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Abstract. An undirected graph G = (V,E) is stable if its inessential
vertices (those that are exposed by at least one maximum matching) form
a stable set. We call a set of edges F ⊆ E a stabilizer if its removal from G
yields a stable graph. In this paper we study the following natural edge-
deletion question: given a graph G = (V,E), can we find a minimum-
cardinality stabilizer?
Stable graphs play an important role in cooperative game theory. In the
classic matching game introduced by Shapley and Shubik [19] we are
given an undirected graph G = (V,E) where vertices represent players,
and we define the value of each subset S ⊆ V as the cardinality of a
maximum matching in the subgraph induced by S. The core of such a
game contains all fair allocations of the value of V among the players,
and is well-known to be non-empty iff graph G is stable. The stabilizer
problem addresses the question of how to modify the graph to ensure
that the core is non-empty.
We show that this problem is vertex-cover hard. We then prove that there
is a minimum-cardinality stabilizer that avoids some maximum matching
of G. We use this insight to give efficient approximation algorithms for
sparse graphs and for regular graphs.

1 Introduction

Given an undirected graph G = (V,E), a subset of edges M ⊆ E is a matching
if every vertex v ∈ V is incident to at most one edge in M . Dually, a subset
of vertices U ⊆ V is called vertex cover if every edge has at least one endpoint
in U . The corresponding optimization problems of finding a matching and ver-
tex cover of largest and smallest size, respectively, have a rich history in the
field of Combinatorial Optimization. Relaxing canonical integer programming
formulations for these problems yields the following primal-dual pair of linear
programs:

νf (G) := max{1Tx : x(δ(v)) ≤ 1 ∀v ∈ V, x ≥ 0} (P)

where δ(v) denotes the set of edges incident to v, and

τf (G) := min{1T y : yu + yv ≥ 1 ∀uv ∈ E, y ≥ 0}. (D)



We will henceforth refer to feasible solutions of (P) and (D) as fractional match-
ings and vertex covers, respectively. An application of duality theory easily yields

ν(G) ≤ νf (G) = τf (G) ≤ τ(G)

where ν(G) and τ(G) denote the size of a maximum matching and a minimum
vertex cover, respectively.

In this paper, we study graphs G with the property ν(G) = τf (G). The
class of such graphs, known as stable graphs, subsumes the well-studied class of
König-Egerváry (KEG) graphs (e.g., see [20, 13, 14, 15]) for which ν(G) = τ(G).
Stable graphs arise quite naturally in the study of cooperative matching games
introduced by Shapley and Shubik in their seminal paper [19]. An instance of
this game is associated with an undirected graph G = (V,E) where vertices
represent players. We define the value of each subset S ⊆ V as the cardinality
of a maximum matching in the subgraph G[S] induced by S, and the core of the
game consists of all stable allocations of total value ν(G) among the vertices in
V in which no coalition of vertices has an incentive to deviate. This is formally
defined as

core(G) :=

{
y ∈ RV

+ :
∑
v∈S

yv ≥ ν(G[S]) ∀S ⊆ V,
∑
v∈V

yv = ν(G)

}
.

It is well-known (e.g., see [8]) that core(G) is non-empty iff G is stable.
Matching games in turn are closely related to network bargaining, a natural,

recent generalization of Nash’s famous bargaining solution [16] to networks due
to Kleinberg and Tardos [11]. Here, we are given an undirected graph G = (V,E)
whose vertices correspond to players, and whose edges correspond to potential
unit-value deals between the incident players. Each player is allowed to engage
in at most one deal with one of its neighbors. Hence, a permissible outcome is
naturally associated with a matching M among the vertices of G, as well as an
allocation y ∈ RV

+ of |M | among M ’s endpoints. Kleinberg and Tardos define an
allocation to be stable if yu + yv ≥ 1 for all uv ∈ E. The authors further define
an outside option αu for each vertex u ∈ V as

αu := max{1− yv : uv ∈ δ(u) \M},

and say that an outcome (M,y) is balanced if for every edge uv ∈M , the surplus
1 − αu − αv is split evenly among u and v. The main result in [11] is that an
instance of network bargaining has a stable outcome iff it has a balanced one.
One now realizes (see also [5]) that a stable outcome exists iff the core of the
underlying matching game instance is non-empty and hence iff G is stable.

In this paper, we focus on unstable instances of the matching game, where the
core is empty. Our motivating goal is to establish strategies for stabilizing such
instances in the least intrusive way ; i.e., we would like to alter the input graph
in few places and ideally maintain the value of the grand coalition formed by the
set of vertices V in the process. The following natural edge-deletion stabilizer



problem formalizes this: given a graph G = (V,E), find the smallest edge set
F ⊆ E such that the subgraph G \ F := (V,E \ F ) is stable.

Stable graphs form a proper superclass of KEGs which in turn form a su-
perclass of bipartite graphs. Readers familiar with the literature of bipartite
graphs would immediately recognize that the stabilizer problem closely resem-
bles the optimization problems of deleting the minimum number of edges to
convert a given graph into a KEG or a bipartite graph, both of which have been
well-studied in the literature (e.g., see [1, 15]). The investigation of structural
properties of unstable graphs has a long history (e.g., see [21, 3, 17]), but there
are few algorithmic results on how to convert an unstable graph to a stable
graph. Biró et al. [6] recently studied the minimum stabilizer problem in the
weighted setting, where maximum-weight matchings are considered instead of
maximum-cardinality matchings. The authors showed that the problem is NP-
hard in this case, and leave the complexity of the question in the unweighted
setting open.

1.1 Our results

We first show that removing a minimum stabilizer from a given graph G does
not reduce the cardinality of the maximum matching. Hence the value of the
grand coalition of the associated matching game remains the same.

Theorem 1. For every minimum stabilizer F , we have ν(G \ F ) = ν(G).

The proof of this theorem is algorithmic: given any stabilizer F , we can
efficiently find a maximum matching M in G and a stabilizer F ′ such that F ′ ⊆ F
and M ∩ F ′ = ∅. The last equality implies that M is still a maximum matching
in G\F ′. The result motivates the following intermediate M -stabilizer problem:
given a maximum matching M , find a minimum-cardinality stabilizer FM that
is disjoint from M . In the network bargaining setting, this question asks how to
convert a specific maximum matching into one with a stable allocation through
minimal edge deletions in the underlying network. Biró et al. [6] previously
showed that this problem is NP-hard. We strengthen the hardness result and
complement it with a tight algorithmic counterpart.

Theorem 2. The M -stabilizer problem is NP-hard, and no efficient (2 − ε)-
approximation algorithm exists for any ε > 0 assuming the Unique Games
Conjecture [10]. Furthermore, the M -stabilizer problem admits an efficient 2-
approximation algorithm.

The hardness proof employs an approximation preserving reduction from ver-
tex cover. The approximation algorithm uses linear programming, and one shows
that a suitable linear programming relaxation for the problem has a half-integral
optimal solution. Turning to the stabilizer problem, we first extend the hardness
result obtained for M -stabilizers answering the open question in [6]. Interest-
ingly, our hardness result holds for factor-critical graphs (see next subsection
for the definition).



Theorem 3. The stabilizer problem is NP-hard. Furthermore, no efficient (2−
ε)-approximation algorithm exists for any ε > 0 assuming the Unique Games
Conjecture [10].

Theorems 1 and 2 suggest that the crux of the hardness of the stabilizer
problem lies in finding the right maximum matching that survives the removal
of a minimum stabilizer. Once such a matching is found one could indeed simply
apply our 2-approximation for the M -stabilizer problem. However, not every
maximum matching survives the removal of a minimum stabilizer. In fact, for
two different maximum matchings M and M ′, the cardinality of FM and FM ′ can
differ by a factor of Ω(|V |) even on a planar factor-critical graph. In Section 3.1,
we present an approximation algorithm whose approximation factor depends
on the sparsity of the graph. We say that a graph G = (V,E) is ω-sparse if
|E(S)| ≤ ω |S| for all vertex subsets S ⊆ V .

Theorem 4. There exists an efficient O(ω)-approximation algorithm for the
stabilizer problem, where ω is the sparsity of the input graph.

We note that the above result implies a constant factor approximation al-
gorithm for graphs with constant sparsity, e.g., planar graphs. We do not know
whether a constant factor approximation algorithm can be developed for arbi-
trary graphs. However, we give a 2-approximation algorithm for regular graphs
(graphs where all vertex degrees are equal). In the network bargaining setting,
this gives a 2-approximation algorithm to stabilize networks in which every player
has the same number of potential deals to make.

Theorem 5. There exists an efficient 2-approximation algorithm for the stabi-
lizer problem in regular graphs.

The analysis of our algorithm nicely combines some classic results about
matchings and vertex covers such as the structure of basic solutions of (P) and
(D) and the Edmonds-Gallai decomposition.

The proof of Theorem 1 is presented in Section 2, and that of Theorems 4
and 5 are presented in Section 3. The proofs of Theorems 2 and 3 are deferred
to the full version of the paper [7].

1.2 Related work

The problem of removing vertices or edges from a graph in order to attain a cer-
tain graph property is natural, and thus not surprisingly, its variants have been
studied extensively. Much of the work on deletion problems addresses mono-
tone graph properties (e.g., see [22, 2]) that are invariant under edge-removal
or vertex-removal. Crucially, graph stability is not a monotone property as one
easily verifies: the triangle is not stable, and adding a single pendant edge to one
of its vertices yields a stable graph.

Our work is closely related to that of Mishra et al. [15] on vertex-removal and
edge-removal problems to attain the König-Egerváry graph property. Similar



to stability, KEG is not a monotone property. Mishra et al. showed that it
is NP-hard to approximate the corresponding edge-deletion problem to within
a factor of 2.88. Assuming the Unique Games Conjecture, no constant-factor
approximation may exist for the problem. We note that the reductions used in
[15] will likely not be helpful for proving hardness for the stabilizer problem as
the graphs constructed in the reduction are stable. On the positive side, the
authors show that, for a given graph G = (V,E) one can efficiently find a KEG
(and hence stable) subgraph with at least 3|E|/5 edges.

The recent paper by Könemann et al. [12] addressed the related, NP-hard
problem of finding a minimum-cardinality blocking set in an input graph G =
(V,E). Here one wants to find a set of edges F ⊆ E such that G \ F has a
fractional vertex cover of size at most ν(G). Importantly, the resulting graph
G\F is not required to be stable; indeed, the cardinality of a minimum blocking
set can differ from the cardinality of a minimum stabilizer by a factor of Ω(|V |).

1.3 Preliminaries

Given an undirected graph G and a matching M in G, a path is called M -
alternating if it alternates edges from M and those from E \M . An odd cycle
of length 2k + 1 in which exactly k edges are in M is called an M -blossom. An
M -flower is an even M -alternating path from an exposed vertex to a vertex
u such that there exists a blossom through u. For a subset of vertices S ⊆ V ,
we use E(S) to denote the set of edges in the graph induced by S and G[S] to
denote the subgraph induced by S. A graph G = (V,E) is called factor-critical
if for all v ∈ V , G[V \ {v}] has a perfect matching; i.e., a matching that does
not expose any vertex. A vertex v is called inessential for G if there exists a
maximum matching M that exposes v, and essential otherwise. In this paper,
we will also use the following characterization of stable graphs.

Theorem 6 ([11]). The following are equivalent: (i) G is stable, (ii) The set
of inessential vertices of G forms a stable set, (iii) G contains no M -flower for
any maximum matching M . Moreover, if G is not stable, then G contains an
M -flower for every maximum matching M .

Given a graph G, the Edmonds-Gallai decomposition is a partition of its
vertex set into three partsB(G), C(G),D(G), whereB(G) is the set of inessential
vertices, the set C(G) consists of the neighbors of B(G) and D(G) = V \(B(G)∪
C(G)). We list several standard but useful properties. For a proof see, e.g., [18].

Theorem 7. Given a graph G, the Edmonds-Gallai decomposition of the graph
B(G), C(G), D(G) can be computed in polynomial time. Further, we have the
following properties.

1. Each component of G[B(G)] is factor-critical.
2. Every maximum matching M in G exposes at most one vertex in each com-

ponent K of G[B(G)].



3. If U is a non-trivial factor-critical component in G[B(G)] (i.e., a factor-
critical component with more than one vertex), then ν(G \ E(U)) < ν(G).

The following proposition is a consequence of the Edmonds-Gallai decompo-
sition theorem, which follows from classic results by Balas [3] and Pulleyblank
[17]. We include its proof in the full version of this paper [7].

Proposition 1. Let M be a maximum matching in G that also matches the
maximum possible number of isolated vertices in G[B(G)]. Let k be the number
of non-trivial factor-critical components with at least one vertex exposed by M .
Then k = 2(νf (G)− ν(G)).

2 Maximum matchings and minimum stabilizers

We first show that the deletion of any minimum stabilizer does not alter the
cardinality of the maximum matching.

Proof (of Theorem 1). Let F be a minimum stabilizer. Find a maximum match-
ing M in G such that |M ∩ F | is minimum. Suppose |M ∩ F | 6= 0.

Consider G′ := G \ (F \M), the graph obtained by removing all the edges
of F \M from G. Clearly M is still a maximum matching in G′. However, since
F is minimum, G′ is not stable. By Theorem 6, this implies that there exists an
M -flower in G′ starting at an M -exposed vertex w.

Suppose the M -flower contains an edge uv ∈ F . Then, uv ∈ M , since all
other edges from F have been removed in G′. Therefore, we can find an even M -
alternating path P from w to either u or v. Switching along the edges of this path,
we obtain another maximum matchingM ′ = M∆P inG with |F∩M ′| < |F∩M |,
a contradiction.

It follows that the M -flower does not contain any edge from F , and therefore
the M -flower also exists in G \ F . However, since G \ F is stable, this implies
that M \ F is not a maximum matching in G \ F . Apply Edmonds’ maximum
matching algorithm on the graph G \ F initialized with the matching M \ F ,
and construct an M \ F -alternating tree starting with the exposed vertex w.
There are two possibilities: either we find an augmenting path P or a frustrated
tree rooted at w. In the first case, the path P starts with w and ends with a
M \ F -exposed vertex, say w′. However, such a path cannot exist in G because
M is a maximum matching, and therefore w′ must have been incident to an edge
f ∈ M ∩ F . Also, note that the path P is in G \ F . Hence, P + f is an even
M -alternating path in G containing exactly one edge in M ∩F . Switching along
the edges of this path, we obtain another maximum matching M ′ = M∆P in G
with |F ∩M ′| < |F ∩M |, a contradiction.

The only remaining possibility is that we find a frustrated tree T rooted at w.
Let G[T ] = (VT , ET ) be the graph induced by all vertices in the frustrated tree T
(after expanding pseudonodes). In this case, M ∩ET is a maximum matching in
G[T ], and the M -flower is contained in ET . However, if we continue Edmonds’
algorithm, it would remove the vertices of the frustrated tree, and continue



running in the resulting subgraph to find a maximum matching. Therefore it
ends by computing a maximum matching M∗ in G\F with M∗∩ET = M ∩ET .
Therefore, we have a M∗-flower in G \ F , again a contradiction. ut

We remark here that the above proof is algorithmic, therefore given a stabilizer
F , we can find in polynomial time a maximum matching M in G and another
stabilizer F ′ ⊆ F such that M ∩F ′ = ∅. The first step of computing a maximum
matching M in G with minimum intersection with F can be done by assigning
a cost of one to the edges in F , zero to the rest of the edges, and computing a
min-cost matching in G of cardinality ν(G).

We next prove a lower bound on the cardinality of a stabilizer.

Theorem 8. For every minimum stabilizer F , we have |F | ≥ 2(νf (G)− ν(G)).

Proof. Let B(G), C(G), D(G) denote the Edmonds-Gallai decomposition and
let M be a maximum matching in G that also matches the maximum possible
number of isolated vertices in G[B(G)]. Let U1, . . . , Uk denote the non-trivial
components in G[B(G)] with at least one vertex exposed by M . Let F be a
minimum stabilizer and H = G\F . For each component U1, . . . , Uk, at least one
vertex vi ∈ Ui becomes essential in H. Suppose not, then all vertices of some Ui

are inessential in H. This implies that F contains all edges in G[Ui]. Thus, by
Theorem 7, we have that ν(H) < ν(G), a contradiction to Theorem 1.

Pick a maximum matching N in H. Then, N will cover all these vertices
v1, . . . , vk that are essential in H. Since G[Ui] is factor-critical and M matches
all but one vertex in Ui using edges in G[Ui], we may assume without loss of
generality, that M misses all these vertices. The graph M∆N is a disjoint union
of even cycles and even paths since |M | = |N | = ν(G). Consider the k disjoint
paths starting at the vertices v1, . . . , vk in M∆N . We observe that at least one of
the M edges in each of these paths should belong to F , otherwise we can obtain a
maximum matching in H that exposes the starting vertex vi, thus contradicting
vi 6∈ B(H). Hence |F | ≥ k. The result follows by Proposition 1. ut

3 Finding small stabilizers

In this section, we return to the problem of finding small stabilizers. The fol-
lowing two sections present algorithms for the problem in sparse, and regular
graphs, respectively.

3.1 An O(ω)-approximation algorithm for sparse graphs

Before proving Theorem 4, we state and prove the following lemma that is the
main ingredient of our algorithm.

Lemma 1. Let G be a graph with νf (G) > ν(G). There exists an efficient algo-
rithm to find a set of edges L with |L| = O(ω), such that

(i) ν(G \ L) = ν(G),



(ii) νf (G \ L) ≤ νf (G)− 1
2 .

In other words, Lemma 1 shows that we can find a small subset of edges
to remove from G without decreasing the size of the maximum matching but
reducing the size of the minimum fractional vertex cover. The proof of Lemma 1
will use two classic results on the structure of fractional and integral matchings.

Theorem 9. [4] Every basic feasible solution to (P) has components equal to 0, 1
or 1

2 , and the edges with half integral components induce vertex disjoint cycles.

Theorem 10. [3, 21] Let x̂ be a maximum fractional matching in a graph G
having half integral fractional components for a minimum number of odd cycles
C1, . . . , Cq. Let M̂ := {e ∈ E : x̂e = 1} and Mi be a maximum matching in Ci.

Then M = M̂ ∪M1 ∪ · · · ∪Mq is a maximum matching in G. Moreover, such x̂
and M can be found in time polynomial in the number of vertices.

We are now ready to prove Lemma 1.

Proof (Proof of Lemma 1). Consider x̂ and M as in Theorem 10 for the graph
G. By duality theory, there exists a fractional vertex cover y with 1T y = 1T x̂
satisfying complementary slackness conditions with x̂. Moreover, we can always
find such a vector y with half integral components (e.g., see [9]). We will give an
efficient algorithm to find a vertex u with the following properties:

(a) yu = 1
2 ,

(b) Lu := {uw : yw = 1
2} satisfies ν(G \ Lu) = ν(G) and |Lu| ≤ 4ω.

First, let us argue that (a) + (b) implies the result. Assume we can find such
a vertex u. The only non-trivial conclusion that needs to be verified is that
νf (G\Lu) ≤ νf (G)−1/2. Consider the vector y′ defined as y′v = yv for all v 6= u
and y′u = 0 otherwise. Then y′ is a fractional vertex cover for G \ Lu (vertex u
cannot be adjacent to vertices with y-value zero because y is a fractional vertex
cover for G).

Now let us prove that a vertex u satisfying (a) + (b) can be found efficiently.
Consider an arbitrary cycle in x̂, e.g., C1. Since x̂e > 0 for every edge e = uv in
C1, it follows that the vertex cover constraint is tight (i.e., yu + yv = 1 holds)
for all edges in C1, and therefore yv = 1

2 for all vertices in C1.
Set H := C1, and mark all vertices in C1. Note that C1 is an odd cycle,

therefore if we remove any subset of edges incident to one marked vertex in
H, then we do not decrease the size of a maximum integral matching in the
resulting graph. Repeat the following process, which will maintain a collection
of four invariants for the graph H: (i) Every vertex in H has y-value 1

2 , (ii)
removing any subset of edges incident to one marked vertex of H does not
decrease the size of a maximum matching, (iii) from any marked vertex, there
is an even-length M -alternating path to C1, (iv) at least half of the vertices of
H are marked. All properties clearly hold initially when H consists of C1 only.

1. If there is a marked vertex in H with |Lu| ≤ 4ω, then u satisfies properties
(a) and (b). STOP.



2. Otherwise, consider an arbitrary marked vertex u in H that is adjacent to a
vertex w /∈ H with yw = 1

2 . Such a w must be matched in M as otherwise,
we could obtain an M -augmenting path in G by concatenating wu, the
even length M -alternating u,C1-path guaranteed by property (iii) and an
appropriate even-length alternating path along C1 to the M -exposed vertex
on C1.

3. Let z be the vertex matched to w byM . By complementary slackness, yz = 1
2 .

Add w and z to H and mark z. Go to 1.

It is straight-forward to verify that properties (i)–(iv) continue to hold through-
out the execution of the above process. Thus, it only remains to show that we
can always find a vertex w as specified in Step 2 above; i.e., if all marked vertices
u have |Lu| > 4ω, then there exists a marked vertex in H that is adjacent to a
vertex w /∈ H with yw = 1/2. Suppose not. Consider the subgraph G[H] induced
by the vertices in H. This subgraph has the property that the degree of every
marked vertex u in G[H] is at least |Lu| > 4ω. However, by (iv), the number
of marked vertices is more than half the total number of vertices in G[H]. This
contradicts the ω-sparsity of V (H) in G. Finally, it is easy to see that the above
process runs in polynomial time.

With this Lemma at hand, we are now ready to prove our main theorem. We
will use the following algorithm:

Algorithm 1.
INITIALIZE G′ = G.
FOR i = 1, . . . , 2(νf (G)− ν(G)):

1. Let L be the set of edges returned by the algorithm in Lemma 1 when its
input is the current graph G′.

2. Set G′ ← G′ \ L.
3. If G′ is stable, STOP.

Proof (Proof of Theorem 4).
Let G be an unstable graph. We use Algorithm 1. We will now prove that (a)

whenever the above algorithm stops, the current graph G′ is stable, and (b) the
total number of edges removed during the complete execution of the algorithm
is O(ω) · |F ∗|, where F ∗ is a minimum stabilizer. Clearly (a) + (b) implies the
result.

First, let us argue about stability. If the algorithm stops in step (iii) for
some iteration i < 2(νf (G) − ν(G)), this is clear. So we may assume that the
algorithm stops after performing all 2(νf (G) − ν(G)) iterations. The graph G′

output at this point has νf (G′) ≤ νf (G)− 1
2 (2(νf (G)− ν(G))) = ν(G) = ν(G′).

This is because, by Lemma 1, in each iteration the size of a minimum fractional
vertex cover decreases by at least 1

2 while the size of the maximum matching is
maintained. Hence, by definition of stability, G′ is stable.

By Lemma 1, in each iteration we remove O(ω) edges and the total number
of iterations is at most 2(νf (G)−ν(G)). The bound on the approximation factor



follows from Theorem 8. The running time bound also follows since the number of
applications of the algorithm in Lemma 1 is at most 2(νf (G)−ν(G)) ≤ |F ∗| ≤ |E|
times. ut

We end the section with an observation about our algorithm that will be
useful for our approximation results on regular graphs.

Proposition 2. The stabilizer output by Algorithm 1 has size at most 2(νf (G)−
ν(G)) ·∆(G), where ∆(G) is the maximum degree of a vertex in G.

Proof. In each iteration of the algorithm, we remove a subset of edges incident to
some vertex. Therefore we remove at most ∆(G) edges in each iteration. Further,
the number of iterations is at most 2(νf (G)− ν(G)). ut

3.2 A 2-approximation algorithm for regular graphs

In this section, we give a 2-approximation algorithm for solving the stabilizer
problem in regular graphs.

Proof. (Proof of Theorem 5) We use Algorithm 1. Consider a d-regular graph
G, i.e., a graph where every vertex has degree d. Let k := 2(νf (G)− ν(G)). By
Proposition 2, the size of F output by the algorithm is at most kd. We complete
the proof by showing that every stabilizer in G is of size at least kd/2.

Consider the Edmonds-Gallai decomposition ofG, namelyB(G), C(G),D(G).
Let S denote the isolated vertices in G[B]. Consider a maximum matching M in
G that also matches the maximum possible number of vertices in S. By Propo-
sition 1, the number of non-trivial factor-critical components in G[B(G)] with
at least one vertex exposed by M is equal to k.

Let Su denote the vertices in S that are exposed by M . We first observe that
the size ν(G) of the maximum matching in G is (|V | − k− |Su|)/2. Consider the
following primal and dual linear programs.

min
∑
e∈E

ze (P)

yu + yv + zuv ≥ 1 ∀ uv ∈ E∑
u∈V

yu = ν(G)

y, z ≥ 0

max
∑
e∈E

αe − γν(G) (D)

α(δ(u)) ≤ γ ∀ u ∈ V
0 ≤ α ≤ 1

By setting z to be the indicator vector of the minimum stabilizer, we can
obtain y such that (y, z) is a feasible solution to the primal program. This is
because, if z is the indicator vector of a stabilizer in G, then by definition there
exists a fractional vertex cover y in G \ Support(z) with size equal to ν(G \
Support(z)). We also know by Theorem 1 that for every minimum stabilizer F ,
ν(G \ F ) = ν(G).



Thus, the primal program is a relaxation of the stabilizer problem. Conse-
quently, the objective value of any feasible solution to the dual program is a
lower bound on the size of a minimum stabilizer. We will provide a dual feasible
solution with objective value at least kd/2.

Consider the dual solution (γ = d, αe = 1 ∀ e ∈ E). Since the graph is
d-regular we have that α(δ(u)) = d. Thus, all dual constraints are satisfied and
hence, it is a dual feasible solution. The objective value is∑

e∈E
αe − γν(G) =

d|V |
2
− d

(
|V | − k − |Su|

2

)
= d

(
k + |Su|

2

)
≥ kd

2
.

ut

Concluding Remarks. We conclude the paper with a remark about the linear
program (P). If we add the integrality constraints on the z variables, we obtain
an integer program (IP) and it follows by our result that the integrality gap of
the resulting IP is at most 2 for d-regular graphs. Könemann et al. [12] proved
a Θ(n)-bound on the integrality gap of the IP for general graphs. However,
the resulting IP is not a formulation for our minimum stabilizer problem, since
the integral optimum solution of the IP could be Ω(n) away from the size of
a minimum stabilizer for arbitrary graphs (not necessarily regular). In order to
obtain a formulation for our stabilizer problem, we could introduce additional
variables x and impose the existence of a matching in G \ Support(z) of size
ν(G):

min
∑
e∈E

ze

yu + yv + zuv ≥ 1 ∀ uv ∈ E,∑
u∈V

yu = ν(G),

x(δ(v)) ≤ 1 ∀ v ∈ V,
∑
e∈E

xe = ν(G), x(E[S]) ≤ |S| − 1

2
∀ S ⊆ V, |S| odd,

xe + ze ≤ 1 ∀ e ∈ E,
x, y, z ≥ 0, x, z integral.

However, we can show a lower bound of Ω(n) on the integrality gap of the
above formulation. We refer the reader to the full version of the paper [7] for the
example that exhibits the integrality gap.
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