- 446 Assignment 2: Due February 27, in class.
- 1. Let R be a ring and let X and Y be index sets. Use ideas from proof of the result for isomorphisms of direct sums of tensor products to show that if $R^{\oplus X}$ and $R^{\oplus Y}$ are free R-modules with bases $\{x_{\alpha}\}_{{\alpha}\in X}$ and $\{y_{\beta}\}_{{\beta}\in Y}$ respectively, then $R^{\oplus X}\otimes_R R^{\oplus Y}\cong R^{\oplus (X\times Y)}$ with basis $\{x_{\alpha}\otimes y_{\beta}: (\alpha,\beta)\in X\times Y\}$.
- 2. Let R be a ring and let S and T be R-algebras with homomorphisms $\alpha: R \to S$ and $\beta: R \to T$. Show that $S \otimes_R T$ is an R-algebra with multiplication given by $(s_1 \otimes t_1) \cdot (s_2 \otimes t_2) = s_1 s_2 \otimes t_1 t_2$ (and extending via linearity) and has identity $1_S \otimes 1_T$ and the homomorphism from $R \to S \otimes_R T$ is given by $r \mapsto \alpha(r) \otimes 1_T = 1_S \otimes \beta(r)$. (Hint: the only thing that is nontrivial is to show that multiplication is well-defined; once one has this, it is straightforward to show that $S \otimes_R T$ is an R-algebra. A nice way to do this is to define a multilinear map from $S \times T \times S \times T \to S \otimes_R T$ via $(s_1, t_1, s_2, t_2) \mapsto s_1 s_2 \otimes t_1 t_2$ (check this is multilinear). Show using the universal property that this gives a bilinear map from $m: (S \otimes_R T) \times (S \otimes_R T) \to S \otimes_R T$. Then this m is exactly our multiplication.)
- 3. Show this important and useful fact: if R is a ring and S and T and C are R-algebras then in $f: S \otimes_R T \to C$ is an R-module homomorphism that sends $1_S \otimes 1_T$ to 1_C and $f(s_1s_2 \otimes t_1t_2) = f(s_1 \otimes t_1)f(s_2 \otimes t_2)$ for all $s_1, s_2 \in S$ and $t_1, t_2 \in T$ then f is an R-algebra homomorphism. This is not a hard fact, but it is useful to know and is part of a general strategy to construct homomorphisms for tensor products of R-algebras: use the universal property to get an R-module homomorphism and then check that the product condition above holds.
- 4. Show that if $f: A \to B$ and $g: C \to D$ are R-algebra homomorphisms then $(f \otimes g): (A \otimes_R C) \to (B \otimes_R D)$ is an R-algebra homomorphism.
- 5. Show that if A and B are subalgebras of an R-algebra C then there is an R-algebra homomorphism $f: A \otimes_R B \to C$ satisfying $f(a \otimes b) = ab \in C$ for $a \in A$ and $b \in B$.
- 6. Use the ideas from the preceding exercise to show that if S is an R-algebra then $S \otimes_R R[t_1, \ldots, t_d] \cong S[t_1, \ldots, t_d]$.
- 7. Let R and S be a noetherian rings. Show that $R \times S$ is a noetherian ring (you don't need to show it is a ring). But show that an infinite direct product of non-trivial rings is never noetherian.
- 8. Show that if S and T are finitely generated R-algebras then $S \otimes_R T$ is also finitely generated as an R-algebra. In particular, if R is noetherian and S and T are finitely generated R-algebras then $S \otimes_R T$ is noetherian.
- 9. Let $F \subseteq K$ be fields and suppose that A is a K-algebra. Show that A is also an F-algebra and that both F and K embed in A as subrings.
- 10. Let $F \subseteq K$ be fields. Show that if A and B are K-algebras, then there is a surjective F-algebra homomorphism $f: A \otimes_F B \to A \otimes_K B$ satisfying $a \otimes_F b \to a \otimes_K b$. (Hint: show that if a map from $A \times B$ to a K-module P is K-bilinear then it is necessarily F-bilinear.)
- 11. Let $F \subseteq E \subseteq K$ be fields and let $f: K \otimes_F K \to K \otimes_E K$ be as in question 9. Show that if $E \neq F$ then f is not injective. (Hint: pick $\lambda \in E \setminus F$. Show that $\lambda \otimes_F 1 1 \otimes_F \lambda$ is nonzero in $K \otimes_F K$ using exercise 1 and show that it is in the kernel of f.)
- 12. We recall that a set S is a partially ordered set (or poset) if it has an order \leq with the properties that $a \leq a$ for all $a \in S$; if $a \leq b$ and $b \leq a$ then a = b; and if $a \leq b$ and $b \leq c$ then $a \leq c$. But we do not assume that all elements can be compared. For example, subsets of $\{1, \ldots, n\}$ form a partially ordered set under inclusion. Show that if $F \subseteq K$ are fields then the set $\mathcal{F}(K/F)$ of fields L with $F \subseteq L \subseteq K$ is a poset under inclusion. Show that if R is a ring then the set $\mathcal{I}(R)$ of ideals in R is a poset under inclusion.

- 13. Show that if $F \subseteq K$ are fields then there is a map Φ from the poset $\mathcal{F}(K/F)$ to the poset of ideals in $K \otimes_F K$ given by $L \in \mathcal{F}(K/F) \mapsto \Phi(L) := \ker(f)$, where $f : K \otimes_F K \to K \otimes_L K$ is as described in 10. Show that if $L_1 \subseteq L_2$ then $\Phi(L_1) \subseteq \Phi(L_2)$ (we call this property *inclusion-preserving*) and if $L_1 \subseteq L_2$ and $\Phi(L_1) = \Phi(L_2)$ then $L_1 = L_2$.
- 14. Show that if $F \subseteq L \subseteq K$ are fields and L is not finitely generated as a field extension of F then there is a non-terminating ascending chain of fields

$$L_1 \subseteq L_2 \subseteq L_3 \subseteq \cdots$$
,

- with each L_i satisfying $F \subseteq L_i \subseteq K$. Use the preceding exercise to show that if $K \otimes_F K$ is noetherian then every subfield of K containing F is finitely generated as a field extension of F.
- 15. Let $R = \mathbb{C}[x, y]$. This is a noetherian ring, as we shall see. Let $J = (x(x-1), y^3)$. Find a finite (multi)-set of prime ideals containing J whose product is contained in J.