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Abstract. Iterative rounding and relaxation have arguably becomenitnod of
choice in dealing with unconstrained and constrained nétaesign problems.
In this paper we extend the scope of the iterative relaxatiethod in two direc-
tions: (1) by handling more complex degree constraintsemtimimum spanning
tree problem (nameliaminar crossing spanning tree), and (2) by incorporating
‘degree bounds’ in other combinatorial optimization peshs such asnatroid
intersectionandlattice polyhedraWe give new or improved approximation al-
gorithms, hardness results, and integrality gaps for thesglems.

1 Introduction

Iterative rounding and relaxation have arguably becomentthod of choice in dealing
with unconstrained and constrained network design prokl&tarting with Jain’s ele-
gantiterative roundingscheme for the generalized Steiner network problem in @],
extension of this technique (iterativelaxatior) has more recently lead to breakthrough
results in the area of constrained network design, wherax@euof linear constraints
are added to a classical network design problem. Such @mstrarise naturally in
a wide variety of practical applications, and model limdas in processing power,
bandwidth or budget. The design of powerful techniques & dé&h these problems is
therefore an important goal.

The most widely studied constrained network design prolietine minimum-cost
degree-bounded spanning treeoblem. In an instance of this problem, we are given an
undirected graph, non-negative costs for the edges, aritivpomtegral degree-bounds
for each of the nodes. The problem is easily seen to be NP-beaed in the absence
of edge-costs, since finding a spanning tree with maximumesgetyvo is equivalent to
finding a Hamiltonian Path. A variety of techniques have bagplied to this problem
[5,6,11,17,18, 23, 24], culminating in Singh and Lau’s litheough result in [27].
They presented an algorithm that computes a spanning traerobst optimum cost
whose degree at each verterxceeds its bound by at madstusing theterative relax-
ation framework developed in [20, 27].

The iterative relaxation technique has been applied torakgenstrained network
design problems: spanning tree [27], survivable netwoskgie[20, 21], directed graphs
with intersecting and crossing super-modular connegt[zi0, 2]. It has also been ap-
plied to degree bounded versions of matroids and submofiovaf15].



In this paper we further extend the applicability of itevatrelaxation, and obtain
new or improved bicriteria approximation results for minim crossing spanning tree
(MCST), crossing matroid intersection, and crossingdatfiolyhedra. We also provide
hardness results and integrality gaps for these problems.

Notation. As is usual, when dealing with an undirected graph= (V, E), for any

S CVweletég(S) :={(u,v) € E|ue S, v¢S} When the graph is clear from
context, the subscript is dropped. A collecti¢t, - -- ,U;} of vertex-sets is called
laminar if for every pairU;, U; in this collection, we havé/; C U;, U; C U;, or
UinU; =0.A (p, f(b)) approximation for minimum cost degree bounded problems
refers to a solution that (1) has cost at metimes the optimum that satisfies the degree
bounds, and (2) satisfies the relaxed degree constraintkighwa bound is replaced
with a boundf (b).

1.1 Our Results, Techniques and Paper Outline

Laminar MCST.Our main result is for a natural generalization of boundedrde MST
(called Laminar Minimum Crossing Spanning Treelaminar MCS), where we are
given an edge-weighted undirected graph with a laminarljethi= {S;}™, of vertex-
sets having boundg; } | ; and the goal is to compute a spanning tree of minimum cost
that contains at mos$t edges fromd(.S;) for eachi € [m].

The motivation behind this problem is in designing a netwwHere there is a hi-
erarchy (i.e. laminar family) of service providers that ttohnodes (i.e. vertices). The
number of edges crossing the boundary of any service profiideits vertex-cut) rep-
resents some cost to this provider, and is therefore limitad laminar MCST problem
precisely models the question of connecting all nodes im#te/ork while satisfying
bounds imposed by all the service providers.

From a theoretical viewpoint, cut systems induced by lamfamilies are well
studied, and are known to display rich structure. For exapgule-way cut-incidence
matricesare matrices whose rows are incidence vectors of directisdreduced by the
vertex-sets of a laminar family; It is well known (e.g., s&8]) that such matrices are
totally unimodular. Using the laminar structure of degoesstraints and the iterative
relaxation framework, we obtain the following main resalyd present its proof in
Section 2.

Theorem 1. There is a polynomial timél, b + O(log n)) bicriteria approximation al-
gorithm for laminar MCST. That is, the cost is no more thandpgmum cost and the
degree violation is at most additive(log n). This guarantee is relative to the natural
LP relaxation.

This guarantee is substantially stronger than what follras known results for
the generaminimum crossing spanning tré@gCST) problem: where the degree bounds
could be on arbitrary edge-subsefs, ..., F,,. In particular, for general MCST a
(1,b+ A—1)[2,15]is known whereA is the maximum number of degree-bounds an
edge appears in. However, this guarantee is not usefulfonkr MCST asA can be as
large asf2(n) in this case. If a multiplicative factor in the degree viaatis allowed,
Chekuri et al. [8] recently gave a very elega(r]lt (14+€)b+ O(% log m)) guarantee



(which subsumes the previous bé&t(logn), O(log m) b) [4] result). However, these
results also cannot be used to obtain a small additive voolagspecially ifb is large.

In particular, both the results [4, 8] for general MCST arsdzhon the natural LP relax-
ation, for which there is an integrality gap bft 2(y/n) even without regard to costs
and whenm = O(n) [26] (see also [3]). On the other hand, Theorem 1 shows that a
purely additiveO(log n) guarantee on degree (relative to the LP relaxation and even i
presence of costs) is indeed achievable for MCST, when thedebounds arise from

a laminar cut-family.

The algorithm in Theorem 1 is based on iterative relaxatiod ases two main
new ideas. Firstly, we drop a carefully chosmmstant fraction of degree-constraints
in each iteration. This is crucial as it can be shown that girogp one constraint at
a time as in the usual applications of iterative relaxatian mdeed lead to a degree
violation of £2(A). Secondly, the algorithm does not just drop degree conssiabut
in some iterations it alsgenerates new degree constrairlig merging existing degree
constraints.

All previous applications of iterative relaxation to caaéhed network design treat
connectivity and degree constraints rather asymmetyicélhile the structure of the
connectivity constraints of the underlying LP is used caaligi(e.g., in the ubiquitous
uncrossing argument), the handling of degree constrantsmarkably simple. Con-
straints are dropped one by one, and the final performanbealgorithm is good only
if the number of side constraints is small (e.g., in recentviny Grandoni et al. [12]),
or if their structure is simple (e.g., if the ‘frequency’ dieh element is small). In con-
trast, our algorithm for laminar MCST exploits the struetaf degree constraints in a
non-trivial manner.

Hardness ResultsWe obtain the following hardness of approximation for tfemeral
MCSTproblem (and its matroid counterpart). In particular thikes out any algorithm
for MCST that has additive constant degree violation, evi¢ghout regard to costs.

Theorem 2. Unless NP has quasi-polynomial time algorithms, the MCST problem
admits no polynomial timé&(log® m) additive approximation for the degree bounds
for some constant > 0; this holds even when there are no costs.

The proof for this theorem is given in Section 3, and uses acast@p reduction
from the well-knownLabel Covemproblem. First, we show hardness foumiformma-
troid instance. In a second step, we then demonstrate hewintiplies the result for
MCST claimed in Theorem 2.

Note that our hardness bound nearly matches the resulinebithy Chekuri et al.
in [8]. We note however that in terms pfirelyadditive degree guarantees, a large gap
remains. As noted above, there is a much stronger lower bouihd 22(,/n) for LP-
based algorithms [26] (even without regard to costs), whidiased on discrepancy. In
light of the small number of known hardness results for éipancy type problems, it
is unclear how our bounds for MCST could be strengthened.

Degree Bounds in More General Setting®e consider crossing versions of other clas-
sic combinatorial optimization problems, namatgatroid intersectiorandlattice poly-



hedra We discuss our results briefly and defer the proofs to thievirsion of the
paper [3].

Definition 1 (Minimum crossing matroid intersection problem). Letr,, 7, : 28 —
Z be two supermodular functions; £ — R and{FE; };c; be a collection of subsets of
E with corresponding bounds; } ;. Then the goal is to minimize:

{c"z| x(S) = max{ri(5),r(5)},V S C E;
z(B;)) <b;, Vie[m]; =e{0,1}F}.

We remark that there are alternate definitions of matrowtggction (e.g., see Schri-
jver [25]) and that our result below extends to those as well.

Let A = max.cg |{i € [m] | e € E;}| be the largest number of sel that any
element ofE’ belongs to, and refer to it dsequency

Theorem 3. Any optimal basic solution* of the linear relaxation of the minimum
crossing matroid intersection problem can be rounded intorgegral solutionz such
thatz(S) > max{ri(S),r2(S)} forall S C E and

s <2c2* and #(E;) <2b;+A-1 Viel.

The algorithm for this theorem again uses iterative reiaxaand its proof is based
on a ‘fractional token’ counting argument similar to the ased in [2].

An interesting special case is for theunded-degree arborescerm®blem (where
A = 1). As the set of arborescences in a digraph can be expressled mdersection
of partition and graphic matroids, Theorem 3 readily implég2, 2b) approximation
for this problem. This is an improvement over the previousgt-known(2, 2b + 2)
bound [20] for this problem.

The bounded-degree arborescence problem is potentiallydefr interest since it
is a relaxation of ATSP, and it is hoped that ideas from thabfam lead to new ideas
for ATSP. In fact Theorem 3 also implies an improved2b)-approximation for the
bounded-degree arborescence packingblem, where the goal is to pack a given num-
ber of arc-disjoint arborescences while satisfying dedgr@ends on vertices (arbores-
cence packing can again be phrased as matroid intersedtumpreviously best known
bound for this problem wag, 2b + 4) [2]. We also give the following integrality gap.

Theorem 4. For anye > 0, there exists an instance of unweighted minimum crossing
arborescence for which the LP is feasible, and any integoéitton must violate the
bound on some sétF; }7", by a multiplicative factor of at least — . Moreover, this
instance hag\ = 1, and just one non-degree constraint.

Thus Theorem 3 is the best one can hope for, relative to theelaRation. First,
Theorem 4 implies that the multiplicative factor in the dsgcannot be improved be-
yond 2 (even without regard to costs). Second, the lower déamarborescences with
costs presented in [2] implies that no cost-approximatiio better than 2 is possible,
without violating degrees by a factor greater than 2.



Crossing Lattice Polyhedra.Classicalattice polyhedrdorm a unified framework for
various discrete optimization problems and go back to Haffrand Schwartz [13] who
proved their integrality. They are polyhedra of type

{z e [0,1]7 [ 2(p(S)) = 1(S), VS eF}

where F is a consecutive submoduldattice,p : F — 2F is a mapping fromF to
subsets of the ground-s&t, andr € R” is supermodular. A key property of lattice
polyhedra is that the uncrossing technique can be appliedhwvtbrns out to be cru-
cial in almost all iterative relaxation approaches for oyptiation problems with degree
bounds. We refer the reader to [25] for a more comprehensagnment of this subject.

We generalize our work further twossing lattice polyhedrevhich arise from clas-
sical lattice polyhedra by adding “degree-constraintsthaf forma; < z(E;) < b;
for a given collection{ E; C E | i € I} and lower and upper boundsb € RY. We
mention that this model covers several important appbeatincluding the crossing
matroid basis and crossing planar mincut problems, amdrgy st

We can show that the standard LP relaxation for the generasirg lattice polyhe-
dron problem is weak; details are deferred to the full vergibthe paper in [3]. For
this reason, we henceforth focus on a restricted class sbirg lattice polyhedra in
which the underlying latticeF, <) satisfies the following monotonicity property

(x) S<T = |p(9)| < |p(T)] VS, TeF.

We obtain the following theorem whose proofis given in [3].

Theorem 5. For any instance of the crossing lattice polyhedron problenwhich 7
satisfies propertyx), there exists an algorithm that computes an integral sotutf
cost at most the optimal, where all rank constraints ares$etil, and each degree bound
is violated by at most an additizeA — 1.

We note that the above propefty) is satisfied for matroids, and hence Theorem 5
matches the previously best-known bound [15] for degre@btled matroids (with both
upper/lower bounds). Also note that propgrty holds whenevef is ordered by inclu-
sion. In this special case, we can improve the result to aitiaeld\ — 1 approximation
if only upper bounds are given.

1.2 Related Work

As mentioned earlier, the basic bounded-degree MST probiasnbeen extensively
studied [5, 6,11, 17,18, 23, 24, 27]. The iterative relaxatiechnique for degree-con-
strained problems was developed in [20, 27].

MCST was first introduced by Bilo et al. [4], who presentedrad@mized-rounding
algorithm that computes a tree of c@stlogn) times the optimum where each degree
constraintis violated by a multiplicative(log n) factor and an additiv® (log m) term.
Subsequently, Bansal et al. [2] gave an algorithm thatregtan optimal cost guarantee
and an additived — 1 guarantee on degree; recall thits the maximum number of de-
gree constraints that an edge lies in. This algorithm usedtive relaxation as its main



tool. Recently, Chekuri et al. [8] obtained an improv@d(1 + €)b + O(% logm)) ap-
proximation algorithm for MCST, for any > 0; this algorithm is based on pipage
rounding.

The minimum crossing matroid basis problem was introduoceld 5], where the
authors used iterative relaxation to obtain ()b + A — 1)-approximation when there
are only upper bounds on degree, and(2p + 2A — 1)-approximation in the pres-
ence of both upper and lowed degree-bounds. The [8] resalttadlds in this matroid
setting. [15] also considered a degree-bounded versidresitomodular flovproblem
and gave d1,b + 1) approximation guarantee.

The bounded-degree arborescence problem was considérad &t al. [20], where
a (2,2b + 2) approximation guarantee was obtained. Subsequently Bahs& [2]
designed an algorithm that for afly < ¢ < 1/2, achieves g1/¢,b,/(1 — €) + 4)
approximation guarantee. They also showed that this gteeamthe best one can hope
for via the natural LP relaxation (for evefy< ¢ < 1/2). In the absence of edge-costs,
[2] gave an algorithm that violates degree bounds by at moatditive two. Recently
Nutov [22] studied the arborescence problem unsleighteddegree constraints, and
gave a2, 5b) approximation for it.

Lattice polyhedra were first investigated by Hoffman andv&atz [13] and the
natural LP relaxation was shown to be totally dual integealen though greedy-type
algorithms are known for all examples mentioned earlieffas;no combinatorial al-
gorithm has been found for lattice polyhedra in general.-phase greedy algorithms
have been established only in cases where an underlyinduaation satisfies a mono-
tonicity property [10], [9].

2 Crossing Spanning Tree with Laminar degree bounds

In this section we prove Theorem 1 by presenting an itera#lexation-based algo-
rithm with the stated performance guarantee. During itsetten, the algorithm selects
and deletes edges, and it modifies the given laminar famitiegfee bounds. A generic
iteration starts with a subsét of edges already picked in the solution, a suldsadf
undecideckdges, i.e., the edges not yet picked or dropped from théi@oa laminar
family £ onV, and residual degree bounids) for eachS € L.

The laminar familyZ has a natural forest-like structure witlodescorresponding
to each element of. A nodeS € L is called theparentof nodeC € L if S is the
inclusion-wise minimal set it \ {C'} that containg”; andC is called achild of S.
Node D € L is called agrandchildof nodeS € L if S is the parent ofD’s parent.
NodesS,T € L aresiblingsif they have the same parent node. A node that has no
parent is calledoot. Thelevelof any nodeS € L is the length of the path in this forest
from S to the root of its tree. We also maintainliaear ordering of the children of
each-node. A subseB C L is calledconsecutivéf all nodes inj5 are siblings (with
parentS) and they appear consecutively in the ordering'sfchildren. In any iteration
(F, E, L,b), the algorithm solves the following LP relaxation of theidesl problem.

min Z Cee ()

eckE



st. z(E(V))=|V|—-|F|—-1
z(BEU)) <|U|—-|FU)| -1 YU CV
z(6(S)) < b(S) VS e L
ZTe >0 Ve € E

For any vertex-subsét’ C V' and edge-sell, we let H(W) = {(u,v) € H |
u,v € W} denote the edges induced B andd g (W) := {(u,v) e H|u e W, v &
W} the set of edges crossif§. The first two sets of constraints are spanning tree
constraints while the third set corresponds to the degreadm Letr denote an opti-
mal extreme point solutioto this LP. By reducing degree bountlsy), if needed, we
assume that satisfies all degree bounds at equalitiye degree bounds may therefore
be fractional-valued). Let := 24.

Definition 2. An edge: € E'is said to bdocalfor S € L if e has at least one end-point
in S butis neither inE(C') nor in §(C) N(.S) for any grandchild” of S. Letlocal(S)
denote the set of local edges f8r A nodeS € L is said to begoodif [local(S)| < a.

The figure on the left shows a \ 3
setS, its childrenB, andB,, and
grand-childrerCy, ..., Cy; edges
in local(S) are drawn solid, non-
local ones are shown dashed.

Initially, E' is the set of edges
in the given graphf’ «— 0, L is
the original laminar family of ver-
tex sets for which there are degree
bounds, and an arbitrary linear ordering is chosen on tHdrefi of each node ig. In
a generic iteratioF, £, £, b), the algorithm performs one of the following steps (see
also Figure 1):

1. If z. = 1 for some edge € E thenF — F U {e}, E — E\ {e}, and set
b(S) < b(S) —1forall S € Lwith e € §(95).

2. If z. = 0 for some edge € E thenE — E\ {e}.

3. DropN: Suppose there at lealgt|/4 good non-leaf nodes id. Then either odd-
levels or even-levels contain a sét C £ of |£|/8 good non-leaf nodes. Drop
the degree bounds of ahildrenof M and modifyL accordingly. The ordering of
siblings also extends naturally.

4. DropL: Suppose there are more thit}/4 good leaf nodes i, denoted byV.
Then partition\V into parts corresponding to siblings ih For any par{ Ny, - - - |
N} C N consisting of ordered (not necessarily contiguous) caildf some node
S:
(a) DefineM; = No;_1 U Ny; forall 1 <i < |k/2] (if kis odd Ny is not used).

(b) Modify £ by removing leave$Ny, - -- , Ni} and adding new leaf-nod€d/;,

-+, M}z } as children of5 (if k£ is oddN, is removed). The children ¢f in
the new laminar family are ordered as follows: each nbfjeakes the position
of eitherN,;_1 or N»;, and other children of' are unaffected.
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Fig. 1. Examples of the degree constraint modifications DropN arapDr

(c) Setthe degree bound of eakh to b(M;) = b(Na;—1) + b(Na;).

Assuming that one of the above steps applies at each iter#tie algorithm termi-
nates wher? = () and outputs the final sét as a solution. It is clear that the algorithm
outputs a spanning tree 6f. An inductive argument (see e.g. [20]) can be used to show
that the LP (1) is feasible at each each iteration affd) + 2., < z, wherez, is
the original LP valuez.,,, is the current LP value, anfl is the chosen edge-set at the
currentiteration. Thus the cost of the final solution is ashibe initial LP optimunz,,.

Next we show that one of the four iterative steps always appli

Lemma 1. In each iteration, one of the four steps above applies.

Proof: Letz* be the optimal basic solution of (1), and suppose that thietfis steps
do not apply. Hence, we have< z} < 1 forall e € E. The fact thatz* is a basic
solution together with a standard uncrossing argument, @g [14]) implies that* is
uniquely defined by

2(E(U)) = |U| - |[FU)| -1 YU€eS, and z(55(S))=0b(S), VSecr,

whereS is a laminar subset of the tight spanning tree constraintbfais a subset of
tight degree constraints, and whéfd = |S| + |£/].

A simple counting argument (see, e.g., [27]) shows thattlaee at leas? edges
induced on eacl§ € S that are not induced on any of its children; 36| < |E|. Thus
we obtain| E| < 2|L'| < 2|L].

From the definition of local edges, we get that any edge(u, v) is local to at most
the following six sets: the smallest s&t € £ containingu, the smallest se$s € £
containingv, the parents? and P, of S; and S, resp., the least-common-ancesior
of P, and P, and the parent of.. Thus} ¢ [local(S)| < 6|E|. From the above,
we conclude tha} ¢ . |local(S)| < 12|£|. Thus at leasfL|/2 setsS € £ must have
[local(S)| < « = 24, i.e., must be good. Now either at ledst/4 of them must be
non-leaves or at leakf|/4 of them must be leaves. In the first case, step 3 holds and in
the second case, step 4 holds. |



It remains to bound the violation in the degree constraintdch turns out to be
rather challenging. We note that this is unlike usual appilbns of iterative round-
ing/relaxation, where the harder part is in showing thatafribe iterative steps applies.

It is clear that the algorithm reduces the sizeCdby at least£|/8 in each DropN
or DropL iteration. Since the initial number of degree coaistts is at mosin — 1, we
get the following lemma.

Lemma 2. The number of drop iterations (DropN and DropL)fis:= O(log n).

Performance guarantee for degree constraintsWe begin with some notation. The
iterations of the algorithm are broken into periods betwsgecessive drop iterations:
there are exactl§f” drop-iterations (Lemma 2). In what follows, tit¢h drop iteration
is calledroundt. Thetimet refers to the instant just after roungtime 0 refers to the
start of the algorithm. At any timg consider the following parameters.

— L, denotes the laminar family of degree constraints.

— FE, denotes the undecided edge set, i.e., support of the cluPemptimal solution.

— For any set3 of consecutive sibling® L, Bnd(B,t) = > 5z b(IV) equals the
sum of the residual degree bounds on nodes.of

— For any setB3 of consecutive siblings L:, Inc(B,t) equals the number of edges
from ég, (UnepN) included in the final solution.

Recall thath denotes theesidualdegree bounds at any point in the algorithm. The
following lemma is the main ingredient in bounding the degr®lation.

Lemma 3. For any setB of consecutive siblings if; (at any timet), Inc(B,t) <
Bnd(B,t) + 4o - (T — t).

Observe that this implies the desired bound on each origiegtee constraing:
usingt = 0 andB = {S}, the violation is bounded by an additite. - T term.

Proof: The proof of this lemma is by induction &h— ¢. The base case= T'is trivial
since the only iterations after this correspond to inclgdiredges: hence there is no
violation inanydegree bound, i.énc({N},T) < b(N) forall N € L. Hence forany
BC L, Inc(B,T) <3 nep!nc({N},T) <> negb(N) = Bnd(B,T).

Now supposeé < T, and assume the lemma fo# 1. Fix a consecutivé8 C L,.
We consider different cases depending on what kind of dreprsdn round + 1.

DropN round. Here either all nodes i get dropped or none gets dropped.

Case 1None ofBB is dropped.Then observe thaf is consecutive irC;; as well;
so the inductive hypothesis impliésc(B,¢ + 1) < Bnd(B,t + 1) +4a - (T —t — 1).
Since the only iterations between rounand round + 1 involve edge-fixing, we have
Inc(B,t) < Bnd(B,t)—Bnd(B,t+1)+Inc(B,t+1) < Bnd(B,t) +4a- (T—t—1) <
Bnd(B,t) + 4o - (T — ).

Case 2All of B is droppedLet C denote the set of all children (ifi;) of nodes in
B. Note thaiC consists of consecutive siblings4h 1, and inductivelyinc(C,t + 1) <
Bnd(C,t + 1) +4a - (I'—t — 1). Let S € L, denote the parent of thB-nodes;
soC are grand-children of' in £;. Let = denote the optimal LP solutioust before



roundt + 1 (when the degree bounds are still givenfy, andH = E;,, the support
edges ofz. At that point, we havé(N) = z(§(NV)) forall N € B U C. Also let
Bnd'(B,t + 1) := > ycpb(N) be the sum of bounds aBi-nodes just before round
t + 1. SinceS is a good node in round+ 1, |[Bnd’(B,t + 1) — Bnd(C,t + 1)| =
| Eyesb(N) = X M) = | Dyeps @(6(N)) = Xaree #(8(M))] < 20. The
last inequality follows since' is good; the factor o2 appears since some edges, e.g.,
the edges between two children or two grandchildresi,ohay get counted twice. Note
also that the symmetric difference &f (UnepN) anddy (Upec M) is contained in
local(S). Thusd g (UnegN) anddy (Uprec M) differ in at mosta edges.

Again since all iterations between timandt + 1 are edge-fixing:

Inc(B,t) < Bnd(B,t) — Bnd'(B,t + 1) + [§g (UnesN) \ 6u (Unrec M)
+Inc(C,t +1)
nd(B,t) —

/

B,t+1)+a+Inc(C,t+1)
B,t+1)+a+Bnd(C,t+1)+4a- (T —t—1)
B,t+1)+a+Bnd (B,t+1)+2a+4a- (T —t—1)
T —t)

Bnd

nd(B,t) — Bnd’

nd(B,t) — Bnd’
nd(B,t) + 4o -

VAN VAN VAN VAN
UUUUWW

—~

)

The first inequality above follows from simple counting; texond follows since
0 (UnepN) anddy (Uprec M) differ in at mosta edges; the third is the induction
hypothesis, and the fourthBnd(C,t + 1) < Bnd'(B,t + 1) + 2« (as shown above).
DropL round. Inthis case, lef be the parent aB-nodesinC,, and\ = {Ny,--- , N, }
be all the ordered children ¢f, of which B is a subsequence (since it is consecutive).
Suppose indices < 7(1) < ©(2) < --- < w(k) < p correspond to good leaf-nodes
in V. Then for eachl < i < [k/2], nodesN,(2;—1) and N, ;) are merged in this
round. Let{r(i) | e < i < f} (possibly empty) denote the indices of good leaf-nodes
in 5. Then it is clear that the only nodes Bfthat may be merged with nodes outside
B areN ) andN,; all other3-nodes are either not merged or merged with another
B-node. LetC be the inclusion-wise minimal set ohildren ofS in £, s.t.

— Cis consecutive irC; 1,
— C contains all nodes o8 \ {N,(;}*_,, and
— C contains all new leaf nodes resulting from mergiwg good leaf nodesf 5.

Note thatJy;cc M consists of some subsetBfand at most two good leaf-nodes in
N\ B. These two extra nodes (if any) are those merged with the padahodesV, .,
and N,y of B. Again letBnd'(B,t + 1) := Yy b(N) denote the sum of bounds
on B just before drop round + 1, when degree constraints afe. Let H = E,, be
the undecided edges in round- 1. By the definition of bounds on merged leaves, we
haveBnd(C,t+ 1) < Bnd'(B,t+ 1) + 2a. The term2a is present due to the two extra
good leaf-nodes described above.

Claim6 We have}dH(UNGBN) \ 5H(U]\,[€CM)| < 2a.

Proof: We say thatV € N is represented i@ if either N € C or N is contained
in some node of. Let D be set of nodes oB that arenot represented i€ and the



nodes ot/\/\ B that are represented[h Observe that by definition @f, the setD C
{Nz(e=1)> Nx(e) Nx(5)s Nr(s+1) }5 in fact it can be easily seen thid?| < 2. Moreover
D consists of only good Ieaf nodes. Thus, we hgvecp 0 (L)| < 2«. Now note that
the edges id g (UnesN) \ 01 (Unrec M) must be indyepdp (L). This completes the
proof. [ ]

As in the previous case, we have:

Inc(B,t) < Bnd(B,t) — Bnd'(B,t + 1) + [0u (UnesN) \ 6 (Unrec M)
+Inc(C,t+1)

< Bn ( ) Bnd’

— Bnd’

B,t+ 1)+ 2a+ Inc(C,t+1)
B,t+1)4+2a+Bnd(C,t+1)+4a- (T —t—1)
B t+1)—|—20z—|—Bnd (B,t+1)+2a+4a- (T —-t—1)

—t)

The first inequality follows from simple counting; the sedarses Claim 6, the third
is the induction hypothesis (sin€eis consecutive), and the fourthBnd(C,t + 1) <
Bnd'(B,t + 1) + 2« (from above).

This completes the proof of the inductive step and hence Lam |

/_\/\/\/—\

3 Hardness Results

We now prove Theorem 2. The first step to proving this resatiardness for the more
general minimum crossing matroid basis problem: given aamhi\ on a ground set
V' of elements, a cost function: V' — R,, and degree bounds specified by pairs
{(E;,b;)}™, (where eachE; C V andb; € N), find a minimum cost basis in M
suchthatl N E;| < b; forall i € [m].

Theorem 7. UnlessN\P has quasi-polynomial time algorithms, the unweighted min-
imum crossing matroid basis problem admits no polynomiaétD (log® m) additive
approximation for the degree bounds for some fixed constan®.

Proof: We reduce from the label cover problem [1]. The input is a grép= (U, E)

where the vertex séf is partitioned into piece§, - - - , U,, each having size, and all
edges inE are between distinct pieces. We say that theresiggeredgéetweerl/; and
Uj if there is an edge connecting some verteX/irto some vertex i/;. Lett denote
the total number of superedges; i.e.,

t= H(i,j) € ([Z]) : there is an edge i betweerl; ande}

The goal is to pick one vertex from each pgilit; }_; so as to maximize the number
of induced edges. This is called the value of the label covaance and is at most

It is well known that there exists a universal constant- 1 such that for every
k € N, there is a reduction from any instance of SAT (having $\2eto a label cover
instance(G = (U, E), q, t) such that:



— If the SAT instance is satisfiable, the label cover instaraedptimal value.

— If the SAT instance is not satisfiable, the label cover instahas optimal value
< t/~k.

— |G| = N9, ¢q = 2%, |E| < t2, and the reduction runs in timg© %),

We consider a uniform matroidA with rank¢ on ground setr (recall that any
subset of edges is a basis in a uniform matroid). We now construct asgrgsnatroid
basis instanc& on M. There is a set of degree bounds corresponding to 2ach|:
for every collectionC' of edges incident to vertices ii; such that no two edges @i
are incident to the same vertex if, there is a degree bound Irequiringat most
oneelement to be chosen fro@i. Note that the number of degree boumdss at most
|E|7 < NO*2%) The following claim links the SAT and crossing matroid astes.
Its proof is deferred to the full version of this paper.

Claim 8 [Yes instancg|If the SAT instance is satisfiable, there is a basis (i.e. &tubs
B C E with | B|] = t) satisfying all degree bounds.

[No instancé If the SAT instance is unsatisfiable, every suliset E with |B’| > ¢/2
violates some degree bound by an addiive /2 /+/2.

The steps described in the above reduction can be done inptityaomial inm
and |G|. Also, instead of randomly choosing vertices from the $&}s we can use
conditional expectations to derive a deterministic algni that recovers at least?
edges. Setting = ©(loglog N) (recall thatV is the size of the original SAT instance),
we obtain an instance of bounded-degree matroid basiseisiz{m, |G|} = N'o&" N
andp = log® N, wherea,b > 0 are constants. Note thaigm = log® ™' N, which
impliesp = log“m for ¢ = a;”l > 0, a constant. Thus it follows that for this constant
¢ > 0 the bounded-degree matroid basis problem has no polynéimialO (log® m)
additive approximatiorior the degree bounds, unles&P has quasi-polynomial time
algorithms. [ ]

We now prove Theorem 2.
Proof: [Proof of Theorem 2] We show how the bases of a uniform matoaid be
represented in a suitable instance of the crossing spatremgroblem. Let the uniform
matroid from Theorem 7 consist efelements and have rank< ¢; recall thatt > /e
and clearlym < 2¢. We construct a graph as in Figure 2, with vertiegs: - - , v,
corresponding to elements in the uniform matroid. Eachexert is connected to the
root r by two vertex-disjoint paths(v;, u;, ) and (v;, w;,r). There are no costs in
this instance. Corresponding to each degree bound (in ttierommatroid) of b(C)
on a subseC C [e], there is a constraint to pick at mogt| + b(C') edges from
0({u; | ¢ € C}). Additionally, there is @pecial degree bounaf 2¢ — ¢ on the edge-set

E' = J;_, 6(w;); this corresponds to picking a basis in the uniform matroid.



Observe that for eache [¢], any span-
ning tree must choose exactly three edges
amongst{ (r, u;), (ui, v;),

(r,w;), (wi, v;)}, in fact any three edges
suffice. Hence every spanning tréein
this graph corresponds to a subgétC
[e] such that: (I)T" contains both edges in
0(u;) and one edge froni(w; ), for each
i € X, and (Il)T" contains both edges in

§(w;) and one edge fromi(u,) for each Fig.2. The crossing spanning tree |n-
i€le]\X. stance used in the reduction.

From Theorem 7, for the crossing matroid problem, we obtzértwo cases:

Yes instanceThere is a basi®* (i.e. B* C [¢], |B*| = t) satisfying all degree bounds.
Consider the spanning tree

T = {(r,w;), (us,v;), (r,w;) | i € B*} U{(r, w;), (ug,w;), (ryu;) | i € [e] \ B*}.

Since B* satisfies its degree-bounds; satisfies all degree bounds derived from the
crossing matroid instance. For the special degree bounfd pnote that7* N E'| =

2e — | B*| = 2e — t; so this is also satisfied. Thus there is a spanning treéysag=all

the degree bounds.

No instanceEvery subsetB’ C [e] with |B’| > ¢/2 (i.e. near basis) violates some
degree bound by an additive= 2(log®m) term, wherec > 0 is a fixed constant.
Consider any spanning trethat corresponds to subsgtC [e] as described above.

1. Suppose thafX| < ¢/2; then we havel' N E'| = 2e — | X| > 2e — t + £, i.e. the
special degree bound is violated §§2 > 2(v/e) = 2(log*/? m).

2. Now suppose thafX'| > ¢/2. Then by the guarantee on the no-instaricejolates
some degree-bound derived from the crossing matroid insthy additivep.

Thus in either case, every spanning tree violates some el&égnend by additive =
2(log"m).

By Theorem 7, it is hard to distinguish the above cases andhiarothe corre-
sponding hardness result for crossing spanning tree, msezdlan Theorem 2. |
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