\sigma_i}$. Now by the lemma above we have that $\sigma \circ \sigma_i$ is a permutation of $\sigma_1, \ldots, \sigma_m$ (when restricted to $E$, where the coefficients of $h$ lie) and so $g^\sigma = g$ and so $\sigma$ fixes $g$ coefficient-wise and hence $g$ has its coefficients in $K$. □

Putting this all together, we see that if $K$ is a finite extension of $k(x)$, with $k$ algebraically closed, then $K$ is $C_1$ and so $\text{Br}(K)$ is trivial. On the other hand, if $k$ is any field then $k(x, y)$ is never $C_1$. For example consider the form $x t_1^2 + y t_2^2 + t_3^2 = 0$. Suppose that this had a non-trivial solution in $k(x,y)^3$. By scaling, we may assume that we have a non-trivial solution in $k(x,y)^3$. Since $k(x,y)$ is a UFD, we may assume that our solution $(t_1, t_2, t_3)$ has no common factor. Now use the fact that $k[x,y]$ has a bi-grading where $x^i y^j$ has degree $(i,j) \in \mathbb{N}^2_{\leq 0}$. One only has to consider bi-degrees mod 2. Exercise: Can you prove that this has no solutions with this hint?

Of course, there’s another way to see that it is not $C_1$, which is to show it has a non-trivial division ring that is finite dimensional over $k(x,y)$ with centre $k(x,y)$. This construction will show us the connection to the $C_1$ condition. Make a quaternion-like division ring $H := k(x,y) + k(x,y)a + k(x,y)b + k(x,y)ab$ where $a^2 = x, b^2 = y$ and $ab = -ba$. Then $H$ has centre $k(x,y)$ and it is central simple. In fact, it is a domain: if $p_0 + p_1 a + p_2 b + p_3 ab \in H \setminus \{0\}$ then if you expand, you'll see that

$$(p_0 + p_1 a + p_2 b + p_3 ab)(p_0 - p_1 a - p_2 b - p_3 ab)$$

is equal to

$$p_0^2 + x p_1^2 + y p_2^2 + x y p_3^2.$$ 

Notice this is a form in $k(x,y)[p_0, p_1, p_2, p_3]$ with four variables of degree 2.

**Is there still time left?**

If so, you can provide the following fact: A finite field is $C_1$. In fact, this gives another proof of Wedderburn’s theorem if one exercises a bit more care in the proof that $C_1$ fields have trivial Brauer group (we glossed over the finite field case). So the set up here is that we have a finite field $K := \mathbb{F}_q$ and we have a homogeneous polynomial $f(t_1, \ldots, t_n)$ of degree $d < n$ with $d > 0$.

Notice that for $x \in K$ we have $x^{q-1} = 1$ if $x \neq 0$ and $x^{q-1} = 0$. This means that for $a_1, \ldots, a_n \in K$, we have $(1 - f^{q-1})(a_1, \ldots, a_n) = 1$ if and only if $(a_1, \ldots, a_n) \in K^n$ is a solution to $f$. So since we want to show that $f$ has a non-trivial solution, it is enough to show that

$$\sum (1 - f^{q-1})(a_1, \ldots, a_n) = 0 \pmod{p},$$

where the sum ranges over all $(a_1, \ldots, a_n) \in K^n$. Let’s think about that! The left hand side is the cardinality of the number of solutions to $f(t_1, \ldots, t_n) = 0$ in $K^n$ by the above remark. We already have the trivial solution, so if the cardinality is zero mod $p$, we must have a non-trivial solution. Now

$$\sum (1 - f^{q-1})(a_1, \ldots, a_n) = \sum 1 - \sum f^{q-1},$$

and since $\sum 1 = |K|^n \equiv 0 \pmod{p}$, we see that it is enough to show that

$$\sum f^{q-1}(a_1, \ldots, a_n) = 0,$$

is zero mod $p$. Now this is where it gets fun. Notice that $f$ is homogeneous of degree $d$ so $f^{q-1}$ is a linear combination of monomials $x_1^{j_1} \cdots x_n^{j_n}$ with $j_1 + \cdots + j_n = (q-1)d$. So to prove that

$$\sum f^{q-1}(a_1, \ldots, a_n) = 0,$$
it is enough to show that
\[ \sum_{a_1, \ldots, a_n} a_1^{j_1} \cdots a_n^{j_n} = 0 \]
when we range over all \( a_1, \ldots, a_n \in K^n \) and \( j_1 + \cdots + j_n = (q-1)d \). Notice this is just
\[ \prod_{s=1}^{n} \left( \sum_{a \in K} a^{j_s} \right), \]
and so it is sufficient to prove that at least one of the terms in this product is zero. This is where we see we are essentially done. Notice also that since \( d < n \) and so it is sufficient to prove that at least one of the terms in this product is zero. This is where we see we are essentially done.

We start by letting \( K\cdot S \) where \( 0 < \cdot \leq q \). We're also assuming the sum is \(-1\) when \( r = q \). Let \( b \in K^* \). Then the map \( a \mapsto ab \) is a bijection from \( K \) to itself and so
\[ \sum_{a \in K} a^r = \sum_{a \in K} (ba)^r = b^r \sum_{a \in K} a^r. \]
Now we know \( K^* \) is cyclic of order \( q-1 \) and so if we pick a generator then \( b^r \neq 1 \) since \( 0 < r < q-1 \) and so we have \( b^r - 1 \sum_{a \in K} a^r = 0 \) which gives \( \sum a^r = 0 \), as required. Then we're done. This is part of a more general theorem of Chevalley and Warning.

**APPENDIX: Tensor Products for Noncommutative Rings**

Now a general fact about rings is that given a subring \( R \) of a ring \( S \), if one has a left \( R \)-module \( M \) then one can “extend scalars” and create a left \( S \)-module, which we denote by \( M \otimes_R S \). We'll spend the next little while doing this construction rigorously, but then we'll give a concrete interpretation for group algebras.

First, if you have seen tensor products in the commutative setting or in the setting of vector spaces, you are in good shape—still there are some subtleties that arise in the noncommutative setting. We start by letting \( R \) be a ring that is not necessarily commutative. Given a right \( R \)-module \( M \) and a left \( R \)-module \( N \) we can form an abelian group \( M \otimes_R N \), which is called the tensor product of \( M \) and \( N \), as follows.

First, we recall that in this setting, if \( A \) is an abelian group then a map \( f : M \times N \to A \) is said to be **bilinear** if \( f(m+m',n) = f(m,n) + f(m',n) \) for all \( m,m' \in M \) and \( n \in N \); \( f(m,n+n') = f(m,n) + f(m,n') \) for all \( m \in M \), \( n,n' \in N \) and for \( m \in M, n \in N \) and \( r \in R \) we have \( f(mrn) = f(m,n) \).

**Important Remark!** Notice that we really need the right/left pairing here to make this work in general. If \( M \) and \( N \) were both left \( R \)-modules then if we tried to impose \( f(rmn) = f(m,rn) \) then we'd have for \( r,s \in R \)
\[ f(m,(rs)n) = f((rs)m,n) = f(sm,rn) = f(m,sn) = f(m,(sr)n), \]
so we'd have \( f(m,(rs-sr)n) = 0 \) for all \( (m,n) \in M \times N \) and every \( r,s \in R \). Now in certain rings, one can have \( 1 = rs - sr \) for some \( r,s \in R \). For example, if one takes the ring of all linear operators on \( \mathbb{C}[x] \) then the differentiation operator and multiplication by \( x \) operator have this relation. So in this situation one would have \( f(m,n) = 0 \) for all \( m,n \). But the way we have defined it, we now have \( f(m,(rs)n) = f(m(r),n) = f(mrv,sn) = f(m,rsn) \) and there is no problem now.

Second, we let \( T \) denote the free \( \mathbb{Z} \)-module on all symbols \( e_{m,n} \) where \( (m,n) \in M \times N \). That is, \( T \) is all finite integer linear combinations of elements of the form \( e_{m,n} \). Then we let \( U \) denote the subgroup of \( T \) generated by the relations
\[ e_{m+m',n} - e_{m,n} - e_{m',n} = 0 \]
\[ e_{m,n+n'} - e_{m,n} - e_{m,n'} = 0 \]
\[ e_{m,n} = e_{m,n} \]
for all \( m,m' \in M \), \( n,n' \in N \), and \( r \in R \). What we are in fact doing is choosing our relations so that the function \( M \times N \to T/U \) given by \( (m,n) \mapsto e_{m,n} + U \) is now **\( R \)-bilinear**. We define \( M \otimes_R N \) to be the abelian group \( T/U \). We then use the symbol \( m \otimes n \) (read “\( m \) tensor \( n \)”) to denote the image of \( e_{m,n} \) in \( T/U \). Now in general, there is no additional structure, but in the case where \( M \) is both a left \( S \)-module and right \( R \)-module (we call this a \( S-R \)-bimodule), we can actually give \( M \otimes_R N \) the structure of a left \( S \)-module as follows: we define \( s \cdot (m \otimes n) = (sm) \otimes n \). Notice that if we did not have the bimodule structure on \( M \) we'd be in trouble. One might hope that we could still at least put a left \( R \)-module structure on the tensor product using the fact that \( N \) is a left \( R \)-module and define \( r \cdot (m \otimes n) = m \otimes (rn) \), but this is problematic: by definition of our relations \( m \otimes (rn) = (mr) \otimes n \) and so we'd have to have \( (rs)m \otimes n = m \otimes (rs)n = m(rs) \otimes n \) and
For any abelian group $A$ and any bilinear map $f : M \times N \to A$, there exists a unique homomorphism of abelian groups $\tilde{f} : M \otimes_R N \to A$ such that $\tilde{f} \circ i = f$, where $i : M \times N \to M \otimes_R N$ is the $\mathbb{Z}$-module homomorphism induced by $(m, n) \mapsto m \otimes n$.

Let’s see that $M \otimes N$ has this universal property. We define $\tilde{f}(m \otimes n) = f(m, n)$ and extend via linearity. We must check that this is well-defined. Notice that $f$ induces a group homomorphism $f^\prime : T \to A$ via $f^\prime(\sum c_i e_{m_i, n_i})$. Saying that $f$ is bilinear is exactly the same as saying that $f^\prime$ is zero on $U$. Thus we can define $\tilde{f} : T/U \to A$ via $\tilde{f}(t + U) = f^\prime(t)$ and this is well-defined. Moreover, this is the only way to define this map!

The universal property actually means that the tensor product is the unique $\mathbb{Z}$-module (up to isomorphism) with this property given a right $R$-module $M$ and a left $R$-module $N$. To see this, suppose that we have two abelian groups $A$ and $B$ that have the universal property for $(M, N)$. Then we have maps $i_1 : M \times N \to A$ and $i_2 : M \times N \to B$ such that if $f : M \times N \to C$ is a $\mathbb{Z}$-module homomorphism then there exist $f_1$ and $f_2$ from $A$ and $B$ to $C$ respectively such that $f_1 \circ i_1 = f = f_2 \circ i_2$. Now take $C = A$ and let $f = i_1$. Then there is a map $f_2 : B \to A$ such that $f_2 \circ i_2 = i_1$. Similarly, there exists a unique $f_1$ such that $f_1 \circ i_1 = i_2$.

Then

$$(f_1 \circ f_2) \circ i_2 = f_1 \circ (f_2 \circ i_2) = f_1 \circ i_2 = i_2.$$ Notice also that $i_2 : M \times N \to B$ is onto since we can use the universal property to get that there is some $g : M \times N \to B$ such that $g \circ i_2 = i_1$. Since $g = id$ works, by uniqueness of the universal property we see that $g$ is the identity. But we see that $g = f_1 \circ f_2$ works too, so we see that $f_1$ and $f_2$ is the identity. By symmetry we get that $f_2 \circ f_1$ is the identity and so $A$ and $B$ are isomorphic.

The universal property is how one proves anything about tensor products in practice. Let’s do a few examples.

Let $R = M_2(\mathbb{C})$ and let $M$ be the right $R$-module $\mathbb{C}^{1 \times 2}$, the $1 \times 2$ row vectors; let $N = \mathbb{C}^{2 \times 1}$ be the column vectors. Then what is $M \otimes_R N$? Notice that $M \otimes_R N \cong \mathbb{C}^4$, but when we tensor over $R$ we get a different result. First, this will be an abelian group, so we just need to find out what it is as an abelian group. As before we let $T$ be the free $\mathbb{Z}$-module on the generators $e_{v, w}$ where $v$ is a row vector and $w$ is a column vector. Now let $v_1 = [1, 0]$ and let $w_1 = [0, 1]$ be a nonzero column vector. Then for $v \in M$ and $w \in N$ there is some $r \in R$ such that $v = v_1 r$. So $e_{v_1, w} = e_{v_1, r w} = e_{v_1, r w}$. Now if $w' = r w$ then we have that the tensor product is generated by the images in $T/U$ of things of the form $e_{v_1, w']$ with $w'$ a column vector. If $s$ is an element of $R$ whose first row is $(1, 0)$ then $v_1 s = v_1$ and so in $T/U$ we have $e_{v_1, w'} = e_{v_1, s w'} = e_{v_1, s w'}$. Now if we take $s$ appropriately, we can arrange things so that $s w' = \lambda w_1$ for some scalar $\lambda$. So now we see we are spanned by things of the form $e_{v_1, \lambda w_1}$. Now by the other bilinear relations, we see that $e_{v_1, \lambda w_1} + e_{v_2, \lambda_2 w_1} = e_{v_1, (\lambda_1 + \lambda_2) w_1}$ and so we see that we have a map from the abelian group $C$ to $T/U = M \otimes_R N$ via the rule $\lambda \mapsto e_{v_1, \lambda w_1} + U$ and we have shown that this map is onto. Now it would be pretty difficult to show that this is 1-to-1 in general, but we can use the universal property to do this. Notice that we have a bilinear map $f : M \times N \to C$ via the rule $(v, w) \mapsto v \cdot w$. Then under this map $(v_1, \lambda w_1)$ maps to $\lambda$. So if $\lambda$ is in the kernel it must be zero. Thus the tensor product is just the complex numbers in this case.

**Exercise 13.** Let $R$ be a ring, let $M$ be a right $R$-module, and let $N$ be a left $R$-module. Suppose we regard $R$ as a left $R$-module. Show that $M \otimes_R \widehat{R} \cong M$. Show that if we regard $R$ as a right $R$-module then $R \otimes_R N \cong N$. (Hint: use the bilinear map $M \times R \to R$ given by $(m, r) \mapsto mr$.)

**Exercise 14.** Let $R$ be the ring of upper-triangular $2 \times 2$ complex matrices and let $M = \mathbb{C}^{1 \times 2}$ be the column vectors. What is $M \otimes_R N$?

**Exercise 15.** Use the universal property to show that if $M_1$ and $M_2$ are two right $R$-modules and $N$ is a left $R$-module then $(M_1 \oplus M_2) \otimes_R N \cong (M_1 \otimes_R N) \oplus (M_2 \otimes_R N)$. Show that if $M_1$ and $M_2$ are also left $R$-modules then this is an isomorphism of left $R$-modules, too.

**Extension of scalars**

One of the nicest features of tensor products is that they can be used to extend scalars. For this set-up, let $R$ be a subring of a ring $S$ and let $M$ be a left $R$-module. Then we can create a left $S$-module from $M$ via tensor products as follows. Notice that $S$ is both a left $S$-module and a right $R$-module and thus we can form $S \otimes_R M$. If we only used the right $R$-module structure of $S$, this would just be an abelian group, but since $S$ is a left $S$-module, we can give it a left $S$-module structure. We can give $S \otimes_R M$ a left $S$-module structure via the rule $s \cdot (s' \otimes m) = (ss') \otimes m$. Since the left $S$-module structure does not interfere with the right $R$-module structure this does not create any problems.
Exercise 16. Let $R$ be a subring of a ring $S$ and suppose that $S$ is a free right $R$-module with basis $s_1, \ldots, s_d$. Show that if $N$ is a left $R$-module then as an abelian group $S \otimes_R N \cong N^d$ with isomorphism induced from

$$(s_1r_1 + \cdots + s_dr_d) \otimes n = \sum_i s_i \otimes (r_in) \mapsto (r_1n, r_2n, \ldots r_dn).$$