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Abstract The Steiner tree problem is a classical NP-hard optimization problem with
a wide range of practical applications. In an instance of this problem, we are given
an undirected graph G = (V, E), a set of terminals R ⊆ V, and non-negative costs
ce for all edges e ∈ E . Any tree that contains all terminals is called a Steiner tree;
the goal is to find a minimum-cost Steiner tree. The vertices V \R are called Steiner
vertices. The best approximation algorithm known for the Steiner tree problem is a
greedy algorithm due to Robins and Zelikovsky (SIAM J Discrete Math 19(1):122–
134, 2005); it achieves a performance guarantee of 1 + ln 3

2 ≈ 1.55. The best known
linear programming (LP)-based algorithm, on the other hand, is due to Goemans and
Bertsimas (Math Program 60:145–166, 1993) and achieves an approximation ratio of
2 − 2/|R|. In this paper we establish a link between greedy and LP-based approaches
by showing that Robins and Zelikovsky’s algorithm can be viewed as an iterated
primal-dual algorithm with respect to a novel LP relaxation. The LP used in the first
iteration is stronger than the well-known bidirected cut relaxation. An instance is
b-quasi-bipartite if each connected component of G\R has at most b vertices. We
show that Robins’ and Zelikovsky’s algorithm has an approximation ratio better than
1 + ln 3

2 for such instances, and we prove that the integrality gap of our LP is between
8
7 and 2b+1

b+1 .
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1 Introduction

The Steiner tree problem is a classical problem in combinatorial optimization which
owes its practical importance to a host of applications in areas as diverse as VLSI
design and computational biology. The problem is NP-hard [24], and Chlebík and
Chlebíková show in [7] that it is NP-hard even to approximate the minimum-cost
Steiner tree within any ratio better than 96

95 . They also show that it is NP-hard to obtain
an approximation ratio better than 128

127 in quasi-bipartite instances of the Steiner tree
problem. These are instances in which no two Steiner vertices are adjacent in the
underlying graph G.

1.1 Greedy algorithms and r -Steiner trees

One of the first approximation algorithms for the Steiner tree problem is the
well-known minimum-spanning tree heuristic which is widely attributed to Moore
[16]. Moore’s algorithm has a performance ratio of 2 for the Steiner tree problem
and this remained the best known until the 1990s, when Zelikovsky [48] suggested
computing Steiner trees with a special structure, so called r-Steiner trees. Nearly all of
the Steiner tree algorithms developed since then use r -Steiner trees. We now provide
a formal definition.

A full Steiner component (or full component for short) is a tree whose internal ver-
tices are Steiner vertices, and whose leaves are terminals. The edge set of any Steiner
tree can be partitioned into full components by splitting the tree at terminals: see Fig. 1
for an example. An r-(restricted)-Steiner tree is defined to be a Steiner tree all of whose
full components have at most r terminals.

An r -restricted Steiner tree does not always exist; for example, if G is a star with a
Steiner vertex at its center and more than r terminals at its tips. To avoid this problem,
we clone each Steiner vertex v many times and connect these clones to all of v’s
neighbours in the graph. Copies of an edge have the same cost as the corresponding
original edge in G. This cloning does not affect the cost of the optimal Steiner tree but
ensures a relatively cheap r -Steiner tree exists, as follows. Let opt and optr be the

(i) (ii)

Fig. 1 The figure shows a Steiner tree in (i) and its decomposition into full components in (ii). Square and
round vertices correspond to Steiner and terminal vertices, respectively. This particular tree is 5-restricted
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A partition-based relaxation for Steiner trees 347

cost of an optimal Steiner tree and of an optimal r -Steiner tree, respectively, for the
cloned instance. The r-Steiner ratio ρr is defined to be the supremum of optr/opt
over all instances of the Steiner tree problem. Borchers and Du [5] computed ρr for
every r ; in particular, ρr = 1 + �(1/ log r) so ρr tends to 1 as r goes to infinity.

The prevailing strategy of all modern Steiner tree algorithms is to compute a cheap
r -Steiner tree of the cloned graph, since this corresponds naturally to a Steiner tree of
the original graph of equal cost or less. Computing minimum-cost r -Steiner trees is
NP-hard for r ≥ 4 [15], even if the underlying graph is quasi-bipartite. The complex-
ity status for r = 3 is unresolved, and the case r = 2 reduces to the minimum-cost
spanning tree problem.

In Zelikovsky [48], used 3-restricted full components to obtain an 11/6-approxima-
tion for the Steiner tree problem. Subsequently, a series of papers (e.g., [4,22,25,36])
improved upon this result. These efforts culminated in a recent paper by Robins and
Zelikovsky [40] in which the authors presented a (1 + ln 3

2 ) ≈ 1.55-approximation
(subsequently referred to as RZ) for the r -Steiner tree problem. They hence obtain,
for each fixed r ≥ 2, a 1.55ρr approximation algorithm for the (unrestricted) Steiner
tree problem. We refer the reader to two surveys in [21,37].

1.2 Approaches based on linear programs

Many approximation algorithms in combinatorial optimization are based on LP relax-
ations. The general approach is to jointly design an algorithm and a relaxation so that
the algorithm produces a feasible integral solution whose cost is close to the cost of
the optimal LP solution. The primal-dual method (e.g., [20]) is one paradigm of this
sort, whereby the algorithm jointly develops a dual and integral primal solution, the
growth of each one guiding the other.

Numerous LP relaxations for the Steiner tree problem have been investigated in
depth (e.g., [3,9–11,13,19,33,45,46]), and this in turn has helped to achieve vast
improvements in the area of integer programming-based exact algorithms (e.g., see
Warme [45] and Polzin [31,34]). Despite the sizeable body of work on Steiner tree
relaxations, the best LP-based algorithms for the Steiner tree problem do not perform
as well as RZ in terms of approximation ratio.

For general graphs, the classical LP-based approximation algorithms for Steiner
trees [18] and forests [2] use the undirected cut relaxation [3] and have a performance
guarantee of 2 − 2

|R| . This relaxation has an integrality gap of 2 − 2
|R| and the analysis

of these algorithms is therefore tight. Slightly improved algorithms have since been
designed for other LPs [26,32] but do not achieve any constant approximation factor
better than 2. Similarly, no LP relaxation for the Steiner tree problem is known with
integrality gap any constant less than 2.

For quasi-bipartite graphs, Chakrabarty et al. [6] considered the bidirected cut relax-
ation [13,46] and obtained a 4

3 approximation algorithm and integrality gap bound,
improving an earlier ratio of 3

2 [38,39]. This yields the best known bound on the inte-
grality gap of any LP relaxation for quasi-bipartite graphs; nonetheless,RZ achieves an
approximation ratio better than 4

3 for these graphs. On general graphs, the bidirected
cut relaxation is conjectured (e.g. in [42]) to have a smaller integrality gap than 2; the
worst known example shows a gap of only 8

7 (see Sect. 5).
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1.3 Contribution of this paper

In this paper we provide algorithmic evidence that the primal-dual method is useful
for the Steiner tree problem. We first present a novel LP relaxation for the Steiner tree
problem. It uses full components to strengthen a formulation based on Steiner parti-
tion inequalities [9]. We then show that the algorithm RZ of Robins and Zelikovsky
can be analyzed as a primal-dual algorithm using this relaxation.

In Robins and Zelikovsky [40], showed that, for a fixed r , the performance ratio
of RZ is 1.279ρr in quasi-bipartite graphs, and it is 1.55ρr in general graphs. We
prove a natural interpolation of these two results. For a Steiner vertex v, define its
Steiner neighbourhood sn(v) to be the collection of vertices that are in the same
connected component as v in G\R. A graph is b-quasi-bipartite if all of its Steiner
neighbourhoods have cardinality at most b. We prove:

Theorem 1 Given an undirected, b-quasi-bipartite graph G = (V, E), terminals
R ⊆ V, and a fixed constant r ≥ 2, Algorithm RZ returns a feasible Steiner tree T s.t.

c(T ) ≤

⎧
⎪⎨

⎪⎩

1.279 · optr : b = 1(
1 + 1

e

)
· optr : b ∈ {2, 3, 4}

(
1 + 1

2 ln
(
3 − 2

b

))
optr : b ≥ 5.

Note that b-quasi-bipartite graphs are a natural interpolation between quasi-bipartite
graphs (b = 1) and general graphs (b ≤ |V \R|), hence Theorem 1 interpolates the
two main results of Robins and Zelikovsky [40].

Unfortunately, Theorem 1 does not imply that our new relaxation has a small inte-
grality gap. Nonetheless, we obtain the following bounds, when G is b-quasi-bipartite:

Theorem 2 Our new relaxation has an integrality gap between 8
7 and 2b+1

b+1 .

We remark that the concept of filtering, due to Chakrabarty et al. [6], can be applied
to improve the gap upper bound to 2b−1

b for b ≥ 2 [28].

1.4 Overview

In Sect. 2 we give some LP background on spanning trees and define our new LP
relaxation. In Sect. 3 we show that RZ can be interpreted as an iterated primal-dual
algorithm using the new LP. Sect. 4 contains some analysis of b-quasi-bipartite graphs
and the proof of Theorem 1. In Sect. 5 we prove Theorem 2 and compare the new LP
to existing ones. Finally, Sect. 6 contains deferred technical details including a short
proof of the contraction lemma, which appears in the analysis of many approximation
algorithms for the Steiner tree problem. We also remark that the contraction lemma
holds not just in the graphic setting, but more generally for matroids.

2 Spanning trees and a new LP relaxation for Steiner trees

Our work is strongly motivated by linear programming formulations for the spanning
tree polyhedron due to Chopra [8] and Fulkerson [14]. In this section, we first discuss

123
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Chopra’s formulation, and we describe a primal-dual interpretation of Kruskal’s span-
ning tree algorithm [30] based on this LP. Finally we extend ideas in [9,10] to derive
a new LP relaxation for the Steiner tree problem.

2.1 The spanning tree polyhedron

To formulate the minimum-cost spanning tree (MST) problem as an LP, we associate a
variable xe with every edge e ∈ E . Each spanning tree T corresponds to its incidence
vector xT, which is defined by xT

e = 1 if T contains e and xT
e = 0 otherwise. Let �

denote the set of all partitions of the vertex set V, and suppose that π ∈ �. The rank
r(π) of π is the number of parts of π . Let Eπ denote the set of edges whose ends lie
in different parts of π . Consider the following LP.

min
∑

e∈E

cexe (PS P )

s.t.
∑

e∈Eπ

xe ≥ r(π) − 1 ∀π ∈ �,

x ≥ 0.

Chopra [8] showed that the feasible region of (PS P ) is the dominant of the convex
hull of all incidence vectors of spanning trees, and hence each basic optimal solution
corresponds to a minimum-cost spanning tree. Its dual LP is

max
∑

π∈�

(r(π) − 1) · yπ (DS P )

s.t.
∑

π :e∈Eπ

yπ ≤ ce ∀e ∈ E, (1)

y ≥ 0. (2)

2.2 A primal-dual interpretation of Kruskal’s MST algorithm

Kruskal’s algorithm, which we will denote by MST, can be viewed as a continuous
process over time: we start with an empty tree at time 0 and add edges as time increases.
The algorithm terminates at time τ ∗ with a spanning tree of the input graph G. In this
section we show that Kruskal’s method can be interpreted as a primal-dual algorithm
(see also [20]). At any time 0 ≤ τ ≤ τ ∗ we keep a pair (xτ , yτ ), where xτ is a (not
necessarily feasible) 0-1 primal solution for (PS P ) and yτ is a feasible dual solution
for (DS P ).

The initial primal and dual values x0 and y0 are the all-zero vectors. Let Gτ =
(V, Eτ ) denote the forest corresponding to xτ , i.e., Eτ = {e ∈ E | xτ

e = 1}. Let
π(τ) denote the partition induced by the connected components of Gτ. At time τ , the
algorithm increases yπ(τ) until a constraint of type (1) becomes tight for some edge
e ∈ Eπ(τ). (If more than one such constraint becomes tight simultaneously, we pick
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any such e arbitrarily.) Let τ ′ ≥ τ be the time at which this happens. The dual update
is

yτ ′
π(τ) := τ ′ − τ.

We then include e in our solution, i.e., the primal update is xτ ′
e := 1. We terminate at

time τ ∗ such that Gτ∗
is a spanning tree. Chopra [8] showed that the final primal and

dual solutions have the same objective value (and are hence optimal), and we give a
proof of this fact for completeness.

In what follows, let G∗ be shorthand for Gτ∗
and similarly for x∗, etc.

Theorem 3 Algorithm MST finishes with a pair (x∗, y∗) of primal and dual feasible
solutions to (PS P ) and (DS P ), respectively, such that

∑

e∈E

cex∗
e =

∑

π∈�

(r(π) − 1) · y∗
π .

Proof Checking feasibility is straightforward. For each edge e ∈ E∗, the constraint
(1) holds with equality. Hence, rearranging, we can express the cost of the final tree
as follows:

∑

e∈E

cex∗
e =

∑

e∈E∗

∑

π :e∈Eπ

y∗
π =

∑

π∈�

∣
∣E∗ ∩ Eπ

∣
∣ · y∗

π . (3)

Note that for each τ , the final tree G∗ has exactly |V | − r(π(τ)) edges not in Eπ(τ);
hence for all π with y∗

π > 0, we have |E∗ ∩ Eπ | = |V |−1−(|V |−r(π)) = r(π)−1.
This fact, combined with Eq. (3), completes the proof. ��

Observe that the above primal-dual algorithm is indeed Kruskal’s algorithm: if the
algorithm adds an edge e at time τ , then e has cost exactly equal to τ , and e is a
minimum-cost edge connecting two connected components of Gτ.

2.3 A new LP relaxation for Steiner trees

In an instance of the Steiner tree problem, a partition π of V is defined to be a Steiner
partition when each part of π contains at least one terminal. Chopra and Rao [9] intro-
duced this notion and proved that, when x is the incidence vector of a Steiner tree and
π is a Steiner partition, the inequality

∑

e∈Eπ

xe ≥ r(π) − 1. (4)

holds. These Steiner partition inequalities motivate our approach. In order to fully
describe and analyze our approach we need a preprocessing step; it essentially replaces
the graph by the union of its full components, where the union is disjoint for edges
and Steiner nodes.
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In the following we use G[U ] to denote the subgraph of G induced by vertex set
U , i.e., the graph with vertices U and edges E(U ) = {uv ∈ E(G) | u ∈ U, v ∈ U }.
We make the following assumptions:

A1. G[R] is a complete graph and, for any two terminals u, v ∈ R, cuv is the cost of
a minimum-cost u, v-path in G.

A2. For every Steiner vertex v and every vertex u ∈ sn(v) ∪ R, uv is an edge of G,
and cuv is the cost of a minimum-cost u, v-path in G.

It is a well-known fact that these assumptions are without loss of generality, i.e.,
any given instance can be transformed into an equivalent instance that satisfies these
assumptions (e.g., see [43]). Note that b-quasi-bipartiteness is preserved by these
assumptions.

Recall from Sect. 1.1 that a full component is a tree whose internal vertices are
Steiner vertices and all of whose leaves are terminals. Also recall that a full compo-
nent K is r -restricted if it contains at most r terminals. Further, the edge-set of any
r -restricted Steiner tree T can be partitioned into r -restricted full components. From
now on, let r ≥ 2 be an arbitrary fixed constant. Define

Kr :={K⊆ R :2≤|K |≤r and there exists a full component whose terminal set isK }.

We note that, for each K ∈ Kr , we can determine a minimum-cost full component
with terminal set K in polynomial time (e.g., by using the dynamic programming
algorithm of Dreyfus and Wagner [12]). Thus, we can compute Kr in polynomial
time as well.

For brevity we will abuse notation slightly and use K ∈ Kr interchangeably for a
subset of the terminal set and for a particular min-cost full component spanning K .
Given any r -restricted Steiner tree, we may assume that all of its full components are
from Kr , without increasing its cost.

For each full component K, we use E(K ) to denote its edges, V (K ) to denote its
vertices (including Steiner vertices), and cK to denote its cost. For a set S of full
components we define E(S ) := ∪K∈S E(K ) and similarly V (S ) := ∪K∈S V (K ).
By assumption A1 we may assume that the full component for a terminal pair is just the
edge linking those terminals, and by assumption A2 we may assume that any Steiner
vertex has degree at least 3. We will also assume that any two distinct full components
K1, K2 ∈ Kr are edge disjoint and internally vertex disjoint. This assumption is with-
out loss of generality as each Steiner vertex in G can be cloned a sufficient number
of times to ensure this property. Finally, we redefine G to be (V (Kr ), E(Kr )); as a
result, the Steiner trees of the new graph correspond to the r -restricted Steiner trees
of the original graph. This completes the preprocessing.

Let Kr (T ) denote the set of all full components of a Steiner tree T . For an arbitrary
subfamily S of the full components Kr , our new LP uses the following canonical
decomposition of a Steiner tree into elements of E(S ) and Kr\S .
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t1 t2 t3

t4

t5 t6 t7

s1 s2

t1 t2 t3

t4

t5 t6 t7

s1 s3

Fig. 2 Left a collection S = {{t1, t5, t6}, {t3, t4, t7}, {t2, t3}, {t3, t4}} of 4 full components. Right a Steiner
tree with S -decomposition ({t1s1, t5s1, t6s1, t2t3}, {{t2, t6, t7}, {t4, t7}})

Definition 4 If T is an r-restricted Steiner tree, its S -decomposition is the pair

(E(T ) ∩ E(S ),Kr (T )\S ).

Figure 2 illustrates the S -decomposition of a Steiner tree. Observe that after
S -decomposing a Steiner tree T we have

∑

e∈E(T )∩E(S )

ce +
∑

K∈Kr (T )\S
cK = c(T ).

We hence obtain a new higher-dimensional view of the Steiner tree polyhedron. Define

STS
G,R := conv{x ∈ {0, 1}E(S ) × {0, 1}Kr \S : ∃T ∈ STG,R s.t. x is the incidence

vector of the S -decomposition of T }.

The following definitions are used to generalize Steiner partition inequalities to use
full components. We use �S to denote the family of all partitions of V (S ) ∪ R.

Definition 5 Let π = {V1, . . . , Vp} ∈ �S be a partition of the set R ∪ V (S ). The
rank contribution of full component K ∈ Kr\S is defined as

rcπ
K := |{i : K contains a terminal in Vi }| − 1.

The Steiner rank r̄(π) of π is defined as

r̄(π) := {the number of parts of π that contain terminals}.

For example, where S denotes the collection of full components on the left side
of Fig. 2, consider the partition π = {{t1, t5, s1}, {s2}, {t6, t7}, {t2, t3}, {t4}} ∈ �S.
Its rank is r(π) = 5 but its Steiner rank is r̄(π) = 4. The rank contribution of full
component K = {t2, t6, t7} is rcπ

K = 1.
We describe below a new LP relaxation (PS

ST ) of STS
G,R . The relaxation has a var-

iable xe for each e ∈ E(S ) and a variable xK for each K ∈ Kr\S . For a partition

123



A partition-based relaxation for Steiner trees 353

π ∈ �S, we define Eπ (S ) to be the edges of S whose endpoints lie in different
parts of π , i.e., Eπ (S ) = E(S ) ∩ Eπ .

min
∑

e∈E(S )

ce · xe +
∑

K∈Kr \S
cK · xK (PS

ST )

s.t
∑

e∈Eπ (S )

xe +
∑

K∈Kr \S
rcπ

K · xK ≥ r̄(π) − 1 ∀π ∈ �S (5)

xe, xK ≥ 0 ∀e ∈ E(S ), K ∈ Kr\S (6)

Its LP dual has a variable yπ for each partition π ∈ �S :

max
∑

π∈�S

(r̄(π) − 1) · yπ (DS
ST )

s.t
∑

π∈�S :e∈Eπ (S )

yπ ≤ ce ∀e ∈ E(S ) (7)

∑

π∈�S

rcπ
K · yπ ≤ cK ∀K ∈ Kr\S (8)

yπ ≥ 0 ∀π ∈ �S (9)

We conclude this section with a proof that the (primal) LP is indeed a relaxation of
the convex hull of S -decompositions for r -restricted Steiner trees. The inequalities
(6) are obviously valid for STS

G,R .

Lemma 6 The inequalities (5) are valid for STS
G,R.

Proof Let T be a Steiner tree with S -decomposition (E(T ) ∩ E(S ),Kr (T )\S ),
and let x ∈ STS

G,R be the corresponding incidence vector. Fix an arbitrary partition

π ∈ �S ; we will now argue that the left-hand side of (5) for π is at least r̄(π) − 1.
In order to do that we successively modify the given partition π by merging some

of its parts. Initially, let π̂ = π . For each each edge uv of E(T ) ∩ E(S ), merge the
part of π̂ containing u and that containing v; if both endpoints lie in the same part
of π̂ , the partition remains unchanged. Subsequently, consider each K ∈ Kr (T )\S ,
and merge all parts of π̂ meeting any terminal of K .

Initially, π̂ has Steiner rank r̄(π), and its final Steiner rank is 1 since T connects
all terminals. The Steiner rank drop of π̂ due to any edge e ∈ Eπ (S ) with xe = 1 is
clearly at most 1. For any other edge e ∈ E(T ) ∩ E(S ), since the endpoints of e are
in the same part of π , the Steiner rank drop of π̂ due to e is 0. Similarly, the Steiner
rank drop of π̂ due to K ∈ Kr (T )\S is at most rcπ

K . This shows that x satisfies
constraint (5). As T and π were chosen arbitrarily, the lemma follows. ��
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3 An iterated primal-dual algorithm for Steiner trees

As described in Sect. 2.2, MST(G, c) denotes a call to Kruskal’s minimum-spanning
tree algorithm on graph G with cost-function c. It returns a minimum-cost spanning
tree T and an optimal feasible dual solution y for (DS P ). Let mst(G, c) denote the
cost of MST(G, c). Since c is fixed, in the rest of the paper we omit c where possible
for brevity. Let us also abuse notation and identify each set S ⊂ Kr of full com-
ponents with the graph (V (S ), E(S )). In particular when S = (V (S ), E(S )) is
connected and spans all terminals,MST(S ) is a Steiner tree; namely, the one produced
by running the MST heuristic on the instance wherein the full component set is S
and all other full components from the original instance are not present.

The main idea of the greedy algorithms in [40,47,48] is to find a set S ⊂ Kr of
full components such that MST(S ) is a Steiner tree with small cost relative to optr .
Let

(R
2

)
denote the collection of all pairs of terminals. The algorithms all start with

S = (R
2

)
and then grow S , so for the rest of the paper we assume that

(R
2

) ⊆ S ;
hence E(G[R]) ⊆ E(S ) and R ⊆ V (S ).

The reason that MST is useful in our primal-dual framework is that we can relate
the dual (DS P ) on graph S to the dual (DS

ST ). Let y be the dual returned by a call
to MST(S ). We treat y as a dual solution of (DS

ST ); note that constraints (1) and
(2) of (DS P ) imply that y also meets constraints (7) and (9) of (DS

ST ). If K is a full
component such that (8) does not hold for y, we say that K is violated by y.

The primal-dual algorithm finds such a set S in an iterative fashion. Initially, S
is equal to

(R
2

)
. In each iteration, we compute a minimum-cost spanning tree T of

the graph S . The dual solution y corresponding to this tree is converted to a dual
for (DS

ST ), and if y is feasible for (DS
ST ), we stop. Otherwise, we add a violated full

component to S and continue. The algorithm clearly terminates (as Kr is finite) and
at termination, it returns the final tree T as an approximately-optimum Steiner tree.

Algorithm 1 summarizes the above description. The greedy algorithms in [40,47,
48] differ only in how K is selected in each iteration, i.e., in how the selection function
fi : Kr → R is defined (see also [21,§1.4] for a well-written comparison of these
algorithms).

Algorithm 1 A general iterative primal-dual framework for Steiner trees.
1: Given: Undirected graph G = (V, E), non-negative costs ce for all edges e ∈ E , constant r ≥ 2.
2: S 0 := (R

2
)
, i := 0

3: repeat
4: (T i , yi ) := MST(S i )

5: if yi is not feasible for (DS i

ST ) then

6: Choose a violated full component K i ∈ Kr \S i such that fi (K i ) is minimized
7: S i+1 := S i ∪ {K i }
8: end if
9: i := i + 1
10: until yi−1 is feasible for (DS i−1

ST )

11: Let p = i − 1 and return (T p, y p).
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In the typical primal-dual approach [20,43] dual feasibility is maintained and pri-
mal feasibility happens only at the end. This is true in MST relative to (DS P ), however
if you consider the entirety of Algorithm 1 relative to our new LPs, we obtain a primal
feasible solution in each iteration but attain dual feasibility only in the final iteration;
more specifically the objective value of yi decreases as i increases (see Lemma 21).
We remark that the recent 4

3 -approximation algorithm of Chakrabarty et al. [6] for
quasi-bipartite instances uses the same generic approach, with the addition of an ini-
tial filtering step, and using any possible selection function.

The following lemma is at the heart of our proof, and explains why our LP can be
used to find cheap Steiner trees. We use S/K to denote the graph obtained from S
by identifying the terminals in K , and by deleting loops created in this process.

Lemma 7 Let (T, y) = MST(S ). Then K is violated by y if and only if

cK < c(T ) − mst(S/K ).

Proof Let us adopt the notation from the proof of Theorem 3, and assume thatMST(S )

finishes at time τ ∗. Consider how the rank contribution of K changes with respect to
π(τ) over time. Clearly, rcπ(0)

K = |K | − 1 and rcπ(τ∗)
K = 0. Whenever an edge is

added to Eτ in MST, the value rcπ(τ)
K either stays the same or drops by 1; hence there

are edges e1, . . . , e|K |−1 ∈ T such that, for 1 ≤ i ≤ |K | − 1,rcπ(τ)
K drops from

|K | − i to |K | − i − 1 when edge ei is added. Let τ(i) denote the time at which edge
ei is added, then by the definition of the ei ,

τ∗
∫

0

rcπ(τ)
K dτ =

|K |−1∑

i=1

τ(i). (10)

Notice that due to the definition of MST, the following two facts hold: first, τ(i) = cei

for each i ; second, the left hand side of Eq. (10) is
∑

π rc
π
K yπ . Hence we obtain

∑

π

rcπ
K yπ =

|K |−1∑

i=1

cei (11)

Let the partition maintained by MST on input G at time τ be denoted by πG(τ ).
An easy inductive argument shows that for all τ , we obtain πS /K (τ ) from πS (τ ) by
first merging all parts that meet K , and by subsequently identifying the vertices of K .
It follows that T \{e1, . . . , e|K |−1} is a minimum spanning tree of S/K . With Eq. (11)
this yields

∑

π

rcπ
K yπ = c(T ) − mst(S/K ).

By the definition of violating full component, the proof is complete. ��
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Corollary 8 Let (T, y) = MST(S ). If K is violated by y, then adding K to S
produces a cheaper spanning tree, i.e.,

mst (S ∪ {K }) < c(T ).

Proof MST(S/K )∪ K is a spanning tree of S ∪{K }, and by Lemma 7 its cost is less
than c(T ). ��

3.1 Cutting losses: the RZ selection function

A potential weak point in Algorithm 1 is that once a full component is added to S , it
is never removed. On the other hand, if some cheap subgraph H connects all Steiner
vertices of S to terminals, then adding H to any Steiner tree gives us a tree that
spans V (S ), i.e., we have so far lost at most c(H) in the final answer. This leads to
the concept of the loss of a Steiner tree which was first introduced by Karpinski and
Zelikovsky [25].

Definition 9 Let G ′ = (V ′, E ′) be a subgraph of G. The lossL(G ′) is a minimum-cost
set E ′′ ⊆ E ′ such that every connected component of (V ′, E ′′) contains a terminal.
Let l(G ′) denote the cost of L(G ′).

See Fig. 3 for an example of the loss of a graph. The above discussion amounts to
saying that min{mst(S ′) | S ′ ⊇ S } ≤ optr +l(S ). Consequently, our selection
function fi in step 6 of the algorithm should try to keep the loss small. The following
fact holds because full components in Kr meet only at terminals.

Fact 10 If S ⊆ Kr , then L(S ) = ∪K∈S L(K ) and so l(S ) = ∑
K∈S l(K ).

For a set S of full components, where y is the dual solution returned by MST(S ),
define

mst(S ) :=
∑

π∈�S

(r̄(π) − 1)yπ . (12)

If y is feasible for (DS
ST ) then by weak LP duality, mst(S ) provides a lower bound

on optr . If y is infeasible for (DS
ST ), then which full component should we add?

Robins and Zelikovsky propose minimizing the ratio of the added loss to the change

Fig. 3 The figure shows the
Steiner tree instance from Fig. 1
with costs on the edges. The loss
of the Steiner tree in this figure
is shown in thick edges. Its cost
is 8

4

2 6

5 3

8
5

3

4
5

2
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in potential lower bound (12). Their selection function fi is defined by

fi (K ) := l(K )

mst(S i ) − mst(S i ∪ {K }) = l(S i ∪ {K }) − l(S i )

mst(S i ) − mst(S i ∪ {K }) , (13)

where the equality uses Fact 10.

4 Analysis

Fix an optimum r -Steiner tree T ∗. There are several steps in proving the performance
guarantee of Robins and Zelikovsky’s algorithm, and they are encapsulated in the
following result, whose complete proof appears in Sect. 6.

Lemma 11 The cost of the tree T p returned by Algorithm 1 is at most

optr + l(T ∗) · ln

(

1 + mst(G[R], c) − optr

l(T ∗)

)

.

The main observation in the proof of the above lemma can be summarized as fol-
lows: from the discussion in Sect. 2, we know that the tree T p returned by Algorithm 1
has cost

mst(S p) =
∑

π∈�S p

(r(π) − 1)y p
π

and the corresponding lower-bound on optr returned by the algorithm is

mst(S p) =
∑

π∈�S p

(r̄(π) − 1)y p
π .

We know that mst(S p) ≤ optr but how large is the difference between mst(S p)

and mst(S p)? We show that the difference

∑

π∈�S p

(r(π) − r̄(π))y p
π

is exactly equal to the loss l(T p) of tree T p—this is proved in Lemma 18. We then
bound the loss of each selected full component K i , and putting everything together
finally yields Lemma 11.

The following lemma states the performance guarantee of Moore’s minimum-span-
ning tree heuristic as a function of the optimum loss and the maximum cardinality b
of any Steiner neighbourhood in G.

Lemma 12 Fix an arbitrary optimum r-restricted Steiner tree T ∗. Given an undi-
rected, b-quasi-bipartite graph G = (V, E), a set of terminals R ⊆ V , and non-
negative costs ce for all e ∈ E, we have
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mst(G[R], c) ≤ 2optr − 2

b
l(T ∗)

for any b ≥ 1.

Proof Recall that Kr (T ∗) is the set of full components of tree T ∗. Now consider a full
component K ∈ Kr (T ∗). We will now show that there is a minimum-cost spanning
tree of G[K ] whose cost is at most 2cK − 2

bl(K ). By repeating this argument for all
full components K ∈ Kr (T ∗), adding the resulting bounds, and applying Fact 10, we
obtain the lemma.

For terminals r, s ∈ K , let Prs denote the unique r, s-path in K . Pick u, v ∈ K
such that c(Puv) is maximal. Define the diameter �(K ) := c(Puv). Do a depth-first
search traversal of K starting in u and ending in v. The resulting walk in K traverses
each edge not on Puv twice while each edge on Puv is traversed once. Hence the
walk has cost 2cK −�(K ). Using standard short-cutting arguments it follows that the
minimum-cost spanning tree of G[K ] has cost at most

2cK − �(K ) (14)

as well.
Each Steiner vertex s ∈ V (K )\R can connect to some terminal v ∈ K at cost at

most �(K )
2 . Hence, the cost l(K ) of the loss of K is at most b �(K )

2 . In other words
we have �(K ) ≥ 2

bl(K ). Plugging this into (14) yields the lemma. ��
For small values of b we can obtain additional improvements via case analysis.

Lemma 13 Suppose b ∈ {3, 4}. Fix an arbitrary optimum r-restricted Steiner tree
T ∗. Given an undirected, b-quasi-bipartite graph G = (V, E), a set of terminals
R ⊆ V , and non-negative costs ce for all e ∈ E, we have

mst(G[R], c) ≤ 2optr − l(T ∗).

Proof As in the proof of Lemma 12 it suffices to prove that, for each full component
K ∈ Kr (T ∗), there is a minimum-cost spanning tree of G[K ] whose cost is at most
2cK − l(K ), for then we can add the bound over all such K to get the desired result.
For terminals r, s ∈ K , let Prs again denote the unique r, s-path in K .

Notice that the Steiner vertices (there are at most b of them) in the full component
K either form a path, or else there are 4 of them and they form a star.

Case 1: the Steiner vertices in K form a path. Let x and y be the Steiner vertices on
the ends of this path. Let u (resp. v) be any terminal neighbour of x (resp.
y); see Fig. 4(i) for an example. Perform a depth-first search in K starting
from u and ending at v; the cost of this search is 2cK − c(Puv). By standard
short-cutting arguments it follows that 2cK − c(Puv) is an upper bound on
mst(G[K ]). On the other hand, since Puv\{ux} is a candidate for the loss
of K , we know that l(K ) ≤ c(Puv\{ux}) ≤ c(Puv). Therefore we obtain

mst(G[K ]) ≤ 2cK − c(Puv) ≤ 2cK − l(K ). (15)
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x

y

u

v

(i)

x y

z

t

u

v

(ii)

Fig. 4 The figure shows the two types of full components when b ≤ 4. On the left is a full component
where the Steiner vertices form a path, and on the right is a full component where the Steiner vertices form
a star with 3 tips

Case 2: the Steiner vertices in K form a star. Let the tips of the star be x, y, z and let
t, u, v be any terminal neighbours of x, y, z respectively; see Fig. 4(ii) for an
example. Without loss of generality, we may assume that cxt ≤ cyu ≤ czv .
As before, a depth-first search in K starting from u and ending at v has
cost 2cK − c(Puv) and this is an upper bound on mst(G[K ]). On the other
hand, Puv\{yu} ∪ {xt} is a candidate for the loss of K and so l(K ) ≤
c(Puv) − cyu + cxt ≤ c(Puv). We hence obtain Eq. (15) as in the previous
case. ��

We are ready to prove our main theorem. We restate it using the notation introduced
in the last two sections.

Theorem 1 Given an undirected, b-quasi-bipartite graph G = (V, E), terminals
R ⊆ V , and a fixed constant r ≥ 2, Algorithm 1 returns a feasible Steiner tree T p

with

c(T p) ≤
⎧
⎨

⎩

1.279 · optr b = 1
(1 + 1/e) · optr b ∈ {2, 3, 4}
(
1 + 1

2 ln
(
3 − 2

b

))
optr b ≥ 5.

Proof Using Lemma 11 we see that

c
(
T p) ≤ optr + l

(
T ∗) · ln

(

1 + mst(G[R], c) − optr

l(T ∗)

)

= optr + l(T ∗) · ln

(

1 + mst(G[R], c) − optr

l (T ∗)

)

. (16)
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The second equality above holds because G[R] has no Steiner vertices. Applying the
bound on mst(G[R], c) from Lemma 12 yields

c
(
T p) ≤ optr ·

[

1 + l(T ∗)
optr

· ln

(

1 − 2

b
+ optr

l (T ∗)

)]

. (17)

Karpinski and Zelikovsky [25] show that l(T ∗) ≤ 1
2optr . We can therefore obtain

an upper-bound on the right-hand side of (17) by bounding the maximum value of
function x ln(1 − 2/b + 1/x) for x ∈ [0, 1/2]. We branch into cases:

b = 1: The maximum of x ln(1/x−1) for x ∈ [0, 1/2] is attained for x ≈ 0.2178.
Hence, x ln(1/x − 1) ≤ 0.279 for x ∈ [0, 1/2].

b = 2: The maximum of x ln(1/x) is attained for x = 1/e and hence x ln(1/x) ≤
1/e for x ∈ [0, 1/2].

b ∈ {3, 4}: We use Eq. (16) together with Lemma 13 in place of Lemma 12; the
subsequent analysis and result are the same as in the previous case.

b ≥ 5: The function x ln(1 − 2/b + 1/x) is increasing in x and its maximum is
attained for x = 1/2. Thus, x ln(1 − 2/b + 1/x) ≤ 1

2 ln(3 − 2/b) for
x ∈ [0, 1/2].

The four cases above conclude the proof of the theorem. ��
We remark that under the original analysis of Robins and Zelikovsky, for RZ to

achieve an approximation ratio better than the MST heuristic requires (1+ 1
2 ln(3))ρr <

2 which occurs for r ≥ 12. Note the graph resulting from preprocessing under a given
choice of r is (r − 2)-quasi-bipartite; hence, Theorem 1 shows that for r = 5, RZ
achieves ratio ρ5 · (1 + 1

e ) = 13
9 · (1 + 1

e ) < 2 and does better than the MST heuristic.

5 Properties of (PS
ST )

In this section, we first prove that the linear program (PS
ST ) is gradually weakened as

the algorithm progresses (i.e., as more full components are added to S ). Then we
describe bounds on the integrality gap of the new LP, and its strength compared to
other LPs for the Steiner tree problem.

Lemma 14 If S ⊂ S ′, then the integrality gap of (PS
ST ) is at most the integrality

gap of (PS ′
ST ).

Proof We consider only the case where S ′ = S ∪ {J } for some full component J ;
the general case then follows by induction on |S ′\S |.

Let x be any feasible primal point for (PS
ST ) and define the extension x ′ of x to

be a primal point of (PS ′
ST ), with x ′

e = xJ for all e ∈ E(J ) and x ′
Z = xZ for all

Z ∈ (Kr\S ′) ∪ E(S ). We claim that x ′ is feasible for (PS ′
ST ). Since x and x ′ have

the same objective value, this will prove Lemma 14.
It is clear that x ′ satisfies constraints (6), so now let us show that x ′ satisfies the

partition inequality (5) in (PS ′
ST ). Fix an arbitrary partition π ′ of V (S ′), and let π be
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the restriction of π ′ to V (S ). We get

∑

e∈Eπ ′ (S ′)
x ′

e +
∑

K∈Kr \S ′
rcπ ′

K x ′
K =

⎛

⎝
∑

e∈Eπ (S )

xe +
∑

K∈Kr \S
rcπ

K xK

⎞

⎠

+ |Eπ ′ ∩ E(J )|xJ − rcπ
J xJ . (18)

Now J spans at least rcπ
J + 1 parts of π ′, and it follows that |Eπ ′ ∩ E(J )| ≥ rcπ

J .
Hence, using Eq. (18), the fact that x satisfies constraint (5) for π , and the fact that
r̄(π) = r̄(π ′), we have

∑

e∈Eπ ′ (S ′)
x ′

e+
∑

K∈Kr \S ′
rcπ ′

K x ′
K ≥

∑

e∈Eπ (S )

xe+
∑

K∈Kr \S
rcπ

K xK ≥ r̄(π)−1= r̄
(
π ′)−1.

So x ′ satisfies (5) for π ′. ��
In 1997, Warme [44] introduced a new linear program for the Steiner tree problem.

He observed (as did the authors of [36] in the same year) that full components allow a
reduction from the Steiner tree problem to the spanning-tree-in-hypergraph problem.
Warme also gave an LP relaxation for spanning trees in hypergraphs. That LP turns
out to be exactly as strong as our own LP; see [27,Corollary 3.19] for a proof. Now,
Polzin et al. [35] proved that Warme’s relaxation is stronger than the bidirected cut
relaxation, and Goemans [17] proved that the (graph) Steiner partition inequalities
are valid for the bidirected cut formulation. Hence, using full components as in (PS

ST )
strengthens the Steiner partition inequalities.

5.1 A lower bound on the integrality gap of (P∅

ST )

Note that when S = (R
2

)
, (P∅

ST ) and (PS
ST ) are equivalent LPs: for each terminal-

terminal edge uv, the full component variable x{u,v} of the former corresponds to the
edge variable xuv of the latter. Hence although we consider the simpler LP (P∅

ST ) in
this section, the results apply also to the LP used in the first iteration of RZ.

As reported by Agarwal & Charikar [1], Goemans gave a family of graphs upon
which, in the limit, the integrality gap of the bidirected cut relaxation is 8

7 . Interest-
ingly, it can be shown that once you preprocess these graphs as described in Sect. 2.3,
the gap completely disappears. Here we describe another example, due to Skutella
[41]. It shows not only that the gap of the bidirected cut relaxation is at least 8

7 , but that
the gap of our new formulation (including preprocessing) is at least 8

7 . The example
is quasi-bipartite.

The Fano design is a well-known finite geometry consisting of 7 points and 7 lines,
such that every point is on 3 lines, every line contains 3 points, any two lines meet in a
unique point, and any two points lie on a unique common line. We construct Skutella’s
example by creating a bipartite graph, with one side consisting of one vertex n p for
each point p of the Fano design, and the other side consisting of one vertex n� for each
line � of the Fano design. Define n p and n� to be adjacent in our graph if and only if
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Fig. 5 Skutella’s example, which shows that the bidirected cut formulation and our new formulation both
have a gap of at least 8

7 . The shaded edges denote one of the quasi-bipartite full components on 5 terminals

p does not lie on �. Then it is easy to see this graph is 4-regular, and that given any
two vertices n1, n2 from one side, there is a vertex from the other side that is adjacent
to neither n1 nor n2. Let one side be terminals, the other side be Steiner vertices, and
then attach one additional terminal to all the Steiner vertices. We illustrate the resulting
graph in Fig. 5.

Each Steiner vertex is in a unique 5-terminal quasi-bipartite full component. There
are 7 such full components. Denote the family of these 7 full components by C .

Claim 15 Let x∗
K = 1

4 for each K ∈ C , and x∗
K = 0 otherwise. Then x∗ is feasible

for (P∅

ST ).

Proof It is immediate that x∗ satisfies constraints (6). It remains only to show that x∗
meets constraint (5). Let π = (V0, V1, . . . , Vm) be an arbitrary partition such that V0
contains the extra top terminal. If we can show that

∑
K x∗

Krc
π
K ≥ m then we will

be done, since π was arbitrary. For each i = 1, . . . , m, let ti be any terminal in Vi .
Note that each ti lies in exactly 4 full components from C . Furthermore, every full
component K ∈ C satisfies rcπ

K ≥ |K ∩ {t1, . . . , tm}|, as K meets V0 as well as each
part Vj for which t j ∈ K . Hence

∑

K∈C

x∗
Krc

π
K = 1

4

∑

K∈C

rcπ
K ≥ 1

4

∑

K∈C

|{ j : t j ∈ K }|

= 1

4

m∑

j=1

|{K ∈ C : t j ∈ K }| = 1

4
· m · 4 = m.

��

The objective value of x∗ is 35
4 , but the optimal integral solution to the LP is 10, since

at least 3 Steiner vertices need to be included. Hence, the gap of our new LP is no
better than 10

35/4 = 8
7 .
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5.2 A gap upper bound for b-quasi-bipartite instances

In Rajagopalan and Vazirani [38] show that the bidirected cut relaxation has a gap of
at most 3

2 , if the graph is quasi-bipartite. Since (P∅

ST ) is stronger than the bidirected
cut relaxation its gap is also at most 3

2 for such graphs. We are able to generalize this
result as follows.

Theorem 2 On b-quasi-bipartite graphs, (P∅

ST ) has an integrality gap between 8
7 and

2b+1
b+1 in the worst case.

Proof The lower bound comes from Sect. 5.1. We assume G is b-quasi-bipartite, we
let T ∗ be an optimal Steiner tree, and we let S ∗ be its set of full components. Since
T ∗ is a minimum spanning tree for S ∗, there is a corresponding feasible dual y for
(DS P ). When we convert y to a dual for (DS ∗

ST ), we claim that y is feasible: indeed,
by Corollary 8 a violated full component could be used to improve the solution, but
T ∗ is already optimal. The next lemma is the cornerstone of our proof.

Lemma 16 Let π be a partition of V (S ∗) with yπ > 0. Then (r̄(π) − 1) ≥
b+1

2b+1 (r(π) − 1).

Proof For each part Vi of π , let us identify all of the vertices of Vi into a single
pseudo-vertex vi . We may assume by Theorem 3 that each T ∗[Vi ] is connected, hence
this identification process yields a tree T ′. Let us say that vi is Steiner if and only if all
vertices of Vi are Steiner. Note that T ′ has r(π) pseudo-vertices and r(π) − r̄(π) of
these pseudo-vertices are Steiner. The full components of T ′ are defined analogously
to the full components of a Steiner tree.

Consider any full component K ′ of T ′ and let K ′ contain exactly s Steiner pseudo-
vertices. It is straightforward to see that s ≤ b. Each Steiner pseudo-vertex in K ′ has
degree at least 3 by Assumptions A1 and A2, and at most s −1 edges of K ′ join Steiner
vertices to other Steiner vertices. Hence K ′ has at least 3s − (s − 1) = 2s + 1 edges,
and so

|E(K ′)| ≥ 2s + 1

s
· s ≥ 2b + 1

b
· s.

Now summing over all full components K ′, we obtain

|E(T ′)| ≥ 2b + 1

b
· #{Steiner pseudo-vertices of T ′}.

But |E(T ′)| = r(π) − 1 and T ′ has r(π) − r̄(π) Steiner pseudo-vertices, therefore

r(π) − 1 ≥ 2b + 1

b
((r(π) − 1) − (r̄(π) − 1))

⇒ 2b + 1

b
(r̄(π) − 1) ≥ b + 1

b
(r(π) − 1).

This proves what we wanted to show. ��
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It follows that the objective value of y in (DS ∗
ST ) is

∑

π∈�S

(r̄(π) − 1)yπ ≥
∑

π∈�S

b + 1

2b + 1
(r(π) − 1)yπ = b + 1

2b + 1
c
(
T ∗)

and since T ∗ is an optimum integer solution of (PS ∗
ST ), it follows that the integral-

ity gap of (PS ∗
ST ) is at most 2b+1

b+1 . Then, finally, by applying Lemma 14 to (P∅

ST ) and

(PS ∗
ST ) we obtain Theorem 2. ��

6 Proof of Lemma 11

In this section we present a proof of Lemma 11. The methodology follows that pro-
posed by Gröpl et al. [21], see also the presentation of Korte and Vygen [29,Ch. 20]
which corrects a small bug. The essential novelty of our approach is an integral-based
interpretation of mst,mst and loss, which leads to the cornerstone mst = mst+ l
(Lemma 18). This also results in a new, short proof of the ubiquitous contraction
lemma (Lemma 22).

When G is a graph and τ is a real number, let G≤τ denote the subgraph of G
obtained by deleting all edges with weight greater than τ . For a graph G, let κ(G)

denote the number of connected components of G.

Lemma 17 mst(G) = ∫ ∞
τ=0(κ(G≤τ ) − 1)dτ.

Proof At time τ , Kruskal’s primal-dual algorithm raises the objective function of
(DS P ) at a rate of r(π(τ)) − 1 per unit time. By Theorem 3,

mst(G) = c(T ) =
∑

π

y∗
π (r(π) − 1) =

τ∗
∫

τ=0

(r(π(τ)) − 1)dτ.

Now, since π(τ) is the same as the partition induced by the connected components of
G≤τ , and since κ(G≤τ ) = 1 for τ ≥ τ ∗, we are done. ��

We first relate the cost of a minimum-cost spanning tree of S for some set S of
full components to the (potential) lower-bound mst(S ) on optr that it provides.

Lemma 18 For any graph G and terminal set R ⊂ V (G),

mst(G) = mst(G) + l(G).

Proof Run MST on input G, obtaining output (T, y) Let us adopt the notation from
the proof of Theorem 3. The difference mst(G) − mst(G) satisfies

mst(G)−mst(G)=
∑

π

yπr(π)−
∑

π

yπ r̄(π)=
τ∗
∫

0

(r(π(τ))−r̄(π(τ)))dτ. (19)
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Let a Steiner part of a partition be a part which contains only Steiner vertices. The
quantity r(π(τ)) − r̄(π(τ)) counts the number of Steiner parts of π(τ). Recall from
Sect. 2.2 that Gτ denotes the forest maintained by Kruskal’s algorithm at time τ ≥ 0.
We then obtain Gτ /R from Gτ by identifying the set of all terminals; Gτ /R has
one connected component for each Steiner part of π(τ), and one additional connected
component containing all other vertices. Therefore, the right-hand side of (19) is equal
to

τ∗
∫

0

(κ(Gτ/R) − 1)dτ =
∞∫

0

(κ((G/R)≤τ ) − 1)dτ = mst(G/R),

where the last equality uses Lemma 17.
Finally, note that l(G) = mst(G/R), since the loss is the minimum-cost set of

edges to connect every Steiner vertex to some terminal, which is the same as the
minimum-cost set of edges to connect every Steiner vertex to the pseudo-vertex cor-
responding to R in G/R, which is in turn the minimum spanning tree of G/R. ��

We obtain the following immediate corollary:

Corollary 19 In iteration i of Algorithm 1, adding full component K ∈ Kr to S
reduces the cost of mst(S ) if and only if fi (K ) < 1.

Proof By applying Lemma 18 we see that

mst
(
S i ) − mst

(
S i ∪ {K }) = mst

(
S i ) + l

(
S i ) − mst

(
S i ∪ {K })

− l
(
S i ∪ {K }).

Whereas the left-hand side is positive iff adding K to S i causes a reduction in mst,
the right-hand side is positive iff fi (K ) < 1, due to the definition of fi (Eq. (13)).

��
Using Corollaries 8 and 19, we obtain the following.

Corollary 20 For all 1 ≤ i ≤ p, fi (K i ) < 1.

Fix an optimum r -Steiner tree T ∗. The next two lemmas give bounds that are needed
to analyze RZ’s greedy strategy. Informally, the first says that mst is non-increasing,
while the second says that mst is supermodular.

Lemma 21 If S ⊆ S ′ ⊆ Kr , then mst(S ′) ≤ mst(S ).

Proof Using Lemma 18 and Fact 10 we see

mst(S ) − mst
(
S ′) = mst(S ) + l

(
S ′\S ) − mst

(
S ′) .

However, the right hand side of the above equation is non-negative, as MST(S ) ∪
L(S ′\S ) is a spanning tree of S ′. Lemma 21 then follows. ��
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Lemma 22 (Contraction Lemma) Let S 0,S 1,S 2 ⊂ Kr be disjoint collections of
full components with

(R
2

) ⊆ S 0. Then

mst
(
S 0

)
− mst

(
S 0 ∪ S 2

)
≥ mst

(
S 0 ∪ S 1

)
− mst

(
S 0 ∪ S 1 ∪ S 2

)
.

Proof The statement to be proved is equivalent to

mst
(
S 0

)
−mst

(
S 0 ∪ S 2

)
≥mst

(
S 0 ∪ S 1

)
−mst

(
S 0 ∪ S 1 ∪ S 2

)
, (20)

due to Lemma 18 and Fact 10. Our proof is centred around proving that for all τ ≥ 0,

κ
(
S 0≤τ

)
−κ

(
S 0≤τ ∪ S 2≤τ

)
≥ κ

(
S 0≤τ ∪ S 1≤τ

)
−κ

(
S 0≤τ ∪ S 1≤τ ∪ S 2≤τ

)
. (21)

If we prove Eq. (21), then by adding −1 + 1 to each side, integrating along τ , and
using Lemma 17, we obtain Eq. (20) as needed.

Define a function μ on graphs by μ(G) = |V (G)|−κ(G). The crux is that μ is the
rank function for graphic matroids, and is hence submodular. Similarly, the function
|V (G)| is modular, and so κ(G) = |V (G)| − μ(G) is supermodular, which proves
Eq. (21). ��

Note that the proof of Lemma 22 easily generalizes to other matroids. This seems
not to have been noticed before, and is not evident from early proofs of the Contraction
Lemma (e.g. [4,Lemma 3.9], [21], [39,Lemma 2])—although it is not hard to deduce
from the presentation of Korte and Vygen [29].

We are finally near the end of the analysis, where the Contraction Lemma comes
into play. We can now bound the value fi (K i ) for all 0 ≤ i ≤ p − 1 in terms of the
cost of T ∗’s loss. In the remainder of the section, let l∗ denote l(T ∗), let msti denote
mst(S i ) and let mst∗ denote mst(T ∗).

Lemma 23 For all 0 ≤ i ≤ p −1, if msti −mst∗
> 0, then fi (K i ) ≤ l∗/(msti −

mst∗
).

Proof Let the full components of T ∗ be K ∗,1, . . . , K ∗,q . By the choice of K i in Algo-
rithm 1, we have fi (K i ) ≤ min j fi (K ∗, j ). A standard fraction averaging argument
implies that

fi (K i ) ≤
∑q

j=1 l(K ∗, j )
∑q

j=1

(
mst(S i ) − mst(S i ∪ {K ∗, j }))

≤ l∗
∑q

j=1

(
mst(S i ∪ {K ∗,1, . . . , K ∗, j−1}) − mst(S i ∪ {K ∗,1, . . . , K ∗, j }))

(22)

where the last inequality uses Fact 10 and Lemma 22. The denominator of the
right-hand side of Eq. (22) is a telescoping sum. Canceling like terms, and using
Lemma 21 to replace mst(S i ∪ {K ∗,1, . . . , K ∗,q}) with mst∗, we are done. ��
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We can now bound the cost of T p.

Proof of Lemma 11 We first bound the loss l(T p) of tree T p. Using Fact 10,

l(T p) =
p−1∑

i=0

l(K i ) =
p−1∑

i=0

fi (K i ) ·
(
msti − msti+1

)
(23)

where the last equality uses the definition of fi from (13). Using Corollary 20 and
Lemma 23, the right hand side of Eq. (23) is bounded as follows:

p−1∑

i=0

fi (K i )·
(
msti − msti+1

)
≤

p−1∑

i=0

l∗

max{l∗,msti − mst∗} ·
(
msti − msti+1

)
.

(24)

The right hand side of Eq. (24) can in turn be bounded from above by the following
integral:

p−1∑

i=0

l∗ ·
(
msti − msti+1

)

max
{
l∗,msti − mst∗} ≤

mst0
∫

mstp

l∗

max{l∗, x − mst∗}dx

=
mst0−mst∗

∫

mstp−mst∗

l∗

max{l∗, x}dx . (25)

Notice that mst0 = mst(G[R], c) ≥ optr = l∗ +mst∗. The termination condition
in Algorithm 1 and Lemma 6 imply that mstp ≤ optr . Hence the result of evaluating
the integral in the right-hand side of Eq. (25) is

l∗ − (
mstp − mst∗) + l∗ ·

mst0−mst∗
∫

l∗

1

x
dx

= optr − mstp + l∗ · ln

(
mst0 − mst∗

l∗

)

(26)

where the equality uses Lemma 18. Applying Lemma 18 two more times, and com-
bining Eqs. (23)–(26), we obtain
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c
(
T p) = mstp + l

(
T p) ≤ optr + l∗ · ln

(
mst0 − mst∗

l∗

)

= optr + l∗ · ln

(

1 + mst0 − (mst∗ + l∗)
l∗

)

= optr + l∗ · ln

(

1 + mst0 − optr

l∗

)

as wanted. ��

7 Conclusion and future directions

There is a large body of work on relaxations for the Steiner tree problem. While many
of these formulations have lead to improved, integer-programming based exact algo-
rithms, none of the relaxations has a known integrality gap smaller than 2. In this paper
we propose a hypergraph-based relaxation, and we first showed that the best known
approximation algorithm for the Steiner tree problem has a natural interpretation as a
primal-dual algorithm for this LP. We then derived an upper-bound on the integrality
gap of our LP which is nearly 2 for general graphs, but smaller than 2 for graphs with
small Steiner neighbourhoods.

The obvious open question is whether there is a relaxation whose gap is a constant
strictly smaller than 2 for general instances. The integrality gap of the bidirected cut
relaxation, and therefore also the gap of our formulation, is widely conjectured to be
bounded away from 2. We hope that the connection between greedy and LP-based
algorithms developed in this paper proves useful in the quest for smaller integrality
gaps.

Most primal-dual algorithms naïvely increase dual variables in a monotone way,
and thus often find dual solutions of poor quality. In their recent paper Chakrabarty
et al. [6], showed that a suitable preprocessing of a given quasi-bipartite Steiner tree
instance may steer a primal-dual algorithm to higher value dual solutions. As men-
tioned, we can use the filtering technique from [6] in order to slightly improve the
bound given in Theorem 2 to (2b − 1)/b for b ≥ 2 [28]. Can this bound be decreased
further by using more sophisticated filtering ideas?

Direct primal LP rounding techniques offer yet another way of proving upper
bounds on the integrality gap of an LP. Hypergraph-based formulations may be useful
in this approach as their basic solutions have an appealing nested structure. Extend-
ing known results for undirected-cut formulations, partitions corresponding to tight
inequalities in basic solutions to our LP may be uncrossed [27]. This suggests an
attack via iterated rounding, a technique pioneered by Jain [23] that produces an inte-
gral feasible solution for an instance of the survivable network design problem by
rounding a fractional basic solution in multiple stages. However, one quickly realizes
that a naïve implementation of Jain’s strategy will not work as a folklore example sim-
ilar to Skutella’s shows that some extreme points of bidirected cut have support of size
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(|V |2). Developing more a sophisticated direct rounding strategy is a challenging
open question.
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