
Linear Programming Hierarchies Suffice for
Directed Steiner Tree

Zachary Friggstad1, Jochen Könemann?,2, Young Kun-Ko3, Anand Louis??,4,
Mohammad Shadravan?,2, and Madhur Tulsiani? ? ?,5

1 Department of Computing Science, University of Alberta
2 Department of Combinatorics and Optimization, University of Waterloo

3 Department of Computer Science, Princeton University
4 College of Computing, Georgia Tech

5 Toyota Technical Institute at Chicago.

Abstract. We demonstrate that ` rounds of the Sherali-Adams hierar-
chy and 2` rounds of the Lovász-Schrijver hierarchy suffice to reduce the
integrality gap of a natural LP relaxation for Directed Steiner Tree in
`-layered graphs from Ω(

√
k) to O(` · log k) where k is the number of ter-

minals. This is an improvement over Rothvoss’ result that 2` rounds of
the considerably stronger Lasserre SDP hierarchy reduce the integrality
gap of a similar formulation to O(` · log k).
We also observe that Directed Steiner Tree instances with 3 layers of
edges have only an O(log k) integrality gap in the standard LP relaxation,
complementing the known fact that the gap can be as large as Ω(

√
k) in

graphs with 4 layers.

1 Introduction

In the Directed Steiner Tree (DST) problem, we are given a directed graph
G = (V,E) with edge costs ce ≥ 0, e ∈ E. Furthermore, we are given a root
node r ∈ V and a collection of terminals X ⊆ V and the goal is to find the
cheapest collection of edges F ⊆ E such that there is an r − t path using only
edges in F for every terminal t ∈ X. The nodes in V − (X ∪ {r}) are called
Steiner nodes. Throughout (except in Section 2.1), we will let n = |V |, m = |E|,
and k = |X| and we let OPTG denote the optimum solution cost to the DST
instance in graph G.

If X ∪ {r} = V , then the problem is simply the minimum-cost arborescence
problem which can be solved efficiently. However, the general case is well-known
to be NP-hard. In fact, the problem can be seen to generalize the Group Steiner
Tree problem, which cannot be approximated within O(log2−ε(n)) for any con-
stant ε > 0 unless NP ⊆ DTIME(npolylog(n)) [7].

? Supported by NSERC grant no. 288340.
?? Supported by NSF award CCF-1217793. Part of work done while the author was a

summer intern at TTI-Chicago.
? ? ? Research supported by NSF Career Award CCF-1254044.

2

Definition 1. Say that an instance G = (V,E) of DST with terminals X is
`-layered if V can be partitioned as V0, V1, . . . , V` where V0 = {r}, V` = X and
every edge uv ∈ E has u ∈ Vi and v ∈ Vi+1 for some 0 ≤ i < `.

For any DST instanceG and any integer ` ≥ 1, Zelikovsky showed that there is an
`-layered DST instance H with at most ` ·n nodes such that OPTG ≤ OPTH ≤
`·k1/` ·OPTG and that a DST solution in H naturally corresponds to a DST solu-
tion inG with the same cost [11, 1]. Charikar et al. [2] exploit this fact and present
an O(`2k1/` log k)-approximation6 with running time poly(n, k`) for any integer
` ≥ 1. In particular, this can be used to obtain an O(log3 k)-approximation in
quasi-polynomial time and for any constant ε > 0 a polynomial-time O(kε)-
approximation. Finding a polynomial-time polylogarithmic approximation is an
important open problem.

A natural linear programming (LP) relaxation for Directed Steiner Tree is
given by LP (P0).

min
∑
e∈E

cexe (P0)

s.t. x(δin(S)) ≥ 1 ∀ S ⊆ V − r, S ∩X 6= ∅ (1)

xe ∈ [0, 1] ∀e ∈ E

Zosin and Khuller [12] demonstrated that the integrality gap of this relaxation
can, unfortunately, be as bad as Ω(

√
k), even in instances where G is a 4-layered

graph. Recently, Rothvoss [9] showed that 2` rounds of the Lasserre semidefinite
programming (SDP) hierarchy suffice to reduce the integrality gap of a similar
LP relaxation to only O(` · log k) in `-layered graphs. The LP he considers is an
extended formulation of (P0) with polynomially many constraints plus additional
constraints of the form x(δin(v)) ≤ 1 for each non-root node v.

A related problem that will appear frequently throughout this paper is the
Group Steiner Tree (GST) problem mentioned above. In this, we are given an
undirected graph with edge costs, a root node r, and a collection of subsets
X1, X2, . . . , Xk of nodes called terminal groups. The goal is to find the cheapest
subset of edges F such that for every group Xi, there is a path from r to some
node in Xi using only edges in F . Unlike DST, the integrality gap of the nat-
ural LP relaxation (GST-LP) (introduced in Section 3) is polylogarithmically
bounded.

Theorem 1 (Garg, Konjevod, and Ravi [4]). The integrality gap of LP
(GST-LP) is O(min{`, log n} · log k) in GST instances that have n nodes, k
terminal groups, and are trees with height ` when rooted at r.

6 The algorithm in [2] is presented as an O(`k1/` log k)-approximation and relied on
an incorrect claim in [11]. A correction to this claim was made in [1] which gives the
stated DST approximation bound.

3

Only the bound of O(log n log k) is explicitly shown in [4] but the bound O(` ·
log k) easily follows from their techniques7.

Hierarchies of convex programming relaxations, a.k.a. “lift-and-project” meth-
ods, have recently been used successfully in the design of approximation algo-
rithms. In this paper, we only include the specifics of the Sherali-Adams hierarchy
and Lovász-Schrijver LP hierarchy as needed to describe our result. For more
information, we direct the reader to an introduction and survey by Chlamtáč
and Tulsiani [3] and note that a more recent application of the Sherali-Adams
hieararchy by Gupta, Talwar and Witmer obtains a 2-approximation for the
non-uniform Sparsest Cut problem in graphs with bounded treewidth [5] .

1.1 Our Results and Techniques

Using the ellipsoid method, it is possible to design a separation oracle for the
`-th level lift of (P0) in the Sheral-Adams and Lovász-Schrijver hierarchies with
running time being polynomial in m` and k`. However, we will start with a much
simpler LP relaxation with only polynomially many constraints.

min
∑
e∈E

cexe (P1)

s.t. x(δin(t)) ≥ 1 t ∈ X (2)

x(δin(v)) ≤ 1 ∀ v ∈ V − r (3)

x(δin(v)) ≥ xe ∀ v ∈ V − (X ∪ {r}), e ∈ δout(v) (4)

xe ∈ [0, 1] ∀e ∈ E

This is a relaxation in the sense that integer solutions corresponding to min-
imal DST solutions are feasible. That is, any minimal DST solution F is a
branching, so every node has indegree 1 in F which justifies the inclusion of
Constraints (3). Similarly, if some Steiner node v has no incoming edges in F
then, by minimality of F , v also has outdegree 0 which justifies Constraints (4).

Our main result is the following. The notation SAt(P) and LSt(P) (defined
properly in Section 2.1 and Section 2.2 respectively) refers to the t-th level lift
of polytope P ⊆ [0, 1]m in the Sherali-Adams hierarchy and Lovász-Schrijver
hierarchy respectively, which can be optimized over in time that is polynomial
in the size of LP (P1) and m`. Thus, we consider the following LPs.

min

{∑
e∈E

ce · y{e} : y ∈ SA`(P)

}
(SA-LP)

min

{∑
e∈E

ce · ye : y ∈ LS2`(P)

}
(LS-LP)

7 [4] groups nodes together in their analysis so that the tree has height h = O(logn).
They then prove the gap is O(h · log k). One could skip the grouping argument to
directly prove the O(` · log k) bound.

4

where P is the polytope given by the constraints of the LP relaxation (P1).

Theorem 2. Then the integrality gap of LP (SA-LP) is O(`·log k) in `-layered
instances of DST.

Theorem 3. Then the integrality gap of LP (LS-LP) is O(` · log k) in `-layered
instances of DST.

Note that Theorems 2 and 3 are incomparable; fewer rounds are used in the
stronger Sherali-Adams hierarchy. For the sake of space, we will only present
the proof of Theorem 2 in this extended abstract. The proof of We can also find
feasible DST solutions witnessing these integrality gap upper bounds.

Theorem 4. Given oracle access to some fixed y ∈ LS2`(P) or y ∈ SA`(P),
with high probability we can find a Directed Steiner Tree solution in time O(poly(n))
of cost at most O(` · log k) times the cost of y∗.

Rothvoss proved an analogous result for the Lasserre SDP hieararchy [9], but
his arguments relied on a particular decomposition theorem proven by Karlin,
Mathieu, and Nguyen [8]. This decomposition theorem does not hold in weaker
LP hierarchies.

The algorithm for rounding a point in SA`(P) lifted LP is quite different
from the algorithm for rounding a point in LS2`(P). At a high level, we prove
Theorem 2 by mapping a point y∗ in the Sherali-Adams lifted polytope into an
LP solution with the same cost as y∗ for a related Group Steiner Tree instance.
Using Theorem 1, we find a GST solution with cost O(` · log k) times the cost of
y∗ and this will naturally correspond to a DST solution in G. This construction
does not need to be made explicit; one can emulate the GST rounding algorithm
in [4] in an expected O(poly(n)) steps given oracle access to y ∈ SA`(P).

However, these techniques do not seem to help in proving Theorem 3. We
prove Theorem 3 by employing a different algorithm to round LP (LS-LP).
Roughly speaking, we start from the terminals, then iteratively extend the paths
by adding edges in a bottom-up fashion guided by probabilities given by the LP.

As a warmup, we also obtain the following interesting bound that shows
lift-and-project techniques are not necessary for graphs having 3 layers.

Theorem 5. The integrality gap of LP (P0) is O(log k) in 3-layered graphs.

As with Theorem 2, this is obtained by mapping a point in LP (P0) to an LP
solution for the corresponding GST instance. However, the restriction to only 3
layers allows us to accomplish this without the use of hierarchies. In contrast,
the integrality gap of LP (P0) is Ω(

√
k) in some graphs with 4 layers [12].

The paper is organized as follows. Section 2 describes the hierarchies and
introduces some additional notation. The proof of Theorem 5 is presented in
Section 3. The proof of Theorem 2 is outlined in Section 4. Finally, the rounding
algorithms for both hierarchies are described in Section 5.

5

2 Preliminaries

2.1 The Sherali-Adams Hierarchy

Consider a polytope P ⊆ Rn specified by m linear constraints
∑n
i=1Aj,i · xi ≥

bj , 1 ≤ j ≤ m. Suppose the “box constraints” 0 ≤ xi and xi ≤ 1 (equivalently,
−xi ≥ −1) appear among these constraints for each 1 ≤ i ≤ n.

For t ≥ 0, let Pt([n]) = {S ⊆ {1, . . . , n} : |S| ≤ t} denote the collection
of subsets of {1, . . . , n} of size at most t. We also let RPt([n]) denote Rα where
α = |Pt([n])| = nO(t). We index a vector y ∈ RPt([n]) by sets in Pt([n]). The
Sherali-Adams hieararchy (introduced in [10]) is described as follows.

Definition 2. SAt(P) is the set of vectors y ∈ RPt+1([n]) satisfying y∅ = 1 and

∑
H⊆J

(−1)|H| ·

(
n∑
i=1

Aj,i · yI∪H∪{i} − bj · yI∪H

)
≥ 0 (5)

for each j = 1, . . . ,m and each pair of subsets of indices I, J ⊆ {1, . . . , n} having
|I|+ |J | ≤ t.

If P is described by m linear constraints over n variables, then SAt(P) has
nO(t) variables and nO(t)m constraints. So, we can solve the LP

min

{
n∑
i=1

ci · y{i} : y ∈ SA`(P)

}

with only poly(n`) overhead over the running time of solving min
{
cTx : x ∈ P

}
.

We only use some of the many well-known properties of the Sherali-Adams
hierarchy.

Lemma 1. Suppose y ∈ SAt(P) for some t ≥ 0. Then the following hold.

– For any A ∈ Pt([n]) such that yA > 0, let y′ ∈ RPt+1−|A|([n]) be defined by
y′I = yI∪A

yA
. Then y′ ∈ SAt−|A|(P).

– For any A ⊆ B ⊆ [n] with |B| ≤ t+ 1, we have yB ≤ yA.

Furthermore, P and the projection of SAt(P) to the singletons have the same
integral solutions.

In particular, the last statement implies that if P is an LP relaxation of a {0, 1}
integer program, then SAt(P) is also a relaxation for the same integer program
for any t ≥ 0.

Proof. For the first statement, we have y′∅ = yA
yA

= 1. Furthermore, for any pair

of indices I ′, J ′ with |I ′|+ |J ′| ≤ t− |A| we are given that y ∈ SAt(P) satisfies
(5) with I = I ′ ∪ A and J = J ′. Scaling this bound by 1

yA
shows that (5) holds

for y′ using I = I ′ and J = J ′.

6

The second part can be proved by induction on |B \ A| with the base case
being |B| = |A| + 1. If B = A ∪ {i} then using constraint xi ≤ 1 and (5) with
I = A and J = ∅ directly shows yB ≤ yA.

Finally, if z ∈ P is integral then it is straightforward to check that yS =∏
i∈S zi is an integer point in SAt(P) with y{i} = zi. Conversely, the restriction

of any point y ∈ SAt(P) to the singletons is a point of P: take I = J = ∅ in (5).

2.2 The Lovász-Schrijver Hierarchy

Given a convex set P ⊆ [0, 1]n, we convert it to a cone in Rn+1 as follows.

cone(P) = {y = (λ, λx1, . . . , λxn) | λ ≥ 0, (x1, . . . , xn) ∈ P}

With a linear program given by constraints
∑n
i=1Aj,i ·xi ≥ bj , 1 ≤ j ≤ m, this is

accomplished by homogenizing the constraints with a new variable x0, yielding
the cone {x ∈ Rd+1 :

∑n
i=1Aj,i · xi ≥ bj · x0, 1 ≤ j ≤ m and x0 ≥ 0}.

Definition 3. For a cone K ⊆ Rd+1 we define the set N(K) (also a cone in
Rd+1) as follows: a vector y = (y0, . . . , yd) ∈ Rd+1 is in N(K) if and only if
there is a matrix Y ∈ R(d+1)×(d+1) such that

1. Y is symmetric

2. For every i ∈ {0, 1, . . . , d}, Y0,i = Yi,i = yi
3. Each row Yi is an element of K

4. Each vector Y0 − Yi is an element of K

The matrix Y is said to be a protection matrix for y ∈ N(K). For t ≥ 0 we
recursively define the cone N t(K) as N0(K) = K and N t(K) = N(N t−1(K).

Then we project the cone back to the desired space.

Definition 4. LSt(P) is the set of vectors y ∈ N t(cone(P)) with y0 = 1.

Lovász and Schrijver [13] showed that if we start from a LP relaxation of
a 0-1 integer program with n variables, then LSn(P) is a tight relaxation in
the sense that the only feasible solutions are convex combinations of integral
solutions. In addition, if we start with a LP relaxation with poly(n) inequalities,
we can obtain an optimal solution over the set of solutions given by t levels of
LS in nO(t) time.

One key fact that is derived easily from Definition 3 is the following.

Lemma 2. If y = (1,x) ∈ LSt(P) with protection matrix Y , for any i ∈
{1, . . . , n} such that xi > 0 consider the vector y′ = 1

xi
Yi. Then y′ ∈ LSt−1(P)

with y′i = 1.

7

2.3 Notation

Suppose G is an `-layered instance of Directed Steiner Tree with root r, terminals
X, and layers {r} = V0, V1, . . . , V` = X. We will assume every v ∈ V can be
reached by r. In particular, for every v ∈ V1 we have rv ∈ E.

Say a path in G is rooted if it begins at r. The notation 〈vj , vj+1, vj+2, . . . , vi〉
refers to a path in G that follows edges vjvj+1, vj+1vj+2, . . . , vi−1vi ∈ E in
succession. The subscript of a vertex in this notation will always indicate which
layer the node lies in. The notation 〈ej , ej+1, ej+2, . . . , ei〉 refers to a path in G
that follows edges ej , ej+1, . . . , ei ∈ E in succession. The subscript of an edge in
this notation will always indicate which layer the (directed) edge starts from.

For any node v ∈ V (G) we let

Q(v) = {〈r, v1, v2, . . . , vi〉 : vi = v}

and for any e ∈ E(G) we let

Q(e) = {〈r, v1, v2, . . . , vi〉 : vi−1vi = e}

denote all rooted paths ending at node v or ending with edge e, respectively.
More generally, for a vertex v and another vertex u or an edge e, we let Q(v, u)
and Q(v, e) denote all paths starting at v and ending at u or ending with edge
e, respectively. We let Q(e, v) denote all paths starting with edge e and ending
at v. It will also sometimes be convenient to think of a path as a set of edges
{vjvj+1, . . . , vi−1vi}.

Definition 5. Suppose G = (V,E) is an `-layered instance of DST with root r
and k terminals X. Then we consider the Group Steiner Tree instance on a tree
T (G) with terminal groups Xt, t ∈ X defined as follows.

– The vertex set of T (G) consists of all rooted paths ∪v∈VQ(v) in G.

– For any rooted path P 6= 〈r〉, we connect P to its maximal proper rooted
subpath and give this edge cost ce, where P ∈ Q(e). Denote this edge in
T (G) by m(P).

– For each terminal t ∈ X, we let Xt = Q(t): the set of all r − t paths in G.

This construction is illustrated in Figure 1. We will not explicitly construct
T (G) in our rounding algorithm described in Section 5. It is simply a tool for
analysis.

The following is immediate from the construction of T (G).

Lemma 3. Let |V | = n. The graph T (G) constructed from an `-layered Directed
Steiner Tree instance G is a tree with height ` when rooted at 〈r〉. For every GST
solution in T (T) there is a DST solution in G of no greater cost, and vice-versa.

8

r

a b

c d e

x y z

r

a b

c d e d e

x y y z z y z z

Fig. 1. A 3-layered DST instance with terminals X = {x, y, z} (left) and the corre-
sponding GST instance T (G) (right). Each node in T (G) corresponds to a path P in
G and is labelled in the figure with the endpoint of P in G. A terminal group in T (G)
in the figure consists of all leaf nodes with a common label. A DST solution and its
corresponding GST solution are drawn with bold edges.

3 Rounding for 3-Layered Graphs

We first demonstrate that the natural LP relaxation (P0) for Directed Steiner
Tree has an integrality gap of O(log k) in 3-layered graphs without using any lift-
and-project machinery. As mentioned earlier, this complements the observation
of Zosin and Khuller [12] that the integrality gap is Ω(

√
k) in some 4-layered

instances.
We show this by directly embedding a solution to the Directed Steiner Tree

LP relaxation (P0) for some 3-layered instance G into a feasible LP solution to
the Group Steiner Tree LP (GST-LP) on instance T (G). The reason we can
do this with 3-layered instances is essentially due to the fact that for any edge
e = uv that either v ∈ X or |Q(e)| = 1 (Figure 1 also helps illustrate this). This
property does not hold in general for instances with at least 4 layers.

Consider a Group Steiner Tree instance H = (V,E) with root r, terminal
groups X1, X2, . . . , Xk ⊆ V , and edge costs ce, e ∈ E. The LP relaxation we
consider for Group Steiner Tree is the following.

min
∑
e∈E

ceze (GST-LP)

s.t. z(δ(S)) ≥ 1 ∀S ⊆ V − r,Xi ⊆ S for some group Xi (6)

z ≥ 0

Now we can prove Theorem 5.

Proof. Let G = (V,E) be a 3-layered instance of Directed Steiner Tree with
layers {r} = V0, V1, V2, V3 = X and T (G) the corresponding Group Steiner Tree
instance. Let x∗ be an optimal solution to LP (P0). Note that for edge uv ∈ E
with v 6∈ X there is a unique rooted path in G ending with e (i.e. |Q(e)| = 1).

We construct a feasible solution z∗ to LP relaxation (GST-LP) for the Group
Steiner Tree instance T (G). For every edge e = uv of G where v 6∈ X, set

9

z∗m(P) := x∗e where Q(e) = {P}. All that is left to set is the the z∗-value for the

leaf edges of T (G).
To do this, fix a terminal t ∈ X. By the max-flow/min-cut theorem and

Constraints (1), there is a flow f t sending 1 unit of flow from r to t satisfying
f te ≤ x∗e for every edge e. Furthermore, for each e ∈ δin(t) we may assume that
x∗e = f te, otherwise we could reduce x∗e while maintaining feasibility. Consider
any path decomposition of f t and say that this decomposition places weight wtP
on a path P ∈ Q(t). That is, f te =

∑
P∈Q(t):e∈P w

t
P for every edge e ∈ G. Then

we set z∗m(P) := wtP for each P ∈ Q(t).

We claim that z∗ is a feasible solution for LP (GST-LP) with cost equal to∑
e∈E cex

∗
e. If so, then by Theorem 1, there is a Group Steiner Tree solution of

cost at most O(log k) times the cost of x∗. We conclude by using Lemma 3 to
note that there is then a Directed Steiner Tree solution of cost at most O(log k).

To see why z∗ is feasible, we prove for every group t that there is a flow
gt of value 1 from 〈r〉 to the nodes in Xt with gtm(P) ≤ z∗m(P) for every edge

m(P), P of H. By the max-flow/min-cut theorem, this means every constraint
of (GST-LP) is satisfied by z∗. That such a flow exists essentially follows from
the path decomposition of the flow f t. Recall that a path decomposition of f t

placed weight wtP on P ∈ Q(t). So, for each group Xt we define a flow gt in
T (G) by gtm(P) =

∑
P∗∈Q(t):P⊆P∗ w

t
P∗ .

Verifying that gt is one unit of r−Xt flow satisfying gt ≤ z∗ is straightforward;
the details are left to the full version. It is also easy to see that the total z∗-value
for paths ending with a copy of an edge e in G is equal to x∗e, so the x∗ and z∗

have the same cost.

4 Sherali-Adams Gap for `-Layered Graphs

Our basic approach for proving Theorem 2 is similar to our approach for Theorem
5. Let P denote the polytope defined by the constraints of LP (P1). We show how
to embed a point y∗ in the Sherali-Adams lift of LP (P1), namely SA`(P), for an
`-layered instanceG to a feasible solution to LP (GST-LP) for the corresponding
Group Steiner Tree instance T (G).

Describing the embedding is straightforward. For every edge m(P) in T (G),
simply set z∗m(P) := y∗P . The rest of our analysis shows that z∗ is feasible for

LP (GST-LP) for instance T (G) and the cost of z∗ in (GST-LP) is equal to∑
e∈E ce · y∗{e}.
Before delving into the proofs of these statements, we note a helpful technical

result about the structure of Sherali-Adams solutions.

Lemma 4. Suppose 0 ≤ i < j ≤ `. For any node v ∈ Vi, any edge e = uw with
w ∈ Vj, and any y ∈ SAj−i(P) we have

∑
P∈Q(v,e) yP ≤ y{e}. Furthermore, if

v = r then this bound holds with equality.

Note that |P | = j − i for any P ∈ Q(v, e) so it is valid to index y ∈ SAj−i(P)
with P in the sum.

10

Proof. We prove this by induction on j − i. The base case j = i + 1 is trivial
since either Q(v, e) = ∅ (so the sum in question is 0) or Q(v, e) consists of the
singleton path that only uses edge e (so the sum in question is just y{e} already).
Furthermore, if v = r then e ∈ δout(r) so the bound holds with equality.

Inductively, suppose j > i + 1. If y{e} = 0 then by Lemma 1 we have yP ≤
y{e} = 0 for every P ∈ Q(v, e) so the bound holds with equality. Otherwise,

define the conditioned solution y(e) ∈ SAj−i−1(P) by y
(e)
I =

yI∪{e}
y{e}

for every

I ⊆ E, |I| ≤ i− j (cf. Lemma 1). Then∑
P∈Q(v,e)

yP =
∑

e′∈δin(u)

∑
P∈Q(v,e′)

yP∪{e} = y{e}
∑

e′∈δin(u)

∑
P∈Q(v,e′)

y
(e)
P

≤ y{e}
∑

e′∈δin(u)

y
(e)
{e′} = y{e}

where the inequality follows by induction (note that the endpoint of e′ is in
Vj−1). The last equality follows by Constraints (3) and (4) of LP (P1) plus the

fact that y
(e)
{e} = 1. Finally, if v = r then the inequality above holds with equality

by induction, so
∑
P∈Q(v,e) yP = y{e}.

4.1 Cost Analysis

The cost bound is an easy consequence of Lemma 4.

Lemma 5. The cost of z∗ in LP (GST-LP) is
∑
e∈E(G) ce · y∗{e}.

Proof. ∑
m(P)∈E(T (G))

cm(P) · z∗m(P) =
∑

e∈E(G)

∑
P∈Q(e)

ce · z∗m(P)

=
∑

e∈E(G)

∑
P∈Q(e)

ce · y∗P =
∑

e∈E(G)

ce · y∗{e}

where the last equality is by Lemma 4 applied with v = r.

4.2 Feasibility

Similar to the proof of Theorem 5, for every group Xt we construct a unit
〈r〉 − Xt flow gt in T (G) which satisfies the capacities given by z∗. Thus, by
the max-flow/min-cut theorem we have that z∗(δ(S)) ≥ 1 for every subset S ⊆
V (T (G))− 〈r〉 such that Xt ⊆ S for some group Xt.

We now fix a terminal t ∈ X and describe the flow gt by giving a path
decomposition of the flow. For each P ∈ Q(t), we assign a weight of y∗P to the
〈r〉 − P path in T (X). So, the flow gtm(P) crossing edge m(P) in T (G) is just∑
P∗∈Q(t):P⊆P∗ y

∗
P∗ .

Lemma 6. gt is one unit of 〈r〉 −Xt flow in T (G).

11

Proof. It is an 〈r〉−Xt flow because we constructed it from a path decomposition
using only paths in Q(t). Furthermore,

gt(δoutT (G)(〈r〉)) =
∑

P∗∈Q(t):〈r〉⊆P∗
y∗P∗ =

∑
P∈Q(t)

y∗P

=
∑

e∈δinG (t)

∑
P∈Q(e)

y∗P =
∑

e∈δinG (t)

y∗{e} = 1.

Here, the second last equality follows from Lemma 4. The last equality follows
from combining Constraint (2) with Constraint (3) for v = t.

All that is left is to prove that each flow gt for a terminal group Xt satisfies
the capacities given by z∗. The following lemma is the heart of this argument. A
similar result was proven in [9] which relied on the strong decomposition property
for the Lasserre hierarchy of Karlin, Mathieu, and Nguyen [8]. We emphasize that
our proof only uses properties of the Sherali-Adams LP hierarchy.

Lemma 7. For every rooted path P and every terminal group Xt, we have∑
P∗∈Q(t):P⊆P∗ y

∗
P∗ ≤ y∗P .

Proof. If y∗P = 0 this is trivial since y∗P∗ ≤ y∗P for any P ∗ ⊇ P by Lemma 1.

Otherwise, form the conditioned solution y(P) ∈ SA`−|P |(P) by y
(P)
I =

y∗P∪I
y∗P

for

any |I| ≤ `+ 1− |P |.
Say v is the endpoint of P . Note that y(P) ∈ SA`−|P |(P) by Lemma 1. So,

for any e ∈ δin(t) we have
∑
P∗∈Q(v,e) y

(P)
P∗ ≤ y

(P)
{e} from Lemma 4 (with i = |P |

and j = `). Summing over all e ∈ δin(t) while using Constraints (3) and the
fact that the projection of y(P) to the singleton sets is a point in P, we have∑
P∗∈Q(v,t) y

(P)
P∗ ≤ 1.

Multiplying both sides of this bound by y∗P , we see that
∑
P∗∈Q(v,t) y

∗
P∪P∗ ≤

y∗P . But the left hand side is precisely
∑
P∗∈Q(t):P⊆P∗ y

∗
P∗ , which is what we

were required to show.

We can now easily verify that the capacity constraints are satisfied.

Corollary 1. For every terminal group Xt and every edge m(P) of T (G), gtm(P) ≤
z∗m(P).

Proof. By Lemma 7 gtm(P) =
∑
P∗∈Q(t)
P⊆P∗

y∗P∗ ≤ y∗P = z∗m(P).

The proof of Theorem 2 is now complete.

5 Rounding Algorithms

5.1 Sherali-Adams Rounding Algorithm

We bounded the integrality gap of LP (SA-LP) by converting some y ∈ SA`(P)
to a feasible solution for LP (GST-LP) in T (G). However, this mapping does

12

not have to be explicitly constructed to round y. Instead, we emulate the GST
rounding algorithm in [4] by simply querying the yP variables as needed. Algo-
rithm 1 describes the main subroutine from [4] in our context.

Algorithm 1 Sherali-Adams Rounding Subroutine

1: S0 ← {〈r〉}
2: for j = 1, . . . , ` do
3: Sj ← ∅
4: for each P ∈ Sj−1 do
5: for each e ∈ δout(v) where v is the endpoint of P do

6: Add 〈P, e〉 to Sj with probability
y∗P∪{e}

y∗
P

7: F ← edges used by some path in S`

8: return F

As in [4], the expected cost of F is
∑
e∈E cey{e} and, for each terminal t ∈

X, the probability that F contains an r − t path is at least 1
` . Iterating this

procedure sufficiently many times gives us a feasible DST solution with cost at
most O(` · log k) times the cost of y.

In fact, it is easy to see that in one run of Algorithm 1 we have for any rooted
path P ending in layer i that Pr[P ∈ Si] = y∗P . This leads to an interesting
observation which, ultimately, means the expected running time of Algorithm 1
is polynomial in n.

Lemma 8. E
[∑`

i=0 |Si|
]
≤ n

Proof. As noted before, for any edge e = uv with v ∈ Vi and any P ∈ Q(e) we
have Pr[P ∈ Si] = y∗P . Thus, E[|Si ∩ Q(e)|] =

∑
P∈Q(e) y

∗
P = y∗{e} where the

second equality is by Lemma 4. Summing over all edges e and using Constraints

(3) shows
∑
e∈E y

∗
{e} ≤ n−1. Finally, since y∗〈r〉 = y∗∅ = 1 then E

[∑`
i=0 |Si|

]
≤ n.

This also completes the proof of Theorem 4 for the Sherali-Adams rounding since
the total number of iterations of the loop in Step (4) of Algorithm 1 is precisely∑`−1
i=0 |Si|, which is polynomial in expectation. Therefore, with high probability

the running time of the entire rounding algorithm is polynomial in n.

5.2 Lovász-Schrijver Rounding Algorithm

We introduce a bit more notation to describe the rounding algorithm. We start
with some y ∈ LS2`(P) with corresponding protection matrix Y . For 0 < j ≤ `,
consider some path P = 〈vj , vj+1, . . . , v`〉 ending at some terminal v` ∈ X. We
let yP denote a point in LS`+j(P) and Y P be a corresponding protection matrix,
which we define inductively.

If j = ` (so P = 〈v`〉) then we simply let yP = y and Y P = Y . For j < `,
let yP be the point obtained by conditioning yP

′
on yP

′

vjvj+1
= 1 where P ′ =

13

〈vj+1, vj+2, . . . , v`〉. Then Y P is the protection matrix witnessing the inclusion

of row Y P
′

vjvj+1
in N `+j+1(cone(P)) (scaled by 1

yP ′e

to ensure Y P0 = yP). This

definition only makes sense if yP
′

e > 0 for every suffix 〈e, P ′〉 of P ; this will be
the case for every path P constructed in the algorithm.

The algorithm for rounding the Sherali-Adams relaxation does not does not
work for the Lovász-Schrijver hierarchy because a direct analogue of Lemma 4
fails to hold in this case. However, using the constraint that the indegree of every
node is at most 1, we are able to prove an analogue when we consider paths going
as edge to a particular terminal, instead of paths from the root to an edge. We
utilize this by building the tree in a “bottom-up” fashion in our algorithm.

Algorithm 2 contains the main subroutine for the Lovász-Schrijver rounding
procedure. As with the Sherali-Adams rounding procedure, we iterate Algorithm
2 until there is an r − t path for every terminal t in the union of the returned
sets of edges F .

Algorithm 2 Lovász-Schrijver Rounding Subroutine

1: F ← ∅, C ← ∅
2: St ← ∅ for each t ∈ X
3: for t ∈ X do
4: for each e ∈ δin(t) do
5: Add 〈e〉 to St independently with probability ye.

6: for j = 1, . . . , l do
7: for each u− t path P of length j in St do
8: if u /∈ C then
9: for each e ∈ δin(u) do

10: Add 〈e, P 〉 to St with probability yPe

11: Add edges in St to F , and the vertices covered by St to C

12: return F

As mentioned before, the proofs of Theorems 3 and 4 for this rounding pro-
cedure will appear in the full version.

References

1. G. Calinescu and G. Zelikovsky. The polymatroid Steiner problems. J. Combina-
torial Optimization, 9(3):281–294, 2005.

2. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Ap-
proximation algorithms for directed Steiner problems. J. Algorithms, 33(1):73–91,
1999.

3. E. Chlamtáč and M. Tulsiani. Convex relaxations and integrality gaps. Handbook
on Semidefinite, Conic and Polynomial Optimization, Springer, 2012.

4. N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm
for the group Steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

5. A. Gupta, K. Talwar, and D. Witmer. Sparsest cut on bounded treewidth graphs:
algorithms and hardness results. In proceedings of STOC, 2013.

14

6. V. Guruswami and A. K. Sinop. Faster SDP hierarchy solvers for local rounding
algorithms. In proceedings of FOCS, 2012.

7. E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In proceed-
ings of STOC, 2003.

8. A. Karlin, C. Mathieu, and C. Nguyen. Integrlaity gaps of linear and semidefinite
programming relaxations for knapsack. In proceedings of IPCO, 2011.

9. T. Rothvoss. Directed Steiner tree and the Lasserre hierarchy. CoRR
abs/1111.5473, 2011.

10. H. Sherali and W. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discrete
Math., 3:411–430, 1990.

11. A. Zelikovsky. A series of approximation algorithms for the acyclic directed Steiner
tree problem. Algorithmica, 18:99–110, 1997.

12. L. Zosin and S. Khuller. On directed Steiner trees. In proceedings of SODA, 2002.
13. L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimiza-

tion. SIAM Journal on Optimization, 1:166–190, 1991.

