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Abstract. Iterative rounding and relaxation have arguably become themethod of
choice in dealing with unconstrained and constrained network design problems.
In this paper we extend the scope of the iterative relaxationmethod in two direc-
tions: (1) by handling more complex degree constraints in the minimum spanning
tree problem (namelylaminar crossing spanning tree), and (2) by incorporating
‘degree bounds’ in other combinatorial optimization problems such asmatroid
intersectionand lattice polyhedra. We give new or improved approximation al-
gorithms, hardness results, and integrality gaps for theseproblems.

1 Introduction

Iterative rounding and relaxation have arguably become themethod of choice in dealing
with unconstrained and constrained network design problems. Starting with Jain’s ele-
gantiterative roundingscheme for the generalized Steiner network problem in [14],an
extension of this technique (iterativerelaxation) has more recently lead to breakthrough
results in the area of constrained network design, where a number of linear constraints
are added to a classical network design problem. Such constraints arise naturally in
a wide variety of practical applications, and model limitations in processing power,
bandwidth or budget. The design of powerful techniques to deal with these problems is
therefore an important goal.

The most widely studied constrained network design problemis theminimum-cost
degree-bounded spanning treeproblem. In an instance of this problem, we are given an
undirected graph, non-negative costs for the edges, and positive, integral degree-bounds
for each of the nodes. The problem is easily seen to be NP-hard, even in the absence
of edge-costs, since finding a spanning tree with maximum degree two is equivalent to
finding a Hamiltonian Path. A variety of techniques have beenapplied to this problem
[5, 6, 11, 17, 18, 23, 24], culminating in Singh and Lau’s breakthrough result in [27].
They presented an algorithm that computes a spanning tree ofat most optimum cost
whose degree at each vertexv exceeds its bound by at most1, using theiterative relax-
ation framework developed in [20, 27].

The iterative relaxation technique has been applied to several constrained network
design problems: spanning tree [27], survivable network design [20, 21], directed graphs
with intersecting and crossing super-modular connectivity [20, 2]. It has also been ap-
plied to degree bounded versions of matroids and submodularflow [15].



In this paper we further extend the applicability of iterative relaxation, and obtain
new or improved bicriteria approximation results for minimum crossing spanning tree
(MCST), crossing matroid intersection, and crossing lattice polyhedra. We also provide
hardness results and integrality gaps for these problems.
Notation. As is usual, when dealing with an undirected graphG = (V, E), for any
S ⊆ V we letδG(S) := {(u, v) ∈ E | u ∈ S, v 6∈ S}. When the graph is clear from
context, the subscript is dropped. A collection{U1, · · · , Ut} of vertex-sets is called
laminar if for every pairUi, Uj in this collection, we haveUi ⊆ Uj , Uj ⊆ Ui, or
Ui ∩ Uj = ∅. A (ρ, f(b)) approximation for minimum cost degree bounded problems
refers to a solution that (1) has cost at mostρ times the optimum that satisfies the degree
bounds, and (2) satisfies the relaxed degree constraints in which a boundb is replaced
with a boundf(b).

1.1 Our Results, Techniques and Paper Outline

Laminar MCST.Our main result is for a natural generalization of bounded-degree MST
(called Laminar Minimum Crossing Spanning Tree orlaminar MCST), where we are
given an edge-weighted undirected graph with a laminar family L = {Si}mi=1 of vertex-
sets having bounds{bi}mi=1; and the goal is to compute a spanning tree of minimum cost
that contains at mostbi edges fromδ(Si) for eachi ∈ [m].

The motivation behind this problem is in designing a networkwhere there is a hi-
erarchy (i.e. laminar family) of service providers that control nodes (i.e. vertices). The
number of edges crossing the boundary of any service provider (i.e. its vertex-cut) rep-
resents some cost to this provider, and is therefore limited. The laminar MCST problem
precisely models the question of connecting all nodes in thenetwork while satisfying
bounds imposed by all the service providers.

From a theoretical viewpoint, cut systems induced by laminar families are well
studied, and are known to display rich structure. For example, one-way cut-incidence
matricesare matrices whose rows are incidence vectors of directed cuts induced by the
vertex-sets of a laminar family; It is well known (e.g., see [19]) that such matrices are
totally unimodular. Using the laminar structure of degree-constraints and the iterative
relaxation framework, we obtain the following main result,and present its proof in
Section 2.

Theorem 1. There is a polynomial time(1, b + O(log n)) bicriteria approximation al-
gorithm for laminar MCST. That is, the cost is no more than theoptimum cost and the
degree violation is at most additiveO(log n). This guarantee is relative to the natural
LP relaxation.

This guarantee is substantially stronger than what followsfrom known results for
the generalminimum crossing spanning tree(MCST) problem: where the degree bounds
could be on arbitrary edge-subsetsE1, . . . , Em. In particular, for general MCST a
(1, b + ∆− 1) [2, 15] is known where∆ is the maximum number of degree-bounds an
edge appears in. However, this guarantee is not useful for laminar MCST as∆ can be as
large asΩ(n) in this case. If a multiplicative factor in the degree violation is allowed,
Chekuri et al. [8] recently gave a very elegant

(

1, (1 + ǫ)b + O(1
ǫ log m)

)

guarantee



(which subsumes the previous best(O(log n), O(log m) b) [4] result). However, these
results also cannot be used to obtain a small additive violation, especially ifb is large.
In particular, both the results [4, 8] for general MCST are based on the natural LP relax-
ation, for which there is an integrality gap ofb + Ω(

√
n) even without regard to costs

and whenm = O(n) [26] (see also [3]). On the other hand, Theorem 1 shows that a
purely additiveO(log n) guarantee on degree (relative to the LP relaxation and even in
presence of costs) is indeed achievable for MCST, when the degree-bounds arise from
a laminar cut-family.

The algorithm in Theorem 1 is based on iterative relaxation and uses two main
new ideas. Firstly, we drop a carefully chosenconstant fraction of degree-constraints
in each iteration. This is crucial as it can be shown that dropping one constraint at
a time as in the usual applications of iterative relaxation can indeed lead to a degree
violation of Ω(∆). Secondly, the algorithm does not just drop degree constraints, but
in some iterations it alsogenerates new degree constraints, by merging existing degree
constraints.

All previous applications of iterative relaxation to constrained network design treat
connectivity and degree constraints rather asymmetrically. While the structure of the
connectivity constraints of the underlying LP is used crucially (e.g., in the ubiquitous
uncrossing argument), the handling of degree constraints is remarkably simple. Con-
straints are dropped one by one, and the final performance of the algorithm is good only
if the number of side constraints is small (e.g., in recent work by Grandoni et al. [12]),
or if their structure is simple (e.g., if the ‘frequency’ of each element is small). In con-
trast, our algorithm for laminar MCST exploits the structure of degree constraints in a
non-trivial manner.

Hardness Results.We obtain the following hardness of approximation for thegeneral
MCSTproblem (and its matroid counterpart). In particular this rules out any algorithm
for MCST that has additive constant degree violation, even without regard to costs.

Theorem 2. UnlessNP has quasi-polynomial time algorithms, the MCST problem
admits no polynomial timeO(logα m) additive approximation for the degree bounds
for some constantα > 0; this holds even when there are no costs.

The proof for this theorem is given in Section 3, and uses a a two-step reduction
from the well-knownLabel Coverproblem. First, we show hardness for auniformma-
troid instance. In a second step, we then demonstrate how this implies the result for
MCST claimed in Theorem 2.

Note that our hardness bound nearly matches the result obtained by Chekuri et al.
in [8]. We note however that in terms ofpurelyadditive degree guarantees, a large gap
remains. As noted above, there is a much stronger lower boundof b + Ω(

√
n) for LP-

based algorithms [26] (even without regard to costs), whichis based on discrepancy. In
light of the small number of known hardness results for discrepancy type problems, it
is unclear how our bounds for MCST could be strengthened.

Degree Bounds in More General Settings.We consider crossing versions of other clas-
sic combinatorial optimization problems, namelymatroid intersectionandlattice poly-



hedra. We discuss our results briefly and defer the proofs to the full version of the
paper [3].

Definition 1 (Minimum crossing matroid intersection problem). Let r1, r2 : 2E →
Z be two supermodular functions,c : E → R and{Ei}i∈I be a collection of subsets of
E with corresponding bounds{bi}i∈I . Then the goal is to minimize:

{cT x
∣

∣ x(S) ≥ max{r1(S), r2(S)}, ∀ S ⊆ E;

x(Ei) ≤ bi, ∀ i ∈ [m]; x ∈ {0, 1}E}.

We remark that there are alternate definitions of matroid intersection (e.g., see Schri-
jver [25]) and that our result below extends to those as well.

Let ∆ = maxe∈E |{i ∈ [m] | e ∈ Ei}| be the largest number of setsEi that any
element ofE belongs to, and refer to it asfrequency.

Theorem 3. Any optimal basic solutionx∗ of the linear relaxation of the minimum
crossing matroid intersection problem can be rounded into an integral solutionx̂ such
that x̂(S) ≥ max{r1(S), r2(S)} for all S ⊆ E and

cT x̂ ≤ 2cT x∗ and x̂(Ei) ≤ 2bi + ∆− 1 ∀i ∈ I.

The algorithm for this theorem again uses iterative relaxation, and its proof is based
on a ‘fractional token’ counting argument similar to the oneused in [2].

An interesting special case is for thebounded-degree arborescenceproblem (where
∆ = 1). As the set of arborescences in a digraph can be expressed asthe intersection
of partition and graphic matroids, Theorem 3 readily implies a(2, 2b) approximation
for this problem. This is an improvement over the previouslybest-known(2, 2b + 2)
bound [20] for this problem.

The bounded-degree arborescence problem is potentially ofwider interest since it
is a relaxation of ATSP, and it is hoped that ideas from this problem lead to new ideas
for ATSP. In fact Theorem 3 also implies an improved(2, 2b)-approximation for the
bounded-degree arborescence packingproblem, where the goal is to pack a given num-
ber of arc-disjoint arborescences while satisfying degree-bounds on vertices (arbores-
cence packing can again be phrased as matroid intersection). The previously best known
bound for this problem was(2, 2b + 4) [2]. We also give the following integrality gap.

Theorem 4. For anyǫ > 0, there exists an instance of unweighted minimum crossing
arborescence for which the LP is feasible, and any integral solution must violate the
bound on some set{Ei}mi=1 by a multiplicative factor of at least2 − ǫ. Moreover, this
instance has∆ = 1, and just one non-degree constraint.

Thus Theorem 3 is the best one can hope for, relative to the LP relaxation. First,
Theorem 4 implies that the multiplicative factor in the degree cannot be improved be-
yond 2 (even without regard to costs). Second, the lower bound for arborescences with
costs presented in [2] implies that no cost-approximation ratio better than 2 is possible,
without violating degrees by a factor greater than 2.



Crossing Lattice Polyhedra.Classicallattice polyhedraform a unified framework for
various discrete optimization problems and go back to Hoffman and Schwartz [13] who
proved their integrality. They are polyhedra of type

{x ∈ [0, 1]E | x(ρ(S)) ≥ r(S), ∀S ∈ F}

whereF is a consecutive submodularlattice,ρ : F → 2E is a mapping fromF to
subsets of the ground-setE, andr ∈ R

F is supermodular. A key property of lattice
polyhedra is that the uncrossing technique can be applied which turns out to be cru-
cial in almost all iterative relaxation approaches for optimization problems with degree
bounds. We refer the reader to [25] for a more comprehensive treatment of this subject.

We generalize our work further tocrossing lattice polyhedrawhich arise from clas-
sical lattice polyhedra by adding “degree-constraints” ofthe formai ≤ x(Ei) ≤ bi

for a given collection{Ei ⊆ E | i ∈ I} and lower and upper boundsa, b ∈ R
I . We

mention that this model covers several important applications including the crossing
matroid basis and crossing planar mincut problems, among others.

We can show that the standard LP relaxation for the general crossing lattice polyhe-
dron problem is weak; details are deferred to the full version of the paper in [3]. For
this reason, we henceforth focus on a restricted class of crossing lattice polyhedra in
which the underlying lattice(F ,≤) satisfies the following monotonicity property

(∗) S < T =⇒ |ρ(S)| < |ρ(T )| ∀ S, T ∈ F .

We obtain the following theorem whose proof is given in [3].

Theorem 5. For any instance of the crossing lattice polyhedron problemin whichF
satisfies property(∗), there exists an algorithm that computes an integral solution of
cost at most the optimal, where all rank constraints are satisfied, and each degree bound
is violated by at most an additive2∆− 1.

We note that the above property(∗) is satisfied for matroids, and hence Theorem 5
matches the previously best-known bound [15] for degree bounded matroids (with both
upper/lower bounds). Also note that property(∗) holds wheneverF is ordered by inclu-
sion. In this special case, we can improve the result to an additive ∆− 1 approximation
if only upper bounds are given.

1.2 Related Work

As mentioned earlier, the basic bounded-degree MST problemhas been extensively
studied [5, 6, 11, 17, 18, 23, 24, 27]. The iterative relaxation technique for degree-con-
strained problems was developed in [20, 27].

MCST was first introduced by Bilo et al. [4], who presented a randomized-rounding
algorithm that computes a tree of costO(log n) times the optimum where each degree
constraint is violated by a multiplicativeO(log n) factor and an additiveO(log m) term.
Subsequently, Bansal et al. [2] gave an algorithm that attains an optimal cost guarantee
and an additive∆−1 guarantee on degree; recall that∆ is the maximum number of de-
gree constraints that an edge lies in. This algorithm used iterative relaxation as its main



tool. Recently, Chekuri et al. [8] obtained an improved
(

1, (1 + ǫ)b + O(1
ǫ log m)

)

ap-
proximation algorithm for MCST, for anyǫ > 0; this algorithm is based on pipage
rounding.

The minimum crossing matroid basis problem was introduced in [15], where the
authors used iterative relaxation to obtain (1)(1, b + ∆− 1)-approximation when there
are only upper bounds on degree, and (2)(1, b + 2∆ − 1)-approximation in the pres-
ence of both upper and lowed degree-bounds. The [8] result also holds in this matroid
setting. [15] also considered a degree-bounded version of thesubmodular flowproblem
and gave a(1, b + 1) approximation guarantee.

The bounded-degree arborescence problem was considered inLau et al. [20], where
a (2, 2b + 2) approximation guarantee was obtained. Subsequently Bansal et al. [2]
designed an algorithm that for any0 < ǫ ≤ 1/2, achieves a(1/ǫ, bv/(1 − ǫ) + 4)
approximation guarantee. They also showed that this guarantee is the best one can hope
for via the natural LP relaxation (for every0 < ǫ ≤ 1/2). In the absence of edge-costs,
[2] gave an algorithm that violates degree bounds by at most an additive two. Recently
Nutov [22] studied the arborescence problem underweighteddegree constraints, and
gave a(2, 5b) approximation for it.

Lattice polyhedra were first investigated by Hoffman and Schwartz [13] and the
natural LP relaxation was shown to be totally dual integral.Even though greedy-type
algorithms are known for all examples mentioned earlier, sofar no combinatorial al-
gorithm has been found for lattice polyhedra in general. Two-phase greedy algorithms
have been established only in cases where an underlying rankfunction satisfies a mono-
tonicity property [10], [9].

2 Crossing Spanning Tree with Laminar degree bounds

In this section we prove Theorem 1 by presenting an iterativerelaxation-based algo-
rithm with the stated performance guarantee. During its execution, the algorithm selects
and deletes edges, and it modifies the given laminar family ofdegree bounds. A generic
iteration starts with a subsetF of edges already picked in the solution, a subsetE of
undecidededges, i.e., the edges not yet picked or dropped from the solution, a laminar
family L onV , and residual degree boundsb(S) for eachS ∈ L.

The laminar familyL has a natural forest-like structure withnodescorresponding
to each element ofL. A nodeS ∈ L is called theparentof nodeC ∈ L if S is the
inclusion-wise minimal set inL \ {C} that containsC; andC is called achild of S.
NodeD ∈ L is called agrandchildof nodeS ∈ L if S is the parent ofD’s parent.
NodesS, T ∈ L aresiblings if they have the same parent node. A node that has no
parent is calledroot. Thelevelof any nodeS ∈ L is the length of the path in this forest
from S to the root of its tree. We also maintain alinear orderingof the children of
eachL-node. A subsetB ⊆ L is calledconsecutiveif all nodes inB are siblings (with
parentS) and they appear consecutively in the ordering ofS’s children. In any iteration
(F, E,L, b), the algorithm solves the following LP relaxation of the residual problem.

min
X

e∈E

cexe (1)



s.t. x(E(V )) = |V | − |F | − 1

x(E(U)) ≤ |U | − |F (U)| − 1 ∀U ⊂ V

x(δE(S)) ≤ b(S) ∀S ∈ L

xe ≥ 0 ∀e ∈ E

For any vertex-subsetW ⊆ V and edge-setH , we letH(W ) := {(u, v) ∈ H |
u, v ∈W} denote the edges induced onW ; andδH(W ) := {(u, v) ∈ H | u ∈W, v 6∈
W} the set of edges crossingW . The first two sets of constraints are spanning tree
constraints while the third set corresponds to the degree bounds. Letx denote an opti-
mal extreme point solutionto this LP. By reducing degree boundsb(S), if needed, we
assume thatx satisfies all degree bounds at equality(the degree bounds may therefore
be fractional-valued). Letα := 24.

Definition 2. An edgee ∈ E is said to belocal for S ∈ L if e has at least one end-point
in S but is neither inE(C) nor in δ(C)∩ δ(S) for any grandchildC of S. Let local(S)
denote the set of local edges forS. A nodeS ∈ L is said to begoodif |local(S)| ≤ α.

The figure on the left shows a

B
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B
2

C
1

S
C
4

C
3

C
2

setS, its childrenB1 andB2, and
grand-childrenC1, . . . , C4; edges
in local(S) are drawn solid, non-
local ones are shown dashed.

Initially, E is the set of edges
in the given graph,F ← ∅, L is
the original laminar family of ver-
tex sets for which there are degree
bounds, and an arbitrary linear ordering is chosen on the children of each node inL. In
a generic iteration(F, E,L, b), the algorithm performs one of the following steps (see
also Figure 1):

1. If xe = 1 for some edgee ∈ E thenF ← F ∪ {e}, E ← E \ {e}, and set
b(S)← b(S)− 1 for all S ∈ L with e ∈ δ(S).

2. If xe = 0 for some edgee ∈ E thenE ← E \ {e}.
3. DropN: Suppose there at least|L|/4 good non-leaf nodes inL. Then either odd-

levels or even-levels contain a setM ⊆ L of |L|/8 good non-leaf nodes. Drop
the degree bounds of allchildrenofM and modifyL accordingly. The ordering of
siblings also extends naturally.

4. DropL: Suppose there are more than|L|/4 good leaf nodes inL, denoted byN .
Then partitionN into parts corresponding to siblings inL. For any part{N1, · · · ,
Nk} ⊆ N consisting of ordered (not necessarily contiguous) children of some node
S:
(a) DefineMi = N2i−1 ∪N2i for all 1 ≤ i ≤ ⌊k/2⌋ (if k is oddNk is not used).
(b) Modify L by removing leaves{N1, · · · , Nk} and adding new leaf-nodes{M1,
· · · , M⌊k/2⌋} as children ofS (if k is oddNk is removed). The children ofS in
the new laminar family are ordered as follows: each nodeMi takes the position
of eitherN2i−1 or N2i, and other children ofS are unaffected.
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Fig. 1. Examples of the degree constraint modifications DropN and DropL.

(c) Set the degree bound of eachMi to b(Mi) = b(N2i−1) + b(N2i).

Assuming that one of the above steps applies at each iteration, the algorithm termi-
nates whenE = ∅ and outputs the final setF as a solution. It is clear that the algorithm
outputs a spanning tree ofG. An inductive argument (see e.g. [20]) can be used to show
that the LP (1) is feasible at each each iteration andc(F ) + zcur ≤ zo wherezo is
the original LP value,zcur is the current LP value, andF is the chosen edge-set at the
current iteration. Thus the cost of the final solution is at most the initial LP optimumzo.
Next we show that one of the four iterative steps always applies.

Lemma 1. In each iteration, one of the four steps above applies.

Proof: Let x∗ be the optimal basic solution of (1), and suppose that the first two steps
do not apply. Hence, we have0 < x∗

e < 1 for all e ∈ E. The fact thatx∗ is a basic
solution together with a standard uncrossing argument (e.g., see [14]) implies thatx∗ is
uniquely defined by

x(E(U)) = |U | − |F (U)| − 1 ∀U ∈ S, and x(δE(S)) = b(S), ∀S ∈ L′,

whereS is a laminar subset of the tight spanning tree constraints, andL′ is a subset of
tight degree constraints, and where|E| = |S|+ |L′|.

A simple counting argument (see, e.g., [27]) shows that there are at least2 edges
induced on eachS ∈ S that are not induced on any of its children; so2|S| ≤ |E|. Thus
we obtain|E| ≤ 2|L′| ≤ 2|L|.

From the definition of local edges, we get that any edgee = (u, v) is local to at most
the following six sets: the smallest setS1 ∈ L containingu, the smallest setS2 ∈ L
containingv, the parentsP1 andP2 of S1 andS2 resp., the least-common-ancestorL
of P1 andP2, and the parent ofL. Thus

∑

S∈L |local(S)| ≤ 6|E|. From the above,
we conclude that

∑

S∈L |local(S)| ≤ 12|L|. Thus at least|L|/2 setsS ∈ L must have
|local(S)| ≤ α = 24, i.e., must be good. Now either at least|L|/4 of them must be
non-leaves or at least|L|/4 of them must be leaves. In the first case, step 3 holds and in
the second case, step 4 holds.



It remains to bound the violation in the degree constraints,which turns out to be
rather challenging. We note that this is unlike usual applications of iterative round-
ing/relaxation, where the harder part is in showing that oneof the iterative steps applies.

It is clear that the algorithm reduces the size ofL by at least|L|/8 in each DropN
or DropL iteration. Since the initial number of degree constraints is at most2n− 1, we
get the following lemma.

Lemma 2. The number of drop iterations (DropN and DropL) isT := O(log n).

Performance guarantee for degree constraints.We begin with some notation. The
iterations of the algorithm are broken into periods betweensuccessive drop iterations:
there are exactlyT drop-iterations (Lemma 2). In what follows, thet-th drop iteration
is calledroundt. Thetime t refers to the instant just after roundt; time 0 refers to the
start of the algorithm. At any timet, consider the following parameters.

– Lt denotes the laminar family of degree constraints.
– Et denotes the undecided edge set, i.e., support of the currentLP optimal solution.
– For any setB of consecutive siblingsin Lt, Bnd(B, t) =

∑

N∈B b(N) equals the
sum of the residual degree bounds on nodes ofB.

– For any setB of consecutive siblingsin Lt, Inc(B, t) equals the number of edges
from δEt

(∪N∈BN) included in the final solution.

Recall thatb denotes theresidualdegree bounds at any point in the algorithm. The
following lemma is the main ingredient in bounding the degree violation.

Lemma 3. For any setB of consecutive siblings inLt (at any timet), Inc(B, t) ≤
Bnd(B, t) + 4α · (T − t).

Observe that this implies the desired bound on each originaldegree constraintS:
usingt = 0 andB = {S}, the violation is bounded by an additive4α · T term.

Proof: The proof of this lemma is by induction onT − t. The base caset = T is trivial
since the only iterations after this correspond to including 1-edges: hence there is no
violation inanydegree bound, i.e.Inc({N}, T ) ≤ b(N) for all N ∈ LT . Hence forany
B ⊆ L, Inc(B, T ) ≤∑

N∈B Inc({N}, T ) ≤∑

N∈B b(N) = Bnd(B, T ).
Now supposet < T , and assume the lemma fort + 1. Fix a consecutiveB ⊆ Lt.

We consider different cases depending on what kind of drop occurs in roundt + 1.

DropN round. Here either all nodes inB get dropped or none gets dropped.
Case 1:None ofB is dropped.Then observe thatB is consecutive inLt+1 as well;

so the inductive hypothesis impliesInc(B, t + 1) ≤ Bnd(B, t + 1) + 4α · (T − t− 1).
Since the only iterations between roundt and roundt + 1 involve edge-fixing, we have
Inc(B, t) ≤ Bnd(B, t)−Bnd(B, t+1)+ Inc(B, t+1) ≤ Bnd(B, t)+4α · (T− t−1) ≤
Bnd(B, t) + 4α · (T − t).

Case 2:All of B is dropped.Let C denote the set of all children (inLt) of nodes in
B. Note thatC consists of consecutive siblings inLt+1, and inductivelyInc(C, t + 1) ≤
Bnd(C, t + 1) + 4α · (T − t − 1). Let S ∈ Lt denote the parent of theB-nodes;
so C are grand-children ofS in Lt. Let x denote the optimal LP solutionjust before



roundt + 1 (when the degree bounds are still given byLt), andH = Et+1 the support
edges ofx. At that point, we haveb(N) = x(δ(N)) for all N ∈ B ∪ C. Also let
Bnd

′(B, t + 1) :=
∑

N∈B b(N) be the sum of bounds onB-nodes just before round
t + 1. SinceS is a good node in roundt + 1, |Bnd

′(B, t + 1) − Bnd(C, t + 1)| =
|∑N∈B b(N) −∑

M∈C b(M)| = |∑N∈B x(δ(N)) −∑

M∈C x(δ(M))| ≤ 2α. The
last inequality follows sinceS is good; the factor of2 appears since some edges, e.g.,
the edges between two children or two grandchildren ofS, may get counted twice. Note
also that the symmetric difference ofδH(∪N∈BN) andδH(∪M∈CM) is contained in
local(S). ThusδH(∪N∈BN) andδH(∪M∈CM) differ in at mostα edges.

Again since all iterations between timet andt + 1 are edge-fixing:

Inc(B, t) ≤ Bnd(B, t)− Bnd
′(B, t + 1) + |δH(∪N∈BN) \ δH(∪M∈CM)|

+Inc(C, t + 1)

≤ Bnd(B, t)− Bnd
′(B, t + 1) + α + Inc(C, t + 1)

≤ Bnd(B, t)− Bnd
′(B, t + 1) + α + Bnd(C, t + 1) + 4α · (T − t− 1)

≤ Bnd(B, t)− Bnd
′(B, t + 1) + α + Bnd

′(B, t + 1) + 2α + 4α · (T − t− 1)

≤ Bnd(B, t) + 4α · (T − t)

The first inequality above follows from simple counting; thesecond follows since
δH(∪N∈BN) andδH(∪M∈CM) differ in at mostα edges; the third is the induction
hypothesis, and the fourth isBnd(C, t + 1) ≤ Bnd

′(B, t + 1) + 2α (as shown above).
DropL round. In this case, letS be the parent ofB-nodes inLt, andN = {N1, · · · , Np}
be all the ordered children ofS, of whichB is a subsequence (since it is consecutive).
Suppose indices1 ≤ π(1) < π(2) < · · · < π(k) ≤ p correspond to good leaf-nodes
in N . Then for each1 ≤ i ≤ ⌊k/2⌋, nodesNπ(2i−1) andNπ(2i) are merged in this
round. Let{π(i) | e ≤ i ≤ f} (possibly empty) denote the indices of good leaf-nodes
in B. Then it is clear that the only nodes ofB that may be merged with nodes outside
B areNπ(e) andNπ(f); all otherB-nodes are either not merged or merged with another
B-node. LetC be the inclusion-wise minimal set ofchildren ofS in Lt+1 s.t.

– C is consecutive inLt+1,
– C contains all nodes ofB \ {Nπ(i)}ki=1, and
– C contains all new leaf nodes resulting from mergingtwo good leaf nodesof B.

Note that∪M∈CM consists of some subset ofB and at most two good leaf-nodes in
N \B. These two extra nodes (if any) are those merged with the goodleaf-nodesNπ(e)

andNπ(f) of B. Again letBnd
′(B, t + 1) :=

∑

N∈B b(N) denote the sum of bounds
onB just before drop roundt + 1, when degree constraints areLt. Let H = Et+1 be
the undecided edges in roundt + 1. By the definition of bounds on merged leaves, we
haveBnd(C, t + 1) ≤ Bnd

′(B, t + 1) + 2α. The term2α is present due to the two extra
good leaf-nodes described above.

Claim 6 We have|δH(∪N∈BN) \ δH(∪M∈CM)| ≤ 2α.

Proof: We say thatN ∈ N is represented inC if either N ∈ C or N is contained
in some node ofC. Let D be set of nodes ofB that arenot represented inC and the



nodes ofN \ B that are represented inC. Observe that by definition ofC, the setD ⊆
{Nπ(e−1), Nπ(e), Nπ(f), Nπ(f+1)}; in fact it can be easily seen that|D| ≤ 2. Moreover
D consists of only good leaf nodes. Thus, we have| ∪L∈D δH(L)| ≤ 2α. Now note that
the edges inδH(∪N∈BN) \ δH(∪M∈CM) must be in∪L∈DδH(L). This completes the
proof.

As in the previous case, we have:

Inc(B, t) ≤ Bnd(B, t)− Bnd
′(B, t + 1) + |δH(∪N∈BN) \ δH(∪M∈CM)|

+Inc(C, t + 1)

≤ Bnd(B, t)− Bnd
′(B, t + 1) + 2α + Inc(C, t + 1)

≤ Bnd(B, t)− Bnd
′(B, t + 1) + 2α + Bnd(C, t + 1) + 4α · (T − t− 1)

≤ Bnd(B, t)− Bnd
′(B, t + 1) + 2α + Bnd

′(B, t + 1) + 2α + 4α · (T − t− 1)

= Bnd(B, t) + 4α · (T − t)

The first inequality follows from simple counting; the second uses Claim 6, the third
is the induction hypothesis (sinceC is consecutive), and the fourth isBnd(C, t + 1) ≤
Bnd

′(B, t + 1) + 2α (from above).
This completes the proof of the inductive step and hence Lemma 3.

3 Hardness Results

We now prove Theorem 2. The first step to proving this result isa hardness for the more
general minimum crossing matroid basis problem: given a matroidM on a ground set
V of elements, a cost functionc : V → R+, and degree bounds specified by pairs
{(Ei, bi)}mi=1 (where eachEi ⊆ V andbi ∈ N), find a minimum cost basisI inM
such that|I ∩ Ei| ≤ bi for all i ∈ [m].

Theorem 7. UnlessNP has quasi-polynomial time algorithms, the unweighted min-
imum crossing matroid basis problem admits no polynomial timeO(logc m) additive
approximation for the degree bounds for some fixed constantc > 0.

Proof: We reduce from the label cover problem [1]. The input is a graph G = (U, E)
where the vertex setU is partitioned into piecesU1, · · · , Un each having sizeq, and all
edges inE are between distinct pieces. We say that there is asuperedgebetweenUi and
Uj if there is an edge connecting some vertex inUi to some vertex inUj . Let t denote
the total number of superedges; i.e.,

t =

∣

∣

∣

∣

{

(i, j) ∈
(

[n]

2

)

: there is an edge inE betweenUi andUj

}∣

∣

∣

∣

The goal is to pick one vertex from each part{Ui}ni=1 so as to maximize the number
of induced edges. This is called the value of the label cover instance and is at mostt.

It is well known that there exists a universal constantγ > 1 such that for every
k ∈ N, there is a reduction from any instance of SAT (having sizeN ) to a label cover
instance〈G = (U, E), q, t〉 such that:



– If the SAT instance is satisfiable, the label cover instance has optimal valuet.
– If the SAT instance is not satisfiable, the label cover instance has optimal value

< t/γk.
– |G| = NO(k), q = 2k, |E| ≤ t2, and the reduction runs in timeNO(k).

We consider a uniform matroidM with rank t on ground setE (recall that any
subset oft edges is a basis in a uniform matroid). We now construct a crossing matroid
basis instanceI onM. There is a set of degree bounds corresponding to eachi ∈ [n]:
for every collectionC of edges incident to vertices inUi such that no two edges inC
are incident to the same vertex inUi, there is a degree bound inI requiringat most
oneelement to be chosen fromC. Note that the number of degree boundsm is at most
|E|q ≤ NO(k 2k). The following claim links the SAT and crossing matroid instances.
Its proof is deferred to the full version of this paper.

Claim 8 [Yes instance] If the SAT instance is satisfiable, there is a basis (i.e. subset
B ⊆ E with |B| = t) satisfying all degree bounds.
[No instance] If the SAT instance is unsatisfiable, every subsetB′ ⊆ E with |B′| ≥ t/2
violates some degree bound by an additiveρ = γk/2/

√
2.

The steps described in the above reduction can be done in timepolynomial inm
and |G|. Also, instead of randomly choosing vertices from the setsWi, we can use
conditional expectations to derive a deterministic algorithm that recovers at leastt/ρ2

edges. Settingk = Θ(log log N) (recall thatN is the size of the original SAT instance),
we obtain an instance of bounded-degreematroid basis of sizemax{m, |G|} = N loga N

andρ = logb N , wherea, b > 0 are constants. Note thatlog m = loga+1 N , which
impliesρ = logc m for c = b

a+1 > 0, a constant. Thus it follows that for this constant
c > 0 the bounded-degree matroid basis problem has no polynomialtime O(logc m)
additive approximationfor the degree bounds, unlessNP has quasi-polynomial time
algorithms.

We now prove Theorem 2.
Proof: [Proof of Theorem 2] We show how the bases of a uniform matroidcan be
represented in a suitable instance of the crossing spanningtree problem. Let the uniform
matroid from Theorem 7 consist ofe elements and have rankt ≤ e; recall thatt ≥ √e
and clearlym ≤ 2e. We construct a graph as in Figure 2, with verticesv1, · · · , ve

corresponding to elements in the uniform matroid. Each vertex vi is connected to the
root r by two vertex-disjoint paths:〈vi, ui, r〉 and 〈vi, wi, r〉. There are no costs in
this instance. Corresponding to each degree bound (in the uniform matroid) ofb(C)
on a subsetC ⊆ [e], there is a constraint to pick at most|C| + b(C) edges from
δ({ui | i ∈ C}). Additionally, there is aspecial degree boundof 2e− t on the edge-set
E′ =

⋃e
i=1 δ(wi); this corresponds to picking a basis in the uniform matroid.



ui

vi
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r
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v1
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ue

we

Fig. 2. The crossing spanning tree in-
stance used in the reduction.

Observe that for eachi ∈ [e], any span-
ning tree must choose exactly three edges
amongst{(r, ui), (ui, vi),
(r, wi), (wi, vi)}, in fact any three edges
suffice. Hence every spanning treeT in
this graph corresponds to a subsetX ⊆
[e] such that: (I)T contains both edges in
δ(ui) and one edge fromδ(wi), for each
i ∈ X , and (II)T contains both edges in
δ(wi) and one edge fromδ(ui) for each
i ∈ [e] \X .

From Theorem 7, for the crossing matroid problem, we obtain the two cases:

Yes instance.There is a basisB∗ (i.e.B∗ ⊆ [e], |B∗| = t) satisfying all degree bounds.
Consider the spanning tree

T ∗ = {(r, ui), (ui, vi), (r, wi) | i ∈ B∗}
⋃

{(r, wi), (ui, wi), (r, ui) | i ∈ [e] \B∗}.

SinceB∗ satisfies its degree-bounds,T ∗ satisfies all degree bounds derived from the
crossing matroid instance. For the special degree bound onE′, note that|T ∗ ∩ E′| =
2e− |B∗| = 2e− t; so this is also satisfied. Thus there is a spanning tree satisfying all
the degree bounds.

No instance.Every subsetB′ ⊆ [e] with |B′| ≥ t/2 (i.e. near basis) violates some
degree bound by an additiveρ = Ω(logc m) term, wherec > 0 is a fixed constant.
Consider any spanning treeT that corresponds to subsetX ⊆ [e] as described above.

1. Suppose that|X | ≤ t/2; then we have|T ∩ E′| = 2e− |X | ≥ 2e− t + t
2 , i.e. the

special degree bound is violated byt/2 ≥ Ω(
√

e) = Ω(log1/2 m).
2. Now suppose that|X | ≥ t/2. Then by the guarantee on the no-instance,T violates

some degree-bound derived from the crossing matroid instance by additiveρ.

Thus in either case, every spanning tree violates some degree bound by additiveρ =
Ω(logc m).

By Theorem 7, it is hard to distinguish the above cases and we obtain the corre-
sponding hardness result for crossing spanning tree, as claimed in Theorem 2.
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